-
Notifications
You must be signed in to change notification settings - Fork 0
/
01-overview.Rmd
1039 lines (849 loc) · 37 KB
/
01-overview.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "Landscape Study - General Overview"
author: Thomas Klebel
date: Last changed `r lubridate::today()`
output:
html_document:
df_print: paged
keep_md: true
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE, message = FALSE, dev.args = list(type = "cairo"))
```
```{r, message=FALSE}
theme_set(hrbrmisc::theme_hrbrmstr())
# import data
refined <- readd(clean_data)
refined_with_areas <- readd(clean_areas)
```
# Summary
The general impression is, that the journals most of the time do not have a
specific policy regarding the aspect under question, or it was unclear for our
reviewers if there was a policy or not or how to interpret it.
# Missing data
```{r, fig.height=10, fig.width=10}
refined %>%
vis_miss()
```
There is quite some missing data, which shouldn't be like this. For example
the field U30 in excel (table RAW), which has the opr-responses for the journal
"Advanced Materials" is missing. It should probably be "Not specified".
The following are all variables, where implicit missings should be checked and
converted to explicit ones (as for opr_responses), or fixed (as for publishers).
```{r, fig.height=6, fig.width=8}
# only columns with missing data
with_missings <- refined %>%
select(-starts_with("G_"), -ends_with("clean")) %>%
select_if(~any(is.na(.))) %>%
# remove a few columns where missing data is ok
select(-starts_with("review date"),
-starts_with("To dis"),
-starts_with("Time ta"),
-starts_with("Review"),
-starts_with("Free"),
# Top journals are being removed as well, since these are legit
# missings
-starts_with("Top journals in")
)
with_missings %>%
vis_miss() +
theme(plot.margin = margin(r = 50))
```
# Publisher versus subject area
The question is, whether it is reasonable to split results by publisher.
I think it does not make much sense:
- There are not many publishers, that have multiple publications
- Except Springer Nature and Elsevier, most publishers are confined to one or
two subject areas. Looking at publishers would misinterprete differences as
being due to the publisher when they are due to the subject area.
- The only thing to compare would be thus Springer Nature vs. Elsevier
```{r, fig.width=12, fig.height=6}
refined %>%
count(publisher_clean, sort = T) %>%
filter(n > 4) %>%
left_join(refined_with_areas) %>%
select(-n) %>%
count(publisher_clean, area) %>%
ggplot(aes(publisher_clean, str_wrap(area, 20), colour = n, size = n)) +
geom_point() +
viridis::scale_color_viridis() +
coord_flip() +
labs(x = NULL, y = NULL, title = "Journals by Publisher and subject area",
colour = NULL, size = NULL) +
theme(legend.position = "top")
```
# Peer Review
```{r}
# small tweaks
refined_with_areas <- refined_with_areas %>%
order_pr_type()
```
```{r, fig.width=10.5, fig.height=5}
ggplot(refined_with_areas, aes(str_wrap(area, 20), fill = pr_type_clean)) +
geom_bar(position = "fill", width = .7) +
# coord_flip() +
scale_fill_brewer(palette = "Set3") +
scale_y_continuous(labels = scales::percent) +
theme(legend.position = "top") +
labs(fill = NULL, x = NULL, y = NULL,
title = "What type of peer review is used?")
```
```{r, fig.width=9, fig.height=7}
ggplot(refined_with_areas, aes(fct_rev(area), fill = area)) +
geom_bar(show.legend = F) +
facet_wrap(~pr_type_clean) +
coord_flip() +
labs(x = NULL, y = NULL,
title = "What type of peer review is used?")
```
```{r}
ggplot(refined_with_areas, aes(`h5-index`, pr_type_clean)) +
geom_density_ridges()
```
```{r peer-type-publisher}
peer_type_publisher <- refined %>%
order_pr_type() %>%
mutate(has_society = case_when(
str_detect(
publisher,
"Society|Associa|Union|Academy|College|Instit|School"
) ~ "Published by Society/Association",
TRUE ~ "General publisher"
)) %>%
make_proportion(pr_type_clean, has_society, order_string = "Double|Single") %>%
drop_na()
p_cols <- c("Single blind" = "#1B9E77", "Double blind" = "#D95F02",
"Not blinded" = "#7570B3",
"Unsure" = "#A6761D", "Other" = "#666666")
ggplot(peer_type_publisher, aes(has_society, prop,
fill = fct_rev(pr_type_clean))) +
geom_chicklet(position = "fill", width = .6) +
coord_flip() +
scale_fill_manual(values = p_cols) +
scale_y_continuous(labels = scales::percent) +
theme(legend.position = "top") +
guides(fill = guide_legend(reverse = T)) +
labs(fill = NULL, x = NULL, y = NULL,
title = "What type of peer review is used?")
