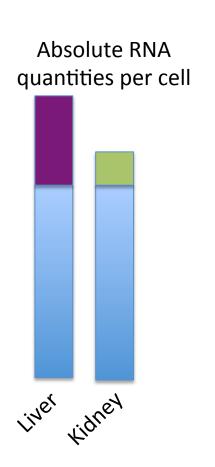
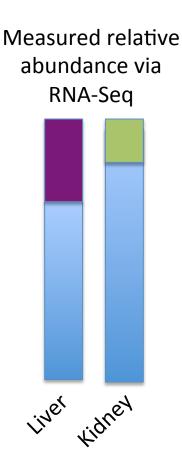
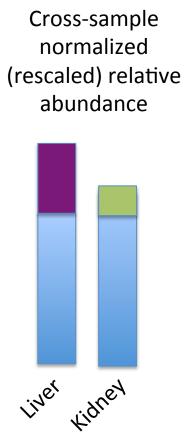
Comparing RNA-Seq Samples

Some Cross-sample Normalization May Be Required

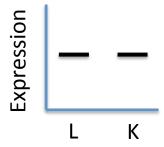
Why cross-sample normalization is important

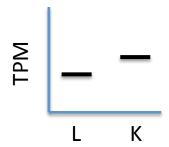


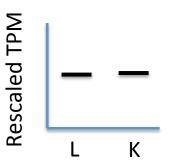




eg. Some housekeeping gene's expression level:







Cross-sample Normalization Required Otherwise, housekeeping genes look diff expressed due to sample composition differences

Subset of genes highly expressed

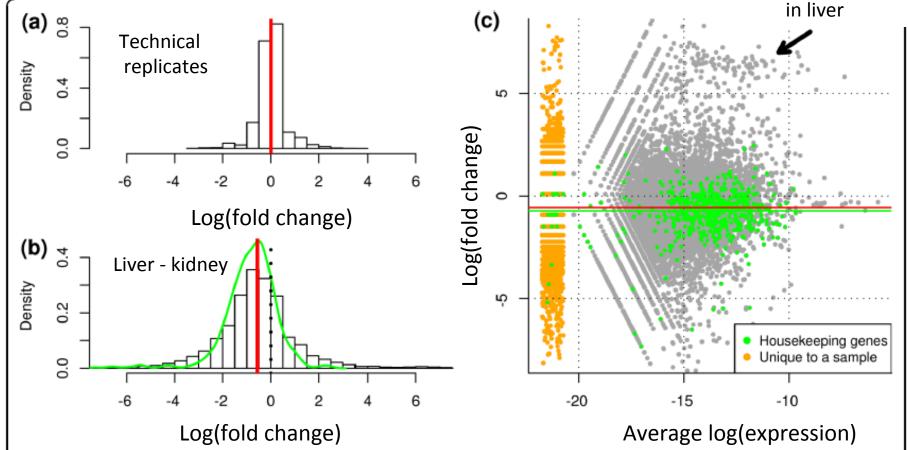
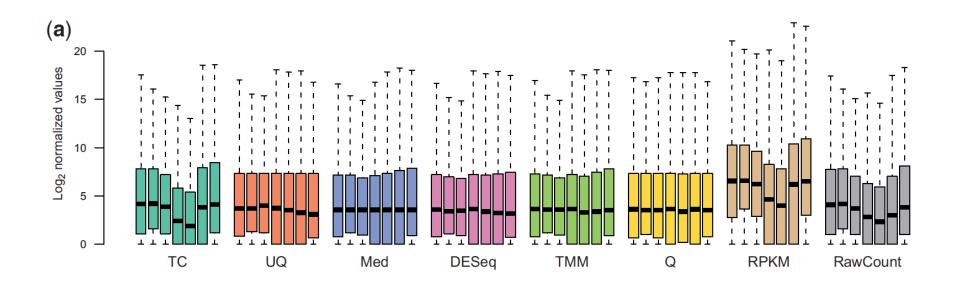


Figure 1 Normalization is required for RNA-seq data. Data from [6] comparing log ratios of **(a)** technical replicates and **(b)** liver versus kidney expression levels, after adjusting for the total number of reads in each sample. The green line shows the smoothed distribution of log-fold-changes of the housekeeping genes. **(c)** An M versus A plot comparing liver and kidney shows a clear offset from zero. Green points indicate 545 housekeeping genes, while the green line signifies the median log-ratio of the housekeeping genes. The red line shows the estimated TMM normalization factor. The smear of orange points highlights the genes that were observed in only one of the liver or kidney the overall bias in log-fold-changes.

Adapted from: Robinson and Oshlack, Genome Biology, 2010

Normalization methods for Illumina high-throughput RNA sequencing data analysis.



