forked from axinc-ai/ailia-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmobilenetv2.py
executable file
·147 lines (117 loc) · 3.82 KB
/
mobilenetv2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import sys
import time
import cv2
import ailia
import mobilenetv2_labels
# import original modules
sys.path.append('../../util')
from utils import get_base_parser, update_parser # noqa: E402
from model_utils import check_and_download_models # noqa: E402
from image_utils import load_image # noqa: E402
from classifier_utils import plot_results, print_results # noqa: E402
import webcamera_utils # noqa: E402
# ======================
# Parameters 1
# ======================
IMAGE_PATH = 'clock.jpg'
IMAGE_HEIGHT = 224
IMAGE_WIDTH = 224
MAX_CLASS_COUNT = 3
SLEEP_TIME = 0
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser(
'ImageNet classification Model', IMAGE_PATH, None
)
parser.add_argument(
'-n', '--normal',
action='store_true',
help='By default, the optimized model is used, but with this option, ' +
'you can switch to the normal (not optimized) model'
)
args = update_parser(parser)
# ======================
# Parameters 2
# ======================
MODEL_NAME = 'mobilenetv2_1.0'
if args.normal:
WEIGHT_PATH = f'{MODEL_NAME}.onnx'
MODEL_PATH = f'{MODEL_NAME}.onnx.prototxt'
else:
WEIGHT_PATH = f'{MODEL_NAME}.opt.onnx'
MODEL_PATH = f'{MODEL_NAME}.opt.onnx.prototxt'
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/mobilenetv2/'
# ======================
# Main functions
# ======================
def recognize_from_image():
# prepare input data
input_data = load_image(
args.input,
(IMAGE_HEIGHT, IMAGE_WIDTH),
normalize_type='ImageNet',
gen_input_ailia=True
)
# net initialize
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id)
# inference
print('Start inference...')
if args.benchmark:
print('BENCHMARK mode')
for i in range(5):
start = int(round(time.time() * 1000))
preds_ailia = net.predict(input_data)
end = int(round(time.time() * 1000))
print(f'\tailia processing time {end - start} ms')
else:
preds_ailia = net.predict(input_data)
print_results(preds_ailia, mobilenetv2_labels.imagenet_category)
print('Script finished successfully.')
def recognize_from_video():
# net initialize
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id)
capture = webcamera_utils.get_capture(args.video)
# create video writer if savepath is specified as video format
if args.savepath is not None:
f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
save_h, save_w = webcamera_utils.calc_adjust_fsize(
f_h, f_w, IMAGE_HEIGHT, IMAGE_WIDTH
)
writer = webcamera_utils.get_writer(args.savepath, save_h, save_w)
else:
writer = None
while(True):
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
input_image, input_data = webcamera_utils.preprocess_frame(
frame, IMAGE_HEIGHT, IMAGE_WIDTH, normalize_type='ImageNet'
)
# Inference
preds_ailia = net.predict(input_data)
plot_results(
input_image, preds_ailia, mobilenetv2_labels.imagenet_category
)
cv2.imshow('frame', input_image)
time.sleep(SLEEP_TIME)
# save results
if writer is not None:
writer.write(input_image)
capture.release()
cv2.destroyAllWindows()
if writer is not None:
writer.release()
print('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
if args.video is not None:
# video mode
recognize_from_video()
else:
# image mode
recognize_from_image()
if __name__ == '__main__':
main()