```
I don't think this distinction is very interesting, since it masks disciplinary
differences, which are more fundamental.
```{r}
refined <- refined %>%
mutate(pr_database_clean = case_when(
str_detect(pr_database, "^Yes") ~ "Yes",
str_detect(pr_database, "Unsure") ~ "Unsure",
str_detect(pr_database, "No") ~ "No"
))
refined %>%
plot_univariate(pr_database_clean) +
coord_flip() +
labs(title = "Is peer reviewer activity deposited into\nopen databases? (like Publons or ORCID)")
```
```{r, fig.width=10.5, fig.height=6}
refined_with_areas <- refined_with_areas %>%
mutate(pr_database_clean = case_when(
str_detect(pr_database, "^Yes") ~ "Yes",
str_detect(pr_database, "Unsure") ~ "Unsure",
str_detect(pr_database, "No") ~ "No"
))
refined_with_areas %>%
mutate(pr_database_clean = fct_relevel(
pr_database_clean,
"Yes"
)) %>%
plot_with_areas(pr_database_clean,
title = "Is peer reviewer activity deposited into open databases? (like Publons or ORCID)")
```
## Peer review transfer policy
```{r pr-transfer-compute}
pr_transfer <- refined %>%
select(pr_transfer_policy) %>%
filter(!is.na(pr_transfer_policy),
!(pr_transfer_policy %in% c("Not specified", "Not found")))
```
Only `r nrow(pr_transfer)` out of `r nrow(refined)` do have a
policy for manuscript transfer after rejection.
Due to policies being similar across journals of certain
publishers, there are `r nrow(distinct(pr_transfer))`
distinct policies in our dataset.
The following table displays stemmed parts of the distinct policies, sorted by
propensity.
```{r pr-transfer-table}
pr_transfer %>%
distinct() %>%
unnest_tokens(word, pr_transfer_policy) %>%
anti_join(stop_words) %>%
mutate(word = SnowballC::wordStem(word)) %>%
count(word, sort = T)
```
The following graph shows the relationship between to most common bigrams (only
bigrams that occur at least three times).
```{r pr-transfer-plot, fig.width=7, fig.height=7}
pr_transfer %>%
make_bigram_analysis(pr_transfer_policy, cutoff = 3)
```
# Open Peer Review
```{r, fig.width=8, fig.height=7}
pdata <- refined %>%
select(opr_reports:opr_interaction) %>%
gather(var, val) %>%
mutate(val_clean = case_when(
str_detect(val, "Conditional") ~ "Conditional",
str_detect(str_to_lower(val), "not spec") ~ "Not specified",
TRUE ~ val
))
labels <- pdata %>%
distinct(var) %>%
mutate(label = case_when(
var == "opr_reports" ~ "Are peer review reports being published?",
var == "opr_responses" ~ "Are author responses to reviews being published?",
var == "opr_letters" ~ "Are editorial decision letters being published?",
var == "opr_versions" ~ "Are previous versions of the manuscript being published?",
var == "opr_identities_published" ~ "Are reviewer identities being published?",
var == "opr_indenties_author" ~ "Are reviewer identities revealed to the author (even if not published)?",
var == "opr_comments" ~ "Is there public commenting during formal peer review?",
var == "opr_interaction" ~ "Is there open interaction (reviewers consult with one another)?"
)) %>%
mutate_at("label", ~str_wrap(., 40))
pdata %>%
left_join(labels) %>%
ggplot(., aes(label, fill = val_clean)) +
geom_bar(position = "fill", width = .7) +
coord_flip() +
scale_y_continuous(labels = scales::percent) +
scale_fill_brewer(palette = "Set3") +
theme(legend.position = "top") +
labs(x = NULL, y = NULL, fill = NULL)
```
```{r, fig.height=12, fig.width=9}
pdata <- refined_with_areas %>%
select(area, opr_reports:opr_interaction) %>%
gather(var, val, -area) %>%
mutate(val_clean = case_when(
str_detect(val, "Conditional") ~ "Conditional",
str_detect(str_to_lower(val), "not spec") ~ "Not specified",
TRUE ~ val
))
labels <- pdata %>%
distinct(var) %>%
mutate(label = case_when(
var == "opr_reports" ~ "Are peer review reports being published?",
var == "opr_responses" ~ "Are author responses to reviews being published?",
var == "opr_letters" ~ "Are editorial decision letters being published?",
var == "opr_versions" ~ "Are previous versions of the manuscript being published?",
var == "opr_identities_published" ~ "Are reviewer identities being published?",
var == "opr_indenties_author" ~ "Are reviewer identities revealed to the author (even if not published)?",
var == "opr_comments" ~ "Is there public commenting during formal peer review?",
var == "opr_interaction" ~ "Is there open interaction (reviewers consult with one another)?"
