-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
508 lines (415 loc) · 26.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
import os
import torch
from utils.models import set_model, set_classifier, MyLinear, save_test_scores, save_best_model#, save_head_weights
import time
import numpy as np
from utils.parser import parse_args
from utils.logger import set_logger
from testing import validate, load_model
from testing import calculate_scores
from utils.datasets.dataset_utils import NUM_CLASSES_DICT
from utils.prompt import set_prompt
import copy
from utils.losses import set_loss
import torch.nn.functional as F
import cv2
from utils.training import set_training_seed, train_probing, run_zeroshot, train_CMLP, \
train_dataset_cls, train_ce, train_cutmix, train_flyp, train_ce_mixed, train_fixmatch, \
train_ce_multitask, train_mixup, train_mixup_fs, train_cutmix_fs2, train_resizemix, \
train_saliencymix2, train_attentivemix2, train_CMO, train_supervised_contrastive, train_balanced_contrastive
from utils.dataloader import extract_train_dataloader, extract_dataloader, set_dataloaders, set_text_dataloader
from utils.optimizers import set_optimizer, set_params
# from gem import create_gem_model
# import pickle
# import shutil
def run_tau_normalization(args, best_head, best_model, val_loader, test_loader, logit_scale, logger):
best_tau_head = copy.deepcopy(best_head)
best_tau = 0.0
best_tau_val_acc = 0.0
best_tau_test_acc = 0.0
if args.tau_norm:
logger.info(f"Check Tau Normalization ......")
tau_list = np.arange(0.0, 2.2, 0.2).tolist()
for tau in tau_list:
tau_head = copy.deepcopy(best_head)
tau_head.linear.weight.data /= torch.pow(tau_head.linear.weight.data.norm(dim=-1, keepdim=True), tau)
# does not affect FLYP because head is already normalized, thus the norm=1
# check on val set
tau_val_acc, _, _ = validate(args,data_loader=val_loader,
model=best_model, logger=logger,
loss=args.loss, logit_scale=logit_scale,
classifier_head=tau_head,
dataset=args.dataset,
output_dir=args.output_dir, device=args.device,
pre_extracted=True,
)
# check on test set
tau_test_acc, _, tau_test_confusion_matrix = validate(args,data_loader=test_loader,
model=best_model, logger=logger,
loss=args.loss, logit_scale=logit_scale,
show_confusion_matrix=True,
classifier_head=tau_head,
dataset=args.dataset,
output_dir=args.output_dir, device=args.device,
pre_extracted=True,
)
logger.info(f"Tau: {round(tau,2)}, Val Acc: {round(tau_val_acc, 3)}, Test Acc: {round(tau_test_acc, 3)}")
if tau_val_acc > best_tau_val_acc:
best_tau = tau
best_tau_val_acc = tau_val_acc
best_tau_test_acc = tau_test_acc
best_tau_head = copy.deepcopy(tau_head)
best_tau_scores = calculate_scores(tau_test_confusion_matrix)
best_tau_confusion_matrix = copy.deepcopy(tau_test_confusion_matrix)
logger.info(f"+++++ Best Tau: {round(best_tau,1)}, Val Acc: {round(best_tau_val_acc, 3)}, Test Acc: {round(best_tau_test_acc, 3)}")
# save_test_scores(best_tau_scores, best_tau_confusion_matrix, args.output_dir, 'best_tau_test')
# save_head_weights(best_tau_head, output_dir, 'best_tau')
return best_tau_head, best_tau, best_tau_test_acc
def ensemble_model(best_model, zeroshot_model, alpha):
"""Ensemble the best_model and zeroshot_model"""
wsft_model = copy.deepcopy(best_model)
# Load models
zeroshot = zeroshot_model
finetuned = best_model
theta_0 = zeroshot.state_dict()
theta_1 = finetuned.state_dict()
# make sure checkpoints are compatible
assert set(theta_0.keys()) == set(theta_1.keys())
# interpolate between checkpoints with mixing coefficient alpha
theta = {
key: (1.0-alpha) * theta_0[key] + alpha * theta_1[key]
for key in theta_0.keys()
}
# update the model acccording to the new weights
wsft_model.load_state_dict(theta)
return wsft_model
def run_wsft(args, best_model, best_head, test_loader, zeroshot_model, zeroshot_weights, logit_scale, logger, alpha=0.5):
learned_head_weights = best_head.linear.weight.data.to(args.device)
wsft_head_weights = alpha * learned_head_weights + (1.0 - alpha) * zeroshot_weights
wsft_head = MyLinear(weights=wsft_head_weights)
wsft_head.to(args.device)
logger.info(f'WiSE-FT classifier done. alpha: {alpha}')
if args.freeze_visual:
wsft_model = best_model
else:
# ensemble the best_model and zeroshot_model
wsft_model = ensemble_model(best_model, zeroshot_model, alpha)
logger.info(f'WiSE-FT model done. alpha: {alpha}')
wsft_test_acc, _, _ = validate(args,data_loader=test_loader,
model=wsft_model,
classifier_head=wsft_head, # here use the wsft_head
logger=logger,
loss=args.loss, logit_scale=logit_scale,
show_confusion_matrix=False,
dataset=args.dataset,
output_dir=args.output_dir, device=args.device,
pre_extracted=args.pre_extracted,
)
logger.info(f"+++++ WiSE-FT Test Acc: {round(wsft_test_acc, 3)}")
# wsft_test_scores = calculate_scores(wsft_test_confusion_matrix)
# save_test_scores(wsft_test_scores, wsft_test_confusion_matrix, args.output_dir, 'wsft_test')
# save_head_weights(wsft_head, output_dir, 'wsft')
return wsft_model, wsft_head, wsft_test_acc
def run_wsft_alpha(args, best_model, best_head, val_loader, test_loader, zeroshot_model, zeroshot_head, logit_scale, logger, step=0.1):
logger.info(f"Checking WSFT ......")
