-
Notifications
You must be signed in to change notification settings - Fork 13
/
index.html
847 lines (775 loc) · 34.2 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
<!DOCTYPE html>
<html lang="en">
<head>
<title>CS639 - Data Management for Data Science (Spring 2019)</title>
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap.min.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/js/bootstrap.min.js"></script>
<link rel="stylesheet" href="./style.css">
</head>
<div class="container">
<div class="navbar navbar-default" role="navigation">
<div class="container-fluid">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target=".navbar-collapse">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="#">CS 639</a>
</div>
<div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
<ul class="nav navbar-nav">
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">About <span class="caret"></span></a>
<ul class="dropdown-menu" role="menu">
<li><a href="#announcements">Announcements</a></li>
<li><a href="#description">Description</a></li>
<li><a href="#logistics">Class Logistics</a></li>
<li><a href="#lecture">Lecture Plan</a></li>
<li><a href="#grading">Grading</a></li>
<li class="divider"></li>
<li><a href="#staff">Staff</a></li>
<li class="divider"></li>
<li><a href="#late-policy">Late Policy</a></li>
<li><a href="#honor-code">Honor Code</a></li>
</ul>
</li>
<li><a href="#office-hours">Office Hours</a></li>
<li><a href="https://piazza.com/wisc/spring2019/cs639">Piazza</a></li>
</ul>
</div>
</div>
</div>
<div class="jumbotron">
<h1>CS639 Data Management for Data Science</h1>
<h3>Birge Hall 145 on MonWedFri 2:25-3:15pm</h3>
<p class="lead">Chat with us on <a href="https://piazza.com/wisc/spring2019/cs639">the course Piazza site</a> if you have any questions!</p>
</div>
<div class="panel panel-default">
<div class="panel-heading">Description</div>
<div class="panel-body">
<a name="description"></a>
<p>Data science incorporates practices from a variety of fields including statistics, machine learning, databases, distributed systems, algorithms, data warehousing, high-performance computing, and visualization. Thus, at a minimum, today's data scientist needs to have familiarity with: data processing and management tools like relational databases and NoSQL for processing large volumes of data; scripting languages like Python for quickly writing programs to clean and transform messy raw data; basic machine learning and data mining algorithms for analyzing the data; statistical computing environments for writing analysis scripts; and visualization tools for presentation and communication of analysis results.
This class will study techniques and systems for ingesting, efficiently processing, analyzing, and visualizing large data sets. Students will learn how to model and reason about data, and how to process and manipulate it in various ways. Topics will include data cleaning, data integration, scalable systems (relational databases, NoSQL, MapReduce, etc.), analytics (data cubes, scalable statistics and machine learning), and scalable visualization of large data sets.
</p>
<p> There will be <b>six programming assignments (PAs)</b> that will explore Database Design and SQL, MapReduce, basic Machine Learning, Data Integration, and Data Visualization.</p>
</div>
</div>
<div class="panel panel-default">
<div class="panel-heading">Announcements</div>
<div class="panel-body">
<a name="announcements"></a>
<ul>
<li><font color="red"><b>NEW!</b></font> If you want to dive deeper into ML and the theory behind it read the <a href="https://web.stanford.edu/class/cs229t/notes.pdf">notes</a> by Percy Liang.</li>
<li>Do you want to see what it means to be doing data science for real? We have several opportunities for undergraduate research in my lab and we are always willing to work with highly motivated students! If you are interested in research opportunities do not hesitate to contact me. The best way to engage is by shooting me an email with your CV and then dropping by my office hours. There are many exciting projects ranging from data cleaning to knowledge base construction to training deep learning models for data imputation to front-end design for scientific applications.</li>
<li> You can find more information about using Jupyter notebooks <a href="https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/execute.html">here</a>.</li>
<li> You can find more information about Python <a href="https://docs.python-guide.org/intro/learning/">here</a>.</li>
</ul>
</div>
</div>
<div class="panel panel-default">
<div class="panel-heading">Class Logistics</div>
<div class="panel-body">
<a name="logistics"></a>
<p> <b>Course Prerequisites</b>
<ul>
<li><p>CS 300 is absolutely essential. CS 400 might be helpful.</p></li>
</ul>
</p>
<p> <b>Programming Tools</b>
<ul>
<li><p>For the programming assignments we will utilize a virtual machine running Ubuntu. You can download the class virtual machine <a href="https://www.dropbox.com/s/xjvj3jlaurzjfas/cs639_vm.ova.zip?dl=0">here</a>. We have already installed several required Python packages and software in this virtual machine. You are not required to use this virtual machine but we will only provide support for the environment of the virtual machine during the semester.</p></li>
<li><p>If you are not proficient with Python, we recommend that you use the resources described <a href="https://docs.python-guide.org/intro/learning/">here</a>.</p>
</li>
</ul>
</p>
<p><b>Textbook</b>
<ul>
<li>There is no required textbook for the course. Lecture slides will be self-contained. Additional readings will be posted together with the lecture slides.</li>
<li>The following two books can be useful for you to consult. Both books are availble for free online at <a href="http://proquest.safaribooksonline.com/">Safari Books Online</a> <b>if you are on the UW network</b>.
