-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPhD.aux
1288 lines (1288 loc) · 135 KB
/
PhD.aux
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\relax
\providecommand\hyper@newdestlabel[2]{}
\providecommand*{\memsetcounter}[2]{}
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
\global\let\oldcontentsline\contentsline
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
\global\let\oldnewlabel\newlabel
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
\AtEndDocument{\ifx\hyper@anchor\@undefined
\let\contentsline\oldcontentsline
\let\newlabel\oldnewlabel
\fi}
\fi}
\global\let\hyper@last\relax
\gdef\HyperFirstAtBeginDocument#1{#1}
\providecommand*\HyPL@Entry[1]{}
\HyPL@Entry{0<</S/r>>}
\@writefile{toc}{\changetocdepth {2}}
\@writefile{toc}{\changetocdepth {2}}
\HyPL@Entry{6<</S/r>>}
\@writefile{toc}{\contentsline {chapter}{Contents}{i}{section*.1}}
\HyPL@Entry{10<</S/D>>}
\citation{lissmann1958mechanism}
\citation{neuro}
\citation{moller1995electric}
\citation{finger2011shocking}
\citation{moller1995electric}
\@writefile{lof}{\addvspace {10pt}}
\@writefile{lot}{\addvspace {10pt}}
\@writefile{toc}{\contentsline {chapter}{\chapternumberline {1}Introduction and overview}{7}{chapter.1}}
\citepageref{lissmann1958mechanism}{7}
\@writefile{toc}{\contentsline {section}{\numberline {1.1}State of the Art}{7}{section.1.1}}
\newlabel{sec:state-of-the-art}{{\M@TitleReference {1.1}{State of the Art}}{7}{State of the Art}{section.1.1}{}}
\citepageref{neuro}{7}
\citepageref{moller1995electric}{7}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.1.1}Discovery of the Electric Sense: a Brief History}{7}{subsection.1.1.1}}
\citation{boulenger1965fishes}
\citation{howes1985phylogenetic}
\citation{boulenger1965fishes}
\citation{howes1985phylogenetic}
\citation{feldberg1942cholinergic}
\citation{moller1995electric}
\citation{moller1995electric}
\@writefile{lof}{\contentsline {figure}{\numberline {1.1}{\ignorespaces The Narmer Palette (left), and a zoom on the \emph {serekh} (box containing the name) situated on the top (right) The fish that is represented is probably \emph {Malapterurus electricus}\nobreakspace {}\cite {boulenger1965fishes,howes1985phylogenetic}.}}{8}{figure.1.1}}
\newlabel{fig:Narmer-Palette}{{\M@TitleReference {1.1}{Bioelectrogenesis}}{8}{The Narmer Palette (left), and a zoom on the \emph {serekh} (box containing the name) situated on the top (right) The fish that is represented is probably \emph {Malapterurus electricus}~\cite {boulenger1965fishes,howes1985phylogenetic}}{figure.1.1}{}}
\citepageref{boulenger1965fishes}{8}
\citepageref{howes1985phylogenetic}{8}
\citepageref{finger2011shocking}{8}
\citepageref{moller1995electric}{8}
\@writefile{toc}{\contentsline {paragraph}{Bioelectrogenesis}{8}{subsection.1.1.1}}
\citepageref{feldberg1942cholinergic}{8}
\@writefile{toc}{\contentsline {paragraph}{Electroreception}{8}{figure.1.1}}
\citation{graff2004fish}
\citation{graff2004fish}
\citation{stoddard2008signal}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.1.2}Weakly Electric Fish}{9}{subsection.1.1.2}}
\@writefile{toc}{\contentsline {subsubsection}{Taxonomy and living conditions}{9}{subsection.1.1.2}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.2}{\ignorespaces Classification and geographic distribution of the different species of weakly electric fish. The species of interest are in the lower circle and the other ones use their electric organ in an aggressive or defensive manner. Taken from\nobreakspace {}\cite {moller1995electric}. }}{9}{figure.1.2}}
\citepageref{moller1995electric}{9}
\newlabel{fig:geography}{{\M@TitleReference {1.2}{Taxonomy and living conditions}}{9}{Classification and geographic distribution of the different species of weakly electric fish. The species of interest are in the lower circle and the other ones use their electric organ in an aggressive or defensive manner. Taken from~\cite {moller1995electric}}{figure.1.2}{}}
\@writefile{toc}{\contentsline {subsubsection}{Emitting and receiving the electric field}{9}{figure.1.3}}
\newlabel{subsub:emit-receive-field}{{\M@TitleReference {1.1.2}{Emitting and receiving the electric field}}{9}{Emitting and receiving the electric field}{figure.1.3}{}}
\@writefile{toc}{\contentsline {paragraph}{The electric organ}{9}{figure.1.3}}
\citation{stoddard2008signal}
\citation{stoddard2008signal}
\citation{volta1800electricity}
\@writefile{lof}{\contentsline {figure}{\numberline {1.3}{\ignorespaces Differences between two species: one is pulse-type (top) and the other is wave-type. For each fish, its electric discharge is represented in time scale. Taken from \cite {graff2004fish}. }}{10}{figure.1.3}}
\citepageref{graff2004fish}{10}
\newlabel{fig:pulse_wave}{{\M@TitleReference {1.3}{Taxonomy and living conditions}}{10}{Differences between two species: one is pulse-type (top) and the other is wave-type. For each fish, its electric discharge is represented in time scale. Taken from \cite {graff2004fish}}{figure.1.3}{}}
\citepageref{stoddard2008signal}{10}
\@writefile{lof}{\contentsline {figure}{\numberline {1.4}{\ignorespaces A \emph {Brachyhypopomus pinnicaudatus} electrocyte. Taken from \cite {stoddard2008signal}. }}{10}{figure.1.4}}
\citepageref{stoddard2008signal}{10}
\newlabel{fig:electric_organ}{{\M@TitleReference {1.4}{The electric organ}}{10}{A \emph {Brachyhypopomus pinnicaudatus} electrocyte. Taken from \cite {stoddard2008signal}}{figure.1.4}{}}
\citation{rouviere2002}
\citation{rouviere2002}
\citation{moller1995electric}
\citation{moller1995electric}
\@writefile{lof}{\contentsline {figure}{\numberline {1.5}{\ignorespaces An electromotor neuron. The axon connects the body of the neuron (in the center) to the muscular tissues (on the right). Taken from \cite {rouviere2002}. }}{11}{figure.1.5}}
\citepageref{rouviere2002}{11}
\newlabel{fig:neurone}{{\M@TitleReference {1.5}{The electric organ}}{11}{An electromotor neuron. The axon connects the body of the neuron (in the center) to the muscular tissues (on the right). Taken from \cite {rouviere2002}}{figure.1.5}{}}
\citepageref{volta1800electricity}{11}
\newlabel{sub:electrorecepteurs}{{\M@TitleReference {1.1.2}{Electroreceptors}}{11}{Electroreceptors}{figure.1.5}{}}
\@writefile{toc}{\contentsline {paragraph}{Electroreceptors}{11}{figure.1.5}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.6}{\ignorespaces Two types of electroreceptors: an ampullary receptor on the left (this shape is common to Mormyrids and Gymnotiforms) and a tuberous one on the right (this shape of organ is from Gymnotiforms). Sensitive cells are indicated by {}``sc'' and the afferent neurons are noted {}``n''. Taken from \cite {moller1995electric}. }}{11}{figure.1.6}}
\citepageref{moller1995electric}{11}
\newlabel{fig:electroreceptor}{{\M@TitleReference {1.6}{Electroreceptors}}{11}{Two types of electroreceptors: an ampullary receptor on the left (this shape is common to Mormyrids and Gymnotiforms) and a tuberous one on the right (this shape of organ is from Gymnotiforms). Sensitive cells are indicated by {}``sc'' and the afferent neurons are noted {}``n''. Taken from \cite {moller1995electric}}{figure.1.6}{}}
\citation{moller1995electric}
\citation{moller1995electric}
\citation{albert2005diversity}
\citation{okedi1971food}
\citation{adair1998detection}
\citation{kalmijn-1988}
\citation{lissmann1958evolution}
\citation{kalmijn-1988}
\citation{hopkins-passive}
\citation{davis1988behavioural}
\citation{davis1988behavioural}
\citation{moller1995electric}
\citation{von1999active}
\citation{von1992electro-location}
\citation{von1993electric}
\@writefile{lof}{\contentsline {figure}{\numberline {1.7}{\ignorespaces Location of the receptors according to the order: \emph {A. albifrons} is a Gymnotiform (each dot represents an ampullary organ - the tuberous ones show the same repartition but are simply in a higher number) and \emph {G. petersii} belongs to the Mormyrifoms order (the receptors are situated in the shaded area). Taken from \cite {moller1995electric}. }}{12}{figure.1.7}}
\citepageref{moller1995electric}{12}
\newlabel{fig:density_electroreceptor}{{\M@TitleReference {1.7}{Electroreceptors}}{12}{Location of the receptors according to the order: \emph {A. albifrons} is a Gymnotiform (each dot represents an ampullary organ - the tuberous ones show the same repartition but are simply in a higher number) and \emph {G. petersii} belongs to the Mormyrifoms order (the receptors are situated in the shaded area). Taken from \cite {moller1995electric}}{figure.1.7}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.1.3}Electrolocation}{12}{subsection.1.1.3}}
\newlabel{sub:electro-localisation}{{\M@TitleReference {1.1.3}{Electrolocation}}{12}{Electrolocation}{subsection.1.1.3}{}}
\citepageref{albert2005diversity}{12}
\citepageref{okedi1971food}{12}
\@writefile{toc}{\contentsline {subsubsection}{Passive electro-location}{12}{subsection.1.1.3}}
\citepageref{adair1998detection}{12}
\citepageref{kalmijn-1988}{12}
\citepageref{lissmann1958evolution}{12}
\citepageref{kalmijn-1988}{12}
\citepageref{hopkins-passive}{12}
\@writefile{lof}{\contentsline {figure}{\numberline {1.8}{\ignorespaces Behavior of \emph {G. carapo} in the presence of a dipole, with two different geometries. Full lines correspond to pathway followed by the fish during an essay ($N$ is the number of essays) and doted lines are stremlines of the electric field. Taken from\nobreakspace {}\cite {davis1988behavioural}.}}{12}{figure.1.8}}
\citepageref{davis1988behavioural}{12}
\newlabel{fig:behavior_passive_electro-location}{{\M@TitleReference {1.8}{Passive electro-location}}{12}{Behavior of \emph {G. carapo} in the presence of a dipole, with two different geometries. Full lines correspond to pathway followed by the fish during an essay ($N$ is the number of essays) and doted lines are stremlines of the electric field. Taken from~\cite {davis1988behavioural}}{figure.1.8}{}}
\citation{von1993electric}
\citation{gerhard}
\citation{von1993electric}
\citation{gerhard}
\citation{lissmann1958mechanism}
\citation{lannoo1993electric}
\citation{toerring1979motor}
\citation{toerring1984locomotor}
\citation{toerring1984locomotor}
\citation{toerring1984locomotor}
\citation{toerring1984locomotor}
\citation{lissmann1958mechanism}
\@writefile{toc}{\contentsline {subsubsection}{Active electro-location}{13}{figure.1.8}}
\newlabel{eq:active-electroloc-intro}{{\M@TitleReference {1.1.3}{Active electro-location}}{13}{Active electro-location}{figure.1.8}{}}
\citepageref{von1999active}{13}
\citepageref{von1992electro-location}{13}
\citepageref{von1993electric}{13}
\@writefile{lof}{\contentsline {figure}{\numberline {1.9}{\ignorespaces (A) Experimental evidence of distance measurement by a \emph {Gnathonemus petersii}. On the left: experimental setup. The fish is forced to enter one of two gates where objects $S^{+}$ and $S^{-}$ are placed. These objects only differ by their distance $D$ with respect to the gate. If the first one is chosen, the fish is rewarded (by feeding) and if not, the fish is punished (by disturbing it). On the right is plotted the rate of correct choice as a function of $D$. The objects $S^{+}$ and $S^{-}$ are metallic sphere with a volume of $33.5$ cm$^{3}$. (Taken from \cite {von1993electric}). \\ (B) Experimental evidence of shape discrimination by individuals of the same specie. The experimental setup is the same, except that the difference between the objects is now their shape: one is a metallic cube whereas the other is a metallic cylinder. (Taken from \cite {gerhard}). }}{13}{figure.1.9}}
\citepageref{von1993electric}{13}
\citepageref{gerhard}{13}
\newlabel{fig:distance_discrimination}{{\M@TitleReference {1.9}{Active electro-location}}{13}{(A) Experimental evidence of distance measurement by a \emph {Gnathonemus petersii}. On the left: experimental setup. The fish is forced to enter one of two gates where objects $S^{+}$ and $S^{-}$ are placed. These objects only differ by their distance $D$ with respect to the gate. If the first one is chosen, the fish is rewarded (by feeding) and if not, the fish is punished (by disturbing it). On the right is plotted the rate of correct choice as a function of $D$. The objects $S^{+}$ and $S^{-}$ are metallic sphere with a volume of $33.5$ cm$^{3}$. (Taken from \cite {von1993electric}). \protect \\ (B) Experimental evidence of shape discrimination by individuals of the same specie. The experimental setup is the same, except that the difference between the objects is now their shape: one is a metallic cube whereas the other is a metallic cylinder. (Taken from \cite {gerhard})}{figure.1.9}{}}
\citepageref{lissmann1958mechanism}{13}
\citepageref{lannoo1993electric}{13}
\citepageref{toerring1979motor}{13}
\citepageref{moller1995electric}{13}
\citation{lissmann1958mechanism}
\citation{bacher1983}
\citation{rasnow1996simple}
\@writefile{lof}{\contentsline {figure}{\numberline {1.10}{\ignorespaces PMA: behavior exhibited by mormyrids (\emph {Marcusenius cyprinoides }and \emph {Gnathonemus petersii}) when introducing a metallic - or plastic - object (showed by the black dot). 1.\nobreakspace {}chin probing 2a.\nobreakspace {}lateral ``va-et-vient'' 2b.\nobreakspace {}radial ``va-et-vient'' 3.\nobreakspace {}lateral probing 4.\nobreakspace {}tangential probing 5.\nobreakspace {}stationary probing. Taken from \cite {toerring1984locomotor}.}}{14}{figure.1.10}}
