

Report

Wed 25 Mar 2015 good_sequence_short.txt

Summary

- Basic Statistics
- Per base sequence quality
- Per tile sequence quality
- Per sequence quality scores
- Per base sequence content
- Per sequence GC content
- Per base N content
- Sequence Length Distribution
- Sequence Duplication Levels
- Overrepresented sequences
- **Adapter Content**
- **Kmer Content**

Per base sequence quality

№FastQC Report

Wed 25 Mar 2015 bad_sequence.txt

Summary

- Basic Statistics
- Per base sequence quality
- Per tile sequence quality
- Per sequence quality scores
- Per base sequence content
- Per sequence GC content
- Per base N content
- Sequence Length Distribution
- Sequence Duplication Levels
- Overrepresented sequences
- Adapter Content
- Kmer Content

OPER DASE SEQUENCE QUALITY

What to do?

- Trim the reads?
- Start over try sequencing it again?

On the optimal trimming of high-throughput mRNA sequence data

Matthew D. MacManes 1,2*

- ¹ Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- ² Hubbard Center for Genome Studies, Durham, NH, USA

"... researchers interested in assembling transcriptomes de novo should elect for a much gentler quality trimming, or no trimming at all."

"... trimming at PHRED=2 or PHRED=5 optimizes assembly quality."

Aggressive Trimming may be harmful, whereas light trimming could be beneficial

Fewer errors in the assembly

Fewer unique kmers

Light trimming doesn't reduce number of blast matches w/ higher sequencing depths.

Normalized # of blast matches

Nucleotide errors / Mb

MacManes 2014

In silico normalization of reads

Impact of Normalization on *De novo* Full-length Transcript Reconstruction

Largely retain full-length reconstruction, but use less RAM and assemble much faster.

Quality Trimming and Normalization via Trinity

- Quality Trimming using Trimmomatic:
 - Trinity --trimmomatic
- O Normalization of reads:
 - Trinity --normalize_reads (now on by default!)
- You can do both in a single Trinity assembly run:
 - Trinity --trimmomatic --normalize_reads

Fastqc, trimming, and normalization practical