<ul>
<li><a href="http://proquest.safaribooksonline.com/book/programming/python/9781449323592">Python for Data Analysis</a>, Wes McKinney, 2012</li>
<li><a href="http://proquest.safaribooksonline.com/book/databases/9781449363871">Doing Data Science</a>, Cathy O'Neil and Rachel Schutt, 2013</li>
</ul>
</li>
</ul>
</p>
<p><b>Assignments</b>
<ul>
<li>All programming assignments are <b>individual</b> assignments. Each student must send us an individual submission.</li>
<li>Programming assignments are due <b> by the end of day </b> on the indicated dates.</li>
<li>All assignments will be submitted via <a href="https://canvas.wisc.edu"><b>Canvas</b></a>.</li>
<li>You are allowed <b> 5 free late days </b> to use throughout the semester. One late day equals one 24 hour period after the due date of the assignment. Once you have used your late days, there will be a 20% penalty for each day an assignment is late.</li>
<li>The honor code described below will be enforced for both types of assignments.</li>
</ul>
</p>
</div>
</div>
<div class="panel panel-default">
<div class="panel-heading">
<h2 class="panel-title">Lecture Plan</h2>
</div>
<div class="panel-body">
<a name="lecture"></a>
<p>
The reading material listed below is optional, but you are highly encouraged to read it.
</p>
<p>
<hr />
<table class="plan">
<tbody>
<tr>
<th>#</th>
<th>Date</th>
<th>Topic</th>
<th>Lecture Materials</th>
<th><i>Extra</i> Reading Material</th>
<th>Assignments</th>
</tr>
<tr>
<td align="center" colspan="6" class="small-section-header">Introduction to Data Science</td>
</tr>
<tr>
<td>1</td>
<td>1/23</td>
<td>Intro to Data Science and Class Logistics/Overview</td>
<td class="side-borders">
<a href="./lectures/lecture-1/Lecture_1_Intro.pptx">Lecture 1</a> (<a href="./lectures/lecture-1/Lecture_1_Intro.pdf">pdf</a>)
</td>
<td class="side-borders">Chapter 1 from "Doing Data Science" and linked material in the slides</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1/25</td>
<td>Statistical Inference and Exploratory Data Analsysis</td>
<td class="side-borders">
<p><a href="./lectures/lecture-2/Lecture_2_Stats.pptx">Lecture 2</a> (<a href="./lectures/lecture-2/Lecture_2_Stats.pdf">pdf</a>)</p>
<p>Activity Files:
<ul>
<li><a href="./lectures/lecture-2/eda.ipynb">Notebook</a></li>
<li><a href="./lectures/lecture-2/data.csv">Data</a></li>
</ul>
</p>
</td>
<td class="side-borders">Chapter 2 from "Doing Data Science"</td>
<td><b>PA 0:</b> Virtual Box installation and setup</td>
</tr>
<tr>
<td>3</td>
<td>1/28</td>
<td>Getting Started with Data Analytics: In Class Demonstration</td>
<td class="side-borders">
In class demonstration of PA1
</td>
<td class="side-borders"></td>
<td><b>PA 1: </b>Twitter Sentiment Analysis. <font color="red"><b>Due on February, 7th.</b></font>
<p><a href="./assignments/assignment1/assignment1.ipynb">PA1 Jupyter notebook</a><a href="./assignments/assignment1/assignment1.pdf"> (pdf version)</a></p>
<p><a href="./assignments/assignment1/assignment1.zip">PA1 files (zip format)</a></p>
</td>
</tr>
<tr>
<td align="center" colspan="6" class="small-section-header">Relational Databases and Relational Algebra</td>
</tr>
<tr>
<td>4</td>
<td>2/1</td>
<td>Principles of Data Management</td>
<td class="side-borders">
<a href="./lectures/lecture-3/Lecture_3_PDM.pptx">Lecture 3</a> (<a href="./lectures/lecture-3/Lecture_3_PDM.pdf">pdf</a>)
</td>
<td class="side-borders">
<ul>
<li><a href="https://people.cs.umass.edu/~yanlei/courses/CS691LL-f06/papers/SH05.pdf">What goes around comes around, M. Stonebraker, J. Hellerstein</a></li>