From "A comprehensive evaluation of normalization methods for Illumina high throughput RNA sequencing data analysis" Brief Bioinform. 2013 Nov;14(6):671-83 http://www.ncbi.nlm.nih.gov/pubmed/22988256

Differential Expression Analysis

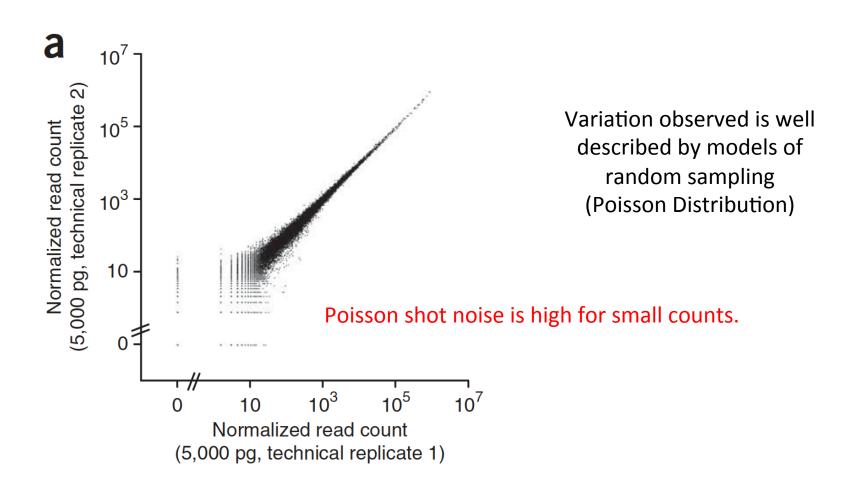
Differential Expression Analysis Involves

- Counting reads mapped to features
- Statistical significance testing

Beware of small counts leading to notable fold changes

	Sample_A	Sample_B	Fold_Change	Significant?
Gene A	1	2	2-fold	No
Gene B	100	200	2-fold	Yes

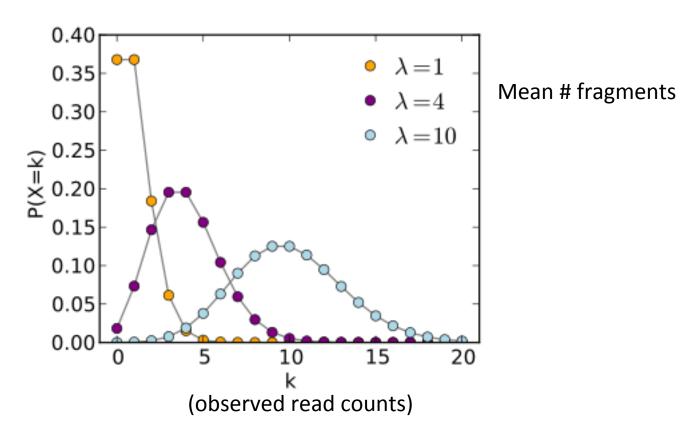
Variation Observed Between Technical Replicates



^{*} plot from Brennecke, et al. Nature Methods, 2013

Observed RNA-Seq Counts Result from Random Sampling of the Population of Reads

Technical variation in RNA-Seq counts per feature is well modeled by the Poisson distribution

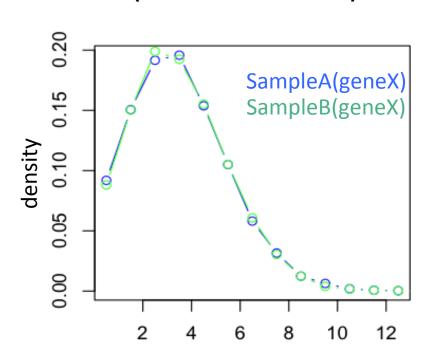


See: http://en.wikipedia.org/wiki/Poisson_distribution

Example: One gene*not* differentially expressed

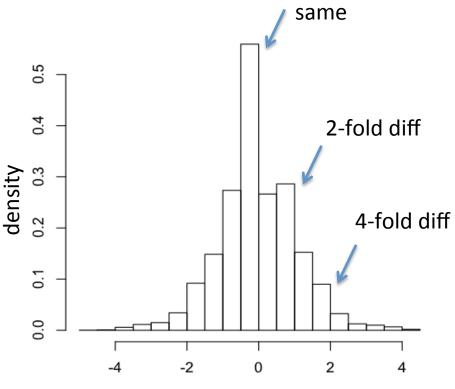
Example: SampleA(gene) = SampleB(gene) = 4 reads

Distribution of observed counts for single gene (under Poisson model)



(k) number of reads observed

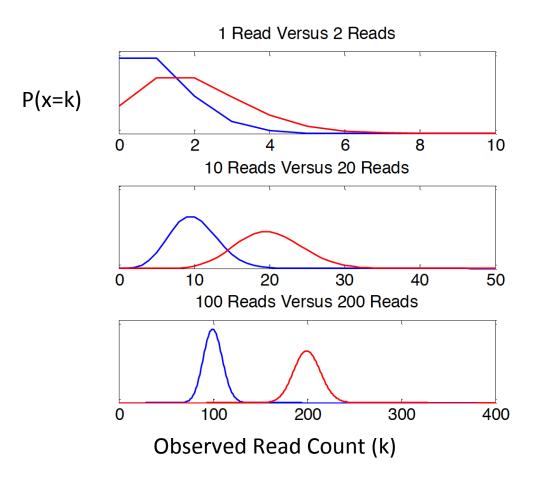
Dist. of log₂(fold change) values



 $x = log_2(SampleA/SampleB)$

Sequencing Depth Matters

Poisson distributions for counts based on **2-fold** expression differences



No confidence in 2-fold difference. Likely observed by chance.

High confidence in 2-fold difference. Unlikely observed by chance.

