-
Notifications
You must be signed in to change notification settings - Fork 44
/
main.py
282 lines (246 loc) · 17.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import torch
import argparse
import sys
from nerf.provider import NeRFDataset
from nerf.utils import *
from nerf.network_particle import NeRFNetwork
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--text', default=None, help="text prompt")
parser.add_argument('--negative', default='', type=str, help="negative text prompt")
parser.add_argument('-O', action='store_true', help="equals --fp16 --cuda_ray --dir_text")
parser.add_argument('-O2', action='store_true', help="equals --backbone vanilla --dir_text")
parser.add_argument('--test', action='store_true', help="test mode")
parser.add_argument('--eval_interval', type=int, default=10, help="evaluate on the valid set every interval epochs")
parser.add_argument('--test_interval', type=int, default=50, help="evaluate on the test set every interval epochs")
parser.add_argument('--workspace', type=str, default='exp/')
parser.add_argument('--guidance', type=str, default='stable-diffusion', help='choose from [stable-diffusion, clip]')
parser.add_argument('--seed', default=None)
parser.add_argument('--save_mesh', action='store_true', help="export an obj mesh with texture")
parser.add_argument('--mcubes_resolution', type=int, default=256, help="mcubes resolution for extracting mesh")
parser.add_argument('--decimate_target', type=int, default=1e5, help="target face number for mesh decimation")
parser.add_argument('--dmtet', action='store_true', help="use dmtet")
parser.add_argument('--tet_grid_size', type=int, default=256, help="tet grid size")
parser.add_argument('--init_ckpt', type=str, default='', help="ckpt to init dmtet")
### training options
parser.add_argument('--iters', type=int, default=10000, help="training iters")
parser.add_argument('--lr', type=float, default=1e-3, help="max learning rate")
parser.add_argument('--warm_iters', type=int, default=500, help="training iters")
parser.add_argument('--min_lr', type=float, default=1e-4, help="minimal learning rate")
parser.add_argument('--ckpt', type=str, default='scratch')
parser.add_argument('--cuda_ray', action='store_true', help="use CUDA raymarching instead of pytorch")
parser.add_argument('--max_steps', type=int, default=1024, help="max num steps sampled per ray (only valid when using --cuda_ray)")
parser.add_argument('--num_steps', type=int, default=64, help="num steps sampled per ray (only valid when not using --cuda_ray)")
parser.add_argument('--upsample_steps', type=int, default=32, help="num steps up-sampled per ray (only valid when not using --cuda_ray)")
parser.add_argument('--update_extra_interval', type=int, default=16, help="iter interval to update extra status (only valid when using --cuda_ray)")
parser.add_argument('--max_ray_batch', type=int, default=4096, help="batch size of rays at inference to avoid OOM (only valid when not using --cuda_ray)")
parser.add_argument('--albedo', action='store_true', default=True, help="only use albedo shading to train, overrides --albedo_iters")
parser.add_argument('--albedo_iters', type=int, default=1000, help="training iters that only use albedo shading")
parser.add_argument('--jitter_pose', action='store_true', help="add jitters to the randomly sampled camera poses")
parser.add_argument('--uniform_sphere_rate', type=float, default=0.5, help="likelihood of sampling camera location uniformly on the sphere surface area")
# model options
parser.add_argument('--bg_radius', type=float, default=1.4, help="if positive, use a background model at sphere(bg_radius)")
parser.add_argument('--density_activation', type=str, default='softplus', choices=['softplus', 'exp'], help="density activation function")
parser.add_argument('--density_thresh', type=float, default=0.1, help="threshold for density grid to be occupied")
parser.add_argument('--blob_density', type=float, default=10, help="max (center) density for the density blob")
parser.add_argument('--blob_radius', type=float, default=0.5, help="control the radius for the density blob")
# network backbone
parser.add_argument('--fp16', action='store_true', help="use amp mixed precision training")
parser.add_argument('--backbone', type=str, default='particle', choices=['grid', 'vanilla', 'particle'], help="nerf backbone")
parser.add_argument('--optim', type=str, default='adam', choices=['adan', 'adam'], help="optimizer")
parser.add_argument('--sd_version', type=str, default='2.1', choices=['1.5', '2.0', '2.1'], help="stable diffusion version")
parser.add_argument('--hf_key', type=str, default=None, help="hugging face Stable diffusion model key")