<li><a href="./lectures/lecture-3/Chapter1.pdf">Chapter 1 from Cow book</a></li>
</ul>
</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2/4</td>
<td>Relational Algebra</td>
<td class="side-borders">
<a href="./lectures/lecture-4/Lecture_4_RA.pptx">Lecture 4</a>
<a href="./lectures/lecture-4/Lecture_4_RA.pdf">(pdf)</a>
</td>
<td class="side-borders"><a href="./lectures/lecture-4/reading_cow_book.pdf">Chapters 3, 4 from Cow book (without relational calculus)</a></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2/6</td>
<td>SQL for Data Science</td>
<td class="side-borders">
<a href="./lectures/lecture-5/Lecture_5_SQL.pptx">Lecture 5</a>
<a href="./lectures/lecture-5/Lecture_5_SQL.pdf">(pdf)</a>
<br /><br />
<a href="./lectures/lecture-5/Lecture_5.ipynb" download>Lecture 5 in Jupyter Notebook format</a>
<br /><br />
<i>Activities:
<ul>
<li><a href="./lectures/lecture-5/Activity-2-1.ipynb" download>2-1</a> <a href="./lectures/lecture-5/Activity-2-1-Solutions.ipynb">(Solutions)</a></li>
<li><a href="./lectures/lecture-5/Activity-2-2.ipynb" download>2-2</a> <a href="./lectures/lecture-5/Activity-2-2-Solutions.ipynb">(Solutions)</a></li>
<li><a href="./lectures/lecture-5/Activity-2-3.ipynb" download>2-3</a> <a href="./lectures/lecture-5/Activity-2-3-Solutions.ipynb">(Solutions)</a></li>
<li><a href="./lectures/lecture-5/Activity-3-1.ipynb" download>3-1</a> <a href="./lectures/lecture-5/Activity-3-1-Solutions.ipynb">(Solutions)</a></li>
</ul>
</i>
<br />
Notebook data: <i><a href="./lectures/lecture-5/dataset_1.db" download>dataset_1.db</a></i>
</td>
<td class="side-borders">
<ul>
<li><a href="http://philip.greenspun.com/sql/">Greenspun, SQL for Nerds</a></li>
<li><a href="https://www.w3resource.com/sql-exercises/">SQL w3 tutorial (Exercises with Solutions)</a></li>
<li><a href="https://sqlzoo.net">SQL Tutorial by SQL Zoo</a></li>
</ul>
</td>
<td><b>PA 2: </b>SQL for Data Science Assignment. <font color="red"><b>Due on February, 19th.</b></font>
<p><a href="./assignments/assignment2/assignment2.ipynb">PA2 Jupyter notebook</a>
<p><a href="./assignments/assignment2/assignment2.db">PA2 database</a></p>
<p><a href="./assignments/assignment2/submission_template.txt">Submission Template</a></p>
</td>
</tr>
<tr>
<td>7</td>
<td>2/8</td>
<td><b>No Class</b></td>
<td class="side-borders">
<font color="blue">Theo out of town.</font>
</td>
<td class="side-borders"></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2/11</td>
<td><b>No Class</b></td>
<td class="side-borders">
<font color="blue">Theo out of town.</font>
</td>
<td class="side-borders"></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2/13</td>
<td>Key Principles of RDBMS</td>
<td class="side-borders">
<a href="./lectures/lecture-6-7/Lecture_6_Princ.pptx">Lecture 6</a>
<a href="./lectures/lecture-6-7/Lecture_6_Princ.pdf">(pdf)</a>
</td>
<td class="side-borders">
<ul>
<li><a href="https://web.stanford.edu/class/cs345d-01/rl/chaudhuri98.pdf">An Overview of Query Optimization in Relational Systems</a></li>
<li><a href="http://jimgray.azurewebsites.net/papers/thetransactionconcept.pdf">The Transaction Concept: Virtues and Limitations</a></li>
<li><a href="./lectures/lecture-6-7/cowbook_ch16.pdf">Overview of Transaction Management</a></li>
</ul></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2/15</td>
<td>Wrapping up SQL and Databases</td>
<td class="side-borders">
Lecture 7 (continue from Lecture 6)
</td>
