-
Notifications
You must be signed in to change notification settings - Fork 12
/
fobj.py
62 lines (44 loc) · 1.64 KB
/
fobj.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import numpy as np
# Root Mean Square Error
def rmse(pred, real):
return np.sqrt(np.mean((pred - real) ** 2))
# Mean Absolute Difference
def abs_diff(pred, real):
return np.mean(np.abs(pred - real))
# Pearson correlation coefficient
def corrcoeff(pred, real):
pcorr = (np.sum(pred * real) - pred.size * np.mean(pred) * np.mean(real)) / (
(pred.size - 1) * np.std(pred) * np.std(real))
return pcorr
# Prediction of Change in Direction
def pocid(pred, real):
d = np.diff(real)
dp = np.diff(pred)
return np.mean(np.sign(d) == np.sign(dp))
# Nash-Sutcliffe Efficiency Index
def nse(pred, real):
return 1 - (np.sum((real - pred) ** 2)) / (np.sum((real - np.mean(real)) ** 2))
# Mean Absolute Error
def mae(pred, real):
return np.mean(np.abs((real - pred) / real))
# Entropy
def entropy(p, q):
return -np.sum(p * np.log(q.clip(1e-12, None)))
# Cross-entropy
def ce(pred, real):
f_real, intervals = np.histogram(real, bins=len(np.unique(real))-1)
intervals[0] = min(min(pred), min(real))
intervals[-1] = max(max(pred), max(real))
f_real = f_real / real.size
f_pred = np.histogram(pred, bins=intervals)[0] / pred.size
return entropy(f_real, f_pred)
# Kullback-Leibler divergence
def kldiv(pred, real):
f_real, intervals = np.histogram(real, bins=len(np.unique(real))-1)
intervals[0] = min(min(pred), min(real))
intervals[-1] = max(max(pred), max(real))
f_real = f_real / real.size
f_pred = np.histogram(pred, bins=intervals)[0] / pred.size
# kl = entropy(f_pred, f_real) - entropy(f_pred, f_pred)
kl = entropy(f_real, f_pred) - entropy(f_real, f_real)
return kl