-
Notifications
You must be signed in to change notification settings - Fork 557
/
delta.py
372 lines (324 loc) · 17.2 KB
/
delta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
"""
@author: Yifei Ji, Junguang Jiang
@contact: [email protected], [email protected]
"""
import math
import os
import random
import time
import warnings
import sys
import argparse
import shutil
import numpy as np
from tqdm import tqdm
import torch.backends.cudnn as cudnn
from torch.optim import SGD
from torch.utils.data import DataLoader
import torch.nn.functional as F
import utils
from tllib.regularization.delta import *
from tllib.modules.classifier import Classifier
from tllib.utils.data import ForeverDataIterator
from tllib.utils.metric import accuracy
from tllib.utils.meter import AverageMeter, ProgressMeter
from tllib.utils.logger import CompleteLogger
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def main(args: argparse.Namespace):
logger = CompleteLogger(args.log, args.phase)
print(args)
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
cudnn.benchmark = True
# Data loading code
train_transform = utils.get_train_transform(args.train_resizing, not args.no_hflip, args.color_jitter)
val_transform = utils.get_val_transform(args.val_resizing)
print("train_transform: ", train_transform)
print("val_transform: ", val_transform)
train_dataset, val_dataset, num_classes = utils.get_dataset(args.data, args.root, train_transform,
val_transform, args.sample_rate,
args.num_samples_per_classes)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, drop_last=True)
train_iter = ForeverDataIterator(train_loader)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers)
print("training dataset size: {} test dataset size: {}".format(len(train_dataset), len(val_dataset)))
# create model
print("=> using pre-trained model '{}'".format(args.arch))
backbone = utils.get_model(args.arch, args.pretrained)
backbone_source = utils.get_model(args.arch, args.pretrained)
pool_layer = nn.Identity() if args.no_pool else None
classifier = Classifier(backbone, num_classes, pool_layer=pool_layer, finetune=args.finetune).to(device)
source_classifier = Classifier(backbone_source, num_classes=backbone_source.fc.out_features,
head=backbone_source.copy_head(), pool_layer=pool_layer).to(device)
for param in source_classifier.parameters():
param.requires_grad = False
source_classifier.eval()
# define optimizer and lr scheduler
optimizer = SGD(classifier.get_parameters(args.lr), momentum=args.momentum, weight_decay=args.wd, nesterov=True)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, args.lr_decay_epochs, gamma=args.lr_gamma)
# resume from the best checkpoint
if args.phase == 'test':
checkpoint = torch.load(logger.get_checkpoint_path('best'), map_location='cpu')
classifier.load_state_dict(checkpoint)
acc1 = utils.validate(val_loader, classifier, args, device)
print(acc1)
return
# create intermediate layer getter
if args.arch == 'resnet50':
return_layers = ['backbone.layer1.2.conv3', 'backbone.layer2.3.conv3', 'backbone.layer3.5.conv3',
'backbone.layer4.2.conv3']
elif args.arch == 'resnet101':
return_layers = ['backbone.layer1.2.conv3', 'backbone.layer2.3.conv3', 'backbone.layer3.5.conv3',
'backbone.layer4.2.conv3']
else:
raise NotImplementedError(args.arch)
source_getter = IntermediateLayerGetter(source_classifier, return_layers=return_layers)
target_getter = IntermediateLayerGetter(classifier, return_layers=return_layers)
# get regularization
if args.regularization_type == 'l2_sp':
backbone_regularization = SPRegularization(source_classifier.backbone, classifier.backbone)
elif args.regularization_type == 'feature_map':
backbone_regularization = BehavioralRegularization()
elif args.regularization_type == 'attention_feature_map':
attention_file = os.path.join(logger.root, args.attention_file)
if not os.path.exists(attention_file):
attention = calculate_channel_attention(train_dataset, return_layers, num_classes, args)
torch.save(attention, attention_file)
else:
print("Loading channel attention from", attention_file)
attention = torch.load(attention_file)
attention = [a.to(device) for a in attention]
backbone_regularization = AttentionBehavioralRegularization(attention)
else:
raise NotImplementedError(args.regularization_type)
head_regularization = L2Regularization(nn.ModuleList([classifier.head, classifier.bottleneck]))
# start training
best_acc1 = 0.0
for epoch in range(args.epochs):
print(lr_scheduler.get_lr())
# train for one epoch
train(train_iter, classifier, backbone_regularization, head_regularization, target_getter, source_getter,
optimizer, epoch, args)
lr_scheduler.step()
# evaluate on validation set
acc1 = utils.validate(val_loader, classifier, args, device)
# remember best acc@1 and save checkpoint
torch.save(classifier.state_dict(), logger.get_checkpoint_path('latest'))
if acc1 > best_acc1:
shutil.copy(logger.get_checkpoint_path('latest'), logger.get_checkpoint_path('best'))
best_acc1 = max(acc1, best_acc1)
print("best_acc1 = {:3.1f}".format(best_acc1))
logger.close()
def calculate_channel_attention(dataset, return_layers, num_classes, args):
backbone = utils.get_model(args.arch)
classifier = Classifier(backbone, num_classes).to(device)
optimizer = SGD(classifier.get_parameters(args.lr), momentum=args.momentum, weight_decay=args.wd, nesterov=True)
data_loader = DataLoader(dataset, batch_size=args.attention_batch_size, shuffle=True,
num_workers=args.workers, drop_last=False)
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=math.exp(
math.log(0.1) / args.attention_lr_decay_epochs))
criterion = nn.CrossEntropyLoss()
channel_weights = []
for layer_id, name in enumerate(return_layers):
layer = get_attribute(classifier, name)
layer_channel_weight = [0] * layer.out_channels
channel_weights.append(layer_channel_weight)
# train the classifier
classifier.train()
classifier.backbone.requires_grad = False
print("Pretrain a classifier to calculate channel attention.")