)) %>%
mutate_at("label", ~str_wrap(., 40))
pdata %>%
left_join(labels) %>%
ggplot(., aes(label, fill = val_clean)) +
geom_bar(position = "fill", width = .7) +
scale_y_continuous(labels = scales::percent) +
coord_flip() +
facet_wrap(~area) +
theme(legend.position = "top") +
labs(x = NULL, y = NULL, fill = NULL)
# display via plotly was removed, so it could be rendered on GitHub
```
```{r, eval=FALSE}
# these plots have been incorporated above
refined %>%
plot_univariate(opr_identities_published) +
coord_flip()
refined %>%
plot_univariate(opr_indenties_author) +
coord_flip()
refined %>%
plot_univariate(opr_comments) +
coord_flip()
refined %>%
plot_univariate(opr_interaction) +
coord_flip()
```
# Co-Review
Let's look at the co-review policy.
```{r}
coreview_policies <- refined %>%
select(coreview_policy) %>%
filter(!is.na(coreview_policy),
!(coreview_policy %in% c("Not specified", "Not found")))
```
Only `r nrow(coreview_policies)` out of `r nrow(refined)` do have a
coreview-policy. Due to policies being similar across journals of certain
publishers, there are `r nrow(distinct(coreview_policies))`
distinct policies in our dataset.
The following table displays stemmed parts of the distinct policies, sorted by
propensity.
```{r}
coreview_policies %>%
distinct() %>%
unnest_tokens(word, coreview_policy) %>%
anti_join(stop_words) %>%
mutate(word = SnowballC::wordStem(word)) %>%
count(word, sort = T)
```
The following graph shows the relationship between to most common bigrams (only
bigrams that occur at least three times).
```{r, fig.width=7, fig.height=7}
coreview_policies %>%
make_bigram_analysis(coreview_policy)
```
```{r, eval=FALSE}
# trigram analysis
trigrams <- coreview_policies %>%
distinct() %>%
unnest_tokens(bigram, coreview_policy, token = "ngrams", n = 3)
trigrams_separated <- trigrams %>%
separate(bigram, c("word1", "word2", "word3"), sep = " ")
trigrams_filtered <- trigrams_separated %>%
filter(!word1 %in% stop_words$word) %>%
filter(!word2 %in% stop_words$word) %>%
filter(!word3 %in% stop_words$word)
# new bigram counts:
trigram_counts <- trigrams_filtered %>%
count(word1, word2, word3, sort = TRUE)
trigram_counts
```
```{r}
refined %>%
plot_univariate(coreview_email) +
coord_flip() +
labs(title = "Can co-reviewers contribute?")
```
```{r, fig.width=10.5, fig.height=5}
refined_with_areas %>%
mutate(coreview_email = case_when(
coreview_email == "unsure" ~ "Unsure",
TRUE ~ coreview_email
)) %>%
ggplot(aes(str_wrap(area, 20), fill = coreview_email)) +
geom_bar(position = "fill", width = .7) +
scale_fill_brewer(palette = "Set3") +
scale_y_continuous(labels = scales::percent) +
theme(legend.position = "top") +
labs(fill = NULL, x = NULL, y = NULL,
title = "Can co-reviewers contribute?")
```
This doesn't look interesting.
```{r}
refined %>%
plot_univariate(coreview_form) +
coord_flip()
```
This doesn't look interesting.
```{r}
refined %>%
plot_univariate(coreview_database) +
coord_flip()
```
# Preprints
```{r preprint version}
refined <- refined %>%
mutate(preprint_version_clean = case_when(
str_detect(preprint_version, "Unsure") ~
"Unsure (preprints are allowed, but it's not clear which version)",
str_detect(preprint_version, "Any .*? or") ~ "Other",
str_detect(preprint_version, "Other|Unclear") ~ "Other",
str_detect(preprint_version, "None") ~ "None",
str_detect(preprint_version, "First sub") ~
"First submission only (before peer review)",
str_detect(preprint_version, "After peer re") ~ "After peer review",
str_detect(preprint_version, "Any|any") ~ "Any",
str_detect(preprint_version, "No") ~ "No preprint policy",
))
refined %>%
plot_univariate(preprint_version_clean) +
coord_flip() +
labs(title = "What version of a preprint\ncan be posted?")
