-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathrun.py
171 lines (106 loc) · 5.82 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from configs.base import ParamManager, add_config_param
from data.base import DataManager
from methods import method_map
from utils.functions import set_torch_seed, save_results, set_output_path
import argparse
import logging
import os
import datetime
import itertools
import warnings
import copy
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--logger_name', type=str, default='Multimodal Intent Recognition', help="Logger name for multimodal intent recognition.")
parser.add_argument('--dataset', type=str, default='MIntRec', help="The selected person id.")
parser.add_argument('--data_mode', type=str, default='multi-class', help="The selected person id.")
parser.add_argument('--method', type=str, default='TCL-MAP', help="which method to use.")
parser.add_argument("--text_backbone", type=str, default='bert-base-uncased', help="which backbone to use for text modality")
parser.add_argument('--seed', type=int, default=0, help="The selected person id.")
parser.add_argument('--num_workers', type=int, default=8, help="The number of workers to load data.")
parser.add_argument('--log_id', type=str, default=None, help="The index of each logging file.")
parser.add_argument('--gpu_id', type=str, default='0', help="The selected person id.")
parser.add_argument("--data_path", default = '/Datasets', type=str,
help="The input data dir. Should contain text, video and audio data for the task.")
parser.add_argument("--train", action="store_true", help="Whether to train the model.")
parser.add_argument("--tune", action="store_true", help="Whether to tune the model with a series of hyper-parameters.")
parser.add_argument("--save_model", action="store_true", help="save trained-model for multimodal intent recognition.")
parser.add_argument("--save_results", action="store_true", help="save final results for multimodal intent recognition.")
parser.add_argument('--log_path', type=str, default='logs', help="Logger directory.")
parser.add_argument('--cache_path', type=str, default='cache', help="The caching directory for pre-trained models.")
parser.add_argument('--results_path', type=str, default='results', help="The path to save results.")
parser.add_argument("--output_path", default= 'outputs', type=str,
help="The output directory where all train data will be written.")
parser.add_argument("--model_path", default= 'models', type=str,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--config_file_name", type=str, default='TCL_MAP_MIntRec.py', help = "The name of the config file.")
parser.add_argument("--results_file_name", type=str, default = 'results.csv', help="The file name of all the results.")
parser.add_argument('--save_pred', type=bool, default=False, help="Logger directory.")
args = parser.parse_args()
return args
def set_logger(args):
if not os.path.exists(args.log_path):
os.makedirs(args.log_path)
time = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
args.logger_name = f"{args.method}_{args.dataset}_{args.data_mode}_{args.seed}"
args.log_id = f"{args.logger_name}_{time}"
logger = logging.getLogger(args.logger_name)
logger.setLevel(logging.DEBUG)
log_path = os.path.join(args.log_path, args.log_id + '.log')
fh = logging.FileHandler(log_path)
fh_formatter = logging.Formatter('%(asctime)s - %(message)s')
fh.setFormatter(fh_formatter)
fh.setLevel(logging.INFO)
logger.addHandler(fh)
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
ch_formatter = logging.Formatter('%(message)s')
ch.setFormatter(ch_formatter)
logger.addHandler(ch)
return logger
def set_up(args):
save_model_name = f"{args.method}_{args.dataset}_{args.text_backbone}_{args.data_mode}_{args.seed}"
args.pred_output_path, args.model_output_path = set_output_path(args, save_model_name)
set_torch_seed(args.seed)
return args
def work(args, data, logger, debug_args=None, ind_args = None):
set_torch_seed(args.seed)
method_manager = method_map[args.method]
method = method_manager(args, data)
logger.info('Intent Recognition begins...')
if args.train:
logger.info('Training begins...')
method._train(args)
logger.info('Training is finished...')
logger.info('Testing begins...')
outputs = method._test(args)
logger.info('Testing is finished...')
logger.info('Intent recognition is finished...')
if args.save_results:
logger.info('Results are saved in %s', str(os.path.join(args.results_path, args.results_file_name)))
save_results(args, outputs, debug_args=debug_args)
def run(args, data, logger, ind_args = None):
debug_args = {}
for k,v in args.items():
if isinstance(v, list):
debug_args[k] = v
for result in itertools.product(*debug_args.values()):
for i, key in enumerate(debug_args.keys()):
args[key] = result[i]
work(args, data, logger, debug_args, ind_args)
if __name__ == '__main__':
warnings.filterwarnings('ignore')
args = parse_arguments()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id
param = ParamManager(args)
args = param.args
args = add_config_param(args, args.config_file_name)
args = set_up(args)
data = DataManager(args)
logger = set_logger(args)
logger = set_logger(args)
logger.info("="*30+" Params "+"="*30)
for k in args.keys():
logger.info(f"{k}: {args[k]}")
logger.info("="*30+" End Params "+"="*30)
run(args, data, logger)