-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathobject_functions.py
344 lines (310 loc) · 17 KB
/
object_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import numpy as np
import cv2
import sys
from skimage.feature import hog
from sklearn.preprocessing import StandardScaler
from scipy.ndimage.measurements import label
class Get_Features(object):
@staticmethod
# Define a function to return HOG features and visualization
def get_hog_features(img, orient, pix_per_cell, cell_per_block, vis=False, feature_vec=True):
if vis == True:
features, hog_image = hog(img, orientations=orient, pixels_per_cell=(pix_per_cell, pix_per_cell),
cells_per_block=(cell_per_block, cell_per_block), transform_sqrt=False,
visualise=True, feature_vector=False)
return features, hog_image
else:
features = hog(img, orientations=orient, pixels_per_cell=(pix_per_cell, pix_per_cell),
cells_per_block=(cell_per_block, cell_per_block), transform_sqrt=False,
visualise=False, feature_vector=feature_vec)
return features
@staticmethod
# Define a function to compute binned color features
def bin_spatial(img, size=(32, 32)):
return (cv2.resize(img, size).ravel())
@staticmethod
# Define a function to compute color histogram features
def color_hist(img, nbins=32, bins_range=(0, 256)):
# Compute the histogram of the color channels separately
channel1_hist = np.histogram(img[:,:,0], bins=nbins, range=bins_range)
channel2_hist = np.histogram(img[:,:,1], bins=nbins, range=bins_range)
channel3_hist = np.histogram(img[:,:,2], bins=nbins, range=bins_range)
# Concatenate the histograms into a single feature vector
hist_features = np.concatenate((channel1_hist[0], channel2_hist[0], channel3_hist[0]))
# Return the individual histograms, bin_centers and feature vector
return hist_features
@staticmethod
# Function to display a simple progress bar
def drawProgressBar(percent, barLen = 20, text=""):
sys.stdout.write("\r")
progress = ""
for i in range(barLen):
if i < int(barLen * percent):
progress += "="
else:
progress += " "
msg = text + "[ %s ] %.2f%%" % (progress, percent * 100)
sys.stdout.write(msg)
sys.stdout.flush()
@staticmethod
# Define a function to extract features from a list of images
# Have this function call bin_spatial() and color_hist()
def extract_features(single_img, imgs, cspace='RGB', spatial_size=(32, 32),
hist_bins=32, hist_range=(0, 256), orient=9,
pix_per_cell=8, cell_per_block=2, hog_channel=0,
spat_feat=False, hist_feat=False, hog_feat=False):
# Create a list to append feature vectors to
features = []
total = len(imgs)
for idx,img in enumerate(imgs):
if (single_img):
image = imgs[0]
else:
# Read in image
image = cv2.imread(img)
# apply color conversion if other than 'RGB'
if cspace != 'RGB':
if cspace == 'HSV':
feature_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
elif cspace == 'LUV':
feature_image = cv2.cvtColor(image, cv2.COLOR_BGR2LUV)
elif cspace == 'HLS':
feature_image = cv2.cvtColor(image, cv2.COLOR_BGR2HLS)
elif cspace == 'YUV':
feature_image = cv2.cvtColor(image, cv2.COLOR_BGR2YUV)
elif cspace == 'YCrCb':
feature_image = cv2.cvtColor(image, cv2.COLOR_BGR2YCrCb)
else:
feature_image = np.copy(image)
# Apply bin_spatial() to get spatial color features
if ( spat_feat ):
spatial_features = Get_Features.bin_spatial(feature_image, size=spatial_size)
# features.append(spatial_features)
# Apply color_hist() to get histogram features
if ( hist_feat ):
hist_features = Get_Features.color_hist(feature_image, nbins=hist_bins, bins_range=hist_range)
# Call get_hog_features with vis=False, feature_vec = True
if ( hog_feat ):
if hog_channel == 'ALL':
hog_features = []
for channel in range(feature_image.shape[2]):
hog_features.append(Get_Features.get_hog_features(feature_image[:,:,channel],
orient, pix_per_cell, cell_per_block,
vis=False, feature_vec=True))
hog_features = np.ravel(hog_features)
else:
hog_features = Get_Features.get_hog_features(feature_image[:,:,hog_channel], orient,
pix_per_cell, cell_per_block, vis=False, feature_vec=True)
features.append(np.concatenate((spatial_features, hist_features, hog_features)))
if (single_img==False):
Get_Features.drawProgressBar(float((idx+1)/total), barLen = 20, text="Extracting features...")
