-
Notifications
You must be signed in to change notification settings - Fork 154
/
Copy pathasgd.lua
73 lines (58 loc) · 2.01 KB
/
asgd.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
--[[ An implementation of ASGD
ASGD:
x := (1 - lambda eta_t) x - eta_t df/dx(z,x)
a := a + mu_t [ x - a ]
eta_t = eta0 / (1 + lambda eta0 t) ^ 0.75
mu_t = 1/max(1,t-t0)
implements ASGD algoritm as in L.Bottou's sgd-2.0
ARGS:
- `opfunc` : a function that takes a single input (X), the point of
evaluation, and returns f(X) and df/dX
- `x` : the initial point
- `state` : a table describing the state of the optimizer; after each
call the state is modified
- `state.eta0` : learning rate
- `state.lambda` : decay term
- `state.alpha` : power for eta update
- `state.t0` : point at which to start averaging
RETURN:
- `x` : the new x vector
- `f(x)` : the function, evaluated before the update
- `ax` : the averaged x vector
(Clement Farabet, 2012)
--]]
function optim.asgd(opfunc, x, config, state)
-- (0) get/update state
local config = config or {}
local state = state or config
config.eta0 = config.eta0 or 1e-4
config.lambda = config.lambda or 1e-4
config.alpha = config.alpha or 0.75
config.t0 = config.t0 or 1e6
-- (hidden state)
state.eta_t = state.eta_t or config.eta0
state.mu_t = state.mu_t or 1
state.t = state.t or 0
-- (1) evaluate f(x) and df/dx
local fx,dfdx = opfunc(x)
-- (2) decay term
x:mul(1 - config.lambda*state.eta_t)
-- (3) update x
x:add(-state.eta_t, dfdx)
-- (4) averaging
state.ax = state.ax or torch.Tensor():typeAs(x):resizeAs(x):zero()
state.tmp = state.tmp or torch.Tensor():typeAs(state.ax):resizeAs(state.ax)
if state.mu_t ~= 1 then
state.tmp:copy(x)
state.tmp:add(-1,state.ax):mul(state.mu_t)
state.ax:add(state.tmp)
else
state.ax:copy(x)
end
-- (5) update eta_t and mu_t
state.t = state.t + 1
state.eta_t = config.eta0 / math.pow((1 + config.lambda * config.eta0 * state.t), config.alpha)
state.mu_t = 1 / math.max(1, state.t - config.t0)
-- return x*, f(x) before optimization, and average(x_t0,x_t1,x_t2,...)
return x,{fx},state.ax
end