forked from luost26/3D-Generative-SBDD
-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
187 lines (168 loc) · 7.18 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import os
import shutil
import argparse
from tqdm.auto import tqdm
import torch
from torch.nn.utils import clip_grad_norm_
import torch.utils.tensorboard
from torch_geometric.loader import DataLoader
from models.maskfill import MaskFillModel
from utils.datasets import *
from utils.transforms import *
from utils.misc import *
from utils.train import *
import torch_geometric.data.collate
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('config', type=str)
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--logdir', type=str, default='./logs')
args = parser.parse_args()
# Load configs
config = load_config(args.config)
config_name = os.path.basename(args.config)[:os.path.basename(args.config).rfind('.')]
seed_all(config.train.seed)
# Logging
log_dir = get_new_log_dir(args.logdir, prefix=config_name)
ckpt_dir = os.path.join(log_dir, 'checkpoints')
os.makedirs(ckpt_dir, exist_ok=True)
logger = get_logger('train', log_dir)
writer = torch.utils.tensorboard.SummaryWriter(log_dir)
logger.info(args)
logger.info(config)
shutil.copyfile(args.config, os.path.join(log_dir, os.path.basename(args.config)))
shutil.copytree('./models', os.path.join(log_dir, 'models'))
# Transforms
protein_featurizer = FeaturizeProteinAtom()
ligand_featurizer = FeaturizeLigandAtom()
masking = get_mask(config.train.transform.mask)
contrastive_sampler = get_contrastive_sampler(config.train.transform.contrastive)
transform = Compose([
LigandCountNeighbors(),
protein_featurizer,
ligand_featurizer,
FeaturizeLigandBond(),
masking,
contrastive_sampler,
])
# Datasets and loaders
logger.info('Loading dataset...')
dataset, subsets = get_dataset(
config = config.dataset,
transform = transform,
)
train_set, val_set = subsets['train'], subsets['test']
follow_batch = ['protein_element', 'ligand_context_element', 'pos_real', 'pos_fake']
collate_exclude_keys = ['ligand_nbh_list']
train_iterator = inf_iterator(DataLoader(
train_set,
batch_size = config.train.batch_size,
shuffle = True,
num_workers = config.train.num_workers,
follow_batch = follow_batch,
exclude_keys = collate_exclude_keys,
))
val_loader = DataLoader(
val_set,
config.train.batch_size,
shuffle=False,
follow_batch=follow_batch,
exclude_keys = collate_exclude_keys,
)
# Model
logger.info('Building model...')
model = MaskFillModel(
config.model,
num_classes = contrastive_sampler.num_elements,
num_indicators = ligand_featurizer.num_properties,
protein_atom_feature_dim = protein_featurizer.feature_dim,
ligand_atom_feature_dim = ligand_featurizer.feature_dim,
).to(args.device)
# Optimizer and scheduler
optimizer = get_optimizer(config.train.optimizer, model)
scheduler = get_scheduler(config.train.scheduler, optimizer)
def train(it):
model.train()
optimizer.zero_grad()
batch = next(train_iterator).to(args.device)
protein_noise = torch.randn_like(batch.protein_pos) * config.train.pos_noise_std
ligand_noise = torch.randn_like(batch.ligand_context_pos) * config.train.pos_noise_std
loss, loss_cls, loss_nce_real, loss_nce_fake, loss_ind = model.get_loss(
pos_real = batch.pos_real,
y_real = batch.cls_real.long(),
p_real = batch.ind_real.float(), # Binary indicators: float
pos_fake = batch.pos_fake,
protein_pos = batch.protein_pos + protein_noise,
protein_atom_feature = batch.protein_atom_feature.float(),
ligand_pos = batch.ligand_context_pos + ligand_noise,
ligand_atom_feature = batch.ligand_context_feature_full.float(),
batch_real = batch.pos_real_batch,
batch_fake = batch.pos_fake_batch,
batch_protein = batch.protein_element_batch,
batch_ligand = batch.ligand_context_element_batch,
)
loss.backward()
orig_grad_norm = clip_grad_norm_(model.parameters(), config.train.max_grad_norm)
optimizer.step()
logger.info('[Train] Iter %d | Loss %.6f | Loss(Cls) %.6f | Loss(Ind) %.6f | Loss(Real) %.6f | Loss(Fake) %.6f' % (
it, loss.item(), loss_cls.item(), loss_ind.item(), loss_nce_real.item(), loss_nce_fake.item()
))
writer.add_scalar('train/loss', loss, it)
writer.add_scalar('train/loss_cls', loss_cls, it)
writer.add_scalar('train/loss_ind', loss_ind, it)
writer.add_scalar('train/loss_real', loss_nce_real, it)
writer.add_scalar('train/loss_fake', loss_nce_fake, it)
writer.add_scalar('train/lr', optimizer.param_groups[0]['lr'], it)
writer.add_scalar('train/grad', orig_grad_norm, it)
writer.flush()
def validate(it):
sum_loss, sum_n = 0, 0
with torch.no_grad():
model.eval()
for batch in tqdm(val_loader, desc='Validate'):
batch = batch.to(args.device)
loss, loss_cls, loss_nce_real, loss_nce_fake, loss_ind = model.get_loss(
pos_real = batch.pos_real,
y_real = batch.cls_real.long(),
p_real = batch.ind_real.float(), # Binary indicators: float
pos_fake = batch.pos_fake,
protein_pos = batch.protein_pos,
protein_atom_feature = batch.protein_atom_feature.float(),
ligand_pos = batch.ligand_context_pos,
ligand_atom_feature = batch.ligand_context_feature_full.float(),
batch_real = batch.pos_real_batch,
batch_fake = batch.pos_fake_batch,
batch_protein = batch.protein_element_batch,
batch_ligand = batch.ligand_context_element_batch,
)
sum_loss += loss.item()
sum_n += 1
avg_loss = sum_loss / sum_n
if config.train.scheduler.type == 'plateau':
scheduler.step(avg_loss)
elif config.train.scheduler.type == 'warmup_plateau':
scheduler.step_ReduceLROnPlateau(avg_loss)
else:
scheduler.step()
logger.info('[Validate] Iter %05d | Loss %.6f' % (
it, avg_loss,
))
writer.add_scalar('val/loss', avg_loss, it)
writer.flush()
return avg_loss
try:
for it in range(1, config.train.max_iters+1):
# with torch.autograd.detect_anomaly():
train(it)
if it % config.train.val_freq == 0 or it == config.train.max_iters:
validate(it)
ckpt_path = os.path.join(ckpt_dir, '%d.pt' % it)
torch.save({
'config': config,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'iteration': it,
}, ckpt_path)
except KeyboardInterrupt:
logger.info('Terminating...')