<td class="side-borders"></td>
<td></td>
</tr>
<tr>
<td align="center" colspan="6" class="small-section-header">The MapReduce Model and No SQL Systems.</td>
</tr>
<tr>
<td>10</td>
<td>2/18</td>
<td>Reasoning about Scale & The MapReduce Abstraction</td>
<td class="side-borders">
<a href="./lectures/lecture-8/Lecture_8_MR.pptx">Lecture 8</a>
<a href="./lectures/lecture-8/Lecture_8_MR.pdf">(pdf)</a>
</td>
<td class="side-borders">
<ul>
<li><a href="https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf">MapReduce: Simplified Data Processing on Large Clusters</a></li>
</ul>
</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2/20</td>
<td>Algorithms in MapReduce 1</td>
<td class="side-borders">
<a href="./lectures/lecture-9/Lecture_9_MR_Algs1.pptx">Lecture 9</a>
<a href="./lectures/lecture-9/Lecture_9_MR_Algs1.pdf">(pdf)</a>
</td>
<td class="side-borders">
<ul>
<li><a href="https://blog.cloudera.com/wp-content/uploads/2010/01/5-MapReduceAlgorithms.pdf">MapReduce Algorithms from Cloudera</a></li>
<li><a href="https://lintool.github.io/bigdata-2018w/content/MapReduce-algorithms-ch3-20171225.pdf">Basic MapReduce Algorithm Design</a></li>
<li><a href="https://cs.uwaterloo.ca/~jimmylin/publications/WWW2013-MapReduce-tutorial-slides.pdf">MapReduce Algorithm Design</a></li>
</ul>
</td>
<td></font></td>
</tr>
<tr>
<td>12</td>
<td>2/22</td>
<td>Algorithms in MapReduce 2</td>
<td class="side-borders">
<a href="./lectures/lecture-10/Lecture_10_MR_Algs2.pptx">Lecture 10</a>
<a href="./lectures/lecture-10/Lecture_10_MR_Algs2.pdf">(pdf)</a>
</td>
<td class="side-borders"></td>
<td>
<b>PA 3: </b>MapReduce Assignment. <font color="red"><b>Due on March, 7th.</b>
<p><a href="./assignments/assignment3/assignment3.zip">
Programming Assignment 3 Zip File</a></p>
</td>
</tr>
<tr>
<td>13</td>
<td>2/25</td>
<td><b>No Class</b></td>
<td class="side-borders">
<font color="blue">Theo in the Bay Area.</font>
</td>
<td class="side-borders"></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2/27</td>
<td>Spark</td>
<td class="side-borders">
<a href="./lectures/lecture-11/Lecture_11_Spark.pptx">Lecture 11</a>
<a href="./lectures/lecture-11/Lecture_11_Spark.pdf">(pdf)</a>
</td>
<td class="side-borders"></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>3/1</td>
<td>NoSQL Systems: KeyValue Stores and Document Stores</td>
<td class="side-borders">
<a href="./lectures/lecture-12/Lecture_12_KV.pptx">Lecture 12</a>
<a href="./lectures/lecture-12/Lecture_12_KV.pdf">(pdf)</a>
</td>
<td class="side-borders"></td>
<td></td>
</tr>
<tr class ="exam">
<td>16</td>
<td>3/4</td>
<td>Midterm Review 1</td>
<td class="side-borders">
<a href="./lectures/midterm-review/Midterm_Review_1.pptx">Midterm Review 1</a>
<a href="./lectures/midterm-review/Midterm_Review_1.pdf">(pdf)</a>
</td>
<td class="side-borders"></td>
<td></td>
</tr>
<tr class ="exam">
<td>17</td>
<td>3/6</td>
<td>Midterm Review 2</td>
<td class="side-borders">
<a href="./lectures/midterm-review/Midterm_Review_2.pptx">Midterm Review 2</a>
<a href="./lectures/midterm-review/Midterm_Review_2.pdf">(pdf)</a>
</td>
<td class="side-borders"></td>
<td></td>
</tr>
<tr class ="exam">
<td>18</td>
<td>3/8</td>
<td>Midterm</td>
<td class="side-borders">
</td>
<td class="side-borders"></td>
<td></td>
</tr>
<tr>
<td align="center" colspan="6" class="small-section-header">Predictive Analytics</td>
</tr>
<tr>
<td>19</td>
<td>3/11</td>
<td>Statistical Inference</td>
<td class="side-borders">
<a href="./lectures/lecture-13/Lecture_13_SI.pptx">Lecture 13</a>