ensemble_val_acc = []
ensemble_test_acc = []
learned_head_weights = best_head.linear.weight.data.to(args.device)
zeroshot_weights = zeroshot_head.linear.weight.data.to(args.device)
best_alpha = 0.0
best_wsft_test_acc = 0.0
best_wsft_val_acc = 0.0
best_wsft_head = best_head
best_wsft_model = best_model
# for alpha in np.arange(0.0, 1.0+step, step):
for alpha in [0.5]:
wsft_head_weights = alpha * learned_head_weights + (1.0 - alpha) * zeroshot_weights
wsft_head = MyLinear(weights=wsft_head_weights)
wsft_head.to(args.device)
# wsft_head = best_head # use the best_head, do not ensemble the head
# wsft_head = zeroshot_head # use the zeroshot_head, do not ensemble the head
if args.freeze_visual:
wsft_model = best_model
else:
# ensemble the best_model and zeroshot_model
wsft_model = ensemble_model(best_model, zeroshot_model, alpha)
wsft_val_acc, _, _ = validate(args,data_loader=val_loader,
model=wsft_model,
classifier_head=wsft_head, # here use the wsft_head
logger=logger,
loss=args.loss, logit_scale=logit_scale,
show_confusion_matrix=False,
dataset=args.dataset,
output_dir=args.output_dir, device=args.device,
pre_extracted=args.pre_extracted,
)
wsft_test_acc, _, _ = validate(args,data_loader=test_loader,
model=wsft_model,
classifier_head=wsft_head, # here use the wsft_head
logger=logger,
loss=args.loss, logit_scale=logit_scale,
show_confusion_matrix=False,
dataset=args.dataset,
output_dir=args.output_dir, device=args.device,
pre_extracted=args.pre_extracted,
)
ensemble_val_acc.append(wsft_val_acc)
ensemble_test_acc.append(wsft_test_acc)
logger.info(f"Alpha:{round(alpha, 3)}, Val Acc: {round(wsft_val_acc, 3)}, Test Acc: {round(wsft_test_acc, 3)}")
if wsft_val_acc > best_wsft_val_acc:
best_wsft_val_acc = wsft_val_acc
best_wsft_test_acc = wsft_test_acc
best_alpha = alpha
best_wsft_head = copy.deepcopy(wsft_head)
best_wsft_model = copy.deepcopy(wsft_model)
logger.info(f"+++++ Best Alpha: {round(best_alpha, 2)}, Val Acc: {round(best_wsft_val_acc, 3)}, Test Acc: {round(best_wsft_test_acc, 3)}")
# print(f'ensemble_val_acc', ensemble_val_acc)
# print(f'ensemble_test_acc', ensemble_test_acc)
return best_wsft_model, best_wsft_head, best_wsft_test_acc
def run_stage1_finetuning(args, logger, model, preprocess, tokenized_text_prompts):
# dataloaders
train_loader, val_loader, test_loader = set_dataloaders(args, model, tokenized_text_prompts, preprocess, logger)
text_dataloader = set_text_dataloader(args, logger, prompt_tensors, prompt_tensors_dict) if args.method == 'CMLP' else None
test_loader_copy = copy.deepcopy(test_loader)
loss = set_loss(args)
params, logit_scale = set_params(args, model, classifier_head, logger) # depend on method
optimizer, scheduler, total_iter = set_optimizer(args, params, train_loader)
args.loss = loss
args.logit_scale = logit_scale
args.optimizer = optimizer
args.scheduler = scheduler
# check zeroshot acc
if args.check_zeroshot or args.method == 'zeroshot':
logger.info(f"Check Zero-shot Acc ......")