From: http://gkno2.tumblr.com/post/24629975632/thinking-about-rna-seq-experimental-design-for and from supplementary text of Busby et al., Bioinformatics, 2013

Greater Depth = More Statistical Power

Example: Single gene, reads sampled at different sequencing depths

Reads per sample	Sample A Number of reads	Sample B Number of reads	P-value (Fishers Exact Test)
100,000	1	2	1
1,000,000	10	20	0.099
10,000,000	100	200	8.0e-09

Technical vs. Biological Replicates

RNA-Seq Technical replicates aren't essential

(Technical variation is well-modeled by the Poisson distribution)

"We find that the Illumina sequencing data are highly replicable, with relatively little technical variation, and thus, for many purposes, it may suffice **to sequence each mRNA sample only once**" *Marioni et al., Genome Research, 2008*

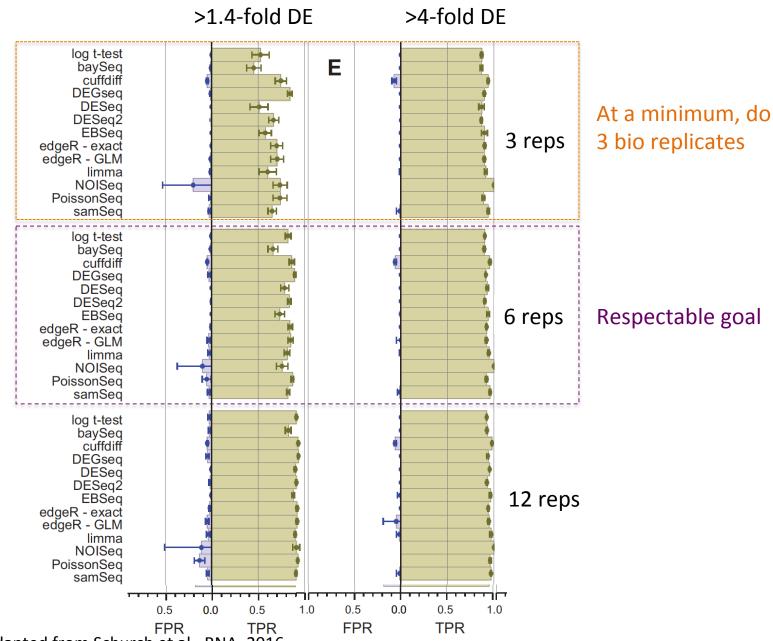
However, biological replicates *ARE* essential

total_variance = technical_variance + biological_variance

(Total variance well-modeled by negative binomial distribution)

"... at least six biological replicates should be used, rising to at least 12 when it is important to identify SDE genes for all fold changes." Schurch et al., RNA, 2016

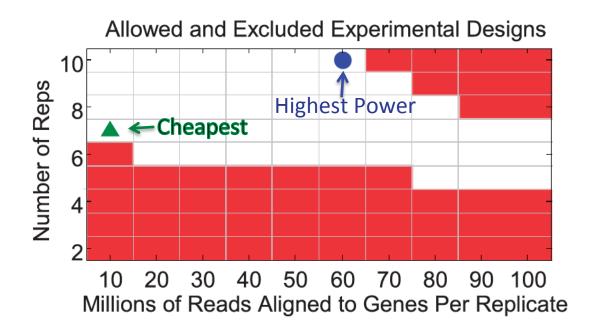
DE Accuracy Improves with Higher Biological Replication



^{*}Figure taken and adapted from Schurch et al., RNA, 2016

Planning Experiments: How many reads and how many replicates?

Input: max total reads, max total replicates, max total \$\$\$



Scotty: http://scotty.genetics.utah.edu/scotty.php

Busby et al., Bioinformatics, 2013

Tools for DE analysis with RNA-Seq

edgeR
ShrinkSeq
TSPM
DESeq
DESeq2
baySeq
Vsf
Limma/Voom
MBPSeq
NoiSeq
Cuffdiff

(italicized not in R/Bioconductor but stand-alone)

See: http://www.biomedcentral.com/1471-2105/14/91

A comparison of methods for differential expression analysis of RNA-seq data Soneson & Delorenzi, 2013

Typical output from DE analysis

TRINITY_DN876_c0_g1_i1
TRINITY_DN6470_c0_g1_i1
TRINITY_DN5186_c0_g1_i1
TRINITY_DN768_c0_g1_i1
TRINITY_DN70_c0_g1_i1
TRINITY_DN1587_c0_g1_i1
TRINITY_DN3236_c0_g1_i1
TRINITY_DN4631_c0_g1_i1
TRINITY_DN5082_c0_g5_i1
TRINITY_DN1789_c0_g3_i1
TRINITY_DN4204_c0_g1_i1
TRINITY_DN799_c0_g1_i1
TRINITY_DN196_c0_g2_i1
TRINITY_DN5041_c0_g1_i1
TRINITY_DN1619_c0_g1_i1
TRINITY_DN899_c0_g1_i1
TRINITY_DN324_c0_g2_i1
TRINITY_DN3241_c0_g1_i1
TRINITY_DN4379_c0_g1_i1
TRINITY_DN1919_c0_g1_i1
TRINITY_DN2504_c0_g1_i1

logFC
-7.15049572793027
-7.26777912190146
-7.85623682454322
7.72884741150304
-12.7646078189688
-5.89392061881667
-7.27029815068473
-7.45310693639574
-5.33154406167545
10.2032564835076
4.81030233739325
-4.22044475626154
4.60597918494257
-4.27126549355785
-4.47156415953777
-4.90914328409143
4.87160837667488
-4.77760618069256
3.85133572453294
4.05998814332136
-6.92417817059644

logCPM
10.6197708379285
7.03987604865422
9.18570464327063
9.7514619195169
7.86482982471445
9.07366563894607
8.02209568234202
6.91664918183241
10.6977538760467
7.32607652700285
9.88844409410644
6.9937398638711
9.86878463857276
9.70894399883
9.22535948721718
7.93768691394594
6.84850312231775
7.94111259715689
7.23712813663389
6.95937301668582
6.20370039359785