<a href="./lectures/lecture-13/Lecture_13_SI.pdf">(pdf)</a>
</td>
<td class="side-borders"></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3/13</td>
<td>Sampling</td>
<td class="side-borders">
<a href="./lectures/lecture-14/Lecture_14_S.pptx">Lecture 14</a>
<a href="./lectures/lecture-14/Lecture_14_S.pdf">(pdf)</a>
</td>
<td class="side-borders"></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3/15</td>
<td>Bayesian Methods</td>
<td class="side-borders">
<a href="./lectures/lecture-15/Lecture_15_BM.pptx">Lecture 15</a>
<a href="./lectures/lecture-15/Lecture_15_BM.pdf">(pdf)</a>
</td>
<td class="side-borders"></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>3/16 - 3/24</td>
<td><b>Spring Break</b></td>
<td class="side-borders">
</td>
<td class="side-borders"></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3/25</td>
<td>Intro to Machine Learning and Decision Trees</td>
<td class="side-borders">
<a href="./lectures/lecture-16/Lecture_16_ML_DT.pptx">Lecture 16</a>
<a href="./lectures/lecture-16/Lecture_16_ML_DT.pdf">(pdf)</a> </td>
<td class="side-borders"></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3/27</td>
<td>Wrap up from Lecture 16 and Linear Classifiers and Support Vector Machines</td>
<td class="side-borders">
<a href="./lectures/lecture-17/Lecture_17_ML_supp.pptx">Lecture 17</a>
<a href="./lectures/lecture-17/Lecture_17_ML_supp.pdf">(pdf)</a>
</td>
<td class="side-borders"></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3/29</td>
<td>Wrap up Lectures 16 and 17</td>
<td class="side-borders">
Lecture 17 (continued)
</td>
<td class="side-borders"></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>4/1</td>
<td>Evaluation of Machine Learning Models</td>
<td class="side-borders">
<a href="./lectures/lecture-18/Lecture_18_Eval_ML.pptx">Lecture 18</a>
<a href="./lectures/lecture-18/Lecture_18_Eval_ML.pdf">(pdf)</a>
</td>
<td class="side-borders"></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>4/3</td>
<td>Other Learning Methods: Unsupervised Learning & Ensemble Learning</td>
<td class="side-borders">
<a href="./lectures/lecture-19/Lecture_19_UN_EN.pptx">Lecture 19</a>
<a href="./lectures/lecture-19/Lecture_19_UN_EN.pdf">(pdf)</a>
</td>
<td class="side-borders">Helpful reading for all ML lectures: <a href="https://github.com/rasbt/python-machine-learning-book-2nd-edition#whats-new-in-the-second-edition-from-the-first-edition">Python Machine Learning 2nd Edition</a></td>
<td><p><b>PA 4: </b>Classification Assignment. <font color="red"><b>Due on April, 18th.</b></font></p>
<p>For this assignment you need to participate in the following Kaggle competition. Go <a href="https://www.kaggle.com/c/cs639asgn3">here</a> to sign up and participate in the in class competition that corresponds to this problem.</p>
<p>You can find a discussion on this submission in this original Kaggle competition <a href="https://www.kaggle.com/uciml/mushroom-classification">here</a>.</p>
<p>You can implement your solution using Machine Learning methods for classification from the <a href="https://scikit-learn.org/stable/supervised_learning.html#supervised-learning">scikit-learn library</a>.</p>
<p>Please use your student id as your team name for this competition.</p>
<p>Please upload a zip file with the source code of your solution on Canvas.</p>
</td>
</tr>
<tr>
<td>27</td>
<td>4/5</td>
<td>Continue with Unsupervised Learning and Ensemble Learning</td>
<td class="side-borders">
Continue lecture 19.