```
```{r, fig.width=10.5, fig.height=6}
refined_with_areas <- refined_with_areas %>%
mutate(preprint_version_clean = case_when(
str_detect(preprint_version, "Unsure") ~
"Unsure (preprints are allowed, but it's not clear which version)",
str_detect(preprint_version, "Any .*? or") ~ "Other",
str_detect(preprint_version, "Other|Unclear") ~ "Other",
str_detect(preprint_version, "None") ~ "None",
str_detect(preprint_version, "First sub") ~
"First submission only (before peer review)",
str_detect(preprint_version, "After peer re") ~ "After peer review",
str_detect(preprint_version, "Any|any") ~ "Any",
str_detect(preprint_version, "No") ~ "No preprint policy",
))
refined_with_areas %>%
mutate(preprint_version_clean = fct_relevel(preprint_version_clean,
"Any", "After peer review") %>%
fct_relevel("None", "No preprint policy", "Other", after = 4)) %>%
plot_with_areas(preprint_version_clean,
"What version of a preprint can be posted?")
```
```{r}
preprint_servers <- refined %>%
select(preprint_servers) %>%
filter(!is.na(preprint_servers),
!(preprint_servers %in% c("Not specified", "Not found")))
```
```{r}
preprint_servers %>%
distinct() %>%
unnest_tokens(word, preprint_servers) %>%
anti_join(stop_words) %>%
# mutate(word = SnowballC::wordStem(word)) %>%
count(word, sort = T)
```
```{r, fig.width=10, fig.height=10}
preprint_servers %>%
make_bigram_analysis(preprint_servers, 3, .distinct = T)
```
```{r}
refined <- refined %>%
mutate(preprint_citation_clean = case_when(
str_detect(preprint_citation, "Not spec") ~ "Not specified",
str_detect(preprint_citation, "Unsure") ~ "Unsure",
str_detect(preprint_citation, "No") ~ "No",
str_detect(preprint_citation, "only in the text") ~ "Yes, but only in the text",
str_detect(preprint_citation, "reference list") ~ "Yes, in the reference list",
is.na(preprint_citation) ~ NA_character_,
TRUE ~ "Other"
))
refined %>%
plot_univariate(preprint_citation_clean) +
coord_flip() +
labs(title = "Can preprints be cited?")
```
```{r, fig.width=9, fig.height=5}
refined_with_areas <- refined_with_areas %>%
mutate(preprint_citation_clean = case_when(
str_detect(preprint_citation, "Not spec") ~ "Not specified",
str_detect(preprint_citation, "Unsure") ~ "Unsure",
str_detect(preprint_citation, "No") ~ "No",
str_detect(preprint_citation, "only in the text") ~ "Yes, but only in the text",
str_detect(preprint_citation, "reference list") ~ "Yes, in the reference list",
is.na(preprint_citation) ~ NA_character_,
TRUE ~ "Other"
))
refined_with_areas %>%
mutate(preprint_citation_clean =
fct_relevel(preprint_citation_clean,
"Yes, in the reference list", "Yes, but only in the text",
"No", "Not specified", "Unsure", "Other") %>%
fct_explicit_na()) %>%
group_by(area) %>%
count(preprint_citation_clean) %>%
mutate(prop = n/sum(n)) %>%
ggplot(aes(area, prop, fill = preprint_citation_clean)) +
geom_chicklet(position = "fill", width = .6) +
# geom_bar(position = "fill", width = .7) +
scale_fill_brewer(palette = "Set3") +
scale_y_continuous(labels = scales::percent) +
theme(legend.position = "top") +
labs(fill = NULL, x = NULL, y = NULL,
title = "Can preprints be cited?") +
coord_flip()
# TODO: order areas according to Proportion of Yes
```
```{r}
refined %>%
plot_univariate(preprint_link) +
coord_flip() +
labs(title = "Is a link provided to the preprint version of a paper?")
```
# Cross tabulations
Results so far have revealed that in many cases policies are unclear. But in
which ways are policies related to each other? Do journals that allow co-review
also allow preprints? Is there a gradient between journals that are pioneers in
regard to open science, and others that lag behind? Or are there certain groups
of journals, open in one area, reluctant in the second and maybe unclear in the
third?
To answer these question, we employ Multiple Correspondence Analysis (MCA).
The technique allows us to explore the different policies jointly
(Greenacre & Blasius 2006: 27) and thus paint
a landscape of open science practices among journals.
To facilitate interpration of the figures, variables had to be recoded.
Categories with low counts were merged. Where feasible, we focused on whether
certain policies were clear or not, thus omitting the subtle differences within
the policies (for example whether journals allowed citations of preprints was
simplified for whether the policy was clear (references allowed in text,
reference list or not allowed) versus unclear (unsure about policy, no policy
and other)).