\citepageref{toerring1984locomotor}{14}
\newlabel{fig:pma}{{\M@TitleReference {1.10}{Active electro-location}}{14}{PMA: behavior exhibited by mormyrids (\emph {Marcusenius cyprinoides }and \emph {Gnathonemus petersii}) when introducing a metallic - or plastic - object (showed by the black dot). 1.~chin probing 2a.~lateral ``va-et-vient'' 2b.~radial ``va-et-vient'' 3.~lateral probing 4.~tangential probing 5.~stationary probing. Taken from \cite {toerring1984locomotor}}{figure.1.10}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.11}{\ignorespaces EOD rate as a function of the fish's activity. Taken from \cite {toerring1984locomotor}. }}{14}{figure.1.11}}
\citepageref{toerring1984locomotor}{14}
\newlabel{fig:EOD_stabilization}{{\M@TitleReference {1.11}{Active electro-location}}{14}{EOD rate as a function of the fish's activity. Taken from \cite {toerring1984locomotor}}{figure.1.11}{}}
\@writefile{toc}{\contentsline {subsubsection}{Modelling the electric field}{14}{figure.1.11}}
\newlabel{sub:modelisation_champ_bio}{{\M@TitleReference {1.1.3}{Modelling the electric field}}{14}{Modelling the electric field}{figure.1.11}{}}
\citepageref{lissmann1958mechanism}{14}
\citepageref{lissmann1958mechanism}{14}
\citepageref{bacher1983}{14}
\citepageref{rasnow1996simple}{14}
\citation{lissmann1958mechanism}
\citation{lissmann1958mechanism}
\citation{bacher1983}
\citation{assad1998electric}
\citation{assad1999electric}
\citation{heiligenberg1975theoretical}
\citation{hoshimiya1980theapteronotus}
\@writefile{lof}{\contentsline {figure}{\numberline {1.12}{\ignorespaces Model used by Lissmann and Machin. An infinite cylinder of radius $a$ is in the neighborhood of a dipole formed by two sources $+q$ and $-q$ which are separated by a distance $l$. Taken from \cite {lissmann1958mechanism}. }}{15}{figure.1.12}}
\citepageref{lissmann1958mechanism}{15}
\newlabel{fig:modele_lissmann}{{\M@TitleReference {1.12}{Modelling the electric field}}{15}{Model used by Lissmann and Machin. An infinite cylinder of radius $a$ is in the neighborhood of a dipole formed by two sources $+q$ and $-q$ which are separated by a distance $l$. Taken from \cite {lissmann1958mechanism}}{figure.1.12}{}}
\newlabel{eq:dipole_lissmann}{{1.1}{15}{Modelling the electric field}{equation.1.1.1}{}}
\citepageref{bacher1983}{15}
\newlabel{eq:dipole_rasnow}{{1.2}{15}{Modelling the electric field}{equation.1.1.2}{}}
\citepageref{assad1998electric}{15}
\citepageref{assad1999electric}{15}
\citepageref{heiligenberg1975theoretical}{15}
\citepageref{hoshimiya1980theapteronotus}{15}
\citation{hoshimiya1980theapteronotus}
\citation{hoshimiya1980theapteronotus}
\citation{babineau2006modeling}
\citation{maciver2001computational}
\citation{migliaro2005theoretical}
\citation{rasnow1989simulation}
\citation{migliaro2005theoretical}
\citation{nelson-target}
\citation{assad1997phd}
\citation{williams1990hypercube}
\citation{assad1998electric}
\citation{assad1998electric}
\citation{budelli2000electric}
\citation{caputi1998electric}
\citation{chen2005modeling}
\citation{neuro}
\@writefile{lof}{\contentsline {figure}{\numberline {1.13}{\ignorespaces Optimal repartition of the ratio between skin resistivity $\rho _{s}$ and body conductivity $\rho _{f}$ along the head-tail axis. Taken from\nobreakspace {}\cite {hoshimiya1980theapteronotus}. }}{16}{figure.1.13}}
\citepageref{hoshimiya1980theapteronotus}{16}
\newlabel{fig:skin_resistance_hoshimiya}{{\M@TitleReference {1.13}{Modelling the electric field}}{16}{Optimal repartition of the ratio between skin resistivity $\rho _{s}$ and body conductivity $\rho _{f}$ along the head-tail axis. Taken from~\cite {hoshimiya1980theapteronotus}}{figure.1.13}{}}
\citepageref{babineau2006modeling}{16}
\citepageref{maciver2001computational}{16}
\citepageref{migliaro2005theoretical}{16}
\citepageref{rasnow1989simulation}{16}
\citepageref{migliaro2005theoretical}{16}
\citepageref{nelson-target}{16}
\citepageref{assad1997phd}{16}
\citepageref{williams1990hypercube}{16}
\newlabel{eq:CL_assad}{{1.3}{16}{Modelling the electric field}{equation.1.1.3}{}}
\citepageref{budelli2000electric}{16}
\citepageref{caputi1998electric}{16}
\citepageref{chen2005modeling}{16}
\@writefile{toc}{\contentsline {section}{\numberline {1.2}Overview of the Thesis}{16}{section.1.2}}
\newlabel{sec:overview}{{\M@TitleReference {1.2}{Overview of the Thesis}}{16}{Overview of the Thesis}{section.1.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.2.1}Interests and Potential Applications}{16}{subsection.1.2.1}}
\citepageref{neuro}{16}
\citation{boyer}
\@writefile{lof}{\contentsline {figure}{\numberline {1.14}{\ignorespaces BEM simulation of the field with an object, the fish's body being curved. Isopotentials are depicted by lines ($1$ mV between each one) and the normalized arrows indicate streamlines. Taken from \cite {assad1998electric}. }}{17}{figure.1.14}}
\citepageref{assad1998electric}{17}
\newlabel{fig:simulation_bem_assad}{{\M@TitleReference {1.14}{Modelling the electric field}}{17}{BEM simulation of the field with an object, the fish's body being curved. Isopotentials are depicted by lines ($1$ mV between each one) and the normalized arrows indicate streamlines. Taken from \cite {assad1998electric}}{figure.1.14}{}}
\citepageref{boyer}{17}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.2.2}Organization of the Thesis}{17}{subsection.1.2.2}}
\citation{ABG2012modeling}
\citation{assad1997phd}
\citation{assad1990hypercube}
\@writefile{lof}{\addvspace {10pt}}
\@writefile{lot}{\addvspace {10pt}}
\citepageref{ABG2012modeling}{19}
\@writefile{toc}{\contentsline {chapter}{\chapternumberline {2}Mathematical Model}{19}{chapter.2}}
\newlabel{chap:math-model}{{\M@TitleReference {2}{Mathematical Model}}{19}{\chapname }{chapter.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.1}Introduction}{19}{section.2.1}}
\citepageref{assad1997phd}{19}
\citepageref{assad1990hypercube}{19}
\newlabel{eq:assad_BC}{{2.1}{19}{Introduction}{equation.2.1.1}{}}
\citation{vanRienen2001}
\citation{vanRienen2001}
\citation{moller1995electric}
\@writefile{toc}{\contentsline {section}{\numberline {2.2}Physical modeling}{20}{section.2.2}}
\newlabel{sec:forward_problem}{{\M@TitleReference {2.2}{Physical modeling}}{20}{Physical modeling}{section.2.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.1}Electromagnetic formulation}{20}{subsection.2.2.1}}
\newlabel{sub:setup}{{\M@TitleReference {2.2.1}{Electromagnetic formulation}}{20}{Electromagnetic formulation}{subsection.2.2.1}{}}
\citepageref{vanRienen2001}{20}
\newlabel{eq:maxwell}{{2.2}{20}{Electromagnetic formulation}{equation.2.2.2}{}}
\newlabel{eq:div-maxwell4}{{2.3}{20}{Electromagnetic formulation}{equation.2.2.3}{}}
\citepageref{vanRienen2001}{20}
\newlabel{eq:eqs_condition}{{2.4}{20}{Electromagnetic formulation}{equation.2.2.4}{}}
\citepageref{moller1995electric}{20}
\citation{caputi1998electric}
\citation{scheich1973coding}
\citation{assad1998electric}
\citation{stoddard1999electric}
\citation{moller1995electric}
\citation{moller1995electric}
\citation{maciver2001prey}
\citation{bell1976electric}
\citation{scheich1973coding}
\citation{caputi1998electric}
\citation{zakon1986electroreceptive}
\newlabel{eq:EQS-PDE}{{2.5}{21}{Electromagnetic formulation}{equation.2.2.5}{}}
\citepageref{caputi1998electric}{21}
\citepageref{scheich1973coding}{21}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.2}Non-dimensionalization}{21}{subsection.2.2.2}}
\newlabel{nondimension}{{\M@TitleReference {2.2.2}{Non-dimensionalization}}{21}{Non-dimensionalization}{subsection.2.2.2}{}}
\citepageref{assad1998electric}{21}
\citepageref{stoddard1999electric}{21}
\citepageref{moller1995electric}{21}
\citepageref{moller1995electric}{21}
\citepageref{maciver2001prey}{21}
\citepageref{bell1976electric}{21}
\citepageref{scheich1973coding}{21}
\citepageref{caputi1998electric}{21}
\citepageref{zakon1986electroreceptive}{21}
\@writefile{lot}{\contentsline {table}{\numberline {2.1}{\ignorespaces Orders of magnitude of the physical quantities involved. These are only scales and not the exact values measured in the cited references. Here $S$ is Siemens ($1S =1A/1V$).}}{21}{table.2.1}}
\newlabel{tab:Orders-of-magnitude}{{\M@TitleReference {2.1}{Non-dimensionalization}}{21}{Orders of magnitude of the physical quantities involved. These are only scales and not the exact values measured in the cited references. Here $S$ is Siemens ($1S =1A/1V$)}{table.2.1}{}}
\newlabel{eq:nondimensionalized-EQS}{{2.6}{21}{Non-dimensionalization}{equation.2.2.6}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.1}{\ignorespaces Setup of the problem. The conductivities are non-dimensionalized so that $\sigma _{0}=1$. The body $\Omega _{b}$, with boundary $\Gamma _b$ and conductivity $k_b$, is the interior of the ellipse. The skin $\Omega _{s}$, with exterior boundary $\Gamma _s$ and conductivity $k_s$, is represented in blue. The sources $J_s$ are given by the two dots. }}{22}{figure.2.1}}
\newlabel{fig:Setup}{{\M@TitleReference {2.1}{Problem setup}}{22}{Setup of the problem. The conductivities are non-dimensionalized so that $\sigma _{0}=1$. The body $\Omega _{b}$, with boundary $\Gamma _b$ and conductivity $k_b$, is the interior of the ellipse. The skin $\Omega _{s}$, with exterior boundary $\Gamma _s$ and conductivity $k_s$, is represented in blue. The sources $J_s$ are given by the two dots}{figure.2.1}{}}
\newlabel{eq:EQS-final}{{2.7}{22}{Non-dimensionalization}{equation.2.2.7}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.3}Problem setup}{22}{subsection.2.2.3}}
\newlabel{problemsetup}{{\M@TitleReference {2.2.3}{Problem setup}}{22}{Problem setup}{subsection.2.2.3}{}}
\newlabel{sumdirac}{{2.8}{22}{Problem setup}{equation.2.2.8}{}}
\newlabel{neutre}{{2.9}{22}{Problem setup}{equation.2.2.9}{}}
\citation{assad1990hypercube}
\citation{ammari2007polarization}
\newlabel{defk}{{2.10}{23}{Problem setup}{equation.2.2.10}{}}
\citepageref{assad1990hypercube}{23}
\newlabel{defxi}{{2.11}{23}{Problem setup}{equation.2.2.11}{}}
\newlabel{eq:governing_equation}{{2.12}{23}{Problem setup}{equation.2.2.12}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.4}Existence, uniqueness, and representation of the electric potential}{23}{subsection.2.2.4}}
\newlabel{sub:existence-uniqueness}{{\M@TitleReference {2.2.4}{Existence, uniqueness, and representation of the electric potential}}{23}{Existence, uniqueness, and representation of the electric potential}{subsection.2.2.4}{}}
\newlabel{eq:ordering_conductivities}{{2.13}{23}{Existence, uniqueness, and representation of the electric potential}{equation.2.2.13}{}}
\@writefile{toc}{\contentsline {subsubsection}{Uniqueness}{23}{equation.2.2.13}}
\citepageref{ammari2007polarization}{23}
\@writefile{toc}{\contentsline {subsubsection}{Existence and representation}{23}{equation.2.2.13}}
\citation{ammari2007polarization}
\citation{escauriaza1992}
\citation{kellogg2010foundations}
\citation{verchota1984}
\citation{ammarikang2009}
\citation{kang1996}
\newlabel{eq:def_single_layer}{{2.14}{24}{Existence and representation}{equation.2.2.14}{}}
\newlabel{defG}{{2.15}{24}{Existence and representation}{equation.2.2.15}{}}
\citepageref{ammari2007polarization}{24}
\newlabel{eq:jump_formulas}{{2.16}{24}{Existence and representation}{equation.2.2.16}{}}
\newlabel{eq:def_Neumann_Poincare}{{2.17}{24}{Existence and representation}{equation.2.2.17}{}}
\citepageref{escauriaza1992}{24}
\citepageref{kellogg2010foundations}{24}
\citepageref{verchota1984}{24}
\@writefile{loe}{\addvspace {10\p@ }}
\@writefile{loe}{\contentsline {theorem}{\numberline {2.2.1}Theorem}{24}{theorem.2.2.1}}
\newlabel{theorem:invertibility_lambda_K}{{\M@TitleReference {2.2.1}{Existence and representation}}{24}{}{theorem.2.2.1}{}}
\citepageref{ammarikang2009}{24}
\citepageref{kang1996}{24}
\citation{allaire2007numerical}
\citation{ammari2007polarization}
\@writefile{loe}{\contentsline {lemma}{\numberline {2.2.2}Lemma}{25}{lemma.2.2.2}}
\newlabel{lemlatter}{{\M@TitleReference {2.2.2}{Existence and representation}}{25}{}{lemma.2.2.2}{}}
\newlabel{eq:decomposition_formula}{{2.18}{25}{}{equation.2.2.18}{}}
\newlabel{eq:definition_H}{{2.19}{25}{}{equation.2.2.19}{}}
\newlabel{eq:definition_phis_phib}{{2.20}{25}{}{equation.2.2.20}{}}
\newlabel{deflambdas}{{2.21}{25}{}{equation.2.2.21}{}}
\citepageref{allaire2007numerical}{25}
\newlabel{eqs210}{{2.22}{25}{Existence and representation}{equation.2.2.22}{}}
\citepageref{ammari2007polarization}{25}
\@writefile{toc}{\contentsline {section}{\numberline {2.3}Thin resistive skin and highly conductive body asymptotic}{25}{section.2.3}}
\newlabel{sub:BC-derivation}{{\M@TitleReference {2.3}{Thin resistive skin and highly conductive body asymptotic}}{25}{Thin resistive skin and highly conductive body asymptotic}{section.2.3}{}}
\citation{zribilayer}
\citation{khelifizribi2011asymptotic}
\citation{zribilayer}
\newlabel{assumpk}{{2.23}{26}{Thin resistive skin and highly conductive body asymptotic}{equation.2.3.23}{}}