zs_test_acc = run_zeroshot(args, test_loader, model, logger, loss, logit_scale, classifier_head)
if args.zeroshot_only or args.method == 'zeroshot':
result_summary = f'{args.dataset},{stage1_method},{args.data_source},{args.cls_init},{args.shots},{args.seed},{args.retrieval_split},{round(zs_test_acc,1)}'
logger.info(f'{result_summary}')
print(f'{result_summary}')
exit()
reload_model = True if args.model_path else False
#---------- Training
if args.method == 'probing' or args.method == 'REAL-Linear':
best_model, best_head, best_records, \
best_logit_scale, val_loader, test_loader = train_probing(args, logger, loss_logger, model, classifier_head, \
tokenized_text_prompts, preprocess, \
train_loader, val_loader, test_loader, reload_model)
elif args.method == 'dataset-cls':
best_model, best_head, best_records, best_logit_scale = train_dataset_cls(args, logger, loss_logger, model, classifier_head, \
train_loader, val_loader, test_loader)
elif args.method == 'CMLP': # cross modal linear probing
best_model, best_head, best_records, \
best_logit_scale, val_loader, test_loader = train_CMLP(args, logger, loss_logger, model, classifier_head, \
preprocess, tokenized_text_prompts, \
train_loader, val_loader, test_loader, False, text_dataloader)
elif args.method == 'finetune':
best_model, best_head, \
best_records, best_logit_scale = train_ce(args, logger, loss_logger, model, classifier_head, \
train_loader, val_loader, test_loader, reload_model)
elif args.method == 'finetune-mixed': # half batch is retrieved, half batch is fewshot
best_model, best_head, \
best_records, best_logit_scale = train_ce_mixed(args, logger, loss_logger, model, classifier_head, \
train_loader, val_loader, test_loader)
elif args.method == 'fixmatch': # bs is labeled, bs*mu is unlabeled
best_model, best_head, \
best_records, best_logit_scale = train_fixmatch(args, logger, loss_logger, model, classifier_head, \
train_loader, val_loader, test_loader)
elif args.method == 'finetune-multitask': # 1 backbone 2 output heads
best_model, best_head, \
best_records, best_logit_scale = train_ce_multitask(args, logger, loss_logger, model, classifier_head, \
train_loader, val_loader, test_loader, dataset_classifier_head)
elif args.method == 'mixup': # random mixup
best_model, best_head, \
best_records, best_logit_scale = train_mixup(args, logger, loss_logger, model, classifier_head, \
train_loader, val_loader, test_loader)
elif args.method == 'mixup-fs': # mix retrieved with few-shot
best_model, best_head, \
best_records, best_logit_scale = train_mixup_fs(args, logger, loss_logger, model, classifier_head, \
train_loader, val_loader, test_loader)
elif args.method == 'cutmix': # cutmix
best_model, best_head, \
best_records, best_logit_scale = train_cutmix(args, logger, loss_logger, model, classifier_head, \
train_loader, val_loader, test_loader)
elif args.method == 'cutmix-fs': # cutmix with few-shot data
best_model, best_head, \
best_records, best_logit_scale = train_cutmix_fs2(args, logger, loss_logger, model, classifier_head, \
train_loader, val_loader, test_loader)
elif args.method == 'CMO': # CMO
best_model, best_head, \
best_records, best_logit_scale = train_CMO(args, logger, loss_logger, model, classifier_head, \
train_loader, val_loader, test_loader)
elif args.method == 'resizemix': # resizemix
best_model, best_head, \
best_records, best_logit_scale = train_resizemix(args, logger, loss_logger, model, classifier_head, \
train_loader, val_loader, test_loader)
elif args.method == 'saliencymix': # saliencymix
#----- paper code, use first image saliency for entire batch
# best_model, best_head, best_records, best_logit_scale = train_saliencymix(args, logger, loss_logger, model, classifier_head, train_loader, val_loader, test_loader)
#----- my code, use individual image saliency for each image in the batch
best_model, best_head, best_records, best_logit_scale = train_saliencymix2(args, logger, loss_logger, model, classifier_head, train_loader, val_loader, test_loader)
elif args.method == 'attentivemix': # attentivemix
# irregular binary mask
# best_model, best_head, best_records, best_logit_scale = train_attentivemix(args, logger, loss_logger, model, classifier_head, train_loader, val_loader, test_loader)
# rectangular patches as SaliencyMix2
best_model, best_head, best_records, best_logit_scale = train_attentivemix2(args, logger, loss_logger, model, classifier_head, train_loader, val_loader, test_loader)
elif args.method == 'FLYP':
best_model, best_head, best_records, best_logit_scale = train_flyp(args, logger, loss_logger, model, tokenizer,
train_loader, val_loader, test_loader, text_prompts)
elif args.method == 'SupContrastive':
best_model, best_head, best_records, best_logit_scale = train_supervised_contrastive(args, logger, loss_logger, model, classifier_head,
logit_scale, loss, optimizer, scheduler,
train_loader, val_loader, test_loader)
elif args.method == 'BalancedContrastive':
best_model, best_head, best_records, best_logit_scale = train_balanced_contrastive(args, logger, loss_logger, model, classifier_head, train_loader, val_loader, test_loader)
else:
raise NotImplementedError(f"Method {args.method} not implemented.")
