Container for TF1/TF2 with CUDA support.
Note that the l4t-tensorflow
containers are similar, with the addition of OpenCV and PyCUDA.
The TensorFlow wheels used in these are from https://docs.nvidia.com/deeplearning/frameworks/install-tf-jetson-platform
CONTAINERS
tensorflow |
|
---|---|
Builds | |
Requires | L4T ['>=32.6'] |
Dependencies | build-essential cuda cudnn python tensorrt numpy protobuf:cpp |
Dependants | l4t-tensorflow:tf1 |
Dockerfile | Dockerfile |
Images | dustynv/tensorflow:r32.7.1 (2023-12-06, 0.8GB) dustynv/tensorflow:r35.2.1 (2023-12-05, 5.5GB) dustynv/tensorflow:r35.3.1 (2023-08-29, 5.5GB) dustynv/tensorflow:r35.4.1 (2023-12-06, 5.5GB) |
tensorflow2 |
|
---|---|
Builds | |
Requires | L4T ['>=32.6'] |
Dependencies | build-essential cuda cudnn python tensorrt numpy protobuf:cpp |
Dependants | l4t-ml l4t-tensorflow:tf2 |
Dockerfile | Dockerfile |
Images | dustynv/tensorflow2:r32.7.1 (2023-12-06, 0.9GB) dustynv/tensorflow2:r35.2.1 (2023-12-06, 5.6GB) dustynv/tensorflow2:r35.3.1 (2023-12-05, 5.6GB) dustynv/tensorflow2:r35.4.1 (2023-10-07, 5.6GB) dustynv/tensorflow2:r36.2.0 (2023-12-05, 7.2GB) |
CONTAINER IMAGES
Repository/Tag | Date | Arch | Size |
---|---|---|---|
dustynv/tensorflow:r32.7.1 |
2023-12-06 |
arm64 |
0.8GB |
dustynv/tensorflow:r35.2.1 |
2023-12-05 |
arm64 |
5.5GB |
dustynv/tensorflow:r35.3.1 |
2023-08-29 |
arm64 |
5.5GB |
dustynv/tensorflow:r35.4.1 |
2023-12-06 |
arm64 |
5.5GB |
Container images are compatible with other minor versions of JetPack/L4T:
• L4T R32.7 containers can run on other versions of L4T R32.7 (JetPack 4.6+)
• L4T R35.x containers can run on other versions of L4T R35.x (JetPack 5.1+)
RUN CONTAINER
To start the container, you can use jetson-containers run
and autotag
, or manually put together a docker run
command:
# automatically pull or build a compatible container image
jetson-containers run $(autotag tensorflow)
# or explicitly specify one of the container images above
jetson-containers run dustynv/tensorflow:r32.7.1
# or if using 'docker run' (specify image and mounts/ect)
sudo docker run --runtime nvidia -it --rm --network=host dustynv/tensorflow:r32.7.1
jetson-containers run
forwards arguments todocker run
with some defaults added (like--runtime nvidia
, mounts a/data
cache, and detects devices)
autotag
finds a container image that's compatible with your version of JetPack/L4T - either locally, pulled from a registry, or by building it.
To mount your own directories into the container, use the -v
or --volume
flags:
jetson-containers run -v /path/on/host:/path/in/container $(autotag tensorflow)
To launch the container running a command, as opposed to an interactive shell:
jetson-containers run $(autotag tensorflow) my_app --abc xyz
You can pass any options to it that you would to docker run
, and it'll print out the full command that it constructs before executing it.
BUILD CONTAINER
If you use autotag
as shown above, it'll ask to build the container for you if needed. To manually build it, first do the system setup, then run:
jetson-containers build tensorflow
The dependencies from above will be built into the container, and it'll be tested during. Run it with --help
for build options.