It should be noted that the procedure is strictly exploratory. We are exploring,
not testing any hypothesis.
<!-- Results have until now been examined spearated from each other. To bring them -->
<!-- all together, we will employ Correspondence Analysis as a means of visualising -->
<!-- and investigating adjecent sets of tables. -->
<!-- Different variables could serve as dependent variables: disciplinary area is -->
<!-- the first contender. But this could have an overly strong influence. We could -->
<!-- thus also look at peer review type, and add discipline only as a supplementary -->
<!-- variable. -->
<!-- Or we could do multiple correspondence analysis... -->
<!-- The question we have is: are there certain journals that have unclear policies -->
<!-- in general, or not. Thus: are there pioneers that are open to new concepts and -->
<!-- clear in their policies and then the others that lag behind. -->
<!-- From Greenacre & Blasius 2006: 27, we should conclude that MCA is the preferred -->
<!-- method for this question, because it allows us to investigate the relationship -->
<!-- between different aspects of open science. CA would only allow investigation of -->
<!-- these aspects relative to the disciplines, but not relative to one another. -->
```{r}
ca_first <- refined %>%
mutate(coreview_email = case_when(
coreview_email == "unsure" ~ "Unsure",
# lump the two not specified to unsure, since this is similar in this
# instance
coreview_email == "Not specified" ~ "Unsure",
TRUE ~ coreview_email
)) %>%
select(pr_type_clean, coreview_email, opr_indenties_author) %>%
mutate(pr_type_clean = paste0("pr_type-", pr_type_clean),
coreview_email = paste0("coreview-", coreview_email),
opr = paste0("reviewer_identities-", opr_indenties_author)) %>%
select(-opr_indenties_author) %>%
ca::mjca()
ca_first %>%
plot_ca()
```
```{r, fig.width=10, fig.height=8}
ca_second <- refined %>%
mutate(preprint_version_clean = case_when(
str_detect(preprint_version, "Unsure") ~ "Unsure",
str_detect(preprint_version, "Any .*? or") ~ "Other",
str_detect(preprint_version, "Other|Unclear") ~ "Other",
str_detect(preprint_version, "None") ~ "None",
str_detect(preprint_version, "First sub") ~ "Yes",
str_detect(preprint_version, "After peer re") ~ "Yes",
str_detect(preprint_version, "Any|any") ~ "Yes",
str_detect(preprint_version, "No") ~ "No policy"),
preprint_citation_clean = case_when(
str_detect(preprint_citation, "Not spec") ~ "Not specified",
str_detect(preprint_citation, "Unsure") ~ "Unsure",
str_detect(preprint_citation, "No") ~ "No",
str_detect(preprint_citation, "only in the text") ~ "Yes",
str_detect(preprint_citation, "reference list") ~ "Yes",
is.na(preprint_citation) ~ NA_character_,
TRUE ~ "Other"),
opr_indenties_author_clean = case_when(
str_detect(opr_indenties_author, "Conditional") ~ "Conditional",
str_detect(str_to_lower(opr_indenties_author), "not spec") ~ "Not specified",
str_detect(opr_indenties_author, "Optional") ~ "Optional",
TRUE ~ opr_indenties_author),
coreview_email = case_when(
coreview_email == "unsure" ~ "Unsure",
# lump the two not specified to unsure, since this is similar in this
# instance
coreview_email == "Not specified" ~ "Unsure",
TRUE ~ coreview_email)
) %>%
select(pr_type_clean, coreview_email, opr_indenties_author_clean,
preprint_version_clean, preprint_citation_clean) %>%
# Filter out these journals since they are very special
filter(pr_type_clean != "Not blinded") %>%
mutate(pr_type_clean = paste0("pr_type-", pr_type_clean),
coreview_email = paste0("coreview-", coreview_email),
opr_indenties_author_clean = paste0("reviewer_identities-", opr_indenties_author_clean),
preprint_version_clean = paste0("preprint_version-", preprint_version_clean),
preprint_citation_clean = paste0("preprint_citation-", preprint_citation_clean)) %>%
ca::mjca()
summary(ca_second)
ca_second %>%
plot_ca(dimensions = c(1, 2)) +
coord_fixed()
```
```{r, fig.width=10, fig.height=8}
refined %>%
mutate(preprint_version_clean = case_when(
str_detect(preprint_version, "Unsure") ~ "Unsure",