\newlabel{eq:asymptotic_equation}{{2.24}{26}{Thin resistive skin and highly conductive body asymptotic}{equation.2.3.24}{}}
\@writefile{loe}{\contentsline {lemma}{\numberline {2.3.1}Lemma}{26}{lemma.2.3.1}}
\newlabel{lemma:decomposition_lemma_asymptotic}{{\M@TitleReference {2.3.1}{Thin resistive skin and highly conductive body asymptotic}}{26}{}{lemma.2.3.1}{}}
\newlabel{eq:decomposition_formula_asymptotic}{{2.25}{26}{}{equation.2.3.25}{}}
\newlabel{eq:decomposition_formula_asymptotic2}{{2.26}{26}{}{equation.2.3.26}{}}
\@writefile{loe}{\contentsline {theorem}{\numberline {2.3.2}Theorem}{26}{theorem.2.3.2}}
\newlabel{theorem:main-result}{{\M@TitleReference {2.3.2}{Thin resistive skin and highly conductive body asymptotic}}{26}{}{theorem.2.3.2}{}}
\newlabel{eq:estimate-general}{{2.27}{26}{}{equation.2.3.27}{}}
\citepageref{zribilayer}{26}
\citepageref{khelifizribi2011asymptotic}{26}
\citation{ammari2010conductivity}
\citation{zribilayer}
\citation{crisoforis2004}
\citepageref{zribilayer}{27}
\newlabel{eq:asymptotic_equation_zribi}{{2.28}{27}{Thin resistive skin and highly conductive body asymptotic}{equation.2.3.28}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.1}Asymptotic expansions of the operators}{27}{subsection.2.3.1}}
\citepageref{ammari2010conductivity}{27}
\citepageref{zribilayer}{27}
\newlabel{defpsidelta}{{2.29}{27}{Asymptotic expansions of the operators}{equation.2.3.29}{}}
\citepageref{crisoforis2004}{27}
\citation{crisoforis2004}
\citation{ammari2010conductivity}
\citation{zribilayer}
\@writefile{loe}{\contentsline {theorem}{\numberline {2.3.3}Theorem}{28}{theorem.2.3.3}}
\newlabel{theorem:analycity}{{\M@TitleReference {2.3.3}{Asymptotic expansions of the operators}}{28}{}{theorem.2.3.3}{}}
\citepageref{crisoforis2004}{28}
\citepageref{ammari2010conductivity}{28}
\citepageref{zribilayer}{28}
\@writefile{loe}{\contentsline {proposition}{\numberline {2.3.4}Proposition}{28}{proposition.2.3.4}}
\newlabel{pro:DL_operators}{{\M@TitleReference {2.3.4}{Asymptotic expansions of the operators}}{28}{}{proposition.2.3.4}{}}
\newlabel{eq:DL_operators}{{2.30}{28}{}{equation.2.3.30}{}}
\newlabel{eq:definition_K1_R_L}{{2.31}{28}{}{equation.2.3.31}{}}
\newlabel{eq:DL_H}{{2.32}{28}{Asymptotic expansions of the operators}{equation.2.3.32}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.2}Asymptotic expansions on the layers}{28}{subsection.2.3.2}}
\citation{zribilayer}
\citation{crisoforis2004}
\@writefile{loe}{\contentsline {lemma}{\numberline {2.3.5}Lemma}{29}{lemma.2.3.5}}
\newlabel{eq:estimates-layer}{{2.33}{29}{}{equation.2.3.33}{}}
\citepageref{zribilayer}{29}
\citepageref{crisoforis2004}{29}
\newlabel{eq:DL_u}{{2.34}{29}{Asymptotic expansions on the layers}{equation.2.3.34}{}}
\newlabel{eq:modified_system}{{2.35}{29}{Asymptotic expansions on the layers}{equation.2.3.35}{}}
\newlabel{eq:phis+phib_ordre-1}{{2.36}{29}{Asymptotic expansions on the layers}{equation.2.3.36}{}}
\newlabel{eq:phis0+phib0}{{2.37}{30}{Asymptotic expansions on the layers}{equation.2.3.37}{}}
\newlabel{eq:definition_phis_-1}{{2.38}{30}{Asymptotic expansions on the layers}{equation.2.3.38}{}}
\newlabel{eq:u_delta_sigma_ordre1}{{2.39}{30}{Asymptotic expansions on the layers}{equation.2.3.39}{}}
\newlabel{eq:DL_u_final}{{2.40}{30}{Asymptotic expansions on the layers}{equation.2.3.40}{}}
\citation{taylor1}
\newlabel{eq:phis+phib_ordre-1(bis)}{{2.41}{31}{Asymptotic expansions on the layers}{equation.2.3.41}{}}
\newlabel{eq:phis0+phib0(bis)}{{2.42}{31}{Asymptotic expansions on the layers}{equation.2.3.42}{}}
\newlabel{eq:definition_phis_-1(bis)}{{2.43}{31}{Asymptotic expansions on the layers}{equation.2.3.43}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.3}Proof of Theorem\nobreakspace {}\ref {theorem:main-result}}{31}{subsection.2.3.3}}
\citepageref{taylor1}{31}
\newlabel{eq:infinite_condition_error}{{2.44}{31}{Proof of Theorem~\ref {theorem:main-result}}{equation.2.3.44}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.4}Final formulation and notation}{31}{subsection.2.3.4}}
\newlabel{eq:direct_problem-final}{{2.45}{32}{Final formulation and notation}{equation.2.3.45}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.5}The case of non-neutral charges in the body}{32}{subsection.2.3.5}}
\newlabel{eq:governing_equation_rad}{{2.46}{32}{The case of non-neutral charges in the body}{equation.2.3.46}{}}
\newlabel{radiationoinft}{{2.47}{32}{The case of non-neutral charges in the body}{equation.2.3.47}{}}
\citation{moller1995electric}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.6}Multi-frequency measurements}{33}{subsection.2.3.6}}
\newlabel{sub:multifreq}{{\M@TitleReference {2.3.6}{Multi-frequency measurements}}{33}{Multi-frequency measurements}{subsection.2.3.6}{}}
\newlabel{eq:formule-h}{{2.48}{33}{Multi-frequency measurements}{equation.2.3.48}{}}
\citepageref{moller1995electric}{33}
\newlabel{sumu}{{2.49}{33}{Multi-frequency measurements}{equation.2.3.49}{}}
\newlabel{eq:complex_neumann_problem}{{2.50}{33}{Multi-frequency measurements}{equation.2.3.50}{}}
\citation{ammari2004reconstruction}
\citation{cedio1998identification}
\citation{ammari2004reconstruction}
\citation{ammarisima02}
\citation{ammari2007polarization}
\citation{ammari2004reconstruction}
\citation{ammari2007polarization}
\@writefile{toc}{\contentsline {section}{\numberline {2.4}Perturbation Induced by the Presence of a Target}{34}{section.2.4}}
\newlabel{sec:perturbation-target}{{\M@TitleReference {2.4}{Perturbation Induced by the Presence of a Target}}{34}{Perturbation Induced by the Presence of a Target}{section.2.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.1}A Dipolar Expansion in the Presence of a Target}{34}{subsection.2.4.1}}
\newlabel{sub:dipolar-expansion}{{\M@TitleReference {2.4.1}{A Dipolar Expansion in the Presence of a Target}}{34}{A Dipolar Expansion in the Presence of a Target}{subsection.2.4.1}{}}
\citepageref{ammari2004reconstruction}{34}
\citepageref{cedio1998identification}{34}
\citepageref{ammari2004reconstruction}{34}
\citepageref{ammarisima02}{34}
\@writefile{loe}{\contentsline {proposition}{\numberline {2.4.1}Proposition}{34}{proposition.2.4.1}}
\newlabel{propos2}{{\M@TitleReference {2.4.1}{A Dipolar Expansion in the Presence of a Target}}{34}{}{proposition.2.4.1}{}}
\newlabel{eq:SFR-first-approx}{{2.51}{34}{}{equation.2.4.51}{}}
\citepageref{ammari2007polarization}{34}
\newlabel{eq:green-fonction-robin}{{2.52}{34}{}{equation.2.4.52}{}}
\newlabel{scaling}{{2.53}{34}{A Dipolar Expansion in the Presence of a Target}{equation.2.4.53}{}}
\citation{ammari2004reconstruction}
\citation{nedelec1982integral}
\citation{steinbach2008numerical}
\citepageref{ammari2004reconstruction}{35}
\citepageref{ammari2007polarization}{35}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.2}Post-processing}{35}{subsection.2.4.2}}
\newlabel{sub:postproc}{{\M@TitleReference {2.4.2}{Post-processing}}{35}{Post-processing}{subsection.2.4.2}{}}
\citepageref{ammari2004reconstruction}{35}
\@writefile{loe}{\contentsline {lemma}{\numberline {2.4.2}Lemma}{35}{lemma.2.4.2}}
\newlabel{lemgreen}{{\M@TitleReference {2.4.2}{Post-processing}}{35}{}{lemma.2.4.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.5}Numerical simulations}{35}{section.2.5}}
\newlabel{sec:numeric-direct}{{\M@TitleReference {2.5}{Numerical simulations}}{35}{Numerical simulations}{section.2.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.5.1}Direct Solver}{35}{subsection.2.5.1}}
\newlabel{sub:direct-problem-numeric}{{\M@TitleReference {2.5.1}{Direct Solver}}{35}{Direct Solver}{subsection.2.5.1}{}}
\@writefile{toc}{\contentsline {subsubsection}{The case without target}{35}{subsection.2.5.1}}
\newlabel{eq:sytem-U-developped}{{2.54}{35}{The case without target}{equation.2.5.54}{}}
\newlabel{eq:system_potential_U}{{2.55}{35}{The case without target}{equation.2.5.55}{}}
\citation{steinbach2008numerical}
\citation{nedelec1982integral}
\citepageref{nedelec1982integral}{36}
\citepageref{steinbach2008numerical}{36}
\newlabel{eq:hypersingular-integration-by-parts}{{2.56}{36}{The case without target}{equation.2.5.56}{}}
\citepageref{steinbach2008numerical}{36}
\citepageref{nedelec1982integral}{36}
\@writefile{toc}{\contentsline {subsubsection}{The case with a target}{37}{equation.2.5.56}}
\newlabel{eq:system-u-developped}{{2.57}{37}{The case with a target}{equation.2.5.57}{}}
\newlabel{eq:potential-with-target}{{2.58}{37}{The case with a target}{equation.2.5.58}{}}
\newlabel{eq:system-potentials-anomaly}{{2.59}{37}{The case with a target}{equation.2.5.59}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.5.2}Results}{38}{subsection.2.5.2}}
\@writefile{toc}{\contentsline {section}{\numberline {2.6}Conclusion}{38}{section.2.6}}
\newlabel{fig:fish_like_simul_without}{{\M@TitleReference {2.2(a)}{Results}}{39}{Subfigure 2 2.2(a)}{subfigure.2.2.1}{}}
\newlabel{sub@fig:fish_like_simul_without}{{(a)}{39}{Subfigure 2 2.2(a)\relax }{subfigure.2.2.1}{}}
\newlabel{fig:fish_like_simul}{{\M@TitleReference {2.2(b)}{Results}}{39}{Subfigure 2 2.2(b)}{subfigure.2.2.2}{}}
\newlabel{sub@fig:fish_like_simul}{{(b)}{39}{Subfigure 2 2.2(b)\relax }{subfigure.2.2.2}{}}
\newlabel{fig:zoom-target}{{\M@TitleReference {2.2(c)}{Results}}{39}{Subfigure 2 2.2(c)}{subfigure.2.2.3}{}}
\newlabel{sub@fig:zoom-target}{{(c)}{39}{Subfigure 2 2.2(c)\relax }{subfigure.2.2.3}{}}
\newlabel{fig:zoom-target-star}{{\M@TitleReference {2.2(d)}{Results}}{39}{Subfigure 2 2.2(d)}{subfigure.2.2.4}{}}
\newlabel{sub@fig:zoom-target-star}{{(d)}{39}{Subfigure 2 2.2(d)\relax }{subfigure.2.2.4}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.2}{\ignorespaces Isopotentials for the cases described.}}{39}{figure.2.2}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Global overview, without anomaly}}}{39}{figure.2.2}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Global overview, with the anomaly}}}{39}{figure.2.2}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {Zoom on the target}}}{39}{figure.2.2}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {Zoom on a target with different shape}}}{39}{figure.2.2}}
\newlabel{fig:2disks_fwd}{{\M@TitleReference {2.3(a)}{Results}}{40}{Subfigure 2 2.3(a)}{subfigure.2.3.1}{}}
\newlabel{sub@fig:2disks_fwd}{{(a)}{40}{Subfigure 2 2.3(a)\relax }{subfigure.2.3.1}{}}
\newlabel{fig:2disks_fwd_dipol}{{\M@TitleReference {2.3(b)}{Results}}{40}{Subfigure 2 2.3(b)}{subfigure.2.3.2}{}}
\newlabel{sub@fig:2disks_fwd_dipol}{{(b)}{40}{Subfigure 2 2.3(b)\relax }{subfigure.2.3.2}{}}
\newlabel{fig:2disks_fwd_dipolEquiv}{{\M@TitleReference {2.3(c)}{Results}}{40}{Subfigure 2 2.3(c)}{subfigure.2.3.3}{}}
\newlabel{sub@fig:2disks_fwd_dipolEquiv}{{(c)}{40}{Subfigure 2 2.3(c)\relax }{subfigure.2.3.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.3}{\ignorespaces Isopotentials for several objects.}}{40}{figure.2.3}}
\newlabel{fig:2disks}{{\M@TitleReference {2.3}{Results}}{40}{Isopotentials for several objects}{figure.2.3}{}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Electric potentiel $u$}}}{40}{figure.2.3}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Difference $u-U$}}}{40}{figure.2.3}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {Equivalent dipoles}}}{40}{figure.2.3}}
\citation{ABG2012modeling}
\citation{berettafrancini2011stability}
\citation{ammari2004reconstruction}
\citation{ammari2007polarization}
\citation{AGKPS2011cracks}
\citation{AIL2005music}
\citation{AKKLV2008music}
\citation{bruhl2003direct}
\citation{chambersberryman2006target}
\citation{cheney2001linearsampling}
\citation{kirsch1999characterization}
\citation{ammari2007polarization}
\@writefile{lof}{\addvspace {10pt}}
\@writefile{lot}{\addvspace {10pt}}
\citepageref{ABG2012modeling}{41}
\@writefile{toc}{\contentsline {chapter}{\chapternumberline {3}A Space-Frequency Localization Algorithm}{41}{chapter.3}}
\newlabel{chap:localization}{{\M@TitleReference {3}{A Space-Frequency Localization Algorithm}}{41}{\chapname }{chapter.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.1}Introduction}{41}{section.3.1}}
\newlabel{sec:intro-localization}{{\M@TitleReference {3.1}{Introduction}}{41}{Introduction}{section.3.1}{}}
\citepageref{berettafrancini2011stability}{41}
\citepageref{ammari2004reconstruction}{41}
\citepageref{ammari2007polarization}{41}
\citepageref{AGKPS2011cracks}{41}
\citepageref{AIL2005music}{41}
\citepageref{AKKLV2008music}{41}
\citepageref{bruhl2003direct}{41}
\citepageref{chambersberryman2006target}{41}
\citepageref{cheney2001linearsampling}{41}
\citepageref{kirsch1999characterization}{41}
\citation{scholz2002towards}
\citation{schmidt1986multiple}
\citation{devaney2004super}
\citation{ammari2007identification}
\citation{AKKLV2008music}
\citation{bruhl2003direct}
\citation{moller1995electric}
\citation{ammari2007polarization}
\citation{milton2002theory}
\citepageref{ammari2007polarization}{42}
\@writefile{toc}{\contentsline {section}{\numberline {3.2}Detection algorithm for multi-frequency measurements}{42}{section.3.2}}
\newlabel{sec:detection_algo}{{\M@TitleReference {3.2}{Detection algorithm for multi-frequency measurements}}{42}{Detection algorithm for multi-frequency measurements}{section.3.2}{}}