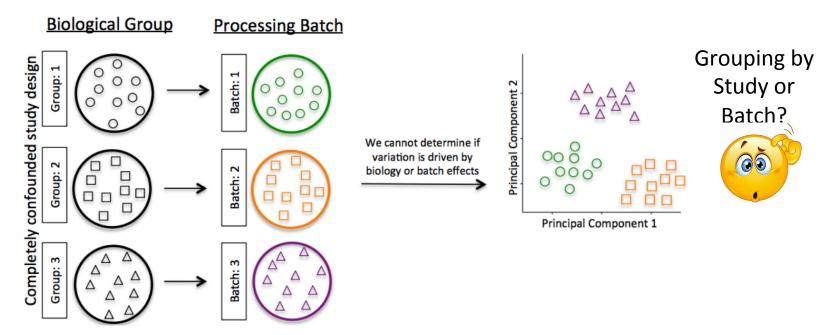
PValue
0
1.687485656951e-287
1.17049180235068e-278
4.32504881419265e-272
3.92853491279431e-253
6.32919557933429e-243
3.64955175271959e-235
4.30540921272851e-229
2.74243356676259e-225
1.44273728647186e-213
9.27180216086162e-205
1.24746518421083e-197
1.9819997623131e-192
1.8930437900069e-185
1.76766063029526e-181
1.11054513767547e-180
2.20092562166991e-179
1.60585457735621e-173
3.48140532848425e-164
1.8588621194715e-161
2.42022459856956e-160

	FDR
	0
	6.46813252309319e-284
8	2.99099671894011e-275
2	8.28895605240022e-269
3	6.02322972829624e-250
3	8.08660221852944e-240
5	3.99678053376405e-232
9	4.1256583780971e-226
5	2.33594396920022e-222
3	1.10600240380933e-210
5	6.46160321501501e-202
7	7.96922341846683e-195
	1.16877001368402e-189
	1.03657669244235e-182
1	9.03392426122899e-179
0	5.32089939088761e-178
9	9.92487989160089e-177
3	6.83915621667372e-171
4	1.4046554341137e-161
	7.12501850393425e-159
0	8.83497227268296e-158

Up vs. Down regulated

Avg. expression level

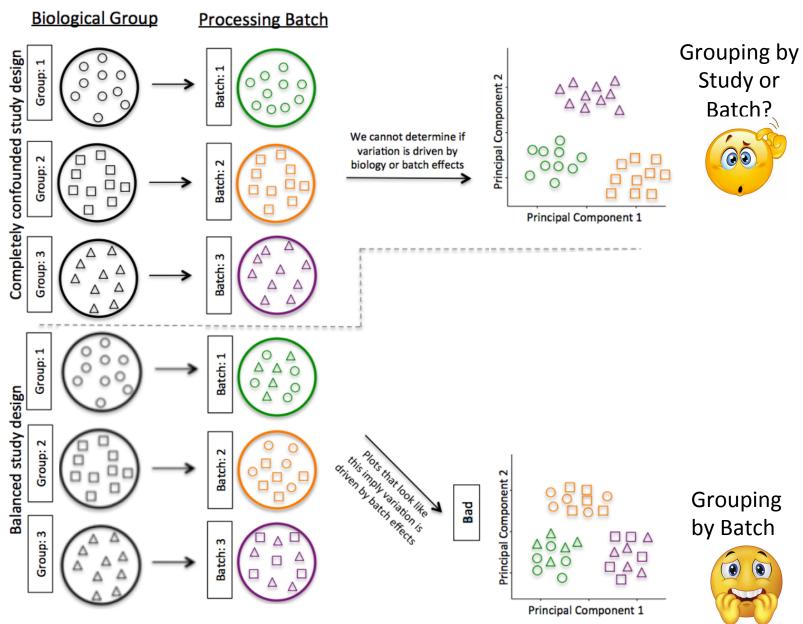
Avoid Batch Effects



Batch variable types:

- Times and dates
- Technician processing the samples
- Sequencing machine, or flow cell lane (Illumina)