# rendering resolution in training, decrease this if CUDA OOM.
parser.add_argument('--w', type=int, default=512, help="render width for NeRF in training")
parser.add_argument('--h', type=int, default=512, help="render height for NeRF in training")
### dataset options
parser.add_argument('--bound', type=float, default=1, help="assume the scene is bounded in box(-bound, bound)")
parser.add_argument('--dt_gamma', type=float, default=0, help="dt_gamma (>=0) for adaptive ray marching. set to 0 to disable, >0 to accelerate rendering (but usually with worse quality)")
parser.add_argument('--min_near', type=float, default=0.1, help="minimum near distance for camera")
parser.add_argument('--radius_range', type=float, nargs='*', default=[1.0, 1.5], help="training camera radius range")
parser.add_argument('--val_radius', type=float, default=1.8, help="valid camera radius")
parser.add_argument('--fovy_range', type=float, nargs='*', default=[40, 70], help="training camera fovy range")
parser.add_argument('--dir_text', action='store_true', default=True, help="direction-encode the text prompt, by appending front/side/back/overhead view")
parser.add_argument('--suppress_face', action='store_true', help="also use negative dir text prompt.")
parser.add_argument('--val_theta', type=float, default=60, help="Angle when validating")
parser.add_argument('--theta_range', type=float, nargs='*', default=[0, 120], help="training camera up-down theta range")
parser.add_argument('--angle_overhead', type=float, default=30, help="[0, angle_overhead] is the overhead region")
parser.add_argument('--angle_front', type=float, default=60, help="[0, angle_front] is the front region, [180, 180+angle_front] the back region, otherwise the side region.")
parser.add_argument('--t_range', type=float, nargs='*', default=[0.02, 0.98], help="stable diffusion time steps range")
### regularizations
parser.add_argument('--lambda_entropy', type=float, default=10, help="loss scale for alpha entropy")
parser.add_argument('--lambda_opacity', type=float, default=0, help="loss scale for alpha value")
parser.add_argument('--lambda_orient', type=float, default=1e-2, help="loss scale for orientation")
parser.add_argument('--lambda_tv', type=float, default=0, help="loss scale for total variation")
parser.add_argument('--lambda_normal', type=float, default=0, help="loss scale for mesh normal smoothness")
parser.add_argument('--lambda_lap', type=float, default=0.5, help="loss scale for mesh laplacian")
### GUI options
parser.add_argument('--gui', action='store_true', help="start a GUI")
parser.add_argument('--W', type=int, default=800, help="GUI width")
parser.add_argument('--H', type=int, default=800, help="GUI height")
parser.add_argument('--radius', type=float, default=3, help="default GUI camera radius from center")
parser.add_argument('--fovy', type=float, default=60, help="default GUI camera fovy")
parser.add_argument('--light_theta', type=float, default=60, help="default GUI light direction in [0, 180], corresponding to elevation [90, -90]")
parser.add_argument('--light_phi', type=float, default=0, help="default GUI light direction in [0, 360), azimuth")
parser.add_argument('--max_spp', type=int, default=1, help="GUI rendering max sample per pixel")
parser.add_argument('--tri_res', type=int, default=64, help="resolution of triple plane")
parser.add_argument('--num_layers', type=int, default=1, help="num layers of MLP decoder")
parser.add_argument('--hidden_dim', type=int, default=64, help="hidden dims of MLP decoder")
parser.add_argument('--decoder_act', type=str, default="relu", choices=["relu", "softplus"], help="hidden dims of MLP decoder")
parser.add_argument('--per_iter', type=int, default=100, help="iters per epoch")
parser.add_argument('--K', type=int, default=1, help="K unet iters per particle optimization iters")
parser.add_argument('--K2', type=int, default=1, help="1 unet iters per K2 iters")
parser.add_argument('--unet_bs', type=int, default=1, help="batch size of unet")