str_detect(preprint_version, "Any .*? or") ~ "Other",
str_detect(preprint_version, "Other|Unclear") ~ "Other",
str_detect(preprint_version, "None") ~ "None",
str_detect(preprint_version, "First sub") ~ "Yes",
str_detect(preprint_version, "After peer re") ~ "Yes",
str_detect(preprint_version, "Any|any") ~ "Yes",
str_detect(preprint_version, "No") ~ "No policy"),
preprint_citation_clean = case_when(
str_detect(preprint_citation, "Not spec") ~ "Not specified",
str_detect(preprint_citation, "Unsure") ~ "Unsure",
str_detect(preprint_citation, "No") ~ "No",
str_detect(preprint_citation, "only in the text") ~ "Yes",
str_detect(preprint_citation, "reference list") ~ "Yes",
is.na(preprint_citation) ~ NA_character_,
TRUE ~ "Other"),
opr_indenties_author_clean = case_when(
str_detect(opr_indenties_author, "Conditional") ~ "Conditional",
str_detect(str_to_lower(opr_indenties_author), "not spec") ~ "Not specified",
str_detect(opr_indenties_author, "Optional") ~ "Optional",
TRUE ~ opr_indenties_author),
coreview_email = case_when(
coreview_email == "unsure" ~ "Unsure",
# lump the two not specified to unsure, since this is similar in this
# instance
coreview_email == "Not specified" ~ "Unsure",
TRUE ~ coreview_email)
) %>%
select(pr_type_clean, coreview_email, opr_indenties_author_clean,
preprint_version_clean, preprint_citation_clean) %>%
# Filter out these journals since they are very special
filter(pr_type_clean != "Not blinded") %>%
mutate(pr_type_clean = paste0("pr_type-", pr_type_clean),
coreview_email = paste0("coreview-", coreview_email),
opr_indenties_author_clean = paste0("reviewer_identities-", opr_indenties_author_clean),
preprint_version_clean = paste0("preprint_version-", preprint_version_clean),
preprint_citation_clean = paste0("preprint_citation-", preprint_citation_clean)) %>%
select(-opr_indenties_author_clean) %>%
ca::mjca() %>%
plot_ca(dimensions = c(1, 2)) +
coord_fixed()
```
```{r, fig.width=9, fig.height=13}
multiple_ca <- refined_with_areas %>%
mutate(preprint_version_clean = case_when(
str_detect(preprint_version, "Unsure") ~ "Unsure",
str_detect(preprint_version, "Any .*? or") ~ "Other",
str_detect(preprint_version, "Other|Unclear") ~ "Other",
str_detect(preprint_version, "None") ~ "None",
str_detect(preprint_version, "First sub") ~ "Yes",
str_detect(preprint_version, "After peer re") ~ "Yes",
str_detect(preprint_version, "Any|any") ~ "Yes",
str_detect(preprint_version, "No") ~ "No policy"),
preprint_citation_clean = case_when(
str_detect(preprint_citation, "Not spec") ~ "Not specified",
str_detect(preprint_citation, "Unsure") ~ "Unsure",
str_detect(preprint_citation, "No") ~ "No",
str_detect(preprint_citation, "only in the text") ~ "Yes",
str_detect(preprint_citation, "reference list") ~ "Yes",
is.na(preprint_citation) ~ NA_character_,
TRUE ~ "Other"),
opr_indenties_author_clean = case_when(
str_detect(opr_indenties_author, "Conditional") ~ "Conditional",
str_detect(str_to_lower(opr_indenties_author), "not spec") ~ "Not specified",
str_detect(opr_indenties_author, "Optional") ~ "Optional",
TRUE ~ opr_indenties_author),
coreview_email = case_when(
coreview_email == "unsure" ~ "Unsure",
# lump the two not specified to unsure, since this is similar in this
# instance
coreview_email == "Not specified" ~ "Unsure",
TRUE ~ coreview_email)
) %>%
select(pr_type_clean, coreview_email,
preprint_version_clean, preprint_citation_clean, area) %>%
# Filter out these journals since they are very special
filter(pr_type_clean != "Not blinded") %>%
mutate(pr_type_clean = paste0("pr_type-", pr_type_clean),
coreview_email = paste0("coreview-", coreview_email),
# opr_indenties_author_clean = paste0("reviewer_identities-", opr_indenties_author_clean),
preprint_version_clean = paste0("preprint_version-", preprint_version_clean),
preprint_citation_clean = paste0("preprint_citation-", preprint_citation_clean)) %>%
ca::mjca(supcol = c(5))
summary(multiple_ca)
multiple_ca %>%
plot_ca(dimensions = c(1, 2)) +
coord_fixed()
```
