-
Notifications
You must be signed in to change notification settings - Fork 50
/
inference.py
91 lines (72 loc) · 3.55 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import numpy as np
import torch
import time
import nvdiffrast.torch as dr
from util.utils import get_tri
import tempfile
from mesh import Mesh
import zipfile
def generate3d(model, rgb, ccm, device):
color_tri = torch.from_numpy(rgb)/255
xyz_tri = torch.from_numpy(ccm[:,:,(2,1,0)])/255
color = color_tri.permute(2,0,1)
xyz = xyz_tri.permute(2,0,1)
def get_imgs(color):
# color : [C, H, W*6]
color_list = []
color_list.append(color[:,:,256*5:256*(1+5)])
for i in range(0,5):
color_list.append(color[:,:,256*i:256*(1+i)])
return torch.stack(color_list, dim=0)# [6, C, H, W]
triplane_color = get_imgs(color).permute(0,2,3,1).unsqueeze(0).to(device)# [1, 6, H, W, C]
color = get_imgs(color)
xyz = get_imgs(xyz)
color = get_tri(color, dim=0, blender= True, scale = 1).unsqueeze(0)
xyz = get_tri(xyz, dim=0, blender= True, scale = 1, fix= True).unsqueeze(0)
triplane = torch.cat([color,xyz],dim=1).to(device)
# 3D visualize
model.eval()
glctx = dr.RasterizeCudaContext()
if model.denoising == True:
tnew = 20
tnew = torch.randint(tnew, tnew+1, [triplane.shape[0]], dtype=torch.long, device=triplane.device)
noise_new = torch.randn_like(triplane) *0.5+0.5
triplane = model.scheduler.add_noise(triplane, noise_new, tnew)
start_time = time.time()
with torch.no_grad():
triplane_feature2 = model.unet2(triplane,tnew)
end_time = time.time()
elapsed_time = end_time - start_time
print(f"unet takes {elapsed_time}s")
else:
triplane_feature2 = model.unet2(triplane)
with torch.no_grad():
data_config = {
'resolution': [1024, 1024],
"triview_color": triplane_color.to(device),
}
verts, faces = model.decode(data_config, triplane_feature2)
data_config['verts'] = verts[0]
data_config['faces'] = faces
from kiui.mesh_utils import clean_mesh
verts, faces = clean_mesh(data_config['verts'].squeeze().cpu().numpy().astype(np.float32), data_config['faces'].squeeze().cpu().numpy().astype(np.int32), repair = False, remesh=False, remesh_size=0.005)
data_config['verts'] = torch.from_numpy(verts).cuda().contiguous()
data_config['faces'] = torch.from_numpy(faces).cuda().contiguous()
start_time = time.time()
with torch.no_grad():
mesh_path_obj = tempfile.NamedTemporaryFile(suffix=f"", delete=False).name
model.export_mesh_wt_uv(glctx, data_config, mesh_path_obj, "", device, res=(1024,1024), tri_fea_2=triplane_feature2)
mesh = Mesh.load(mesh_path_obj+".obj", bound=0.9, front_dir="+z")
mesh_path_glb = tempfile.NamedTemporaryFile(suffix=f"", delete=False).name
mesh.write(mesh_path_glb+".glb")
# mesh_obj2 = trimesh.load(mesh_path_glb+".glb", file_type='glb')
# mesh_path_obj2 = tempfile.NamedTemporaryFile(suffix=f"", delete=False).name
# mesh_obj2.export(mesh_path_obj2+".obj")
with zipfile.ZipFile(mesh_path_obj+'.zip', 'w') as myzip:
myzip.write(mesh_path_obj+'.obj', mesh_path_obj.split("/")[-1]+'.obj')
myzip.write(mesh_path_obj+'.png', mesh_path_obj.split("/")[-1]+'.png')
myzip.write(mesh_path_obj+'.mtl', mesh_path_obj.split("/")[-1]+'.mtl')
end_time = time.time()
elapsed_time = end_time - start_time
print(f"uv takes {elapsed_time}s")
return mesh_path_glb+".glb", mesh_path_obj+'.zip'