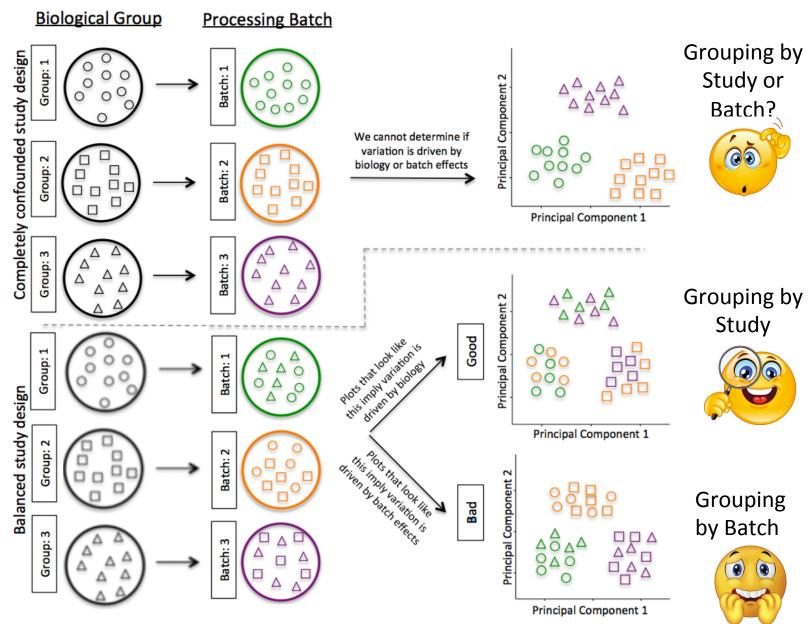
Avoid Batch Effects



Adapted from: Stephanie C. Hicks, Mingxiang Teng, Rafael A. Irizarry. https://www.biorxiv.org/content/early/2015/09/04/025528

(Explore Batch Removal Techniques)

Avoid Batch Effects



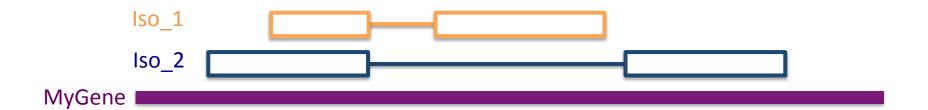
Adapted from: Stephanie C. Hicks, Mingxiang Teng, Rafael A. Irizarry. https://www.biorxiv.org/content/early/2015/09/04/025528

(Explore Batch Removal Techniques)

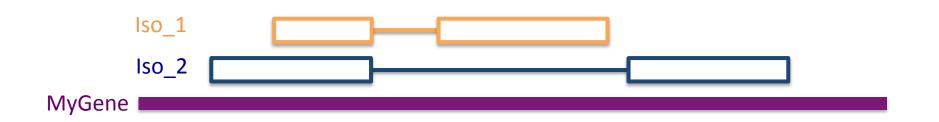
Flavors of Differential Expression Analyses

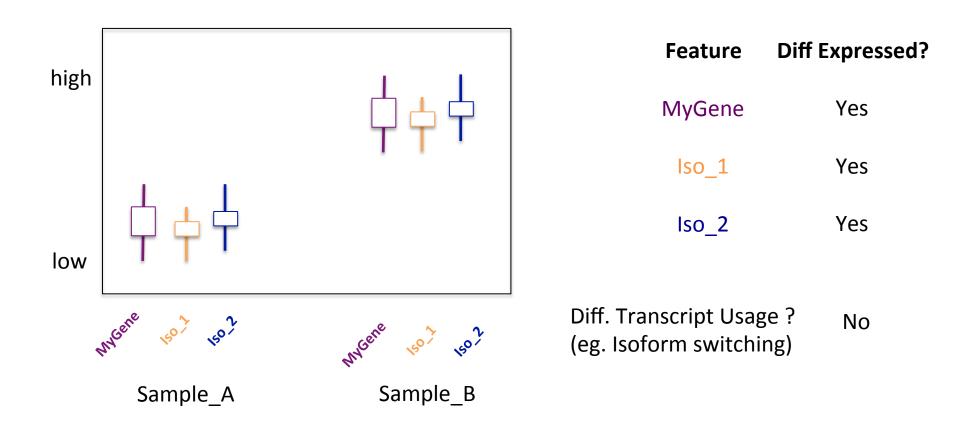
- Differential Gene Expression (DGE)
- Differential Transcript Expression (DTE)
- Differential Transcript Usage (DTU)
- Differential Exon Usage (DEU)

Differential Gene Expression (DGE) and Differential Transcript Expression (DTE) (Example 1)



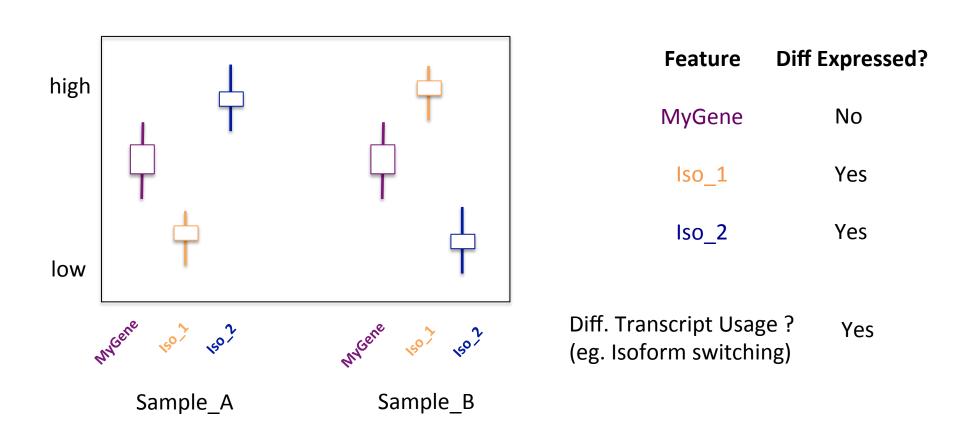
Differential Gene Expression (DGE) and Differential Transcript Expression (DTE) (Example 1)