# print(len(features))
# Return list of feature vectors
if (single_img==False):
Get_Features.drawProgressBar(1.0, barLen = 20, text="Extracting features...")
print()
return features
# Define a function that takes an image,
# start and stop positions in both x and y,
# window size (x and y dimensions),
# and overlap fraction (for both x and y)
@staticmethod
def slide_window(img, x_start_stop=[None, None], y_start_stop=[None, None],
xy_window=(64, 64), xy_overlap=(0.5, 0.5)):
# If x and/or y start/stop positions not defined, set to image size
if x_start_stop[0] == None:
x_start_stop[0] = 0
if x_start_stop[1] == None:
x_start_stop[1] = img.shape[1]
if y_start_stop[0] == None:
y_start_stop[0] = 0
if y_start_stop[1] == None:
y_start_stop[1] = img.shape[0]
# Compute the span of the region to be searched
xspan = x_start_stop[1] - x_start_stop[0]
yspan = y_start_stop[1] - y_start_stop[0]
# Compute the number of pixels per step in x/y
nx_pix_per_step = np.int(xy_window[0]*(1 - xy_overlap[0]))
ny_pix_per_step = np.int(xy_window[1]*(1 - xy_overlap[1]))
# Compute the number of windows in x/y
nx_buffer = np.int(xy_window[0]*(xy_overlap[0]))
ny_buffer = np.int(xy_window[1]*(xy_overlap[1]))
nx_windows = np.int((xspan-nx_buffer)/nx_pix_per_step)
ny_windows = np.int((yspan-ny_buffer)/ny_pix_per_step)
# Initialize a list to append window positions to
window_list = []
# Loop through finding x and y window positions
# Note: you could vectorize this step, but in practice
# you'll be considering windows one by one with your
# classifier, so looping makes sense
for ys in range(ny_windows):
for xs in range(nx_windows):
# Calculate window position
startx = xs*nx_pix_per_step + x_start_stop[0]
endx = startx + xy_window[0]
starty = ys*ny_pix_per_step + y_start_stop[0]
endy = starty + xy_window[1]
# Append window position to list
window_list.append(((startx, starty), (endx, endy)))
# Return the list of windows
return window_list
# Define a function to draw bounding boxes
@staticmethod
def draw_boxes(img, bboxes, color=(0, 0, 255), thick=6):
# Make a copy of the image
imcopy = np.copy(img)
# Iterate through the bounding boxes
for bbox in bboxes:
# Draw a rectangle given bbox coordinates
cv2.rectangle(imcopy, bbox[0], bbox[1], color, thick)
# Return the image copy with boxes drawn
return imcopy
# Define a function you will pass an image
# and the list of windows to be searched (output of slide_windows())
@staticmethod
def search_windows(img, windows, clf, scaler, color_space='RGB',
spatial_size=(32, 32), hist_bins=32,
hist_range=(0, 256), orient=9,
pix_per_cell=8, cell_per_block=2,
hog_channel=0, spatial_feat=True,
hist_feat=True, hog_feat=True):
#1) Create an empty list to receive positive detection windows
on_windows = []
#2) Iterate over all windows in the list
for window in windows:
#3) Extract the test window from original image
test_img = cv2.resize(img[window[0][1]:window[1][1], window[0][0]:window[1][0]], (64, 64))
#4) Extract features for that window using single_img_features()
features = Get_Features.extract_features(True, [test_img], cspace=color_space,
spatial_size=spatial_size, hist_bins=hist_bins,
orient=orient, pix_per_cell=pix_per_cell,
cell_per_block=cell_per_block,
hog_channel=hog_channel, spat_feat=spatial_feat,
hist_feat=hist_feat, hog_feat=hog_feat)
#5) Scale extracted features to be fed to classifier
test_features = scaler.transform(np.array(features).reshape(1, -1))
#6) Predict using your classifier
prediction = clf.predict(test_features)
#7) If positive (prediction == 1) then save the window
if prediction == 1:
on_windows.append(window)
#8) Return windows for positive detections
return on_windows
@staticmethod
# Define a function to extract HOG features from the entire image of interest
def find_cars_my(src_img, draw_on_img, dict_of_params, window_sizes, y_lims):
img_copy = src_img.copy()
found_bbox_list = []
# heat_img = np.zeros_like(src_img[:,:,0]).astype(np.float)
# Get parameters
orient = dict_of_params["param"]["orient"]
pix_per_cell = dict_of_params["param"]["pix_per_cell"]
cell_per_block = dict_of_params["param"]["cell_per_block"]
spatial_size = dict_of_params["param"]["spatial_size"]
hist_bins = dict_of_params["param"]["hist_bins"]
X_scaler = dict_of_params["X_scaler"]
svc = dict_of_params["classifier"]
n_blocks_per_window = 64 // pix_per_cell - 1
prev_size = None
for idx, size in enumerate(window_sizes):
cropped_img = img_copy[y_lims[idx][0]:y_lims[idx][1],:,:]
cspace_img = Get_Features.convert_color(cropped_img,'BGR2YCrCb')
