diff --git a/.Rbuildignore b/.Rbuildignore index b567047b..8d5a65dd 100644 --- a/.Rbuildignore +++ b/.Rbuildignore @@ -14,3 +14,4 @@ Applications/Tensorflow.Rmd ^CODE_OF_CONDUCT\.md$ ^LICENSE\.md$ ^man-roxygen$ +^revdep$ diff --git a/.gitignore b/.gitignore index 0b445057..8a7aaf8b 100644 --- a/.gitignore +++ b/.gitignore @@ -3,3 +3,5 @@ .Rproj.user .DS_Store man/.Rapp.history +revdep/problems.md +revdep/README.md diff --git a/DESCRIPTION b/DESCRIPTION index 82fcfaa4..67b5d86a 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,6 +1,6 @@ Package: embed Title: Extra Recipes for Encoding Predictors -Version: 0.1.4.9000 +Version: 0.1.5 Authors@R: c( person("Max", "Kuhn", , "max@rstudio.com", role = c("aut", "cre"), comment = c(ORCID = "0000-0003-2402-136X")), diff --git a/NEWS.md b/NEWS.md index 4ad2736f..1c27d810 100644 --- a/NEWS.md +++ b/NEWS.md @@ -1,4 +1,4 @@ -# embed (development version) +# embed 0.1.5 * Re-licensed package from GPL-2 to MIT. See [consent from copyright holders here](https://github.com/tidymodels/embed/issues/78). diff --git a/README.Rmd b/README.Rmd index 571d866b..f8b9cae7 100644 --- a/README.Rmd +++ b/README.Rmd @@ -15,7 +15,7 @@ knitr::opts_chunk$set( [![R build status](https://github.com/tidymodels/embed/workflows/R-CMD-check/badge.svg)](https://github.com/tidymodels/embed/actions) -[![Codecov test coverage](https://codecov.io/gh/tidymodels/embed/branch/main/graph/badge.svg)](https://codecov.io/gh/tidymodels/embed?branch=main) +[![Codecov test coverage](https://codecov.io/gh/tidymodels/embed/branch/main/graph/badge.svg)](https://app.codecov.io/gh/tidymodels/embed?branch=main) [![CRAN_Status_Badge](https://www.r-pkg.org/badges/version/embed)](https://CRAN.r-project.org/package=embed) [![Downloads](https://CRANlogs.r-pkg.org/badges/embed)](https://CRAN.r-project.org/package=embed) ![](https://img.shields.io/badge/lifecycle-maturing-blue.svg) @@ -43,6 +43,8 @@ For numeric predictors: * `step_discretize_xgb()` and `step_discretize_cart()` can make binned versions of numeric predictors using supervised tree-based models. +* `step_pca_sparse()` and `step_pca_sparse_bayes()` conduct feature extraction with sparsity of the component loadings. + Some references for these methods are: * Francois C and Allaire JJ (2018) [_Deep Learning with R_](https://www.manning.com/books/deep-learning-with-r), Manning diff --git a/README.md b/README.md index d52bf03c..2b6f79f1 100644 --- a/README.md +++ b/README.md @@ -6,7 +6,7 @@ [![R build status](https://github.com/tidymodels/embed/workflows/R-CMD-check/badge.svg)](https://github.com/tidymodels/embed/actions) [![Codecov test -coverage](https://codecov.io/gh/tidymodels/embed/branch/main/graph/badge.svg)](https://codecov.io/gh/tidymodels/embed?branch=main) +coverage](https://codecov.io/gh/tidymodels/embed/branch/main/graph/badge.svg)](https://app.codecov.io/gh/tidymodels/embed?branch=main) [![CRAN\_Status\_Badge](https://www.r-pkg.org/badges/version/embed)](https://CRAN.r-project.org/package=embed) [![Downloads](https://CRANlogs.r-pkg.org/badges/embed)](https://CRAN.r-project.org/package=embed) ![](https://img.shields.io/badge/lifecycle-maturing-blue.svg) @@ -56,6 +56,9 @@ For numeric predictors: - `step_discretize_xgb()` and `step_discretize_cart()` can make binned versions of numeric predictors using supervised tree-based models. +- `step_pca_sparse()` and `step_pca_sparse_bayes()` conduct feature + extraction with sparsity of the component loadings. + Some references for these methods are: - Francois C and Allaire JJ (2018) [*Deep Learning with