\citepageref{scholz2002towards}{42}
\citepageref{schmidt1986multiple}{42}
\citepageref{devaney2004super}{42}
\citepageref{ammari2007identification}{42}
\citepageref{AKKLV2008music}{42}
\citepageref{bruhl2003direct}{42}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.1}Response matrix}{42}{subsection.3.2.1}}
\newlabel{sub:response-matrix}{{\M@TitleReference {3.2.1}{Response matrix}}{42}{Response matrix}{subsection.3.2.1}{}}
\citepageref{moller1995electric}{42}
\newlabel{defdata}{{3.1}{42}{Response matrix}{equation.3.2.1}{}}
\newlabel{eq:SFR-final}{{3.2}{42}{Response matrix}{equation.3.2.2}{}}
\citepageref{ammari2007polarization}{42}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.2}A location search algorithm}{42}{subsection.3.2.2}}
\newlabel{sub:algorithm}{{\M@TitleReference {3.2.2}{A location search algorithm}}{42}{A location search algorithm}{subsection.3.2.2}{}}
\citation{ammari2007polarization}
\citepageref{milton2002theory}{43}
\citepageref{ammari2007polarization}{43}
\@writefile{loe}{\addvspace {10\p@ }}
\@writefile{loe}{\contentsline {lemma}{\numberline {3.2.1}Lemma}{43}{lemma.3.2.1}}
\newlabel{lemma:one-to-one}{{\M@TitleReference {3.2.1}{A location search algorithm}}{43}{}{lemma.3.2.1}{}}
\@writefile{loe}{\contentsline {proposition}{\numberline {3.2.2}Proposition\thmtformatoptarg {Space-Frequency MUSIC}}{43}{proposition.3.2.2}}
\newlabel{proposition:SF-MUSIC}{{\M@TitleReference {3.2.2}{A location search algorithm}}{43}{Space-Frequency MUSIC}{proposition.3.2.2}{}}
\newlabel{eq:illumination-vector-disk}{{3.3}{43}{Space-Frequency MUSIC}{equation.3.2.3}{}}
\newlabel{eq:imaging_functional}{{3.4}{43}{Space-Frequency MUSIC}{equation.3.2.4}{}}
\citation{kato1976perturbation}
\citepageref{kato1976perturbation}{44}
\newlabel{musicf}{{3.5}{44}{A location search algorithm}{equation.3.2.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.3}Numerical simulations}{44}{section.3.3}}
\newlabel{sec:numeric}{{\M@TitleReference {3.3}{Numerical simulations}}{44}{Numerical simulations}{section.3.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.1}Target location}{44}{subsection.3.3.1}}
\citation{ammari2004reconstruction}
\citation{mosher1999source}
\@writefile{lof}{\contentsline {figure}{\numberline {3.1}{\ignorespaces Detection (left) of the target with the SF-MUSIC algorithm, for different target shapes (right). Here, the number of used frequencies is $10$, equidistributed from $\omega _0$ to $10 \omega _0$, and there are $64$ equidistant sensors on the fish.}}{45}{figure.3.1}}
\newlabel{fig:SF-MUSIC}{{\M@TitleReference {3.1}{Target location}}{45}{Detection (left) of the target with the SF-MUSIC algorithm, for different target shapes (right). Here, the number of used frequencies is $10$, equidistributed from $\omega _0$ to $10 \omega _0$, and there are $64$ equidistant sensors on the fish}{figure.3.1}{}}
\citepageref{ammari2004reconstruction}{46}
\citepageref{mosher1999source}{46}
\newlabel{fig:2disks_SF_MUSIC}{{\M@TitleReference {3.2(a)}{Target location}}{46}{Subfigure 3 3.2(a)}{subfigure.3.2.1}{}}
\newlabel{sub@fig:2disks_SF_MUSIC}{{(a)}{46}{Subfigure 3 3.2(a)\relax }{subfigure.3.2.1}{}}
\newlabel{fig:2disks_SF_MUSIC_Close}{{\M@TitleReference {3.2(b)}{Target location}}{46}{Subfigure 3 3.2(b)}{subfigure.3.2.2}{}}
\newlabel{sub@fig:2disks_SF_MUSIC_Close}{{(b)}{46}{Subfigure 3 3.2(b)\relax }{subfigure.3.2.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces Detection of two disks, the first one being the same as in\nobreakspace {}\ref {fig:SF-MUSIC}(a), with conductivity $\sigma = 5$ and permittivity $\varepsilon = 2$. The second one has the same radius, and is translated by the vector $t$ indicated below each figure. It has conductivity $\sigma = 3$ and permittivity $\varepsilon = 1$. Their centers are indicated by a square }}{46}{figure.3.2}}
\newlabel{fig:2disks-SF-MUSIC}{{\M@TitleReference {3.2}{Target location}}{46}{Detection of two disks, the first one being the same as in~\ref {fig:SF-MUSIC}(a), with conductivity $\sigma = 5$ and permittivity $\varepsilon = 2$. The second one has the same radius, and is translated by the vector $t$ indicated below each figure. It has conductivity $\sigma = 3$ and permittivity $\varepsilon = 1$. Their centers are indicated by a square}{figure.3.2}{}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$t = (-0.5,0)$}}}{46}{figure.3.2}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$t = (-0.25,0)$}}}{46}{figure.3.2}}
\newlabel{fig:no-noise}{{\M@TitleReference {3.3(a)}{Target location}}{46}{Subfigure 3 3.3(a)}{subfigure.3.3.1}{}}
\newlabel{sub@fig:no-noise}{{(a)}{46}{Subfigure 3 3.3(a)\relax }{subfigure.3.3.1}{}}
\newlabel{fig:2disks_1freq}{{\M@TitleReference {3.3(b)}{Target location}}{46}{Subfigure 3 3.3(b)}{subfigure.3.3.2}{}}
\newlabel{sub@fig:2disks_1freq}{{(b)}{46}{Subfigure 3 3.3(b)\relax }{subfigure.3.3.2}{}}
\newlabel{fig:2disks_2freq}{{\M@TitleReference {3.3(c)}{Target location}}{46}{Subfigure 3 3.3(c)}{subfigure.3.3.3}{}}
\newlabel{sub@fig:2disks_2freq}{{(c)}{46}{Subfigure 3 3.3(c)\relax }{subfigure.3.3.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.3}{\ignorespaces Target detection in the absence of noise. (a)The target is the disk in Figure\nobreakspace {}\ref {fig:SF-MUSIC}(a), with only one frequency $\omega _0=1$. (b) The two disks of Figure\nobreakspace {}\ref {fig:2disks_SF_MUSIC}, with only one frequency $\omega _0=1$. (c) The two disks of Figure\nobreakspace {}\ref {fig:2disks_SF_MUSIC}, with two frequencies $\omega _0=1$ and $\omega _0=2$. In all these experiments, the number of sensors stay the same.}}{46}{figure.3.3}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{46}{figure.3.3}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{46}{figure.3.3}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{46}{figure.3.3}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.4}{\ignorespaces Target detection for the two disks of Figure\nobreakspace {}\ref {fig:2disks_SF_MUSIC} with $1\%$ noise.}}{47}{figure.3.4}}
\newlabel{fig:2disks_SF_MUSIC_1noise}{{\M@TitleReference {3.4}{Stability estimates with respect to measurement noise}}{47}{Target detection for the two disks of Figure~\ref {fig:2disks_SF_MUSIC} with $1\%$ noise}{figure.3.4}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.5}{\ignorespaces Influence of the number of used frequencies on the stability. Here, the same target as in Figure \ref {fig:no-noise} is imaged with $10\%$ of noise and only one frequency \nobreakspace {}$\omega _0=1$\nobreakspace {} (left), \nobreakspace {}$100$\nobreakspace {}frequencies equidistributed from $\omega _0$ to $100 \omega _0$ (right), with $64$ sensors. The disks plot the exact position, and the squares plot the location of the maximum of the imaging functional.}}{47}{figure.3.5}}
\newlabel{fig:noise-freq_qualitative}{{\M@TitleReference {3.5}{Stability estimates with respect to measurement noise}}{47}{Influence of the number of used frequencies on the stability. Here, the same target as in Figure \ref {fig:no-noise} is imaged with $10\%$ of noise and only one frequency ~$\omega _0=1$~ (left), ~$100$~frequencies equidistributed from $\omega _0$ to $100 \omega _0$ (right), with $64$ sensors. The disks plot the exact position, and the squares plot the location of the maximum of the imaging functional}{figure.3.5}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.6}{\ignorespaces The same target as in Figure \ref {fig:SF-MUSIC}(c) is imaged with only one frequency \nobreakspace {}$\omega _0=1$\nobreakspace {} and without noise (left), with $10\%$ of noise (right). The disks plot the exact position, and the squares plot the location of the maximum of the imaging functional. }}{48}{figure.3.6}}
\newlabel{generalshape}{{\M@TitleReference {3.6}{Stability estimates with respect to measurement noise}}{48}{The same target as in Figure \ref {fig:SF-MUSIC}(c) is imaged with only one frequency ~$\omega _0=1$~ and without noise (left), with $10\%$ of noise (right). The disks plot the exact position, and the squares plot the location of the maximum of the imaging functional}{figure.3.6}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.7}{\ignorespaces Influence of the number of frequencies on the root mean square location error for $250$ realizations. Here, the horizontal axis is for the measurement noise level in percentage and the vertical axis is for the root mean square location error.}}{48}{figure.3.7}}
\newlabel{fig:stats-freq-noise}{{\M@TitleReference {3.7}{Stability estimates with respect to measurement noise}}{48}{Influence of the number of frequencies on the root mean square location error for $250$ realizations. Here, the horizontal axis is for the measurement noise level in percentage and the vertical axis is for the root mean square location error}{figure.3.7}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.8}{\ignorespaces Influence of the values of used frequencies on the stability. Imaging using the data obtained by $100$ trials with $10\%$ of noise, $64$ sensors, and frequency \nobreakspace {}$\omega _0=1$: Left: the same target as in Figure \ref {fig:SF-MUSIC}(a); Right: the same target as in Figure \ref {fig:SF-MUSIC}(c). The disks plot the exact position, and the squares plot the location of the maximum of the imaging functional.}}{49}{figure.3.8}}
\newlabel{fig:noise-freq_100}{{\M@TitleReference {3.8}{Stability estimates with respect to measurement noise}}{49}{Influence of the values of used frequencies on the stability. Imaging using the data obtained by $100$ trials with $10\%$ of noise, $64$ sensors, and frequency ~$\omega _0=1$: Left: the same target as in Figure \ref {fig:SF-MUSIC}(a); Right: the same target as in Figure \ref {fig:SF-MUSIC}(c). The disks plot the exact position, and the squares plot the location of the maximum of the imaging functional}{figure.3.8}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.9}{\ignorespaces Influence of the number of sensors on the root mean square location error for $250$ trials. Here, the horizontal axis is for the noise level in percentage and the vertical axis is for the root mean square location error.}}{49}{figure.3.9}}
\newlabel{fig:stats-sensors-noise}{{\M@TitleReference {3.9}{Stability estimates with respect to measurement noise}}{49}{Influence of the number of sensors on the root mean square location error for $250$ trials. Here, the horizontal axis is for the noise level in percentage and the vertical axis is for the root mean square location error}{figure.3.9}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.10}{\ignorespaces Influence of the distance to the fish on the mean square location error for $250$ trials. Here, the horizontal axis is for the distance to the fish and the vertical axis is for the root mean square location error.}}{50}{figure.3.10}}
\newlabel{fig:distance-noise}{{\M@TitleReference {3.10}{Stability estimates with respect to measurement noise}}{50}{Influence of the distance to the fish on the mean square location error for $250$ trials. Here, the horizontal axis is for the distance to the fish and the vertical axis is for the root mean square location error}{figure.3.10}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.2}Target characterization}{50}{subsection.3.3.2}}
\newlabel{subsectcharcat}{{\M@TitleReference {3.3.2}{Target characterization}}{50}{Target characterization}{subsection.3.3.2}{}}
\newlabel{minimiz1}{{3.6}{50}{Target characterization}{equation.3.3.6}{}}
\@writefile{lot}{\contentsline {table}{\numberline {3.1}{\ignorespaces Target characterization by minimizing the quadratic misfit functional (\ref {minimiz1}) using data collected for $100$ frequencies equidistributed from $\omega _0$ to $100 \omega _0$. Here, ${\textrm {true}}$: true values, ${\textrm {est}}$: estimated values. The initial values are $\delta ^{{\textrm {init}}} = 0.01, \sigma ^{\textrm {init}} = 1, \varepsilon ^{{\textrm {init}}} =1.$ }}{50}{table.3.1}}
\newlabel{table2}{{\M@TitleReference {3.1}{Target characterization}}{50}{Target characterization by minimizing the quadratic misfit functional (\ref {minimiz1}) using data collected for $100$ frequencies equidistributed from $\omega _0$ to $100 \omega _0$. Here, ${\textrm {true}}$: true values, ${\textrm {est}}$: estimated values. The initial values are $\delta ^{{\textrm {init}}} = 0.01, \sigma ^{\textrm {init}} = 1, \varepsilon ^{{\textrm {init}}} =1.$}{table.3.1}{}}
\newlabel{eq:estimation_parameters}{{3.7}{51}{Target characterization}{equation.3.3.7}{}}
\citation{ammari2007polarization}
\@writefile{lot}{\contentsline {table}{\numberline {3.2}{\ignorespaces Estimations of the semi-axis lengths of ellipse-shaped targets using (\ref {eq:estimation_parameters}).}}{52}{table.3.2}}
\newlabel{tab:characteriaztion_geometric_parameters}{{\M@TitleReference {3.2}{Target characterization}}{52}{Estimations of the semi-axis lengths of ellipse-shaped targets using (\ref {eq:estimation_parameters})}{table.3.2}{}}
\newlabel{eq:phys_param_est}{{3.8}{52}{Target characterization}{equation.3.3.8}{}}