</td>
<td class="side-borders"></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>4/8</td>
<td><b>No class</b></td>
<td class="side-borders">
<font color="blue">Theo out of Town (at National Science Foundation in DC)</font>
</td>
<td class="side-borders"></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>4/10</td>
<td>Optimization/Gradient Descent</td>
<td class="side-borders">
<a href="./lectures/lecture-20/Lecture_20_opt.pptx">Lecture 20</a>
<a href="./lectures/lecture-20/Lecture_20_opt.pdf">(pdf)</a>
</td>
<td class="side-borders"></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>4/12</td>
<td>Optimization Continued</td>
<td class="side-borders">
Lecture 20 continued
</td>
<td class="side-borders"></td>
<td></td>
</tr>
<tr>
<td align="center" colspan="6" class="small-section-header">Information Extraction and Data Integration</td>
</tr>
<tr>
<td>29</td>
<td>4/15</td>
<td>Information Extraction</td>
<td class="side-borders">
<a href="./lectures/lecture-21/Lecture_21_IE.pptx">Lecture 21</a>
<a href="./lectures/lecture-21/Lecture_21_IE.pdf">(pdf)</a>
</td>
<td class="side-borders">Information Extraction: <a href="http://pages.cs.wisc.edu/~anhai/courses/784-sp10-anhai/ieSurvey.pdf">here</a></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>4/17</td>
<td>Data Integration and Entity Resolution</td>
<td class="side-borders">
<a href="./lectures/lecture-22/Lecture_22_ER.pptx">Lecture 22</a>
<a href="./lectures/lecture-22/Lecture_22_ER.pdf">(pdf)</a>
</td>
<td class="side-borders">Tutorial by Lise Getoor: <a href="http://users.umiacs.umd.edu/~getoor/Tutorials/ER_KDD2013.pdf">here</a></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>4/19</td>
<td>Data Cleaning</td>
<td class="side-borders">
<a href="./lectures/lecture-23/Lecture_23_cleaning.pptx">Lecture 23</a>
<a href="./lectures/lecture-23/Lecture_23_cleaning.pdf">(pdf)</a>
</td>
<td class="side-borders">Tutorial on Data Cleaning:<a href="https://courses.cs.washington.edu/courses/csep514/17wi/lectures/DataCleaningTutorial-VLDB-pdf.pdf">here</a><p>Kaggle tutorial on data cleaning: <a href="https://www.kaggle.com/regivm/data-cleaning-and-eda-tutorial">here</a></p></td>
<td></td>
</tr>
<tr>
<td align="center" colspan="6" class="small-section-header">Communicating Insights</td>
</tr>
<tr>
<td>32</td>
<td>4/22</td>
<td>Intro to Visualization</td>
<td class="side-borders">
<a href="./lectures/lecture-24/Lecture_24_viz.pptx">Lecture 24</a>
<a href="./lectures/lecture-24/Lecture_24_viz.pdf">(pdf)</a>
</td>
<td class="side-borders"></td>
<td><b>PA 5: </b>Data Preparation Assignment. <font color="red"><b>Due on May, 1st</b></font>
<p>For this assignment you need to participate in the following Kaggle competition. Go <a href="https://www.kaggle.com/c/uw-madison-cs639-pa5">here</a> to sign up and participate in the in class competition that corresponds to this problem.</p>
<p>For this task you will need to solve the problem of entity matching over the provided records of products. You can use any technique you want, rule-based entity matching, machine learning-based entity matching etc.</p>
<p>You need to implement your solution in Python and provide us with an iPython notebook with your code.</p>
<p>Please use your student id as your team name for this competition.</p>
<p>Please upload a zip file with the source code of your solution on Canvas.</p>
<p> You can find a tutorial on fuzzy string matching <a href="https://www.datacamp.com/community/tutorials/fuzzy-string-python">here</a>.</p>
<p> You can find a convenient fuzzy string matching library <a href="https://github.com/seatgeek/fuzzywuzzy">here</a>.</p>
