forked from axinc-ai/ailia-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolov1-tiny.py
executable file
·160 lines (132 loc) · 3.89 KB
/
yolov1-tiny.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import sys
import time
import cv2
import ailia
# import original modules
sys.path.append('../../util')
from utils import get_base_parser, update_parser # noqa: E402
from model_utils import check_and_download_models # noqa: E402
from detector_utils import plot_results, load_image # noqa: E402
import webcamera_utils # noqa: E402
# ======================
# Parameters
# ======================
WEIGHT_PATH = 'yolov1-tiny.caffemodel'
MODEL_PATH = 'yolov1-tiny.prototxt'
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/yolov1-tiny/'
IMAGE_PATH = 'couple.jpg'
SAVE_IMAGE_PATH = 'output.png'
IMAGE_HEIGHT = 448 # for video mode
IMAGE_WIDTH = 448 # for video mode
VOC_CATEGORY = [
"aeroplane",
"bicycle",
"bird",
"boat",
"bottle",
"bus",
"car",
"cat",
"chair",
"cow",
"diningtable",
"dog",
"horse",
"motorbike",
"person",
"pottedplant",
"sheep",
"sofa",
"train",
"tvmonitor"
]
THRESHOLD = 0.2
IOU = 0.45
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser('Yolov1 tiny model', IMAGE_PATH, SAVE_IMAGE_PATH)
args = update_parser(parser)
# ======================
# Main functions
# ======================
def recognize_from_image():
# prepare input data
img = load_image(args.input)
print(f'input image shape: {img.shape}')
# net initialize
detector = ailia.Detector(
MODEL_PATH,
WEIGHT_PATH,
len(VOC_CATEGORY),
format=ailia.NETWORK_IMAGE_FORMAT_RGB,
channel=ailia.NETWORK_IMAGE_CHANNEL_FIRST,
range=ailia.NETWORK_IMAGE_RANGE_S_FP32,
algorithm=ailia.DETECTOR_ALGORITHM_YOLOV1,
env_id=args.env_id,
)
# inference
print('Start inference...')
if args.benchmark:
print('BENCHMARK mode')
for i in range(5):
start = int(round(time.time() * 1000))
detector.compute(img, THRESHOLD, IOU)
end = int(round(time.time() * 1000))
print(f'\tailia processing time {end - start} ms')
else:
detector.compute(img, THRESHOLD, IOU)
# plot result
res_img = plot_results(detector, img, VOC_CATEGORY)
cv2.imwrite(args.savepath, res_img)
print('Script finished successfully.')
def recognize_from_video():
# net initialize
detector = ailia.Detector(
MODEL_PATH,
WEIGHT_PATH,
len(VOC_CATEGORY),
format=ailia.NETWORK_IMAGE_FORMAT_RGB,
channel=ailia.NETWORK_IMAGE_CHANNEL_FIRST,
range=ailia.NETWORK_IMAGE_RANGE_S_FP32,
algorithm=ailia.DETECTOR_ALGORITHM_YOLOV1,
env_id=args.env_id,
)
capture = webcamera_utils.get_capture(args.video)
# create video writer if savepath is specified as video format
if args.savepath != SAVE_IMAGE_PATH:
writer = webcamera_utils.get_writer(
args.savepath, IMAGE_HEIGHT, IMAGE_WIDTH
)
else:
writer = None
while(True):
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
_, resized_img = webcamera_utils.adjust_frame_size(
frame, IMAGE_HEIGHT, IMAGE_WIDTH
)
img = cv2.cvtColor(resized_img, cv2.COLOR_RGB2BGRA)
detector.compute(img, THRESHOLD, IOU)
res_img = plot_results(detector, resized_img, VOC_CATEGORY, False)
cv2.imshow('frame', res_img)
# save results
if writer is not None:
writer.write(res_img)
capture.release()
cv2.destroyAllWindows()
if writer is not None:
writer.release()
print('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
if args.video is not None:
# video mode
recognize_from_video()
else:
# image mode
recognize_from_image()
if __name__ == '__main__':
main()