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What to do?

* Trim the reads?
e Start over —try sequencing it again?



rontiers in ORIGINAL RESEARCH ARTICLE
GENETICS published: 31 January 2014

doi: 10.3389/fgene.2014.00013

On the optimal trimming of high-throughput mRNA
sequence data

Matthew D. MacManes™?*

" Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
2 Hubbard Center for Genome Studies, Durham, NH, USA

“...researchers interested in assembling transcriptomes de novo

should elect for a much gentler quality trimming, or no trimming
at all.”

“... trimming at PHRED=2 or PHRED=5 optimizes assembly quality.”



Aggressive Trimming may be harmful, whereas light trimming could be beneficial

Fewer errors in the assembly Fewer unique kmers
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Light trimming doesn’t reduce number of blast matches w/ higher sequencing depths.
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In silico normalization of reads




Impact of Normalization on De novo Full-length
Transcript Reconstruction
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Largely retain full-length reconstruction, but use less RAM and assemble much faster.

Haas et al., 2013



Quality Trimming and Normalization
via Trinity

o Quality Trimming using Trimmomatic:
o Trinity --trimmomatic

o Normalization of reads:
o Trinity --normalize_reads (now on by default!)

o You can do both in a single Trinity assembly run:
o Trinity --trimmomatic --normalize_reads



Fastqgc, trimming, and normalization
practical