\@writefile{lot}{\contentsline {table}{\numberline {3.3}{\ignorespaces Estimations of the material parameters based on formula (\ref {eq:phys_param_est}). The disk has radius $0,05$ and the ellipse has semi-axis lengths $0,025$ and $0,1$ and orientation angle $\pi /3$. Both targets are placed at $z_{1}=1.5(\qopname \relax o{cos}(\pi /3),\qopname \relax o{sin}(\pi /3))$ and then at $z_{2}=(1.5\qopname \relax o{cos}(\pi /3)-1,1.5\qopname \relax o{sin}(\pi /3))$, and are illuminated with $10$ frequencies equidistributed from $\omega _0$ to $10 \omega _0$ (with $\omega _0=1$).}}{52}{table.3.3}}
\newlabel{tab:param_phys_est}{{\M@TitleReference {3.3}{Target characterization}}{52}{Estimations of the material parameters based on formula (\ref {eq:phys_param_est}). The disk has radius $0,05$ and the ellipse has semi-axis lengths $0,025$ and $0,1$ and orientation angle $\pi /3$. Both targets are placed at $z_{1}=1.5(\cos (\pi /3),\sin (\pi /3))$ and then at $z_{2}=(1.5\cos (\pi /3)-1,1.5\sin (\pi /3))$, and are illuminated with $10$ frequencies equidistributed from $\omega _0$ to $10 \omega _0$ (with $\omega _0=1$)}{table.3.3}{}}
\citation{kang2013IHP}
\citation{ammari2004reconstruction}
\citation{ammari2004reconstruction}
\@writefile{lof}{\contentsline {figure}{\numberline {3.11}{\ignorespaces Conductivity, $k^{\textrm {est}}$, and capacitance, $f \omega _0 \varepsilon ^{\textrm {est}}$, of the reconstructed conductivity (respectively represented by squares and circles) for a disk-shaped target as functions of $f$ (\emph { i.e.}, the frequency). Here, $\omega _0=1$ and the target is with (true) material parameters $k=2$ and $\varepsilon =1$, radius $0,05$, and placed at $z_{1}=1.5(\qopname \relax o{cos}(\pi /3),\qopname \relax o{sin}(\pi /3))$ and then at $z_{2}=(1.5\qopname \relax o{cos}(\pi /3)-1,1.5\qopname \relax o{sin}(\pi /3))$. The solid lines are the theoretical values.}}{53}{figure.3.11}}
\newlabel{fig:param_phys_est}{{\M@TitleReference {3.11}{Target characterization}}{53}{Conductivity, $k^{\textrm {est}}$, and capacitance, $f \omega _0 \varepsilon ^{\textrm {est}}$, of the reconstructed conductivity (respectively represented by squares and circles) for a disk-shaped target as functions of $f$ (\emph { i.e.}, the frequency). Here, $\omega _0=1$ and the target is with (true) material parameters $k=2$ and $\varepsilon =1$, radius $0,05$, and placed at $z_{1}=1.5(\cos (\pi /3),\sin (\pi /3))$ and then at $z_{2}=(1.5\cos (\pi /3)-1,1.5\sin (\pi /3))$. The solid lines are the theoretical values}{figure.3.11}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.4}Concluding remarks}{53}{section.3.4}}
\citepageref{ammari2007polarization}{53}
\citepageref{kang2013IHP}{53}
\citepageref{ammari2004reconstruction}{53}
\citepageref{ammari2004reconstruction}{53}
\citation{ABGJKW2012dico}
\citation{ammari2012tracking}
\citation{ammarisima02}
\citation{ammari2004reconstruction}
\citation{AK_MMS_03}
\citation{dassios}
\citation{ammari2004reconstruction}
\citation{milton2002theory}
\citation{AKT_AA_05}
\citation{AKLL11}
\citation{PS51}
\citation{FV_ARMA_89}
\citation{cedio1998identification}
\citation{ammarisima02}
\@writefile{lof}{\addvspace {10pt}}
\@writefile{lot}{\addvspace {10pt}}
\citepageref{ABGJKW2012dico}{55}
\citepageref{ammari2012tracking}{55}
\@writefile{toc}{\contentsline {chapter}{\chapternumberline {4}Extraction of Generalized Polarization Tensors}{55}{chapter.4}}
\newlabel{chap:GPT-extraction}{{\M@TitleReference {4}{Extraction of Generalized Polarization Tensors}}{55}{Extraction of Generalized Polarization Tensors}{chapter.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.1}Introduction}{55}{section.4.1}}
\newlabel{sec:introduction}{{\M@TitleReference {4.1}{Introduction}}{55}{Introduction}{section.4.1}{}}
\citepageref{ammarisima02}{55}
\citepageref{ammari2004reconstruction}{55}
\citepageref{AK_MMS_03}{55}
\citepageref{dassios}{55}
\citepageref{ammari2004reconstruction}{55}
\citepageref{milton2002theory}{55}
\citepageref{AKT_AA_05}{55}
\citepageref{AKLL11}{55}
\citepageref{PS51}{55}
\citepageref{FV_ARMA_89}{55}
\citepageref{cedio1998identification}{55}
\citepageref{ammarisima02}{55}
\citation{AKLL11}
\citation{ammari2007polarization}
\citation{ammari2004reconstruction}
\citation{AGJ}
\citepageref{AKLL11}{56}
\@writefile{toc}{\contentsline {section}{\numberline {4.2}Structure of the Multistatic Response Matrix}{56}{section.4.2}}
\newlabel{sec:struct-mult-resp}{{\M@TitleReference {4.2}{Structure of the Multistatic Response Matrix}}{56}{Structure of the Multistatic Response Matrix}{section.4.2}{}}
\citepageref{ammari2007polarization}{56}
\citepageref{ammari2004reconstruction}{56}
\citepageref{AGJ}{56}
\newlabel{eq:transm}{{4.2}{56}{Structure of the Multistatic Response Matrix}{equation.4.2.2}{}}
\citation{ammari2004reconstruction}
\@writefile{lof}{\contentsline {figure}{\numberline {4.1}{\ignorespaces An example of configuration for MSR data simulation. Here, the unknown shape is a rotated letter ``T''. $N=51$ sources/receivers marked by ``x'' are equally placed on a circle of radius $R=20$ centered at $z_0=[-73, 73]$ which is marked by ``*''.}}{57}{figure.4.1}}
\newlabel{fig:example-configuration-MSR-EIT}{{\M@TitleReference {4.1}{An example of configuration for MSR data simulation. Here, the unknown shape is a rotated letter ``T''. $N=51$ sources/receivers marked by ``x'' are equally placed on a circle of radius $R=20$ centered at $z_0=[-73, 73]$ which is marked by ``*''.}}{57}{An example of configuration for MSR data simulation. Here, the unknown shape is a rotated letter ``T''. $N=51$ sources/receivers marked by ``x'' are equally placed on a circle of radius $R=20$ centered at $z_0=[-73, 73]$ which is marked by ``*''}{figure.4.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.1}The asymptotic expansion of the perturbed potential field}{57}{subsection.4.2.1}}
\newlabel{sub:asymptotic-expansion-perturbed-potential-field}{{\M@TitleReference {4.2.1}{The asymptotic expansion of the perturbed potential field}}{57}{The asymptotic expansion of the perturbed potential field}{subsection.4.2.1}{}}
\citepageref{ammari2004reconstruction}{57}
\newlabel{eq:Kdef}{{4.4}{57}{The asymptotic expansion of the perturbed potential field}{equation.4.2.4}{}}
\citation{ammari2004reconstruction}
\citation{ammari2007polarization}
\newlabel{eq:Sjump}{{4.5}{58}{The asymptotic expansion of the perturbed potential field}{equation.4.2.5}{}}
\newlabel{eq:dfield}{{4.7}{58}{The asymptotic expansion of the perturbed potential field}{equation.4.2.7}{}}
\citepageref{ammari2004reconstruction}{58}
\citepageref{ammari2007polarization}{58}
\newlabel{eq:Mdef}{{4.9}{58}{The asymptotic expansion of the perturbed potential field}{equation.4.2.9}{}}
\newlabel{eq:Vrsexp}{{4.11}{58}{The asymptotic expansion of the perturbed potential field}{equation.4.2.11}{}}
\citation{AKLL11}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.2}Expansion for MSR using contracted GPT}{59}{subsection.4.2.2}}
\citepageref{AKLL11}{59}
\newlabel{eq:Pdef}{{4.12}{59}{Expansion for MSR using contracted GPT}{equation.4.2.12}{}}
\newlabel{eq:abcomp}{{4.13}{59}{Expansion for MSR using contracted GPT}{equation.4.2.13}{}}
\newlabel{defc1}{{4.14}{59}{Expansion for MSR using contracted GPT}{equation.4.2.14}{}}
\newlabel{defc2}{{4.17}{59}{Expansion for MSR using contracted GPT}{equation.4.2.17}{}}
\newlabel{eq:DGamma}{{4.18}{59}{Expansion for MSR using contracted GPT}{equation.4.2.18}{}}
\newlabel{eq:Vrsform}{{4.19}{59}{Expansion for MSR using contracted GPT}{equation.4.2.19}{}}
\citation{ammari2007polarization}
\citation{LH95}
\newlabel{eq:Mcgpt}{{4.20}{60}{Expansion for MSR using contracted GPT}{equation.4.2.20}{}}
\newlabel{eq:Vexp}{{4.21}{60}{Expansion for MSR using contracted GPT}{equation.4.2.21}{}}
\citepageref{ammari2007polarization}{60}
\@writefile{toc}{\contentsline {section}{\numberline {4.3}Reconstruction of CGPTs and Stability Analysis}{60}{section.4.3}}
\newlabel{sec:reconstr-cgpt-stab}{{\M@TitleReference {4.3}{Reconstruction of CGPTs and Stability Analysis}}{60}{Reconstruction of CGPTs and Stability Analysis}{section.4.3}{}}
\newlabel{eq:linsys}{{4.22}{60}{Reconstruction of CGPTs and Stability Analysis}{equation.4.3.22}{}}
\newlabel{eq:lsqr-GPT-reconstruction}{{4.23}{60}{Reconstruction of CGPTs and Stability Analysis}{equation.4.3.23}{}}
\citepageref{LH95}{60}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.1}Analytical formula in the concentric setting}{60}{subsection.4.3.1}}
\citation{ABGJKW2012dico}
\newlabel{defDC}{{4.24}{61}{Analytical formula in the concentric setting}{equation.4.3.24}{}}
\@writefile{loe}{\addvspace {10\p@ }}
\@writefile{loe}{\contentsline {proposition}{\numberline {4.3.1}Proposition}{61}{proposition.4.3.1}}
\newlabel{eq:ortho}{{4.25}{61}{}{equation.4.3.25}{}}
\@writefile{loe}{\contentsline {lemma}{\numberline {4.3.2}Lemma}{61}{lemma.4.3.2}}
\newlabel{lemma:inv}{{\M@TitleReference {4.3.2}{Analytical formula in the concentric setting}}{61}{}{lemma.4.3.2}{}}
\newlabel{eq:Mest}{{4.26}{61}{}{equation.4.3.26}{}}
\newlabel{eq:pseudo_L_full_aov}{{4.27}{61}{Analytical formula in the concentric setting}{equation.4.3.27}{}}
\@writefile{loe}{\contentsline {proposition}{\numberline {4.3.3}Proposition}{61}{proposition.4.3.3}}
\newlabel{proposition:full-angle-view-svd}{{\M@TitleReference {4.3.3}{Analytical formula in the concentric setting}}{61}{}{proposition.4.3.3}{}}
\newlabel{singv}{{4.28}{61}{}{equation.4.3.28}{}}
\newlabel{eq:L_innerprod}{{4.29}{61}{Analytical formula in the concentric setting}{equation.4.3.29}{}}
\citation{ABGJKW2012dico}
\citepageref{ABGJKW2012dico}{62}
\citepageref{ABGJKW2012dico}{62}
\@writefile{loe}{\contentsline {proposition}{\numberline {4.3.4}Proposition}{62}{proposition.4.3.4}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.2}Measurement noise and stability analysis}{62}{subsection.4.3.2}}
\newlabel{sub:electronic-noise}{{\M@TitleReference {4.3.2}{Measurement noise and stability analysis}}{62}{Measurement noise and stability analysis}{subsection.4.3.2}{}}
\newlabel{eq:Vmodel}{{4.30}{62}{Measurement noise and stability analysis}{equation.4.3.30}{}}
\newlabel{eq:nregime}{{4.31}{63}{Measurement noise and stability analysis}{equation.4.3.31}{}}
\newlabel{eq:msdef}{{4.32}{63}{Measurement noise and stability analysis}{equation.4.3.32}{}}
\@writefile{loe}{\contentsline {theorem}{\numberline {4.3.5}Theorem}{63}{theorem.4.3.5}}
\newlabel{eq:rerrM}{{4.33}{63}{}{equation.4.3.33}{}}
\newlabel{eq:snrest}{{4.34}{63}{}{equation.4.3.34}{}}
\@writefile{loe}{\contentsline {remark}{\numberline {4.3.6}Remark}{64}{remark.4.3.6}}
\newlabel{rem:whyN}{{\M@TitleReference {4.3.6}{Measurement noise and stability analysis}}{64}{}{remark.4.3.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.3}CGPT reconstruction in the limited-view setting}{64}{subsection.4.3.3}}
\newlabel{sec:limited_angle_view}{{\M@TitleReference {4.3.3}{CGPT reconstruction in the limited-view setting}}{64}{CGPT reconstruction in the limited-view setting}{subsection.4.3.3}{}}
\@writefile{loe}{\contentsline {proposition}{\numberline {4.3.7}Proposition}{64}{proposition.4.3.7}}
\newlabel{eq:cond_L_lim_aov}{{4.35}{64}{}{equation.4.3.35}{}}
\citation{zygmund_trigonometric_1988}
\citation{zygmund_trigonometric_1988}
\@writefile{toc}{\contentsline {subsubsection}{Injectivity of $\mathbf {C}$}{65}{equation.4.3.35}}
\newlabel{sec:injectivity-c}{{\M@TitleReference {4.3.3}{Injectivity of $\mathbf {C}$}}{65}{Injectivity of $\bC $}{equation.4.3.35}{}}
\newlabel{eq:fourier_serie_complex}{{4.36}{65}{Injectivity of $\bC $}{equation.4.3.36}{}}
\newlabel{eq:fourier_serie}{{4.37}{65}{Injectivity of $\bC $}{equation.4.3.37}{}}
\@writefile{loe}{\contentsline {proposition}{\numberline {4.3.8}Proposition}{65}{proposition.4.3.8}}
\newlabel{eq:e_m_f}{{4.38}{65}{Injectivity of $\bC $}{equation.4.3.38}{}}
\@writefile{toc}{\contentsline {subsubsection}{Explicit left inverse of $\mathbf {C}$}{65}{equation.4.3.38}}
\newlabel{sec:explicit_linv_C}{{\M@TitleReference {4.3.3}{Explicit left inverse of $\mathbf {C}$}}{65}{Explicit left inverse of $\bC $}{equation.4.3.38}{}}
\newlabel{eq:Dirichlet_kernel}{{4.39}{65}{Explicit left inverse of $\bC $}{equation.4.3.39}{}}
\citepageref{zygmund_trigonometric_1988}{65}
\@writefile{loe}{\contentsline {lemma}{\numberline {4.3.9}Lemma}{65}{lemma.4.3.9}}
\newlabel{lemma:VK_innerprod_sum}{{\M@TitleReference {4.3.9}{Explicit left inverse of $\mathbf {C}$}}{65}{}{lemma.4.3.9}{}}
\newlabel{eq:VK_innerprod_sum}{{4.40}{65}{}{equation.4.3.40}{}}
\newlabel{eq:VK_dirichlet_coeff}{{4.41}{65}{}{equation.4.3.41}{}}
\citation{margolis_nonuniform_2008}
\@writefile{loe}{\contentsline {lemma}{\numberline {4.3.10}Lemma}{66}{lemma.4.3.10}}
\newlabel{lemma:VK_interpolation}{{\M@TitleReference {4.3.10}{Explicit left inverse of $\mathbf {C}$}}{66}{}{lemma.4.3.10}{}}
\newlabel{eq:f_interpl}{{4.42}{66}{}{equation.4.3.42}{}}
\citepageref{zygmund_trigonometric_1988}{66}
\newlabel{eq:hs_odd}{{4.43}{66}{Explicit left inverse of $\bC $}{equation.4.3.43}{}}
\citepageref{margolis_nonuniform_2008}{66}
\newlabel{eq:hs_even}{{4.44}{66}{Explicit left inverse of $\bC $}{equation.4.3.44}{}}
\@writefile{loe}{\contentsline {proposition}{\numberline {4.3.11}Proposition}{66}{proposition.4.3.11}}
\newlabel{proposition:expl-left-inverse}{{\M@TitleReference {4.3.11}{Explicit left inverse of $\mathbf {C}$}}{66}{}{proposition.4.3.11}{}}