for epoch in range(args.attention_epochs):
losses = AverageMeter('Loss', ':3.2f')
cls_accs = AverageMeter('Cls Acc', ':3.1f')
progress = ProgressMeter(
len(data_loader),
[losses, cls_accs],
prefix="Epoch: [{}]".format(epoch))
for i, data in enumerate(data_loader):
inputs, labels = data
inputs = inputs.to(device)
labels = labels.to(device)
outputs, _ = classifier(inputs)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
cls_acc = accuracy(outputs, labels)[0]
losses.update(loss.item(), inputs.size(0))
cls_accs.update(cls_acc.item(), inputs.size(0))
if i % args.print_freq == 0:
progress.display(i)
lr_scheduler.step()
# calculate the channel attention
print('Calculating channel attention.')
classifier.eval()
if args.attention_iteration_limit > 0:
total_iteration = min(len(data_loader), args.attention_iteration_limit)
else:
total_iteration = len(args.data_loader)
progress = ProgressMeter(
total_iteration,
[],
prefix="Iteration: ")
for i, data in enumerate(data_loader):
if i >= total_iteration:
break
inputs, labels = data
inputs = inputs.to(device)
labels = labels.to(device)
outputs = classifier(inputs)
loss_0 = criterion(outputs, labels)
progress.display(i)
for layer_id, name in enumerate(tqdm(return_layers)):
layer = get_attribute(classifier, name)
for j in range(layer.out_channels):
tmp = classifier.state_dict()[name + '.weight'][j,].clone()
classifier.state_dict()[name + '.weight'][j,] = 0.0
outputs = classifier(inputs)
loss_1 = criterion(outputs, labels)
difference = loss_1 - loss_0
difference = difference.detach().cpu().numpy().item()
history_value = channel_weights[layer_id][j]
channel_weights[layer_id][j] = 1.0 * (i * history_value + difference) / (i + 1)
classifier.state_dict()[name + '.weight'][j,] = tmp
channel_attention = []
for weight in channel_weights:
weight = np.array(weight)
weight = (weight - np.mean(weight)) / np.std(weight)
weight = torch.from_numpy(weight).float().to(device)
channel_attention.append(F.softmax(weight / 5).detach())
return channel_attention
def train(train_iter: ForeverDataIterator, model: Classifier, backbone_regularization: nn.Module,
head_regularization: nn.Module,
target_getter: IntermediateLayerGetter,
source_getter: IntermediateLayerGetter,
optimizer: SGD, epoch: int, args: argparse.Namespace):
batch_time = AverageMeter('Time', ':4.2f')
data_time = AverageMeter('Data', ':3.1f')
losses = AverageMeter('Loss', ':3.2f')
losses_reg_head = AverageMeter('Loss (reg, head)', ':3.2f')
losses_reg_backbone = AverageMeter('Loss (reg, backbone)', ':3.2f')
cls_accs = AverageMeter('Cls Acc', ':3.1f')
progress = ProgressMeter(
args.iters_per_epoch,
[batch_time, data_time, losses, losses_reg_head, losses_reg_backbone, cls_accs],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
for i in range(args.iters_per_epoch):
x, labels = next(train_iter)
x = x.to(device)
label = labels.to(device)
# measure data loading time
data_time.update(time.time() - end)
# compute output
intermediate_output_s, output_s = source_getter(x)
intermediate_output_t, output_t = target_getter(x)
y, f = output_t
# measure accuracy and record loss
cls_acc = accuracy(y, label)[0]
cls_loss = F.cross_entropy(y, label)
if args.regularization_type == 'feature_map':
loss_reg_backbone = backbone_regularization(intermediate_output_s, intermediate_output_t)
elif args.regularization_type == 'attention_feature_map':
loss_reg_backbone = backbone_regularization(intermediate_output_s, intermediate_output_t)
else:
loss_reg_backbone = backbone_regularization()
loss_reg_head = head_regularization()
loss = cls_loss + args.trade_off_backbone * loss_reg_backbone + args.trade_off_head * loss_reg_head
losses_reg_backbone.update(loss_reg_backbone.item() * args.trade_off_backbone, x.size(0))
losses_reg_head.update(loss_reg_head.item() * args.trade_off_head, x.size(0))
losses.update(loss.item(), x.size(0))
cls_accs.update(cls_acc.item(), x.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Delta for Finetuning')