<p> Feel free to use more advanced entity matching tools (e.g., <a href="https://pypi.org/project/py_entitymatching/">py_entitymatching</a>).</p>
</td>
</tr>
<tr>
<td>33</td>
<td>4/24</td>
<td>Data Visualization/EDA</td>
<td class="side-borders">
<a href="./lectures/lecture-25/Lecture_25_EDA.pptx">Lecture 25</a>
<a href="./lectures/lecture-25/Lecture_25_EDA.pdf">(pdf)</a>
</td>
<td class="side-borders">
<ul>
<li>Vartak et al. <a href="http://www.vldb.org/pvldb/vol8/p2182-vartak.pdf">SeeDB</a>, VLDB 2015</li>
<li><a href="https://medium.com/@adityagp/enabling-data-science-for-the-majority-6255fabe230a">Enabling Data Science for the Majority</a> (Read but <b>no QCRs</b>)</li>
<li>Siddiqui et al. <a href ="http://www.vldb.org/pvldb/vol10/p457-siddiqui.pdf">ZenVisage</a>, VLDB 2017 <b>(Optional)</b></li>
</ul>
</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>4/26</td>
<td>Data Privacy</td>
<td class="side-borders">
<a href="./lectures/lecture-26/Lecture_26_DP.pptx">Lecture 26</a>
<a href="./lectures/lecture-26/Lecture_26_DP.pdf">(pdf)</a>
</td>
<td class="side-borders"></td>
<td></td>
</tr>
<tr>
<td align="center" colspan="6" class="small-section-header">Exam Review</td>
</tr>
<tr class="exam">
<td>37</td>
<td>4/29</td>
<td>Final Review</td>
<td class="side-borders">
Final Review part 1
</td>
<td class="side-borders">
<a href="./lectures/final-review/CS639–Final_Practice_Questions.docx">Sample Questions Part 1</a>
<a href="./lectures/final-review/CS639–Final_Practice_Questions_sol.docx">(solutions)</a>
</td>
<td></td>
</tr>
<tr class="exam">
<td>38</td>
<td>5/1</td>
<td>Final Review</td>
<td class="side-borders">
Final Review part 2
</td>
<td class="side-borders"></td>
<td></td>
</tr>
<tr class="exam">
<td>38</td>
<td>5/3</td>
<td>Final Review</td>
<td class="side-borders">
Final Review part 3
</td>
<td class="side-borders"></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>5/6</td>
<td>Bonus Project</td>
<td class="side-borders">
Bonus Project
</td>
<td class="side-borders"></td>
<td><p>The last bonus project will be open ended. We ask that you create some cool visualizations with the data of the city of Milwaukee.</p>
<p>The city of Milwaukee has been posting city-related data in this portal: <a href="https://data.milwaukee.gov">https://data.milwaukee.gov</a>. There you can find data about public safety, housing and property etc.</p>
<p>We ask that you choose one of these datasets and you create a cool visualization with that raw data. You can draw inspiration from the city of New York and the different visualization projects people have been doing there <a href="https://opendata.cityofnewyork.us/projects/">https://opendata.cityofnewyork.us/projects/</a>.</p>
<p>Let's prove that Wisconsin is so much cooler than NY!</p>
<p> You will have until <b>May 15th 23:59</b> to submit an ipython notebook with your visualizations. You are free to use any data from the city of Milwaukee you want.</p>
<p>This bonus project is worth an extra 10% of the overall grade. However to get the full grade you will have to create something as impressive as the projects posted in the NY portal! Partial credit will also be considered. Given that this is a bonus project you won't have any late dates. Also you really need to impress us :) </p>
</td>
</tr>
</tbody>
</table>
</p>
</div>
</div>
<div class="panel panel-default">
<div class="panel-heading">Midterm Exam</div>
<div class="panel-body">
The midterm exam will be in class on <b>March 8th from 2:25pm - 3:15pm</b>. The location will be:
<ul>
<li>Birge Hall 145</li>
</ul>
</div>
</div>
<div class="panel panel-default">
<div class="panel-heading">Final Exam</div>
<div class="panel-body">
The final exam will be on <b>TDB</b>.
