forked from rasbt/LLMs-from-scratch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfind-near-duplicates.py
153 lines (125 loc) · 5.08 KB
/
find-near-duplicates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
import argparse
import json
import re
from sklearn import __version__ as sklearn_version
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
# Sample JSON dataset
example_data = [
{"instruction": "What is the capital of Italy?",
"input": "", "output": "The capital of Italy is Rome."
},
{"instruction": "What's the capital city of Italy?",
"input": "", "output": "The capital city is Rome."
},
{"instruction": "Identify the main verb in the sentence: 'The cat sleeps on the couch.'",
"input": "", "output": "The verb is 'sleeps'."
},
{"instruction": "Identify the verb in the following sentence: The cat sleeps on the couch.",
"input": "", "output": "The verb in the sentence is \"sleeps.\""
},
# ...
]
def preprocess_text(text):
# Lowercase the text
text = text.lower()
# Remove punctuation
text = re.sub(r'[^\w\s]', '', text)
return text
def find_near_duplicates(json_data, threshold=0.75, key="instruction"):
"""The higher the threshold, the more similar the texts have to be to match"""
# Extract instructions
text = [preprocess_text(item[key]) for item in json_data if item[key]]
near_duplicates = []
indices_to_remove = set()
if not text:
return {}, near_duplicates
# Vectorize the text data
vectorizer = TfidfVectorizer(stop_words=None, analyzer='char', ngram_range=(1, 3))
tfidf_matrix = vectorizer.fit_transform(text)
# Compute cosine similarity between each pair of entries
cos_sim_matrix = cosine_similarity(tfidf_matrix)
# Find pairs of near-duplicate instructions based on the threshold
for i in range(len(cos_sim_matrix)):
for j in range(i+1, len(cos_sim_matrix)):
if cos_sim_matrix[i, j] > threshold:
if len(json_data[i][key]) <= 1 or len(json_data[j][key]) <= 1:
continue
near_duplicates.append((json_data[i], json_data[j], cos_sim_matrix[i, j]))
if key in ("input", "output"): # Don't remove duplicates based on the instruction
indices_to_remove.add(j) # Mark the second entry for removal
# Remove the near-duplicate entries
filtered_json_data = [item for index, item in enumerate(json_data) if index not in indices_to_remove]
return filtered_json_data, near_duplicates
def find_print_and_remove_near_duplicates(json_data, remove_duplicates=False, threshold=0.75):
"""
Searches each key in the first JSON object for duplicates across a list of JSON objects.
Prints the duplicates if found.
"""
for key in json_data[0].keys():
if remove_duplicates:
json_data, near_duplicates = find_near_duplicates(json_data, key=key, threshold=threshold)
else:
_, near_duplicates = find_near_duplicates(json_data, key=key, threshold=threshold)
separator = 50 * '='
print(f"\n\n{separator}\nSearching '{key}' for duplicates ...\n{separator}")
if not near_duplicates:
print("No duplicates found")
else:
for dup in near_duplicates:
print(
f"Duplicate pair found with similarity {dup[2]:.2f}:\n"
f"1. {dup[0][key]}\n2. {dup[1][key]}\n"
)
return json_data
if __name__ == "__main__":
print("scikit-learn version:", sklearn_version)
parser = argparse.ArgumentParser()
parser.add_argument(
"--json_file",
type=str,
help=("Path to the dataset JSON file")
)
parser.add_argument(
"--threshold",
type=float,
default=0.9,
help=("A sensitivity threshold between 0 and 1 where 1 is strictest")
)
parser.add_argument(
"--remove_duplicates",
action='store_true',
default=False,
help=(
"Removes duplicates based on the 'input' or 'output' keys "
" (but not the 'instruction') and saves the cleaned JSON file as --json_output_file"
)
)
parser.add_argument(
"--json_output_file",
type=str,
help=("Path to the dataset JSON file")
)
args = parser.parse_args()
if args.remove_duplicates and not args.json_output_file:
raise ValueError(
"Provide an output file via --json_output_file "
"to save the cleaned JSON data."
)
if not args.json_file:
json_data = example_data
else:
with open(args.json_file, "r") as file:
json_data = json.load(file)
json_data = find_print_and_remove_near_duplicates(
json_data=json_data,
remove_duplicates=args.remove_duplicates,
threshold=args.threshold
)
if args.remove_duplicates:
with open(args.json_output_file, "w") as file:
json.dump(json_data, file, indent=4)