\newlabel{eq:leftinv_C}{{4.45}{66}{}{equation.4.3.45}{}}
\newlabel{eq:leftinv_C_sum}{{4.46}{66}{}{equation.4.3.46}{}}
\newlabel{eq:CCv}{{4.47}{66}{Explicit left inverse of $\bC $}{equation.4.3.47}{}}
\@writefile{loe}{\contentsline {rmk}{\numberline {4.3.1}Remark}{66}{rmk.4.3.1}}
\newlabel{eq:hs_VK_proj}{{4.49}{66}{}{equation.4.3.49}{}}
\newlabel{eq:sampling_kernel_cond}{{4.50}{66}{}{equation.4.3.50}{}}
\citation{AGJ}
\citation{ammari2007polarization}
\@writefile{loe}{\contentsline {remark}{\numberline {4.3.12}Remark}{67}{remark.4.3.12}}
\@writefile{toc}{\contentsline {subsubsection}{Ill-posedness in the limited-view setting}{67}{remark.4.3.12}}
\newlabel{sec:recon_cgpt_num}{{\M@TitleReference {4.3.3}{Ill-posedness in the limited-view setting}}{67}{Ill-posedness in the limited-view setting}{remark.4.3.12}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.2}{\ignorespaces Distribution of eigenvalues (in log scale) of the matrix $\mathbf {C}^\top \mathbf {C}$ (a) and $\mathbf {D}\mathbf {C}^\top \mathbf {C}\mathbf {D}$ (b). $N=101$ sources are equally spaced between $[0,\gamma )$ on a circle of radius $\rho =1.2$, and $K=50$. Each curve corresponds to a different value of $\gamma $. The matrix $\mathbf {C}^\top \mathbf {C}$ and $\mathbf {D}\mathbf {C}^\top \mathbf {C}\mathbf {D}$ are calculated from these parameters and their eigenvalues are sorted in decreasing order.}}{67}{figure.4.2}}
\newlabel{fig:svd_CtC_DCtCD_gamma}{{\M@TitleReference {4.2}{Distribution of eigenvalues (in log scale) of the matrix $\mathbf {C}^\top \mathbf {C}$ (a) and $\mathbf {D}\mathbf {C}^\top \mathbf {C}\mathbf {D}$ (b). $N=101$ sources are equally spaced between $[0,\gamma )$ on a circle of radius $\rho =1.2$, and $K=50$. Each curve corresponds to a different value of $\gamma $. The matrix $\mathbf {C}^\top \mathbf {C}$ and $\mathbf {D}\mathbf {C}^\top \mathbf {C}\mathbf {D}$ are calculated from these parameters and their eigenvalues are sorted in decreasing order.}}{67}{Distribution of eigenvalues (in log scale) of the matrix $\CtC $ (a) and $\DCtCD $ (b). $N=101$ sources are equally spaced between $[0,\gamma )$ on a circle of radius $\rho =1.2$, and $K=50$. Each curve corresponds to a different value of $\gamma $. The matrix $\CtC $ and $\DCtCD $ are calculated from these parameters and their eigenvalues are sorted in decreasing order}{figure.4.2}{}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Eigenvalues of $\mathbf {C}^\top \mathbf {C}$}}}{67}{figure.4.2}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Eigenvalues of $\mathbf {D}\mathbf {C}^\top \mathbf {C}\mathbf {D}$}}}{67}{figure.4.2}}
\@writefile{toc}{\contentsline {section}{\numberline {4.4}Numerical Results}{67}{section.4.4}}
\newlabel{sec:results-GPT-extraction}{{\M@TitleReference {4.4}{Numerical Results}}{67}{Numerical Results}{section.4.4}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.3}{\ignorespaces Condition numbers (in log scale) of the matrix $\mathbf {C}^\top \mathbf {C}$ (a) and the operator $L$ (b) for different orders $K$ between $[1,50]$. As in Figure\nobreakspace {}\ref {fig:svd_CtC_DCtCD_gamma}, $N=101$ sources are equally spaced between $[0,\gamma )$ on a circle of radius $\rho =1.2$. Figure(c) and (d) are the same experiment as Figure(a) and (b) but with $N=1001$.}}{68}{figure.4.3}}
\newlabel{fig:svd_CtC_DCtCD_cond}{{\M@TitleReference {4.3}{Condition numbers (in log scale) of the matrix $\mathbf {C}^\top \mathbf {C}$ (a) and the operator $L$ (b) for different orders $K$ between $[1,50]$. As in Figure\nobreakspace {}\ref {fig:svd_CtC_DCtCD_gamma}, $N=101$ sources are equally spaced between $[0,\gamma )$ on a circle of radius $\rho =1.2$. Figure(c) and (d) are the same experiment as Figure(a) and (b) but with $N=1001$.}}{68}{Condition numbers (in log scale) of the matrix $\CtC $ (a) and the operator $L$ (b) for different orders $K$ between $[1,50]$. As in Figure~\ref {fig:svd_CtC_DCtCD_gamma}, $N=101$ sources are equally spaced between $[0,\gamma )$ on a circle of radius $\rho =1.2$. Figure(c) and (d) are the same experiment as Figure(a) and (b) but with $N=1001$}{figure.4.3}{}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Condition number of $\mathbf {C}^\top \mathbf {C}$}}}{68}{figure.4.3}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Condition number of $L$}}}{68}{figure.4.3}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {Condition number of $\mathbf {C}^\top \mathbf {C}$}}}{68}{figure.4.3}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {Condition number of $L$}}}{68}{figure.4.3}}
\citepageref{AGJ}{68}
\citepageref{ammari2007polarization}{68}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.1}Reconstruction of CGPTs}{68}{subsection.4.4.1}}
\newlabel{sec:reconstruction-cgpt}{{\M@TitleReference {4.4.1}{Reconstruction of CGPTs}}{68}{Reconstruction of CGPTs}{subsection.4.4.1}{}}
\citation{ammari2007polarization}
\@writefile{lof}{\contentsline {figure}{\numberline {4.4}{\ignorespaces An example of the configuration for MSR data simulation. The unknown shape is an ellipse whose long and short axes are 2 and 1, respectively. $N=51$ sources/receivers (marked by ``x'') are equally placed on a circle of radius $R=2$ centered at $z_0=[0,0]$ (marked by ``*'').}}{69}{figure.4.4}}
\newlabel{fig:data_acq}{{\M@TitleReference {4.4}{An example of the configuration for MSR data simulation. The unknown shape is an ellipse whose long and short axes are 2 and 1, respectively. $N=51$ sources/receivers (marked by ``x'') are equally placed on a circle of radius $R=2$ centered at $z_0=[0,0]$ (marked by ``*'').}}{69}{An example of the configuration for MSR data simulation. The unknown shape is an ellipse whose long and short axes are 2 and 1, respectively. $N=51$ sources/receivers (marked by ``x'') are equally placed on a circle of radius $R=2$ centered at $z_0=[0,0]$ (marked by ``*'')}{figure.4.4}{}}
\newlabel{eq:max_trunc_ord}{{4.51}{69}{Reconstruction of CGPTs}{equation.4.4.51}{}}
\newlabel{eq:max_CGPT_order}{{4.52}{69}{Reconstruction of CGPTs}{equation.4.4.52}{}}
\newlabel{eq:noise_model}{{4.53}{69}{Reconstruction of CGPTs}{equation.4.4.53}{}}
\citepageref{ammari2007polarization}{69}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.2}Partial View Setting}{69}{subsection.4.4.2}}
\newlabel{sec:recon_cgpt_num2}{{\M@TitleReference {4.4.2}{Partial View Setting}}{69}{Partial View Setting}{subsection.4.4.2}{}}
\newlabel{eq:Least_square_reg_CGPT_recon}{{4.54}{69}{Partial View Setting}{equation.4.4.54}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.5}{\ignorespaces Relative error of the reconstructed CGPTs. For each noise level, we repeat the experiment 100 times (corresponding to 100 realizations of the noise) and the reconstruction is taken as their mean value. The horizontal solid line in each figure indicates the resolving order $m_0$ given by \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {eq:max_CGPT_order}\unskip \@@italiccorr )}} with the tolerance number $\tau _0=10^{-1}$.}}{70}{figure.4.5}}
\newlabel{fig:err_rec_CGPT}{{\M@TitleReference {4.5}{Relative error of the reconstructed CGPTs. For each noise level, we repeat the experiment 100 times (corresponding to 100 realizations of the noise) and the reconstruction is taken as their mean value. The horizontal solid line in each figure indicates the resolving order $m_0$ given by \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {eq:max_CGPT_order}\unskip \@@italiccorr )}} with the tolerance number $\tau _0=10^{-1}$.}}{70}{Relative error of the reconstructed CGPTs. For each noise level, we repeat the experiment 100 times (corresponding to 100 realizations of the noise) and the reconstruction is taken as their mean value. The horizontal solid line in each figure indicates the resolving order $m_0$ given by \eqref {eq:max_CGPT_order} with the tolerance number $\tau _0=10^{-1}$}{figure.4.5}{}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$\sigma _0=0.01, m_0=6$}}}{70}{figure.4.5}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\sigma _0=0.1, m_0=4$}}}{70}{figure.4.5}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\sigma _0=0.5, m_0=3$}}}{70}{figure.4.5}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$\sigma _0=1.0, m_0=2$}}}{70}{figure.4.5}}
\@writefile{toc}{\contentsline {section}{\numberline {4.5}Conclusion}{70}{section.4.5}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.6}{\ignorespaces The resolving order $m_0$, for $\sigma _0\in [10^{-3},1], \tau _0=10^{-1},$ and the relative error of the reconstruction within this order. As in Figure\nobreakspace {}\ref {fig:err_rec_CGPT}, we repeat the experiment 100 times and the reconstruction is taken as their mean value. The large variations of the relative error in (b) for $\sigma _0>10^{-1}$ indicate the instability of the reconstruction for very noisy data.}}{71}{figure.4.6}}
\newlabel{fig:rslv_ord_rel_err_CGPT}{{\M@TitleReference {4.6}{The resolving order $m_0$, for $\sigma _0\in [10^{-3},1], \tau _0=10^{-1},$ and the relative error of the reconstruction within this order. As in Figure\nobreakspace {}\ref {fig:err_rec_CGPT}, we repeat the experiment 100 times and the reconstruction is taken as their mean value. The large variations of the relative error in (b) for $\sigma _0>10^{-1}$ indicate the instability of the reconstruction for very noisy data.}}{71}{The resolving order $m_0$, for $\sigma _0\in [10^{-3},1], \tau _0=10^{-1},$ and the relative error of the reconstruction within this order. As in Figure~\ref {fig:err_rec_CGPT}, we repeat the experiment 100 times and the reconstruction is taken as their mean value. The large variations of the relative error in (b) for $\sigma _0>10^{-1}$ indicate the instability of the reconstruction for very noisy data}{figure.4.6}{}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Resolving order}}}{71}{figure.4.6}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Relative error}}}{71}{figure.4.6}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.7}{\ignorespaces Error of reconstructed CGPT of an ellipse compared with true CGPT values at different noise levels. We solve \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {eq:Least_square_reg_CGPT_recon}\unskip \@@italiccorr )}} and \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {eq:lsqr-GPT-reconstruction}\unskip \@@italiccorr )}} with $N=101, K=50$, and compare the first two orders with the true CGPT. The $x$-axis is the angle of view $\gamma $. Figure(a): results of \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {eq:Least_square_reg_CGPT_recon}\unskip \@@italiccorr )}}, Figure(b): results of \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {eq:lsqr-GPT-reconstruction}\unskip \@@italiccorr )}}.}}{71}{figure.4.7}}
\newlabel{fig:cgpt_lim_aov}{{\M@TitleReference {4.7}{Error of reconstructed CGPT of an ellipse compared with true CGPT values at different noise levels. We solve \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {eq:Least_square_reg_CGPT_recon}\unskip \@@italiccorr )}} and \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {eq:lsqr-GPT-reconstruction}\unskip \@@italiccorr )}} with $N=101, K=50$, and compare the first two orders with the true CGPT. The $x$-axis is the angle of view $\gamma $. Figure(a): results of \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {eq:Least_square_reg_CGPT_recon}\unskip \@@italiccorr )}}, Figure(b): results of \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {eq:lsqr-GPT-reconstruction}\unskip \@@italiccorr )}}.}}{71}{Error of reconstructed CGPT of an ellipse compared with true CGPT values at different noise levels. We solve \eqref {eq:Least_square_reg_CGPT_recon} and \eqref {eq:lsqr-GPT-reconstruction} with $N=101, K=50$, and compare the first two orders with the true CGPT. The $x$-axis is the angle of view $\gamma $. Figure(a): results of \eqref {eq:Least_square_reg_CGPT_recon}, Figure(b): results of \eqref {eq:lsqr-GPT-reconstruction}}{figure.4.7}{}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{71}{figure.4.7}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{71}{figure.4.7}}
\citation{ABGJKW2012dico}
\citation{ammari2004reconstruction}
\citation{ammari2007polarization}
\citation{ammari2010conductivity}
\citation{AGKLY11}
\citation{yves}
\@writefile{lof}{\addvspace {10pt}}
\@writefile{lot}{\addvspace {10pt}}
\citepageref{ABGJKW2012dico}{73}
\@writefile{toc}{\contentsline {chapter}{\chapternumberline {5}Dictionary Matching}{73}{chapter.5}}
\newlabel{chap:dico-matching}{{\M@TitleReference {5}{Dictionary Matching}}{73}{\chapname }{chapter.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5.1}Introduction}{73}{section.5.1}}
\citepageref{ammari2004reconstruction}{73}
\citepageref{ammari2007polarization}{73}
\citepageref{ammari2010conductivity}{73}
\citepageref{AGKLY11}{73}
\citepageref{yves}{73}
\citation{opt}
\citation{opt1}
\citation{opt2}
\citation{optnew1}
\citation{optnew2}
\citepageref{opt}{74}
\citepageref{opt1}{74}
\citepageref{opt2}{74}
\citepageref{optnew1}{74}
\citepageref{optnew2}{74}
\@writefile{toc}{\contentsline {section}{\numberline {5.2}Complex CGPTs under Rigid Motions and Scaling}{74}{section.5.2}}
