forked from nicholaskajoh/ivy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVehicleCounter.py
105 lines (85 loc) · 4.44 KB
/
VehicleCounter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import cv2
from joblib import Parallel, delayed
import multiprocessing
from tracker import add_new_blobs, remove_duplicates, update_blob_tracker
from detectors.detector import get_bounding_boxes
from util.detection_roi import get_roi_frame, draw_roi
from util.logger import get_logger
from counter import attempt_count
logger = get_logger()
num_cores = multiprocessing.cpu_count()
class VehicleCounter():
def __init__(self, initial_frame, detector, tracker, droi, show_droi, mcdf, mctf, di, counting_lines, show_counts):
self.frame = initial_frame # current frame of video
self.detector = detector
self.tracker = tracker
self.droi = droi # detection region of interest
self.show_droi = show_droi
self.mcdf = mcdf # maximum consecutive detection failures
self.mctf = mctf # maximum consecutive tracking failures
self.di = di # detection interval
self.counting_lines = counting_lines
self.blobs = {}
self.f_height, self.f_width, _ = self.frame.shape
self.frame_count = 0 # number of frames since last detection
self.counts = {counting_line['label']: {} for counting_line in counting_lines} # counts of vehicles by type for each counting line
self.show_counts = show_counts
# create blobs from initial frame
droi_frame = get_roi_frame(self.frame, self.droi)
_bounding_boxes, _classes, _confidences = get_bounding_boxes(droi_frame, self.detector)
self.blobs = add_new_blobs(_bounding_boxes, _classes, _confidences, self.blobs, self.frame, self.tracker, self.mcdf)
def get_blobs(self):
return self.blobs
def count(self, frame):
self.frame = frame
blobs_list = list(self.blobs.items())
# update blob trackers
blobs_list = Parallel(n_jobs=num_cores, prefer='threads')(
delayed(update_blob_tracker)(blob, blob_id, self.frame) for blob_id, blob in blobs_list
)
self.blobs = dict(blobs_list)
for blob_id, blob in blobs_list:
# count vehicle if it has crossed a counting line
blob, self.counts = attempt_count(blob, blob_id, self.counting_lines, self.counts)
self.blobs[blob_id] = blob
# remove blob if it has reached the limit for tracking failures
if blob.num_consecutive_tracking_failures >= self.mctf:
del self.blobs[blob_id]
if self.frame_count >= self.di:
# rerun detection
droi_frame = get_roi_frame(self.frame, self.droi)
_bounding_boxes, _classes, _confidences = get_bounding_boxes(droi_frame, self.detector)
self.blobs = add_new_blobs(_bounding_boxes, _classes, _confidences, self.blobs, self.frame, self.tracker, self.mcdf)
self.blobs = remove_duplicates(self.blobs)
self.frame_count = 0
self.frame_count += 1
def visualize(self):
frame = self.frame
font = cv2.FONT_HERSHEY_DUPLEX
line_type = cv2.LINE_AA
# draw and label blob bounding boxes
for _id, blob in self.blobs.items():
(x, y, w, h) = [int(v) for v in blob.bounding_box]
cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)
vehicle_label = 'I: ' + _id[:8] \
if blob.type is None \
else 'I: {0}, T: {1} ({2})'.format(_id[:8], blob.type, str(blob.type_confidence)[:4])
cv2.putText(frame, vehicle_label, (x, y - 5), font, 1, (255, 0, 0), 2, line_type)
# draw counting lines
for counting_line in self.counting_lines:
cv2.line(frame, counting_line['line'][0], counting_line['line'][1], (255, 0, 0), 3)
cl_label_origin = (counting_line['line'][0][0], counting_line['line'][0][1] + 35)
cv2.putText(frame, counting_line['label'], cl_label_origin, font, 1, (255, 0, 0), 2, line_type)
# show detection roi
if self.show_droi:
frame = draw_roi(frame, self.droi)
# show counts
if self.show_counts:
offset = 1
for line, objects in self.counts.items():
cv2.putText(frame, line, (10, 40 * offset), font, 1, (255, 0, 0), 2, line_type)
for label, count in objects.items():
offset += 1
cv2.putText(frame, "{}: {}".format(label, count), (10, 40 * offset), font, 1, (255, 0, 0), 2, line_type)
offset += 2
return frame