if ( prev_size != size ):
# Scale image based on the size of the window as compared to 64x64
# Example: window size is 128x128, scale the image down by a factor of 128/64 = 2
# Example: window size is 32x32, scale the image down by a factor of 32/64 = 0.5
scale = size / 64
imshape = cspace_img.shape
cspace_img = cv2.resize(cspace_img, (np.int(imshape[1]/scale), np.int(imshape[0]/scale)))
# Split into channels
ch1 = cspace_img[:,:,0]
ch2 = cspace_img[:,:,1]
ch3 = cspace_img[:,:,2]
# Compute individual channel HOG features for the entire image
# This is 37 x 159 x ravel
hog1 = Get_Features.get_hog_features(ch1, orient, pix_per_cell, cell_per_block, feature_vec=False)
hog2 = Get_Features.get_hog_features(ch2, orient, pix_per_cell, cell_per_block, feature_vec=False)
hog3 = Get_Features.get_hog_features(ch3, orient, pix_per_cell, cell_per_block, feature_vec=False)
prev_size = size
# Get a list of the sliding windows for the scaled image
window_list = Get_Features.slide_window(cspace_img, [None, None], [None, None], (64, 64), (0.75, 0.75))
for window in window_list:
startx = window[0][0]
starty = window[0][1]
endx = window[1][0]
endy = window[1][1]
y_idx_hog_start = starty // pix_per_cell
y_idx_hog_end = y_idx_hog_start + n_blocks_per_window - 1
x_idx_hog_start = startx // pix_per_cell
x_idx_hog_end = x_idx_hog_start + n_blocks_per_window - 1
pixels_per_block = 16
skip_cells = 2
# print("Y: Start HI: {0} End HI: {1}".format(y_idx_hog_start,y_idx_hog_end))
# print("X: Start HI: {0} End HI: {1}".format(x_idx_hog_start,x_idx_hog_end))
# Extract HOG for this patch
hog_feat1 = hog1[y_idx_hog_start:y_idx_hog_end+1, x_idx_hog_start:x_idx_hog_end+1].ravel()
# print("Raveled:{}".format(hog_feat1.shape))
hog_feat2 = hog2[y_idx_hog_start:y_idx_hog_end+1, x_idx_hog_start:x_idx_hog_end+1].ravel()
hog_feat3 = hog3[y_idx_hog_start:y_idx_hog_end+1, x_idx_hog_start:x_idx_hog_end+1].ravel()
hog_features = np.hstack((hog_feat1, hog_feat2, hog_feat3))
# Extract the image patch and resize to match that of training data
subimg = cspace_img[starty:endy, startx:endx]
# Get color features
spatial_features = Get_Features.bin_spatial(subimg, size=spatial_size)
hist_features = Get_Features.color_hist(subimg, nbins=hist_bins)
# Print out size of features extracted
# print("Extracted {} spatial features".format(spatial_features.shape))
# print("Extracted {} hist features".format(hist_features.shape))
# print("Extracted {} hog features".format(hog_features.shape))
features_stacked = np.hstack((spatial_features, hist_features, hog_features)).reshape(1, -1)
# print("Extracted {} consolidated features".format(features_stacked.shape))
# Scale features and make a prediction
# print(X_scaler.get_params())
test_features = X_scaler.transform(features_stacked)
test_prediction = svc.predict(test_features)
if test_prediction == 1:
startx_scaled = np.int(startx*scale)
starty_scaled = y_lims[idx][0] + np.int(starty*scale)
win_size_scaled = np.int(64*scale)
found_bbox_list.append(((startx_scaled, starty_scaled),(startx_scaled+win_size_scaled,starty_scaled+win_size_scaled)))
# cv2.rectangle(draw_on_img,(startx_scaled, starty_scaled),(startx_scaled+win_size_scaled,starty_scaled+win_size_scaled),(0,255,0),1)
# cv2.imshow("",draw_on_img)
# cv2.waitKey(5)
return found_bbox_list
@staticmethod
def convert_color(img, conv='RGB2YCrCb'):
if conv == 'RGB2YCrCb':
return cv2.cvtColor(img, cv2.COLOR_RGB2YCrCb)
if conv == 'BGR2YCrCb':
return cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb)
if conv == 'BGR2LUV':
return cv2.cvtColor(img, cv2.COLOR_BGR2LUV)
@staticmethod
def add_heat(heatmap, bbox_list):
for box in bbox_list:
heatmap[box[0][1]:box[1][1], box[0][0]:box[1][0]] += 1
# print(heatmap[box[0][1]:box[1][1], box[0][0]:box[1][0]])
# Return updated heatmap
return heatmap
@staticmethod
def apply_threshold(heatmap, thres):
heatmap[ heatmap <= thres ] = 0
# heatmap[ heatmap >= thres ] = 1
return heatmap
@staticmethod
def draw_labeled_bboxes(img, labels):
# Iterate through all detected cars
for car_number in range(1, labels[1]+1):
# Find pixels with each car_number label value
nonzero = (labels[0] == car_number).nonzero()
# Identify x and y values of those pixels
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Define a bounding box based on min/max x and y
bbox = ((np.min(nonzerox), np.min(nonzeroy)), (np.max(nonzerox), np.max(nonzeroy)))
# Draw the box on the image
cv2.rectangle(img, bbox[0], bbox[1], (0,0,255), 6)
# Return the image
return img