</div>
</div>
<div class="panel panel-default">
<div class="panel-heading">Grading</div>
<div class="panel-body">
<a name="grading"></a>
<table class="table">
<tr><td>Programming Assignments</td><td>45%</td>
<tr><td>Midterm</td><td>20%</td>
<tr><td>Final</td><td>35%</td>
<tr><td>Bonus Project</td><td>10% (This is Bonus and will be awarded to impressive projects)</td>
</table>
</div>
</div>
<div class="panel panel-default">
<div class="panel-heading">Office Hours</div>
<div class="panel-body">
<a name="office-hours"></a>
<p>Theo: Monday, Friday 3:15 - 4:15 pm (after class), Wednesday 1:00 - 2:00 pm, or by appointment @ Room CS4361</p>
<p>Huawei Wang: Tuesday, Thursday 9:00 am - 10:00 am @ Room 1301</p>
<p>Frank Zou: Tuesday, Thursday 4:00 pm - 5:00 pm @ Room CS7354</p>
<p>
<b><i>
Note: the schedule of office hours may change from time to time,
in which case an announcement will be made on the course Piazza.
</i></b>
</p>
</div>
</div>
<div class="panel panel-default">
<div class="panel-heading">Staff</div>
<div class="panel-body">
<a name="staff"></a>
<table class="table">
<thead>
<tr><th></th><th></th></tr>
</thead>
<tbody>
<tr><td><img src="./img/theo.jpg"></td><td><a href="http://pages.cs.wisc.edu/~thodrek/">Theo</a> ([email protected])</td></tr>
<tr><td><img src="./img/huawei.jpg"></td><td> Huawei Wang ([email protected])</td></tr>
<tr><td><img src="./img/frank.jpg"></td><td> Frank Zou ([email protected])</td></tr>
</tbody>
</table>
</div>
</div>
<div class="panel panel-default">
<div class="panel-heading">Late Policy</div>
<div class="panel-body">
<a name="late-policy"></a>
You are allowed <b> 5 free late days </b> to use throughout the semester. One late day equals one 24 hour period after the due date of the assignment. Once you have used your late days, there will be a 20% penalty for each day an assignment is late.
</div>
</div>
<div class="panel panel-default">
<div class="panel-heading">Honor Code and Collaboration Policy</div>
<div class="panel-body">
<a name="honor-code"></a>
<p>
We encourage you to discuss the Programming Assignments with other students; it's fine to discuss overall strategy and collaborate with a partner or in a small group, as both giving and receiving advice will help you to learn.
</p>
<p>
However, you must write your own solutions to all of the problems, and <b>you must cite all people you worked with</b>.
</p>
<p>
It's not OK to share code or write code collaboratively. (This includes posting and/or sharing your code publicly, such as on GitHub!)
</p>
<p>If you do not do so, we will consider this a violation of the <a href="https://conduct.students.wisc.edu/academic-integrity/">University of Wisconsin Honor Code</a>.
</p>
<p>
If you consult any resources outside of the materials provided in
class, you must cite these sources. We reserve the right to assign a
penalty if your answers are substantially derivative, but, as long as
you provide appropriate citations, we will not consider this an Honor
Code violation.
</p>
</div>
</div>
</div>
</body>
</html>