Gene networks

Why networks

Data lends itself to network analysis (time series, developmental, large numbers of samples)

- Complementary to DE
- Centrality metrics can provide other insights
- Gene clusters with associations

How are networks inferred

Vast number of options Correlation (Pearson, Spearman) Mutual Information and extensions (CLR, ARACNE) Regression (TIGRESS, GENIE3) Other (PLSNET, ANOVERENCE)

Pearson correlation

Linear relationship (parametric)

x and *y* behave the same in a linear manner

Spearman correlation

As Pearson, but computed on ranks

Also detects nonlinear relationships

x and *y* behave the same in a linear or nonlinear manner

What about these two genes

Complex interactions are harder to detect

DREAM5 consortium

Benchmark of GRN predictions

Different groups of methods tend to detect some interactions better than others

Combining all networks into a meta-network was better than any single method

Marbach, D., Costello, J. C., Küffner, R., Vega, N. M., Prill, R. J., Camacho, D. M., ... Zimmer, R. (2012). Wisdom of crowds for robust gene network inference. *Nature Methods*, *9*(8), 796–804. https://doi.org/10.1038/nmeth.2016

Seidr makes life easier-ish

ANOVER-	Küffner et al., 2012	ANOVA	C++	C++	No	No
ENCE						
ARACNE	Margolin et al., 2006	MI + DPI	C++	C++	Yes	Yes
CLR	Faith et al., 2007;	MI + CLR	MATLAB /	C++	No	Yes
	Daub et al., 2004		C / C++			
Elastic Net	Ruyssinck et al.,	Elastic Net Re-	R (glmnet)	C++ (glm-	No	Yes
ensemble	2014	gression		net)		
GENIE3	Huynh-Thu et al.,	Random Forest	R (random-	C++	No	Yes
	2010	Regression	Forest)	(ranger)		
NARROMI	Zhang et al., 2013	MI + Linear	MATLAB	C++ (glpk)	No	Yes
		Programming				
Partial Cor-	Schäfer and Strim-	Correlation	R	C++	No	No
relation	mer, 2005					
Pearson	NA	Correlation	NA	C++	No	No
Correlation						
PLSNET	Guo et al., 2016	PLS	MATLAB	C++	No	Yes
Spearman	NA	Correlation	NA	C++	No	No
Correlation						
SVM ensem-	Ruyssinck et al.,	SVM regression	R (libsvm) /	C++ (lib-	No	Yes
ble	2014		С	svm, liblin-		
				ear)		
TIGRESS	Haury et al., 2012	LASSO Regres-	MATLAB /	C++ (glm-	No	Yes
		sion	R	net)		

Seidr workflow

Schiffthaler, B., Serrano, A., Delhomme, N., & Street, N. R. (2018). Seidr: A toolkit for calculation of crowd networks. *bioRxiv*, 250696. https://doi.org/10.1101/250696

OpenMPI enables cluster computing

Network centrality

- **A) Betweenness** Nodes that are placed in between others. Control flow
- **B) Closeness** Nodes that are placed most central. Can act quickly on other nodes
- **C) Eigenvector** Nodes that are connected to other important nodes and can influence the entire network
- **D) Degree** Nodes that have the most direct connections
- **E)** Harmonic Variant of closeness defined for disconnected graphs
- **F) Katz** Variant of eigenvector centrality as a measure of influence

https://en.wikipedia.org/wiki/Katz_centrality

Graph partitioning

Objective is to divide the graph into meaningful clusters

Only topology as input, not underlying data

We use InfoMap, which partitions via random walks

Rovall, M., & Bergstrom, C. . (2008). Maps of Random Walks on Complex Network Reveal Community Structure. In *Proceedings of the National Academy of Sciences,* (p. 105(4), 1118-1123.).