if args.method == 'dataset-cls':
exit()
#---------- Test the wsft, cannot preextract feature, as the model backbone weights is ensembled
wsft_backbone = None
wsft_head = None
wsft_test_acc = -1
# wsft_backbone, wsft_head, wsft_test_acc = run_wsft(args, best_model, best_head, test_loader, zeroshot_model, zeroshot_weights, best_logit_scale, logger)
if not args.no_wsft:
wsft_backbone, wsft_head, wsft_test_acc = run_wsft_alpha(args, best_model, best_head, val_loader, \
test_loader, zeroshot_model, zeroshot_head, \
best_logit_scale, logger)
# Here we re-extract the val, test dataloader after training, for fast checking of tau normalization
if args.method != "probing" and args.method != "REAL-Linear":
new_val_fea_path = f'{args.dataset_root}/pre_extracted/{args.dataset}_{args.model_cfg}_{args.shots}_{args.seed}_val_features_new.pth'
new_test_fea_path = f'{args.dataset_root}/pre_extracted/{args.dataset}_{args.model_cfg}_{args.shots}_{args.seed}_test_features_new.pth'
val_loader = extract_dataloader(args, best_model, args.val_split, new_val_fea_path, preprocess, tokenized_text_prompts)
test_loader = extract_dataloader(args, best_model, args.test_split, new_test_fea_path, preprocess, tokenized_text_prompts)
logger.info(f'Extracted val, test dataloader for fast testing after training.')
#---------- Testing
test_acc, test_loss, test_confusion_matrix = validate(args,data_loader=test_loader,
model=best_model,
classifier_head=best_head,
logger=logger,
loss=args.loss, logit_scale=best_logit_scale,
show_confusion_matrix=True,
dataset=args.dataset,
output_dir=args.output_dir, device=args.device,
pre_extracted=True,
)
test_scores = calculate_scores(test_confusion_matrix)
logger.info(f"+++++ Test Acc: {round(test_acc, 3)}")
save_test_scores(test_scores, test_confusion_matrix, args.output_dir, 'test')
# save_head_weights(best_head, args.output_dir, 'best_val')
#---------- Tau normalization
best_tau_head = None
best_tau = -1
best_tau_test_acc = -1
if not args.no_tau:
best_tau_head, best_tau, best_tau_test_acc = run_tau_normalization(args, best_head, best_model, val_loader, \
test_loader, best_logit_scale, logger)
# print the logit_scale
logger.info(f"logit_scale: {round(logit_scale.item(), 8)}")
logger.info(f"best_logit_scale: {round(best_logit_scale.item(), 8)}")
#----------- save stage 2 best model
best_model_path = save_best_model(args, best_records,
best_model, best_head, best_logit_scale,
test_acc, best_tau, best_tau_test_acc, wsft_test_acc,
best_tau_head, wsft_backbone, wsft_head, stage=1)
logger.info(f'Stage 1 Best Model saved to: {best_model_path}')
# wait for 1 second to make sure the file is saved
time.sleep(0.5)
# remove the extracted features
# if os.path.exists(new_val_fea_path):
# os.remove(new_val_fea_path)
# if os.path.exists(new_test_fea_path):
# os.remove(new_test_fea_path)
# remove the folder
# shutil.rmtree(f'{args.dataset_root}/pre_extracted')
return test_acc, best_model_path, test_loader_copy, wsft_test_acc
def run_stage2_probing(model, stage1_best_model_path, test_loader, tokenized_text_prompts, preprocess):
logger.info(f"Run stage 2 classifier retraining ......")