\newlabel{sec:complex-cgpt-under}{{\M@TitleReference {5.2}{Complex CGPTs under Rigid Motions and Scaling}}{74}{Complex CGPTs under Rigid Motions and Scaling}{section.5.2}{}}
\newlabel{eq:Mccdef}{{5.1}{74}{Complex CGPTs under Rigid Motions and Scaling}{equation.5.2.1}{}}
\@writefile{loe}{\addvspace {10\p@ }}
\@writefile{loe}{\contentsline {proposition}{\numberline {5.2.1}Proposition}{74}{proposition.5.2.1}}
\newlabel{prop:complex-cgpt-under}{{\M@TitleReference {5.2.1}{Complex CGPTs under Rigid Motions and Scaling}}{74}{}{proposition.5.2.1}{}}
\newlabel{eq:CGPT_rot_Nt}{{5.2}{74}{}{equation.5.2.2}{}}
\newlabel{eq:CGPT_scl_Nt}{{5.3}{74}{}{equation.5.2.3}{}}
\newlabel{eq:CGPT_trans_Nt}{{5.4}{74}{}{equation.5.2.4}{}}
\citation{AGKLY11}
\citation{AGKLY11}
\newlabel{defcz}{{5.5}{75}{}{equation.5.2.5}{}}
\newlabel{eq:chainrule}{{5.6}{75}{Complex CGPTs under Rigid Motions and Scaling}{equation.5.2.6}{}}
\citepageref{AGKLY11}{75}
\citepageref{AGKLY11}{75}
\newlabel{eq:ImKrot}{{5.7}{75}{Complex CGPTs under Rigid Motions and Scaling}{equation.5.2.7}{}}
\newlabel{eq:Nnm-Nnm_theta}{{5.8}{75}{Complex CGPTs under Rigid Motions and Scaling}{equation.5.2.8}{}}
\newlabel{eq:ImKtrans}{{5.9}{76}{Complex CGPTs under Rigid Motions and Scaling}{equation.5.2.9}{}}
\newlabel{eq:develop_P_q}{{5.10}{76}{Complex CGPTs under Rigid Motions and Scaling}{equation.5.2.10}{}}
\citation{ammari2007polarization}
\citation{ammari2007polarization}
\citation{ammari2010conductivity}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.2.1}Some properties of complex CGPTs}{77}{subsection.5.2.1}}
\newlabel{sec:some-properties-ccgpt}{{\M@TitleReference {5.2.1}{Some properties of complex CGPTs}}{77}{Some properties of complex CGPTs}{subsection.5.2.1}{}}
\newlabel{eq:DB_tsr_No}{{5.11}{77}{Some properties of complex CGPTs}{equation.5.2.11}{}}
\newlabel{eq:DB_tsr_Nt}{{5.12}{77}{Some properties of complex CGPTs}{equation.5.2.12}{}}
\citepageref{ammari2007polarization}{77}
\citepageref{ammari2007polarization}{77}
\@writefile{loe}{\contentsline {proposition}{\numberline {5.2.2}Proposition}{77}{proposition.5.2.2}}
\newlabel{prop:CGPT_symm_herm}{{\M@TitleReference {5.2.2}{Some properties of complex CGPTs}}{77}{}{proposition.5.2.2}{}}
\@writefile{loe}{\contentsline {proposition}{\numberline {5.2.3}Proposition}{77}{proposition.5.2.3}}
\newlabel{prop:CGPT_rotsymm_struct}{{\M@TitleReference {5.2.3}{Some properties of complex CGPTs}}{77}{}{proposition.5.2.3}{}}
\newlabel{eq:CGPT_struct_No}{{5.13}{77}{}{equation.5.2.13}{}}
\newlabel{eq:CGPT_struct_Nt}{{5.14}{77}{}{equation.5.2.14}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5.3}Shape Identification by the CGPTs}{77}{section.5.3}}
\newlabel{sec:shape-ident-cgpt}{{\M@TitleReference {5.3}{Shape Identification by the CGPTs}}{77}{Shape Identification by the CGPTs}{section.5.3}{}}
\citepageref{ammari2010conductivity}{77}
\newlabel{eq:No11}{{5.15}{78}{Shape Identification by the CGPTs}{equation.5.3.15}{}}
\newlabel{eq:No12}{{5.16}{78}{Shape Identification by the CGPTs}{equation.5.3.16}{}}
\newlabel{eq:Nt11}{{5.17}{78}{Shape Identification by the CGPTs}{equation.5.3.17}{}}
\newlabel{eq:Nt12}{{5.18}{78}{Shape Identification by the CGPTs}{equation.5.3.18}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.3.1}CGPTs matching}{78}{subsection.5.3.1}}
\newlabel{sec:cgpt-matching}{{\M@TitleReference {5.3.1}{CGPTs matching}}{78}{CGPTs matching}{subsection.5.3.1}{}}
\@writefile{toc}{\contentsline {subsubsection}{Determination of transform parameters}{78}{subsection.5.3.1}}
\newlabel{sec:determ-transf-param}{{\M@TitleReference {5.3.1}{Determination of transform parameters}}{78}{Determination of transform parameters}{subsection.5.3.1}{}}
\newlabel{eq:scaling}{{5.19}{78}{Determination of transform parameters}{equation.5.3.19}{}}
\@writefile{toc}{\contentsline {paragraph}{Case 1: Rotational symmetric shape.}{78}{equation.5.3.19}}
\newlabel{eq:trans_P2}{{5.20}{78}{Case 1: Rotational symmetric shape}{equation.5.3.20}{}}
\newlabel{eq:rot_lst}{{5.21}{78}{Case 1: Rotational symmetric shape}{equation.5.3.21}{}}
\@writefile{toc}{\contentsline {paragraph}{Case 2: Non rotational symmetric shape.}{78}{equation.5.3.21}}
\newlabel{eq:cond_P1}{{5.22}{78}{Case 2: Non rotational symmetric shape}{equation.5.3.22}{}}
\newlabel{eq:linsys_P1}{{5.23}{78}{Case 2: Non rotational symmetric shape}{equation.5.3.23}{}}
\@writefile{toc}{\contentsline {subsubsection}{Debiasing by least squares solutions}{79}{equation.5.3.23}}
\newlabel{secdeb}{{\M@TitleReference {5.3.1}{Debiasing by least squares solutions}}{79}{Debiasing by least squares solutions}{equation.5.3.23}{}}
\newlabel{eq:parameters_pertub}{{5.24}{79}{Debiasing by least squares solutions}{equation.5.3.24}{}}
\newlabel{eq:tsr_lst_debiasing}{{5.25}{79}{Debiasing by least squares solutions}{equation.5.3.25}{}}
\@writefile{toc}{\contentsline {subsubsection}{First algorithm for shape identification}{79}{equation.5.3.25}}
\newlabel{sec:first-algor-shape}{{\M@TitleReference {5.3.1}{First algorithm for shape identification}}{79}{First algorithm for shape identification}{equation.5.3.25}{}}
\@writefile{loa}{\contentsline {algorithm}{\numberline {1}{\ignorespaces Shape identification based on CGPT matching}}{79}{algorithm.1}}
\newlabel{algo:shape-ident-cgpt}{{\M@TitleReference {1}{First algorithm for shape identification}}{79}{First algorithm for shape identification}{algorithm.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.3.2}Transform invariant shape descriptors}{79}{subsection.5.3.2}}
\newlabel{sec:transf-invar-shape}{{\M@TitleReference {5.3.2}{Transform invariant shape descriptors}}{79}{Transform invariant shape descriptors}{subsection.5.3.2}{}}
\newlabel{eq:centroid}{{5.26}{79}{Transform invariant shape descriptors}{equation.5.3.26}{}}
\newlabel{eq:shape_descrp_trans}{{5.27}{79}{Transform invariant shape descriptors}{equation.5.3.27}{}}
\newlabel{eq:shape_descrp_scl}{{5.29}{80}{Transform invariant shape descriptors}{equation.5.3.29}{}}
\newlabel{eq:shape_descrp}{{5.30}{80}{Transform invariant shape descriptors}{equation.5.3.30}{}}
\@writefile{toc}{\contentsline {subsubsection}{Second algorithm for shape identification}{80}{equation.5.3.30}}
\newlabel{sec:second-algor-shape}{{\M@TitleReference {5.3.2}{Second algorithm for shape identification}}{80}{Second algorithm for shape identification}{equation.5.3.30}{}}
\@writefile{loa}{\contentsline {algorithm}{\numberline {2}{\ignorespaces Shape identification based on transform invariant descriptors}}{80}{algorithm.2}}
\newlabel{algo:shape-ident-inv}{{\M@TitleReference {2}{Second algorithm for shape identification}}{80}{Second algorithm for shape identification}{algorithm.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5.4}Numerical Experiments}{80}{section.5.4}}
\newlabel{sec:numer-exper}{{\M@TitleReference {5.4}{Numerical Experiments}}{80}{Numerical Experiments}{section.5.4}{}}
\citation{AGKLY11}
\@writefile{lof}{\contentsline {figure}{\numberline {5.1}{\ignorespaces An example of the configuration for MSR data simulation. The unknown shape is an ellipse whose long and short axes are 2 and 1, respectively. $N=51$ sources/receivers (marked by ``x'') are equally placed on a circle of radius $R=2$ centered at $z_0=[0,0]$ (marked by ``*'').}}{81}{figure.5.1}}
\newlabel{fig:data_acq_dico}{{\M@TitleReference {5.1}{An example of the configuration for MSR data simulation. The unknown shape is an ellipse whose long and short axes are 2 and 1, respectively. $N=51$ sources/receivers (marked by ``x'') are equally placed on a circle of radius $R=2$ centered at $z_0=[0,0]$ (marked by ``*'').}}{81}{An example of the configuration for MSR data simulation. The unknown shape is an ellipse whose long and short axes are 2 and 1, respectively. $N=51$ sources/receivers (marked by ``x'') are equally placed on a circle of radius $R=2$ centered at $z_0=[0,0]$ (marked by ``*'')}{figure.5.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.4.1}Matching on a dictionary of flowers}{81}{subsection.5.4.1}}
\newlabel{sec:match-dico-flower}{{\M@TitleReference {5.4.1}{Matching on a dictionary of flowers}}{81}{Matching on a dictionary of flowers}{subsection.5.4.1}{}}
\newlabel{eq:flower}{{5.31}{81}{Matching on a dictionary of flowers}{equation.5.4.31}{}}
\@writefile{toc}{\contentsline {paragraph}{Stability.}{81}{figure.5.2}}
\citepageref{AGKLY11}{81}
\newlabel{eq:flower_CGPT_Fourier}{{5.32}{81}{Stability}{equation.5.4.32}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.2}{\ignorespaces Mean values of the anti-diagonal entries of $\mathcal {I}^{(1)}$ for the flowers of 5 and 7 petals at different noise levels.}}{82}{figure.5.2}}
\newlabel{fig:matching_flower}{{\M@TitleReference {5.2}{Mean values of the anti-diagonal entries of $\mathcal {I}^{(1)}$ for the flowers of 5 and 7 petals at different noise levels.}}{82}{Mean values of the anti-diagonal entries of $\Dcrpo $ for the flowers of 5 and 7 petals at different noise levels}{figure.5.2}{}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$p=5$}}}{82}{figure.5.2}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$p=7$}}}{82}{figure.5.2}}
\newlabel{eq:damaged_flower}{{5.33}{82}{Stability}{equation.5.4.33}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.3}{\ignorespaces Flowers with one damaged petal. The following parameters are used in \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {eq:damaged_flower}\unskip \@@italiccorr )}}: $p=7$, $\eta =0.3$, $t=0.5$ for (a) and $t=0.8$ for (b).}}{82}{figure.5.3}}
\newlabel{fig:imperfect_flower}{{\M@TitleReference {5.3}{Flowers with one damaged petal. The following parameters are used in \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {eq:damaged_flower}\unskip \@@italiccorr )}}: $p=7$, $\eta =0.3$, $t=0.5$ for (a) and $t=0.8$ for (b).}}{82}{Flowers with one damaged petal. The following parameters are used in \eqref {eq:damaged_flower}: $p=7$, $\eta =0.3$, $t=0.5$ for (a) and $t=0.8$ for (b)}{figure.5.3}{}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$t=0.5$}}}{82}{figure.5.3}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$t=0.8$}}}{82}{figure.5.3}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.4.2}Dictionary of letters}{82}{subsection.5.4.2}}
\citation{AGKLY11}
\@writefile{lof}{\contentsline {figure}{\numberline {5.4}{\ignorespaces Mean value of the anti-diagonal entries of $\mathcal {I}^{(1)}$ for the flowers of Figure\nobreakspace {}\ref {fig:imperfect_flower} at different noise levels. The peaks indicate the number of petals.}}{83}{figure.5.4}}
\newlabel{fig:matching_imperfect_flower}{{\M@TitleReference {5.4}{Mean value of the anti-diagonal entries of $\mathcal {I}^{(1)}$ for the flowers of Figure\nobreakspace {}\ref {fig:imperfect_flower} at different noise levels. The peaks indicate the number of petals.}}{83}{Mean value of the anti-diagonal entries of $\Dcrpo $ for the flowers of Figure~\ref {fig:imperfect_flower} at different noise levels. The peaks indicate the number of petals}{figure.5.4}{}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$t=0.5$}}}{83}{figure.5.4}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$t=0.8$}}}{83}{figure.5.4}}
\@writefile{toc}{\contentsline {paragraph}{Performance of Algorithm 1.}{83}{subsection.5.4.2}}
\citepageref{AGKLY11}{83}
\@writefile{toc}{\contentsline {paragraph}{Stability.}{83}{figure.5.6}}
\@writefile{toc}{\contentsline {paragraph}{Performance of Algorithm 2.}{83}{figure.5.6}}
\citation{mc2}
\citation{resol}
\citation{wang2013-3DSD}
\@writefile{lof}{\contentsline {figure}{\numberline {5.5}{\ignorespaces The identification of the letter ``P'' using the first 2, and 5 orders CGPTs at noise levels $\sigma _0=0$ and $\sigma _0=0.1$. The bar represents the relative error $e_n$ between the CGPTs of the $n$-th letter and that of the data, as defined in Algorithm\nobreakspace {}\ref {algo:shape-ident-cgpt}, and the shortest one in each figure corresponds to the identified letter. For (c) and (d), the experiment has been repeated for 100 times, using independent draws of white noise, and the results are the mean values of all experiments.}}{84}{figure.5.5}}
\newlabel{fig:matching_letter_p}{{\M@TitleReference {5.5}{The identification of the letter ``P'' using the first 2, and 5 orders CGPTs at noise levels $\sigma _0=0$ and $\sigma _0=0.1$. The bar represents the relative error $e_n$ between the CGPTs of the $n$-th letter and that of the data, as defined in Algorithm\nobreakspace {}\ref {algo:shape-ident-cgpt}, and the shortest one in each figure corresponds to the identified letter. For (c) and (d), the experiment has been repeated for 100 times, using independent draws of white noise, and the results are the mean values of all experiments.}}{84}{The identification of the letter ``P'' using the first 2, and 5 orders CGPTs at noise levels $\sigma _0=0$ and $\sigma _0=0.1$. The bar represents the relative error $e_n$ between the CGPTs of the $n$-th letter and that of the data, as defined in Algorithm~\ref {algo:shape-ident-cgpt}, and the shortest one in each figure corresponds to the identified letter. For (c) and (d), the experiment has been repeated for 100 times, using independent draws of white noise, and the results are the mean values of all experiments}{figure.5.5}{}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$\sigma _0=0$, order $\leq 2$}}}{84}{figure.5.5}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\sigma _0=0$, order $\leq 5$}}}{84}{figure.5.5}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\sigma _0=0.1$, order $\leq 2$}}}{84}{figure.5.5}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$\sigma _0=0.1$, order $\leq 5$}}}{84}{figure.5.5}}