# dataset parameters
parser.add_argument('root', metavar='DIR',
help='root path of dataset')
parser.add_argument('-d', '--data', metavar='DATA')
parser.add_argument('-sr', '--sample-rate', default=100, type=int,
metavar='N',
help='sample rate of training dataset (default: 100)')
parser.add_argument('-sc', '--num-samples-per-classes', default=None, type=int,
help='number of samples per classes.')
parser.add_argument('--train-resizing', type=str, default='default', help='resize mode during training')
parser.add_argument('--val-resizing', type=str, default='default', help='resize mode during validation')
parser.add_argument('--no-hflip', action='store_true', help='no random horizontal flipping during training')
parser.add_argument('--color-jitter', action='store_true', help='apply jitter during training')
# model parameters
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet50',
choices=utils.get_model_names(),
help='backbone architecture: ' +
' | '.join(utils.get_model_names()) +
' (default: resnet50)')
parser.add_argument('--no-pool', action='store_true',
help='no pool layer after the feature extractor. Used in models such as ViT.')
parser.add_argument('--finetune', action='store_true', help='whether use 10x smaller lr for backbone')
parser.add_argument('--pretrained', default=None,
help="pretrained checkpoint of the backbone. "
"(default: None, use the ImageNet supervised pretrained backbone)")
parser.add_argument('--regularization-type', choices=['l2_sp', 'feature_map', 'attention_feature_map'],
default='attention_feature_map')
parser.add_argument('--trade-off-backbone', default=0.01, type=float,
help='trade-off for backbone regularization')
parser.add_argument('--trade-off-head', default=0.01, type=float,
help='trade-off for head regularization')
# training parameters
parser.add_argument('-b', '--batch-size', default=48, type=int,
metavar='N',
help='mini-batch size (default: 48)')
parser.add_argument('--lr', '--learning-rate', default=0.01, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--lr-gamma', default=0.1, type=float, help='parameter for lr scheduler')
parser.add_argument('--lr-decay-epochs', type=int, default=(12,), nargs='+', help='epochs to decay lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=0., type=float,
metavar='W', help='weight decay (default: 0.)')
parser.add_argument('-j', '--workers', default=2, type=int, metavar='N',
help='number of data loading workers (default: 2)')
parser.add_argument('--epochs', default=20, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-i', '--iters-per-epoch', default=500, type=int,
help='Number of iterations per epoch')
parser.add_argument('-p', '--print-freq', default=100, type=int,
metavar='N', help='print frequency (default: 100)')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument("--log", type=str, default='delta',
help="Where to save logs, checkpoints and debugging images.")
parser.add_argument("--phase", type=str, default='train', choices=['train', 'test'],
help="When phase is 'test', only test the model."
"When phase is 'analysis', only analysis the model.")
# parameters for calculating channel attention
parser.add_argument("--attention-file", type=str, default='channel_attention.pt',
help="Where to save and load channel attention file.")
parser.add_argument('--attention-batch-size', default=32, type=int,
metavar='N',
help='mini-batch size for calculating channel attention (default: 32)')
parser.add_argument('--attention-epochs', default=10, type=int, metavar='N',
help='number of epochs to train for training before calculating channel weight')
parser.add_argument('--attention-lr-decay-epochs', default=6, type=int, metavar='N',
help='epochs to decay lr for training before calculating channel weight')
parser.add_argument('--attention-iteration-limit', default=10, type=int, metavar='N',
help='iteration limits for calculating channel attention, -1 means no limits')
args = parser.parse_args()
main(args)