args.model_path = stage1_best_model_path
load_model(args, logger, model, test_loader, classifier_head)
# re-extract the train_loader, val_loader, test_loader
new_fewshot_fea_path = f'{args.dataset_root}/pre_extracted/{args.dataset}_{args.model_cfg}_{args.shots}_{args.seed}_fewshot_features_new.pth'
new_test_fea_path = f'{args.dataset_root}/pre_extracted/{args.dataset}_{args.model_cfg}_{args.shots}_{args.seed}_test_features_new.pth'
train_loader = extract_train_dataloader(args, model, args.fewshot_data, new_fewshot_fea_path,
preprocess, tokenized_text_prompts, args.bsz)
val_loader = train_loader
test_loader = extract_dataloader(args, model, args.test_split, new_test_fea_path,
preprocess, tokenized_text_prompts)
logger.info(f'Extracted train, val, test dataloader for stage 2 training.')
# reset the pre_extracted flag
args.method = 'probing'
args.pre_extracted = True
logger.info(f'Reset args.pre_extracted: {args.pre_extracted}')
args.epochs = 10
args.early_stop = False
# Imporatnt! Need to reset the params, optimizer, scheduler, loss, logit_scale
loss = set_loss(args)
params, logit_scale = set_params(args, model, classifier_head, logger) # depending on method
optimizer, scheduler, total_iter = set_optimizer(args, params, train_loader)
args.loss = loss
args.logit_scale = logit_scale
args.optimizer = optimizer
args.scheduler = scheduler
#---------- Training
best_model, best_head, best_records, _, _, _ = train_probing(args, logger, loss_logger, model, classifier_head,
tokenized_text_prompts, preprocess,
train_loader, val_loader, test_loader,
reload_model=False)
# test the best model after probing
test_acc, test_loss, test_confusion_matrix = validate(args,data_loader=test_loader,
model=best_model,
classifier_head=best_head,
logger=logger,
loss=args.loss,
logit_scale=args.logit_scale,
show_confusion_matrix=True,
dataset=args.dataset,
output_dir=args.output_dir,
device=args.device,
pre_extracted=True,
)
test_scores = calculate_scores(test_confusion_matrix)
logger.info(f"+++++ stage 2 Test Acc: {round(test_acc, 3)}")
save_test_scores(test_scores, test_confusion_matrix, args.output_dir, 'test', stage=2)
#----------- save stage 2 best model
best_model_path = save_best_model(args, best_records,
best_model, best_head, logit_scale,
test_acc, best_tau=None, best_tau_test_acc=-1, wsft_test_acc=-1,
best_tau_head=None, wsft_backbone=None, wsft_head=None, stage=2)
logger.info(f'stage 2 Best Model saved to: {best_model_path}')
# remove the extracted features
if os.path.exists(new_fewshot_fea_path):
os.remove(new_fewshot_fea_path)
if os.path.exists(new_test_fea_path):
os.remove(new_test_fea_path)
return test_acc, best_model_path
if __name__ == '__main__':
program_start = time.time()
args = parse_args()
logger, loss_logger = set_logger(args)
set_training_seed(args)
# load model
model, preprocess, tokenizer = set_model(args, logger)
zeroshot_model = copy.deepcopy(model)
# make prompts
prompt_tensors, text_prompts, \
tokenized_text_prompts, prompt_tensors_dict = set_prompt(args, model, tokenizer, logger)
# make classifier head
classifier_head = set_classifier(args, prompt_tensors, logger)
zeroshot_head = copy.deepcopy(classifier_head)
classifier_head.to(args.device)
# run finetuning for stage 1
stage1_acc, stage1_best_model_path, test_loader, wsft_test_acc = run_stage1_finetuning(args, logger, model, preprocess, tokenized_text_prompts)
stage1_method = args.method # record method here, as in stage 2 method will be updated to probing
# run probing for stage 2
if not args.skip_stage2:
stage2_acc, stage2_best_model_path = run_stage2_probing(model, stage1_best_model_path, test_loader, tokenized_text_prompts, preprocess,)
else:
logger.info(f"Skip stage 2 Probing.")
stage2_acc = -1
stage2_best_model_path = 'None'
loss_logger.close()
program_end = time.time()
logger.info(f"Total time: {round((program_end-program_start)/60, 1)} mins.")
result_summary = f'{args.dataset},{stage1_method},{args.data_source},{args.cls_init},{args.shots},{args.seed},{args.retrieval_split},{round(stage1_acc,1)},{round(wsft_test_acc,1)},{round(stage2_acc,1)}'
logger.info(f'{result_summary}')
print(f'{result_summary}')