\@writefile{toc}{\contentsline {paragraph}{Performance of Algorithm 2 with partial aperture}{84}{figure.5.6}}
\@writefile{toc}{\contentsline {section}{\numberline {5.5}Conclusion}{84}{section.5.5}}
\newlabel{sec:conclusion}{{\M@TitleReference {5.5}{Conclusion}}{84}{Conclusion}{section.5.5}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.6}{\ignorespaces Algorithm\nobreakspace {}\ref {algo:shape-ident-cgpt} applied on the all 26 letters using the standard dictionary (Figure\nobreakspace {}\ref {fig:all_letters_A_Z}) at noise level $\sigma _0=0$ (first column) and $\sigma _0=0.1$ (second column), with the color indicating the relative error $e_n$ in logarithmic scale. The unknown shapes in the first row are exact copies of the standard dictionary, and in the second row are those of Figure\nobreakspace {}\ref {fig:all_ptb_letters_A_Z}. In (a) all letters are correctly identified, while in (b) letters 'E' is identified as 'H'. For the noisy case, the experiment has been repeated 100 times, using independent draws of white noise, and the results in (c) and (d) are the mean values of all experiments, where only the first order CGPT is taken into account. 22 and 21 letters are correctly identified in (c) and (d), respectively.}}{85}{figure.5.6}}
\newlabel{fig:matching_all_letters}{{\M@TitleReference {5.6}{Algorithm\nobreakspace {}\ref {algo:shape-ident-cgpt} applied on the all 26 letters using the standard dictionary (Figure\nobreakspace {}\ref {fig:all_letters_A_Z}) at noise level $\sigma _0=0$ (first column) and $\sigma _0=0.1$ (second column), with the color indicating the relative error $e_n$ in logarithmic scale. The unknown shapes in the first row are exact copies of the standard dictionary, and in the second row are those of Figure\nobreakspace {}\ref {fig:all_ptb_letters_A_Z}. In (a) all letters are correctly identified, while in (b) letters 'E' is identified as 'H'. For the noisy case, the experiment has been repeated 100 times, using independent draws of white noise, and the results in (c) and (d) are the mean values of all experiments, where only the first order CGPT is taken into account. 22 and 21 letters are correctly identified in (c) and (d), respectively.}}{85}{Algorithm~\ref {algo:shape-ident-cgpt} applied on the all 26 letters using the standard dictionary (Figure~\ref {fig:all_letters_A_Z}) at noise level $\sigma _0=0$ (first column) and $\sigma _0=0.1$ (second column), with the color indicating the relative error $e_n$ in logarithmic scale. The unknown shapes in the first row are exact copies of the standard dictionary, and in the second row are those of Figure~\ref {fig:all_ptb_letters_A_Z}. In (a) all letters are correctly identified, while in (b) letters 'E' is identified as 'H'. For the noisy case, the experiment has been repeated 100 times, using independent draws of white noise, and the results in (c) and (d) are the mean values of all experiments, where only the first order CGPT is taken into account. 22 and 21 letters are correctly identified in (c) and (d), respectively}{figure.5.6}{}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$\sigma _0=0$, order $\leq 5$, Standard letters}}}{85}{figure.5.6}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\sigma _0=0$, order $\leq 5$, Perturbed letters}}}{85}{figure.5.6}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\sigma _0=0.1$, order $= 1$, Standard letters}}}{85}{figure.5.6}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$\sigma _0=0.1$, order $= 1$, Perturbed letters}}}{85}{figure.5.6}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.7}{\ignorespaces Algorithm\nobreakspace {}\ref {algo:shape-ident-inv} applied on the all 26 letters using the standard dictionary (Figure\nobreakspace {}\ref {fig:all_letters_A_Z}) at noise level $\sigma _0=0$. The unknown shapes in (a) are exact copies of the standard dictionary, while in (b) are those of Figure\nobreakspace {}\ref {fig:all_ptb_letters_A_Z}. The color indicates the error $e_n$ in logarithmic scale. All letters are correctly identified in both (a) and (b).}}{86}{figure.5.7}}
\newlabel{fig:matching_all_letters_inv}{{\M@TitleReference {5.7}{Algorithm\nobreakspace {}\ref {algo:shape-ident-inv} applied on the all 26 letters using the standard dictionary (Figure\nobreakspace {}\ref {fig:all_letters_A_Z}) at noise level $\sigma _0=0$. The unknown shapes in (a) are exact copies of the standard dictionary, while in (b) are those of Figure\nobreakspace {}\ref {fig:all_ptb_letters_A_Z}. The color indicates the error $e_n$ in logarithmic scale. All letters are correctly identified in both (a) and (b).}}{86}{Algorithm~\ref {algo:shape-ident-inv} applied on the all 26 letters using the standard dictionary (Figure~\ref {fig:all_letters_A_Z}) at noise level $\sigma _0=0$. The unknown shapes in (a) are exact copies of the standard dictionary, while in (b) are those of Figure~\ref {fig:all_ptb_letters_A_Z}. The color indicates the error $e_n$ in logarithmic scale. All letters are correctly identified in both (a) and (b)}{figure.5.7}{}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$\sigma _0=0$, order $\leq 5$, Standard letters}}}{86}{figure.5.7}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\sigma _0=0$, order $\leq 5$, Perturbed letters}}}{86}{figure.5.7}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.8}{\ignorespaces Comparison of Algorithm\nobreakspace {}\ref {algo:shape-ident-inv} and Algorithm\nobreakspace {}\ref {algo:shape-ident-cgpt} on identification of the standard letter ``P''. At each noise level, the experiment has been repeated 1000 times, using independent draws of white noise. For each algorithm, the curve represents the percentage of experiments where the letter ``P'' is correctly identified. }}{86}{figure.5.8}}
\newlabel{fig:algorithm_cgpt_vs_inv}{{\M@TitleReference {5.8}{Comparison of Algorithm\nobreakspace {}\ref {algo:shape-ident-inv} and Algorithm\nobreakspace {}\ref {algo:shape-ident-cgpt} on identification of the standard letter ``P''. At each noise level, the experiment has been repeated 1000 times, using independent draws of white noise. For each algorithm, the curve represents the percentage of experiments where the letter ``P'' is correctly identified. }}{86}{Comparison of Algorithm~\ref {algo:shape-ident-inv} and Algorithm~\ref {algo:shape-ident-cgpt} on identification of the standard letter ``P''. At each noise level, the experiment has been repeated 1000 times, using independent draws of white noise. For each algorithm, the curve represents the percentage of experiments where the letter ``P'' is correctly identified. }{figure.5.8}{}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {order $\leq 2$}}}{86}{figure.5.8}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {order $\leq 3$}}}{86}{figure.5.8}}
\newlabel{fig:setp_aov1}{{\M@TitleReference {5.9(a)}{Performance of Algorithm 2 with partial aperture}}{87}{Subfigure 5 5.9(a)}{subfigure.5.9.1}{}}
\newlabel{sub@fig:setp_aov1}{{(a)}{87}{Subfigure 5 5.9(a)\relax }{subfigure.5.9.1}{}}
\newlabel{fig:setp_aov2}{{\M@TitleReference {5.9(b)}{Performance of Algorithm 2 with partial aperture}}{87}{Subfigure 5 5.9(b)}{subfigure.5.9.2}{}}
\newlabel{sub@fig:setp_aov2}{{(b)}{87}{Subfigure 5 5.9(b)\relax }{subfigure.5.9.2}{}}
\newlabel{fig:results_aov1}{{\M@TitleReference {5.9(c)}{Performance of Algorithm 2 with partial aperture}}{87}{Subfigure 5 5.9(c)}{subfigure.5.9.3}{}}
\newlabel{sub@fig:results_aov1}{{(c)}{87}{Subfigure 5 5.9(c)\relax }{subfigure.5.9.3}{}}
\newlabel{fig:results_aov2}{{\M@TitleReference {5.9(d)}{Performance of Algorithm 2 with partial aperture}}{87}{Subfigure 5 5.9(d)}{subfigure.5.9.4}{}}
\newlabel{sub@fig:results_aov2}{{(d)}{87}{Subfigure 5 5.9(d)\relax }{subfigure.5.9.4}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.9}{\ignorespaces Two configurations were considered in the study of limited aperture.}}{87}{figure.5.9}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Setup of first configuration}}}{87}{figure.5.9}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Setup of second configuration}}}{87}{figure.5.9}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {Results for first configuration}}}{87}{figure.5.9}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {Results for second configuration}}}{87}{figure.5.9}}
\citepageref{mc2}{87}
\citepageref{resol}{87}
\citepageref{wang2013-3DSD}{87}
\@writefile{lof}{\contentsline {figure}{\numberline {5.10}{\ignorespaces Dictionary of standard letters.}}{88}{figure.5.10}}
\newlabel{fig:all_letters_A_Z}{{\M@TitleReference {5.10}{Dictionary of standard letters.}}{88}{Dictionary of standard letters}{figure.5.10}{}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{88}{figure.5.10}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{88}{figure.5.10}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{88}{figure.5.10}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{88}{figure.5.10}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {}}}{88}{figure.5.10}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {}}}{88}{figure.5.10}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(g)}{\ignorespaces {}}}{88}{figure.5.10}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(h)}{\ignorespaces {}}}{88}{figure.5.10}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(i)}{\ignorespaces {}}}{88}{figure.5.10}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(j)}{\ignorespaces {}}}{88}{figure.5.10}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(k)}{\ignorespaces {}}}{88}{figure.5.10}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(l)}{\ignorespaces {}}}{88}{figure.5.10}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(m)}{\ignorespaces {}}}{88}{figure.5.10}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(n)}{\ignorespaces {}}}{88}{figure.5.10}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(o)}{\ignorespaces {}}}{88}{figure.5.10}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(p)}{\ignorespaces {}}}{88}{figure.5.10}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(q)}{\ignorespaces {}}}{88}{figure.5.10}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(r)}{\ignorespaces {}}}{88}{figure.5.10}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(s)}{\ignorespaces {}}}{88}{figure.5.10}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(t)}{\ignorespaces {}}}{88}{figure.5.10}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(u)}{\ignorespaces {}}}{88}{figure.5.10}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(v)}{\ignorespaces {}}}{88}{figure.5.10}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(w)}{\ignorespaces {}}}{88}{figure.5.10}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(x)}{\ignorespaces {}}}{88}{figure.5.10}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(y)}{\ignorespaces {}}}{88}{figure.5.10}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(z)}{\ignorespaces {}}}{88}{figure.5.10}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.11}{\ignorespaces Non standard letters obtained by perturbing and smoothing those in Figure\nobreakspace {}\ref {fig:all_letters_A_Z}.}}{89}{figure.5.11}}
\newlabel{fig:all_ptb_letters_A_Z}{{\M@TitleReference {5.11}{Non standard letters obtained by perturbing and smoothing those in Figure\nobreakspace {}\ref {fig:all_letters_A_Z}.}}{89}{Non standard letters obtained by perturbing and smoothing those in Figure~\ref {fig:all_letters_A_Z}}{figure.5.11}{}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{89}{figure.5.11}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{89}{figure.5.11}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{89}{figure.5.11}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{89}{figure.5.11}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {}}}{89}{figure.5.11}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {}}}{89}{figure.5.11}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(g)}{\ignorespaces {}}}{89}{figure.5.11}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(h)}{\ignorespaces {}}}{89}{figure.5.11}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(i)}{\ignorespaces {}}}{89}{figure.5.11}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(j)}{\ignorespaces {}}}{89}{figure.5.11}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(k)}{\ignorespaces {}}}{89}{figure.5.11}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(l)}{\ignorespaces {}}}{89}{figure.5.11}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(m)}{\ignorespaces {}}}{89}{figure.5.11}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(n)}{\ignorespaces {}}}{89}{figure.5.11}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(o)}{\ignorespaces {}}}{89}{figure.5.11}}