-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_minimal_app.py
215 lines (187 loc) · 6.62 KB
/
main_minimal_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
import sys
import numpy as np
from scipy import stats
import torch
from torch import nn
from mvhg.pt_fmvhg import MVHG
import pytorch_lightning as pl
import wandb
from pytorch_lightning.loggers import WandbLogger
import hydra
from dataclasses import dataclass, field
from typing import List, Dict
from omegaconf import MISSING, OmegaConf
from hydra.core.config_store import ConfigStore
@dataclass
class MyHGConf:
m: List[int] = field(default_factory=lambda: [200, 200, 200])
n: int = 180
w: List[float] = field(default_factory=lambda: [1.0, 1.0, 1.0])
seed: int = 0
n_samples: int = 1000
batch_size: int = 1
learning_rate: float = 0.001
temperature: float = 0.5
n_epochs: int = 20
cs = ConfigStore.instance()
cs.store(name="config", node=MyHGConf)
class HGBasicModule(pl.LightningModule):
def __init__(self, lr, m_all, n, temperature, device):
super().__init__()
self.n_classes = m_all.shape[0]
self.lr = lr
self.m_all = m_all
self.n = n
self.temperature = temperature
self.log_omega = torch.nn.parameter.Parameter(torch.zeros(1, self.n_classes))
self.mvhg = MVHG(device=device)
# Save hyperparameters
self.save_hyperparameters()
def training_step(self, batch, batch_idx, optimizer_idx=0):
_, b_data, b_labels = batch
x_data = []
for c in range(0, self.n_classes):
x_data.append(b_data[0, c])
x_out = self(x_data)
loss = 0.0
for c in range(0, self.n_classes):
loss += (x_data[c] - x_out[c]) ** 2
self.log("train_loss", loss)
for c in range(0, self.n_classes):
log_w_c = self.log_omega[0, c]
self.log("log_w_" + str(c), log_w_c)
return loss
def validation_step(self, batch, batch_idx):
_, b_data, b_labels = batch
x_data = []
w_gt = b_labels[0]
for c in range(0, self.n_classes):
x_data.append(b_data[0, c])
x_out = self(x_data)
loss = 0.0
for c in range(0, self.n_classes):
loss += (x_data[c] - x_out[c]) ** 2
w_l_norm = self.log_omega.exp() / sum(self.log_omega.exp())
w_gt_norm = w_gt.unsqueeze(0) / sum(w_gt)
mse_w = ((w_gt_norm - w_l_norm) ** 2).mean()
self.log(
"validation_mse_w",
mse_w,
on_step=True,
on_epoch=True,
logger=True,
)
self.log("validation_loss", loss)
return loss
def forward(self, x):
mvhg_out = self.mvhg(
self.m_all,
self.n,
self.log_omega,
self.temperature,
add_noise=True,
hard=True,
)
x_out = mvhg_out[1]
return x_out
def configure_optimizers(self):
optimizer = torch.optim.Adam(
self.parameters(),
lr=self.lr,
)
return {
"optimizer": optimizer,
"lr_scheduler": torch.optim.lr_scheduler.ExponentialLR(optimizer, 0.99),
}
def create_data(m_all, n, w_all, num_samples):
n_classes = m_all.shape[0]
w_all = w_all.unsqueeze(0).repeat(num_samples, 1)
n = n.unsqueeze(0).repeat(num_samples, 1)
n_out = np.zeros((num_samples, 1))
rvs_all_classes_ref = np.zeros((num_samples, n_classes))
for c in range(n_classes - 1):
m_i = m_all[c].squeeze(0).repeat(num_samples, 1)
m_i = m_i.cpu().numpy()
m_rest = m_all[c + 1 :].sum().squeeze(0).repeat(num_samples, 1)
m_rest = m_rest.cpu().numpy()
n_i = n.cpu().numpy() - n_out
w_i = w_all[:, c].cpu().numpy()
w_rest_enum = (m_all[c + 1 :] * w_all[:, c + 1 :]).sum(dim=1, keepdims=True)
w_rest_enum = w_rest_enum.cpu().numpy()
w_rest_denom = m_rest
w_rest = (w_rest_enum / w_rest_denom).flatten()
w = w_i / w_rest
M = m_i + m_rest
x_i = stats.nchypergeom_fisher.rvs(
M.flatten(), m_i.flatten(), n_i.flatten(), w, size=num_samples
)
n_out += np.expand_dims(x_i, axis=1)
rvs_all_classes_ref[:, c] = x_i
rvs_all_classes_ref[:, -1] = (n.cpu().numpy() - n_out).flatten()
return rvs_all_classes_ref
def get_dataloader(samples, w_all, batch_size):
n_samples_train = int(samples.shape[0] * 0.8)
train_samples = samples[:n_samples_train]
train_samples = torch.tensor(train_samples)
val_samples = samples[n_samples_train:]
val_samples = torch.tensor(val_samples)
train_labels = w_all.unsqueeze(0).repeat(train_samples.shape[0], 1)
val_labels = w_all.unsqueeze(0).repeat(val_samples.shape[0], 1)
dataset = torch.utils.data.TensorDataset(
torch.arange(train_samples.shape[0]), train_samples, train_labels
)
train_loader = torch.utils.data.DataLoader(
dataset, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=4
)
dataset = torch.utils.data.TensorDataset(
torch.arange(val_samples.shape[0]), val_samples, val_labels
)
val_loader = torch.utils.data.DataLoader(
dataset, batch_size=batch_size, drop_last=True, num_workers=4
)
return train_loader, val_loader
@hydra.main(version_base=None, config_path="conf", config_name="config")
def run_experiment(cfg: MyHGConf):
pl.utilities.seed.seed_everything(cfg.seed)
dir_logs = "./minimal_app_mvhg/"
if not os.path.exists(dir_logs):
os.makedirs(dir_logs)
seed = cfg.seed
device = "cpu"
m = torch.tensor(cfg.m)
n = torch.tensor(cfg.n)
n = n.unsqueeze(0)
w = torch.tensor(cfg.w)
n_samples = cfg.n_samples
batch_size = cfg.batch_size
learning_rate = cfg.learning_rate
temp = cfg.temperature
data = create_data(m, n, w, n_samples)
train_loader, val_loader = get_dataloader(data, w, batch_size)
model = HGBasicModule(learning_rate, m, n, temp, device)
# train the model (hint: here are some helpful Trainer arguments for rapid idea iteration)
wandb_logger = WandbLogger(
project="minimal_app_mvhg",
save_dir=dir_logs,
group="nSamples_"
+ str(cfg.n_samples)
+ "_w1_"
+ str(float(w[1].item()))
+ "_nEpochs_"
+ str(cfg.n_epochs),
)
wandb_logger.experiment.config.update(
OmegaConf.to_container(cfg, resolve=True, throw_on_missing=True)
)
trainer = pl.Trainer(
max_epochs=cfg.n_epochs,
devices=1,
accelerator="cpu",
logger=wandb_logger,
# auto_lr_find=True,
check_val_every_n_epoch=1,
)
trainer.fit(model=model, train_dataloaders=train_loader, val_dataloaders=val_loader)
if __name__ == "__main__":
run_experiment()