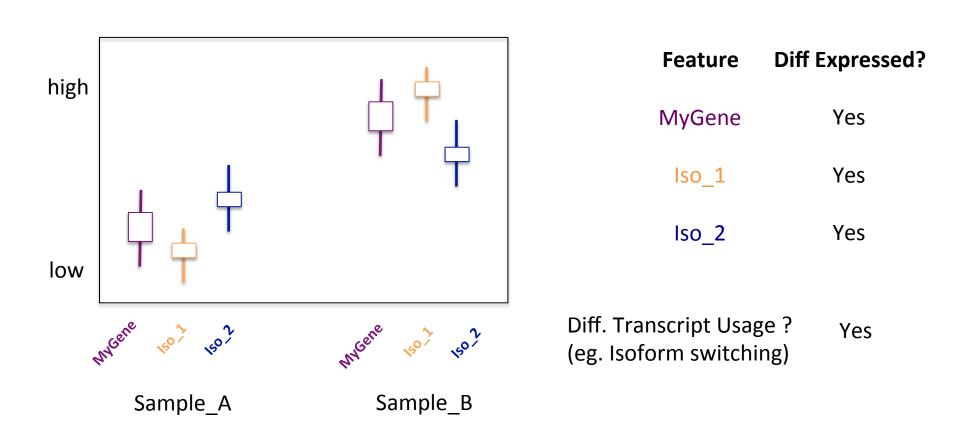


Differential Gene Expression (DGE) and Differential Transcript Expression (DTE) (Example 2)





Differential Gene Expression (DGE) and Differential Transcript Expression (DTE) (Example 3)



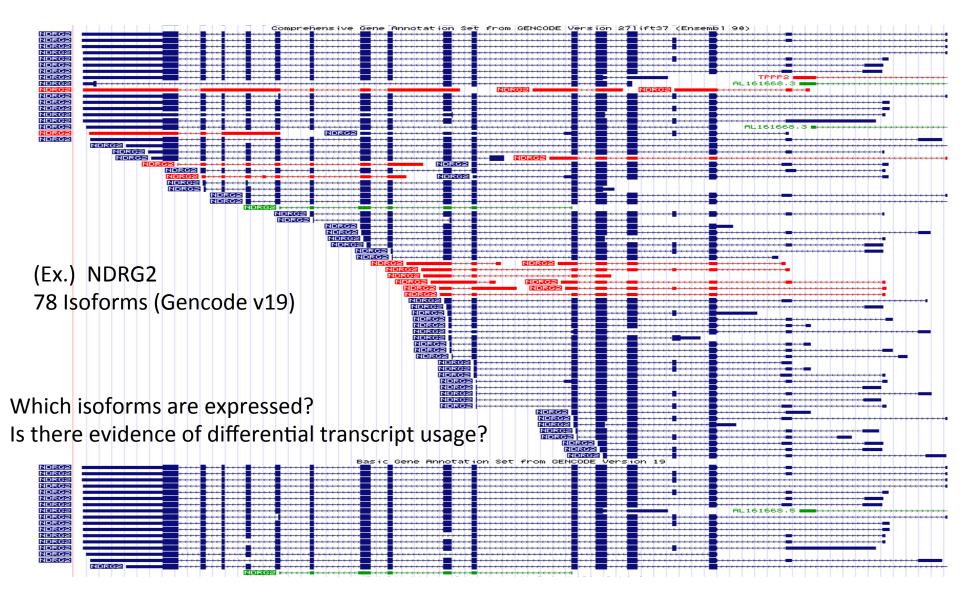
Differential Transcript Usage(DTU)
vs
Differential Gene Expression (DGE)
vs.
Differential Transcript Expression (DTE)

Office of the second of the se

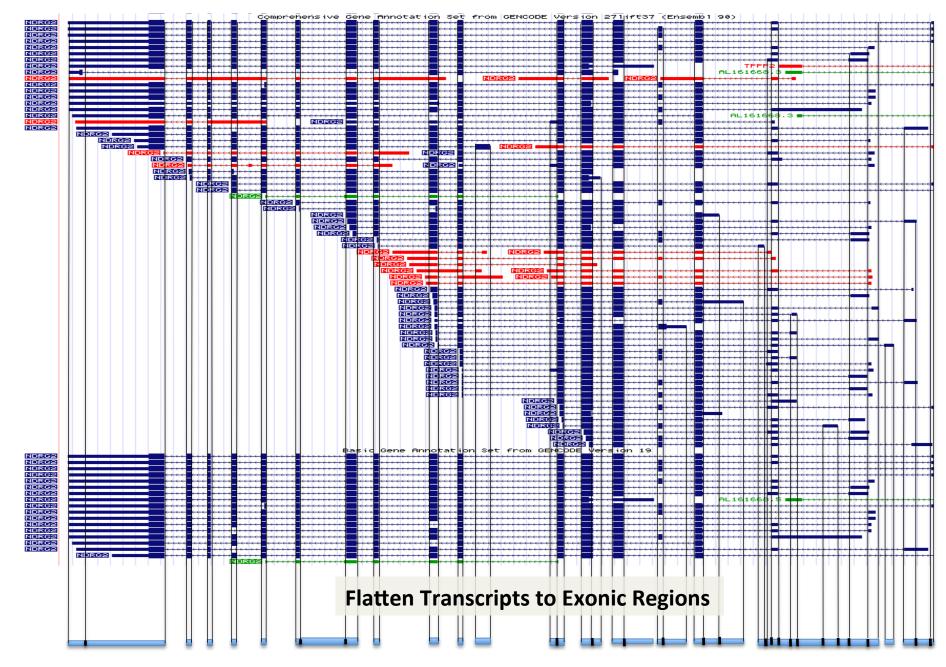
Differential gene expression (DGE)