parser.add_argument('--unet_lr', type=float, default=0.0001, help="learning rate of unet")
parser.add_argument('--val_size', type=int, default=7, help="size of val set")
parser.add_argument('--val_nz', type=int, default=5, help="number of z of val set")
parser.add_argument('--scale', type=float, default=100, help="guidance scale")
parser.add_argument('--q_iter', type=int, default=0, help="time to start using q")
parser.add_argument('--q_rate', type=float, default=1, help="strength of H(q) loss")
parser.add_argument('--latent', type=bool, default=False, help="wheather to render in latent mode")
parser.add_argument('--q_cond', type=bool, default=True, help="use q with pose condition")
parser.add_argument('--uncond_p', type=float, default=0.1, help="probability of uncond classfier free guidance")
parser.add_argument('--v_pred', type=bool, default=True, help="use v prediction")
parser.add_argument('--n_particles', type=int, default=1, help="num of particles")
parser.add_argument('--cube', type=bool, default=True, help="use cube marching box")
parser.add_argument('--no_textureless', type=bool, default=False, help="no using of textureless")
parser.add_argument('--no_lambertian', type=bool, default=False, help="no using of lambertian")
parser.add_argument('--iter512', type=int, default=-1, help="the time to change into 512")
parser.add_argument('--buffer_size', type=int, default=-1, help="the size of replay buffer")
parser.add_argument('--sphere_mask', type=bool, default=False, help="bound the sigmas in a sphere of radius [bound]")
parser.add_argument('--pre_noise', type=bool, default=True, help="Add noise to sigma during training")
parser.add_argument('--desired_resolution', type=int, default=2048, help="resolution of hashgrid")
parser.add_argument('--mesh_idx', type=int, default=-1, help="saving this mesh")
parser.add_argument('--flip_sigma', type=bool, default=False, help="flip the sigmas")
parser.add_argument('--set_ws', type=str, default='', help="")
parser.add_argument('--upper_clip', type=float, default=-1, help="make upper sigma zeros")
parser.add_argument('--side_clip', type=float, default=-1, help="make side sigma zeros")
parser.add_argument('--dynamic_clip', type=bool, default=False, help="clip the gradient")
parser.add_argument('--p_normal', type=float, default=0, help="probability to use normal shading")
parser.add_argument('--p_textureless', type=float, default=0, help="probability to use textureless shading")
parser.add_argument('--normal', type=bool, default=False, help="optimize with normal")
parser.add_argument('--upper_clip_m', type=float, default=-100, help="make upper sigma zeros in training")
parser.add_argument('--complex_bg', type=bool, default=False, help="")
parser.add_argument('--normal_iters', type=int, default=-1, help="warm up iters using only normals")
parser.add_argument('--t5_iters', type=int, default=5000, help="change tmax to 500 after this")
parser.add_argument('--lora', type=bool, default=True, help="Use lora as variational score.")
parser.add_argument('--sds', type=bool, default=False, help="use SDS instead of VSD")
parser.add_argument('--finetune', type=bool, default=False, help="only finetune texture")
parser.add_argument('--note', type=str, default='', help="")
opt = parser.parse_args()
assert opt.p_normal == 0
if opt.dmtet:
# parameters for finetuning
opt.h = 512
opt.w = 512
opt.t_range = [0.02, 0.50]
# opt.fovy_range = [60, 90]
opt.fovy_range = [30, 60]
if opt.albedo:
opt.albedo_iters = opt.iters
albedostr = "albedo"
else:
albedostr = "shading-"+str(opt.albedo_iters)
opt.val_nz = opt.n_particles
opt.workspace += str(time.strftime('%Y-%m-%d', time.localtime()))+"-"+str(opt.text).replace(" ", "-")
if opt.latent == True:
opt.workspace += "-latent"
opt.H = 64
opt.W = 64
opt.workspace += "-scale-"+str(opt.scale) + "-lr-"+str(opt.lr)
opt.workspace += "-" + albedostr+"-le-"+str(opt.lambda_entropy)
if opt.w != 64:
assert opt.w == opt.h
opt.workspace += "-render-" +str(opt.w)
