forked from sergeyk/selective_search_ijcv_with_python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.m
69 lines (58 loc) · 2.87 KB
/
demo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
% This demo shows how to use the software described in our IJCV paper:
% Selective Search for Object Recognition,
% J.R.R. Uijlings, K.E.A. van de Sande, T. Gevers, A.W.M. Smeulders, IJCV 2013
%%
addpath('Dependencies');
fprintf('Demo of how to run the code for:\n');
fprintf(' J. Uijlings, K. van de Sande, T. Gevers, A. Smeulders\n');
fprintf(' Segmentation as Selective Search for Object Recognition\n');
fprintf(' IJCV 2013\n\n');
% Compile anisotropic gaussian filter
if(~exist('anigauss'))
fprintf('Compiling the anisotropic gauss filtering of:\n');
fprintf(' J. Geusebroek, A. Smeulders, and J. van de Weijer\n');
fprintf(' Fast anisotropic gauss filtering\n');
fprintf(' IEEE Transactions on Image Processing, 2003\n');
fprintf('Source code/Project page:\n');
fprintf(' http://staff.science.uva.nl/~mark/downloads.html#anigauss\n\n');
mex Dependencies/anigaussm/anigauss_mex.c Dependencies/anigaussm/anigauss.c -output anigauss
end
if(~exist('mexCountWordsIndex'))
mex Dependencies/mexCountWordsIndex.cpp
end
% Compile the code of Felzenszwalb and Huttenlocher, IJCV 2004.
if(~exist('mexFelzenSegmentIndex'))
fprintf('Compiling the segmentation algorithm of:\n');
fprintf(' P. Felzenszwalb and D. Huttenlocher\n');
fprintf(' Efficient Graph-Based Image Segmentation\n');
fprintf(' International Journal of Computer Vision, 2004\n');
fprintf('Source code/Project page:\n');
fprintf(' http://www.cs.brown.edu/~pff/segment/\n');
fprintf('Note: A small Matlab wrapper was made.\n');
% fprintf('
mex Dependencies/FelzenSegment/mexFelzenSegmentIndex.cpp -output mexFelzenSegmentIndex;
end
%%
% Parameters. Note that this controls the number of hierarchical
% segmentations which are combined.
colorTypes = {'Hsv', 'Lab', 'RGI', 'H', 'Intensity'};
colorType = colorTypes{1}; % Single color space for demo
% Here you specify which similarity functions to use in merging
simFunctionHandles = {@SSSimColourTextureSizeFillOrig, @SSSimTextureSizeFill, @SSSimBoxFillOrig, @SSSimSize};
simFunctionHandles = simFunctionHandles(1:2); % Two different merging strategies
% Thresholds for the Felzenszwalb and Huttenlocher segmentation algorithm.
% Note that by default, we set minSize = k, and sigma = 0.8.
k = 200; % controls size of segments of initial segmentation.
minSize = k;
sigma = 0.8;
% As an example, use a single image
images = {'000015.jpg'};
im = imread(images{1});
% Perform Selective Search
[boxes blobIndIm blobBoxes hierarchy] = Image2HierarchicalGrouping(im, sigma, k, minSize, colorType, simFunctionHandles);
boxes = BoxRemoveDuplicates(boxes);
% Show boxes
ShowRectsWithinImage(boxes, 5, 5, im);
% Show blobs which result from first similarity function
hBlobs = RecreateBlobHierarchyIndIm(blobIndIm, blobBoxes, hierarchy{1});
ShowBlobs(hBlobs, 5, 5, im);