This looks intelligble, but lets try one more time with this crude variable
```{r, fig.width=10, fig.height=8}
multiple_ca <- refined_with_areas %>%
mutate(preprint_version_clean = case_when(
str_detect(preprint_version, "Unsure") ~ "Unsure",
str_detect(preprint_version, "Any .*? or") ~ "Other",
str_detect(preprint_version, "Other|Unclear") ~ "Other",
str_detect(preprint_version, "None") ~ "None",
str_detect(preprint_version, "First sub") ~ "Yes",
str_detect(preprint_version, "After peer re") ~ "Yes",
str_detect(preprint_version, "Any|any") ~ "Yes",
str_detect(preprint_version, "No") ~ "No policy"),
preprint_citation_clean = case_when(
str_detect(preprint_citation, "Not spec") ~ "Not specified",
str_detect(preprint_citation, "Unsure") ~ "Unsure",
str_detect(preprint_citation, "No") ~ "No",
str_detect(preprint_citation, "only in the text") ~ "Yes",
str_detect(preprint_citation, "reference list") ~ "Yes",
is.na(preprint_citation) ~ NA_character_,
TRUE ~ "Other"),
opr_indenties_author_clean = case_when(
str_detect(opr_indenties_author, "Conditional") ~ "Conditional",
str_detect(str_to_lower(opr_indenties_author), "not spec") ~ "Not specified",
str_detect(opr_indenties_author, "Optional") ~ "Optional",
TRUE ~ opr_indenties_author),
coreview_email = case_when(
coreview_email == "unsure" ~ "Unsure",
# lump the two not specified to unsure, since this is similar in this
# instance
coreview_email == "Not specified" ~ "Unsure",
TRUE ~ coreview_email)
) %>%
select(pr_type_clean, coreview_email, opr_indenties_author_clean,
preprint_version_clean, preprint_citation_clean, area) %>%
# Filter out these journals since they are very special
filter(pr_type_clean != "Not blinded") %>%
mutate(pr_type_clean = paste0("pr_type-", pr_type_clean),
coreview_email = paste0("coreview-", coreview_email),
opr_indenties_author_clean = paste0("reviewer_identities-", opr_indenties_author_clean),
preprint_version_clean = paste0("preprint_version-", preprint_version_clean),
preprint_citation_clean = paste0("preprint_citation-", preprint_citation_clean)) %>%
ca::mjca(supcol = c(6))
summary(multiple_ca)
multiple_ca %>%
plot_ca(dimensions = c(1, 2)) +
coord_fixed()
```
```{r, fig.width=10, fig.height=8}
# try with ca
start_data <- refined %>%
mutate(preprint_version_clean = case_when(
str_detect(preprint_version, "Unsure") ~ "Unsure",
str_detect(preprint_version, "Any .*? or") ~ "Other",
str_detect(preprint_version, "Other|Unclear") ~ "Other",
str_detect(preprint_version, "None") ~ "None",
str_detect(preprint_version, "First sub") ~ "Yes",
str_detect(preprint_version, "After peer re") ~ "Yes",
str_detect(preprint_version, "Any|any") ~ "Yes",
str_detect(preprint_version, "No") ~ "No policy"),
preprint_citation_clean = case_when(
str_detect(preprint_citation, "Not spec") ~ "Not specified",
str_detect(preprint_citation, "Unsure") ~ "Unsure",
str_detect(preprint_citation, "No") ~ "No",
str_detect(preprint_citation, "only in the text") ~ "Yes",
str_detect(preprint_citation, "reference list") ~ "Yes",
is.na(preprint_citation) ~ NA_character_,
TRUE ~ "Other"),
opr_indenties_author_clean = case_when(
str_detect(opr_indenties_author, "Conditional") ~ "Conditional",
str_detect(str_to_lower(opr_indenties_author), "not spec") ~ "Not specified",
str_detect(opr_indenties_author, "Optional") ~ "Optional",
TRUE ~ opr_indenties_author),
coreview_email = case_when(
coreview_email == "unsure" ~ "Unsure",
# lump the two not specified to unsure, since this is similar in this
# instance
coreview_email == "Not specified" ~ "Unsure",
TRUE ~ coreview_email)
) %>%
select(pr_type_clean, coreview_email, opr_indenties_author_clean,
preprint_version_clean, preprint_citation_clean) %>%
# Filter out these journals since they are very special
filter(pr_type_clean != "Not blinded") %>%
mutate(pr_type_clean = paste0("pr_type-", pr_type_clean),
coreview_email = paste0("coreview-", coreview_email),
opr_indenties_author_clean = paste0("reviewer_identities-", opr_indenties_author_clean),
preprint_version_clean = paste0("preprint_version-", preprint_version_clean),