Soneson C, Love MI and Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences [version 2]. F1000Research 2016, 4:1521 (doi: 10.12688/f1000research.7563.2)

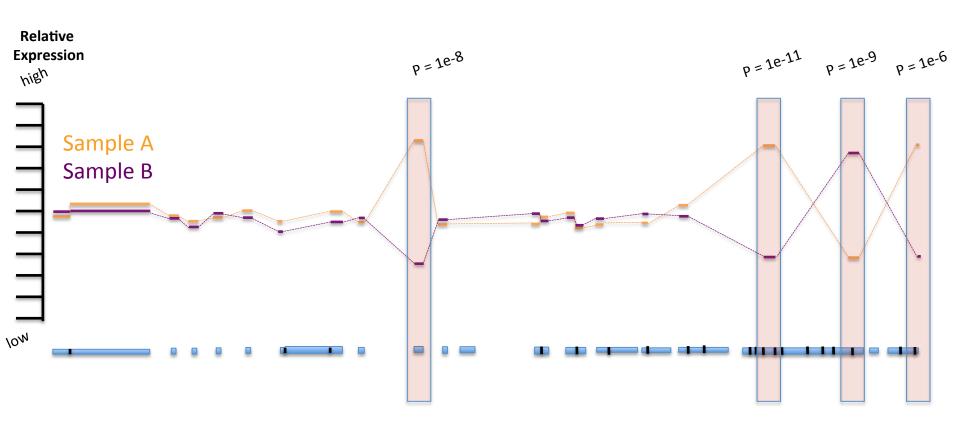
High Confidence Differential Transcript Expression is Difficult to Attain With Many Candidate Isoforms



Measure Differential Transcript Usage (DTU) via Differential Exon Usage (DEU)



Measure Differential Transcript Usage (DTU) via Differential Exon Usage (DEU)



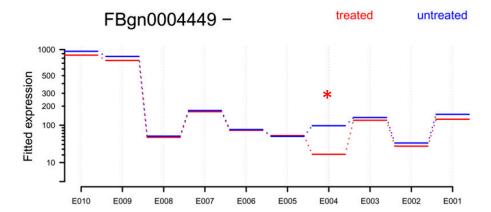
Genome Res. 2012 Oct; 22(10): 2008–2017. doi: 10.1101/gr.133744.111

PMCID: PMC3460195

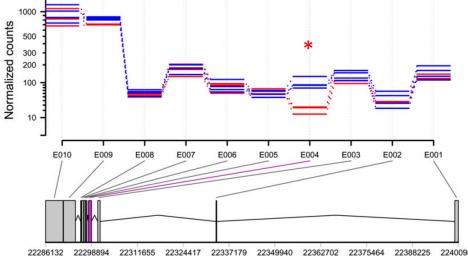
Detecting differential usage of exons from RNA-seq data

Simon Anders, 1,2 Alejandro Reyes, 1 and Wolfgang Huber

Averaged Replicates



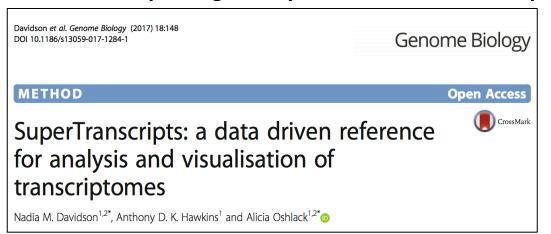
Each Replicate



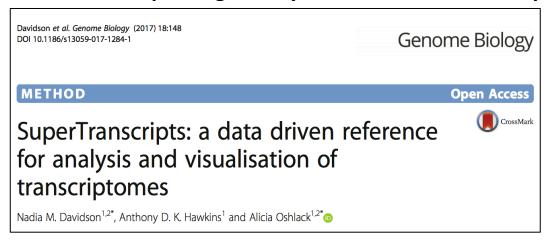
Flattened gene structure:

Figure 3. The treatment of knocking down the splicing factor *pasilla* affects the fourth exon (counting bin E004) of the gene *Ten-m* (CG5723). (*Top* panel) Fitted values according to the linear model; (*middle* panel) normalized counts for each sample; (*bottom* panel) flattened gene model. (Red) Data for knockdown samples; (blue) control.