if opt.cube:
opt.workspace += "-cube"
if opt.no_textureless:
opt.workspace += "-no_textless"
if opt.suppress_face:
opt.workspace += "-supface"
if opt.iter512 != -1:
opt.workspace += "-iter512-"+str(opt.iter512)
if opt.buffer_size != -1:
opt.workspace += "-buffsize-"+str(opt.buffer_size)
if opt.sphere_mask:
opt.workspace += "-sphere_mask"
if opt.bound != 1:
opt.workspace += "-bound-"+str(opt.bound)
if opt.sd_version != "1.5":
opt.workspace += "-sd-"+str(opt.sd_version)
if opt.lambda_opacity != 0:
opt.workspace += "-lo-" + str(opt.lambda_opacity)
if opt.desired_resolution != 2048:
opt.workspace += "-g-"+str(opt.desired_resolution)
if opt.t5_iters != -1:
opt.workspace += "-"+str(opt.t5_iters)
if opt.sds:
opt.workspace += "-sds"
if opt.normal:
opt.workspace += "-normal"
if opt.finetune:
opt.workspace += "-finetune"
if opt.num_layers != 1:
opt.workspace += "-nlayers-" + str(opt.num_layers)
if opt.density_thresh != 0.1:
opt.workspace += "-dth-" + str(opt.density_thresh)
opt.workspace += "-tet-"+str(opt.tet_grid_size)
if opt.lambda_normal != 0:
opt.workspace += "-lnorm-" + str(opt.lambda_normal)
if opt.p_textureless != 0:
opt.workspace += "-ptext-" + str(opt.p_textureless)
opt.workspace += opt.note
if opt.set_ws != "":
opt.workspace = opt.set_ws
if opt.seed is not None:
seed_everything(opt.seed)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = NeRFNetwork(opt).to(device)
if opt.dmtet and opt.init_ckpt != '':
if opt.finetune:
opt.ckpt = opt.init_ckpt
model.set_idx()
else:
state_dict = torch.load(opt.init_ckpt, map_location=device)
model.load_state_dict(state_dict['model'], strict=False)
if opt.cuda_ray:
model.mean_density = state_dict['mean_density']
model.set_idx()
model.init_tet()
print(model)
if opt.test:
guidance = None # no need to load guidance model at test
from nerf.sd import StableDiffusion
guidance = StableDiffusion(device, opt.sd_version, opt.hf_key, opt)
trainer = Trainer(' '.join(sys.argv), 'df', opt, model, guidance, device=device, workspace=opt.workspace, fp16=opt.fp16, use_checkpoint=opt.ckpt)
trainer.model.set_idx(opt.mesh_idx)
if opt.save_mesh:
trainer.save_mesh()
else:
test_loader = NeRFDataset(opt, device=device, type='test', H=opt.H, W=opt.W, size=opt.per_iter).dataloader()
trainer.test(test_loader, name = "test", idx = opt.mesh_idx, shading = "albedo")
trainer.test(test_loader, name = "test", idx = opt.mesh_idx, shading = "textureless")
else:
train_loader = NeRFDataset(opt, device=device, type='train', H=opt.h, W=opt.w, size=opt.per_iter).dataloader()
if opt.optim == 'adan':
from optimizer import Adan
# Adan usually requires a larger LR
optimizer = lambda model: Adan(model.get_params(5 * opt.lr), eps=1e-8, weight_decay=2e-5, max_grad_norm=5.0, foreach=False)
else:
optimizer = lambda model: torch.optim.Adam(model.get_params(opt.lr, finetune = opt.finetune), betas=(0.9, 0.99), eps=1e-15)
scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, lambda iter: 1)
if opt.guidance == 'stable-diffusion':
from nerf.sd import StableDiffusion
guidance = StableDiffusion(device, opt.sd_version, opt.hf_key, opt)
elif opt.guidance == 'clip':
from nerf.clip import CLIP
guidance = CLIP(device)
else:
raise NotImplementedError(f'--guidance {opt.guidance} is not implemented.')
trainer = Trainer(' '.join(sys.argv), 'df', opt, model, guidance, device=device, workspace=opt.workspace, optimizer=optimizer, ema_decay=None, fp16=opt.fp16, lr_scheduler=scheduler, use_checkpoint=opt.ckpt, eval_interval=opt.eval_interval, scheduler_update_every_step=True)
trainer.model.set_idx(opt.mesh_idx)
trainer.test_loader = NeRFDataset(opt, device=device, type='test', H=opt.H, W=opt.W, size=100).dataloader()
trainer.train_loader512 = NeRFDataset(opt, device=device, type='train', H=512, W=512, size=opt.per_iter).dataloader()
valid_loader = NeRFDataset(opt, device=device, type='val', H=opt.H, W=opt.W, size=opt.val_size).dataloader()
max_epoch = np.ceil(opt.iters / len(train_loader)).astype(np.int32)
trainer.train(train_loader, valid_loader, max_epoch)