preprint_citation_clean = paste0("preprint_citation-", preprint_citation_clean))
obj1 <- with(start_data, table(coreview_email, pr_type_clean))
obj2 <- with(start_data, table(opr_indenties_author_clean, pr_type_clean))
obj3 <- with(start_data, table(preprint_version_clean, pr_type_clean))
obj4 <- with(start_data, table(preprint_citation_clean, pr_type_clean))
rbind(obj1, obj2, obj3, obj4) %>%
ca::ca(suprow = c(13, 17)) %>%
plot_ca() +
coord_fixed()
```
```{r, fig.width=10, fig.height=8}
# try with ca
start_data <- refined_with_areas %>%
mutate(preprint_version_clean = case_when(
str_detect(preprint_version, "Unsure") ~ "Unsure",
str_detect(preprint_version, "Any .*? or") ~ "Other",
str_detect(preprint_version, "Other|Unclear") ~ "Other",
str_detect(preprint_version, "None") ~ "None",
str_detect(preprint_version, "First sub") ~ "Yes",
str_detect(preprint_version, "After peer re") ~ "Yes",
str_detect(preprint_version, "Any|any") ~ "Yes",
str_detect(preprint_version, "No") ~ "No policy"),
preprint_citation_clean = case_when(
str_detect(preprint_citation, "Not spec") ~ "Not specified",
str_detect(preprint_citation, "Unsure") ~ "Unsure",
str_detect(preprint_citation, "No") ~ "No",
str_detect(preprint_citation, "only in the text") ~ "Yes",
str_detect(preprint_citation, "reference list") ~ "Yes",
is.na(preprint_citation) ~ NA_character_,
TRUE ~ "Other"),
opr_indenties_author_clean = case_when(
str_detect(opr_indenties_author, "Conditional") ~ "Conditional",
str_detect(str_to_lower(opr_indenties_author), "not spec") ~ "Not specified",
str_detect(opr_indenties_author, "Optional") ~ "Optional",
TRUE ~ opr_indenties_author),
coreview_email = case_when(
# coreview_email == "unsure" ~ "Unsure",
# # lump the two not specified to unsure, since this is similar in this
# # instance
# coreview_email == "Not specified" ~ "Unsure",
str_detect(coreview_email, "Yes|No") ~ "Has policy",
TRUE ~ "Has no policy")
) %>%
select(pr_type_clean, coreview_email, opr_indenties_author_clean,
preprint_version_clean, preprint_citation_clean, area) %>%
# Filter out these journals since they are very special
filter(pr_type_clean != "Not blinded") %>%
mutate(pr_type_clean = paste0("pr_type-", pr_type_clean),
coreview_email = paste0("coreview-", coreview_email),
opr_indenties_author_clean = paste0("reviewer_identities-", opr_indenties_author_clean),
preprint_version_clean = paste0("preprint_version-", preprint_version_clean),
preprint_citation_clean = paste0("preprint_citation-", preprint_citation_clean))
obj1 <- with(start_data, table(coreview_email, area))
obj2 <- with(start_data, table(opr_indenties_author_clean, area))
obj3 <- with(start_data, table(preprint_version_clean, area))
obj4 <- with(start_data, table(preprint_citation_clean, area))
obj5 <- with(start_data, table(pr_type_clean, area))
# look at chisq differences
res <- rbind(obj1, obj3, obj4, obj5) %>% chisq.test()
res
rbind(obj1, obj3, obj4, obj5) %>% questionr::cramer.v()
ca_out <- rbind(obj1, obj3, obj4, obj5) %>%
ca::ca()
ca_out %>%
plot_ca(dimensions = c(1, 2)) +
coord_fixed() +
scale_color_manual(values = c("Zeilenprofil" = "#1B9E77", "Spaltenprofil" = "#D95F02"))
```
First axis is distinction between SSH and sciences. Second axis is more
difficult in terms of what it means. It also has not that much inertia, thus
being not very influential
```{r, fig.width=8, fig.height=12}
ca_out %>%
plot_ca(dimensions = c(1, 2), map = "colprincipal") +
coord_fixed() +
scale_color_manual(values = c("Zeilenprofil" = "#1B9E77", "Spaltenprofil" = "#D95F02"))
```
```{r}
summary(ca_out)
ca_out
```
Axes are mainly determined by peer review policy. Maybe remove this variable to
bring out mor subtle and potentialy more meaningful answers regarding the key
topics (that SSH have double blind and Sciences have single blind seems to be
well established)
```{r, fig.width=10, fig.height=8}
# try without peer review type
# obj2, obj3, obj4
ca_out <- rbind(obj1, obj3, obj4) %>%
ca::ca()
ca_out %>%
plot_ca(dimensions = c(1, 2), map = "rowprincipal") +