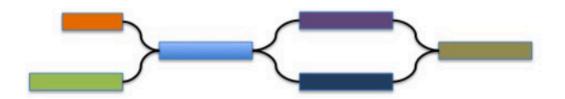
Enabling Differential Transcript Usage Analysis for De novo Transcriptome Assemblies



Enabling Differential Transcript Usage Analysis for De novo Transcriptome Assemblies

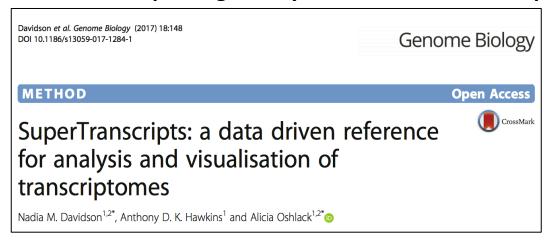


Transcript splice graph:

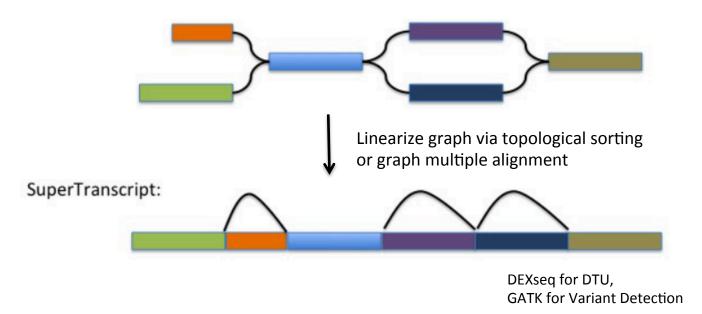


Similar method and protocols now integrated into Trinity: https://github.com/trinityrnaseq/trinityrnaseq/wiki/SuperTranscripts

Enabling Differential Transcript Usage Analysis for De novo Transcriptome Assemblies



Transcript splice graph:



Similar method and protocols now integrated into Trinity: https://github.com/trinityrnaseq/trinityrnaseq/wiki/SuperTranscripts

Further Pushing the Envelope with RNA-Seq Analysis

Audoux et al. Genome Biology (2017) 18:243
DOI 10.1186/s13059-017-1372-2

METHOD

Open Access

DE-kupl: exhaustive capture of biological variation in RNA-seq data through k-mer decomposition

Jérôme Audoux¹, Nicolas Philippe^{2,3}, Rayan Chikhi⁴, Mikaël Salson⁴, Mélina Gallopin⁵, Marc Gabriel^{5,6},

Jérémy Le Coz⁵, Emilie Drouineau⁵, Thérèse Commes^{1,2} and Daniel Gautheret^{5,6*}

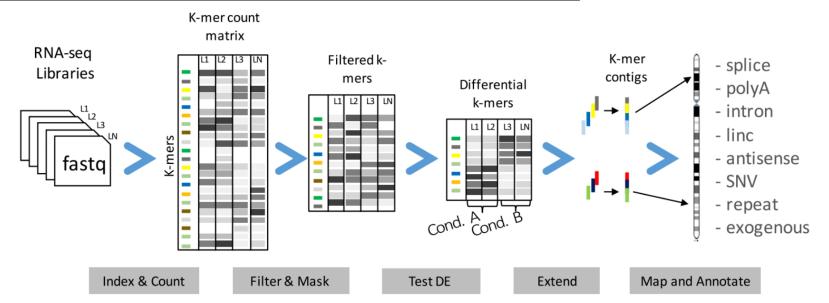
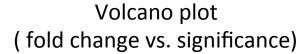
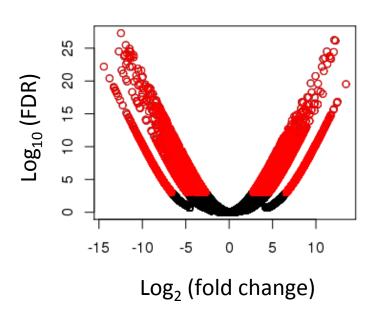


Fig. 4 The DE-kupl pipeline for the discovery and analysis of differentially expressed *k*-mers. First, Jellyfish is applied to count *k*-mers in all libraries. *k*-mers counts are then joined into a count matrix and filtered for low recurrence and matching to the reference transcriptome. Normalization factors are computed from raw *k*-mer counts and the differential expression procedure is applied. Finally, overlapping differentially expressed *k*-mers are extended into contigs and annotated based on their alignment to the reference and overlap with annotated genes

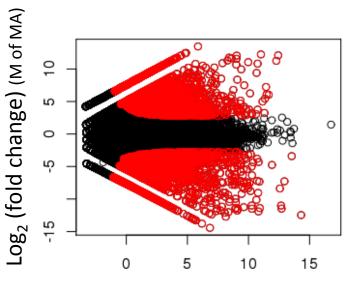
Visualization of DE results and Expression Profiling

Plotting Pairwise Differential Expression Data





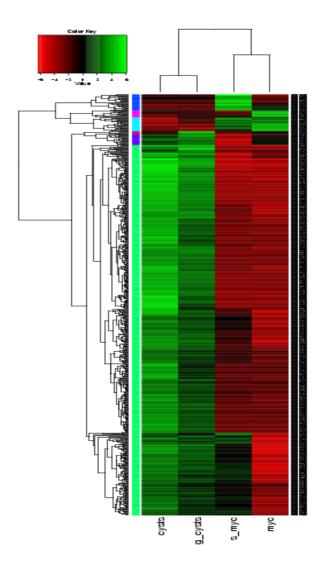
MA plot (abundance vs. fold change)



Log₂ Average Expression level (A of MA)

Significantly differently expressed transcripts have FDR <= 0.001 (shown in red)

Comparing Multiple Samples



Heatmaps provide an effective tool for navigating differential expression across multiple samples.

Clustering can be performed across both axes:

- -cluster transcripts with similar expression patters.
- -cluster samples according to similar expression values among transcripts.

Examining Patterns of Expression Across Samples

Can extract clusters of transcripts and examine them separately.

