
Comparing	RNA-Seq	Samples	

Some	Cross-sample	Normaliza5on	May	Be	Required	



Why	cross-sample	normaliza5on	is	important	
Absolute	RNA	

quan55es	per	cell	
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Cross-sample	Normaliza/on	Required	
Otherwise,	housekeeping	genes	look	diff	expressed		

due	to	sample	composi/on	differences	 Subset	of	genes	
highly	expressed	
in	liver	

Technical	
	replicates	

Liver	-	kidney	

Adapted	from:	Robinson	and	Oshlack,	Genome	Biology,	2010	
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Normaliza/on	methods	for	Illumina	high-throughput	RNA	
sequencing	data	analysis.	

From	“A	comprehensive	evalua5on	of	normaliza5on	methods	for	Illumina	high	
throughput	RNA	sequencing	data	analysis”	Brief	Bioinform.	2013	Nov;14(6):671-83	

h^p://www.ncbi.nlm.nih.gov/pubmed/22988256	



Differen5al	Expression	Analysis	

Thx,	Charlo^e	Soneson!	J	



Differen5al	Expression	Analysis	Involves	

•  Coun5ng	reads	mapped	to	features	
•  Sta5s5cal	significance	tes5ng	

Gene	A	

Sample_A	 Sample_B	

Gene	B	

Fold_Change	 Significant?	

1	 2	 2-fold	

100	 200	 2-fold	

No	

Yes	

Beware	of	small	counts	leading	to	notable	fold	changes	



Varia5on	Observed	Between	Technical	Replicates	

*	plot	from	Brennecke,	et	al.	Nature	Methods,	2013	

Poisson	shot	noise	is	high	for	small	counts.	

Varia5on	observed	is	well	
described	by	models	of	

random	sampling	
(Poisson	Distribu5on)	



Observed	RNA-Seq	Counts	Result	from	Random	
Sampling	of	the	Popula5on	of	Reads	

Technical	varia5on	in	RNA-Seq	counts	per	feature	is		
well	modeled	by	the	Poisson	distribu5on	

(observed	read	counts)	

Mean	#	fragments	

See:	h^p://en.wikipedia.org/wiki/Poisson_distribu5on	



Example:	One	gene*not*	differen/ally	expressed	
Example:	SampleA(gene)	=	SampleB(gene)	=	4	reads	

(k)	number	of	reads	observed	
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Distribu/on	of	observed	counts	for	single	gene	
(under	Poisson	model)	

x	=	log2(SampleA/SampleB)	

de
ns
ity

	

same	

2-fold	diff	

4-fold	diff	

Dist.	of	log2(fold	change)	values	

SampleA(geneX)	
SampleB(geneX)	



Sequencing	Depth	Ma^ers	

From:	h^p://gkno2.tumblr.com/post/24629975632/thinking-about-rna-seq-experimental-design-for		
and	from	supplementary	text	of	Busby	et	al.,	Bioinforma5cs,	2013	

Poisson	distribu5ons	for	counts	based	on	2-fold	expression	differences	

No	confidence	in	2-fold	
difference.	Likely	
observed	by	chance.	

High	confidence	in	2-fold	
difference.	Unlikely	
observed	by	chance.	

Observed	Read	Count	(k)	

P(x=k)	



Greater	Depth	=	More	Sta5s5cal	Power	

Reads	per	
sample	

Sample	A	
Number	of	reads	

Sample	B	
Number	of	reads	

P-value	(Fishers	
Exact	Test)	

100,000	 1	 2	 1	

1,000,000	 10	 20	 0.099	

10,000,000	 100	 200	 8.0e-09	

Example:		Single	gene,	reads	sampled	at	different	sequencing	depths	



Technical	vs.	Biological	Replicates	

“We	find	that	the	Illumina	sequencing	data	are	highly	replicable,	with	rela5vely	li^le	
technical	varia5on,	and	thus,	for	many	purposes,	it	may	suffice	to	sequence	each	
mRNA	sample	only	once”			Marioni	et	al.,	Genome	Research,	2008	

RNA-Seq	Technical	replicates	aren’t	essen/al		

(Technical	varia5on	is	well-modeled	by	the	Poisson	distribu5on)	

total_variance	=	technical_variance	+	biological_variance	

(Total	variance	well-modeled	by	nega5ve	binomial	distribu5on)	

	“…	at	least	six	biological	replicates	should	be	used,	rising	to	at	least	12	when	it	is	
important	to	iden5fy	SDE	genes	for	all	fold	changes.”		Schurch	et	al.,	RNA,	2016	

However,	biological	replicates	*ARE*	essen/al	



>1.4-fold	DE	 >4-fold	DE	

DE	Accuracy	Improves	with	Higher	Biological	Replica/on	

Respectable	goal	

At	a	minimum,	do	
3	bio	replicates	

*Figure	taken	and	adapted	from	Schurch	et	al.,	RNA,	2016	

3	reps	

6	reps	

12	reps	



Planning	Experiments:		
How	many	reads	and	how	many	replicates?	

Sco^y:	
Busby	et	al.,		Bioinforma5cs,	2013			

h^p://sco^y.gene5cs.utah.edu/sco^y.php	

Input:		max	total	reads,	max	total	replicates,	max	total	$$$	

Highest	Power	



Tools	for	DE	analysis	with	RNA-Seq	

See:	h^p://www.biomedcentral.com/1471-2105/14/91	

edgeR	
ShrinkSeq	
DESeq	
baySeq	
Vsf	
Limma/Voom	
mmdiff	
cuffdiff	

ROTS	
TSPM	
DESeq2	
EBSeq	
NBPSeq	
SAMseq	
NoiSeq	

(italicized	not	in	R/Bioconductor		
but	stand-alone)	

Soneson	&	Delorenzi,	2013	
	A	comparison	of	methods	for	differen5al	expression	analysis	of	RNA-seq	data	



Typical	output	from	DE	analysis	
                          logFC                    logCPM                PValue             FDR 
TRINITY_DN876_c0_g1_i1   -7.15049572793027     10.6197708379285   0                      0 
TRINITY_DN6470_c0_g1_i1  -7.26777912190146     7.03987604865422   1.687485656951e-287    6.46813252309319e-284 
TRINITY_DN5186_c0_g1_i1  -7.85623682454322     9.18570464327063   1.17049180235068e-278  2.99099671894011e-275 
TRINITY_DN768_c0_g1_i1   7.72884741150304      9.7514619195169    4.32504881419265e-272  8.28895605240022e-269 
TRINITY_DN70_c0_g1_i1    -12.7646078189688     7.86482982471445   3.92853491279431e-253  6.02322972829624e-250 
TRINITY_DN1587_c0_g1_i1  -5.89392061881667     9.07366563894607   6.32919557933429e-243  8.08660221852944e-240 
TRINITY_DN3236_c0_g1_i1  -7.27029815068473     8.02209568234202   3.64955175271959e-235  3.99678053376405e-232 
TRINITY_DN4631_c0_g1_i1  -7.45310693639574     6.91664918183241   4.30540921272851e-229  4.1256583780971e-226 
TRINITY_DN5082_c0_g5_i1  -5.33154406167545     10.6977538760467   2.74243356676259e-225  2.33594396920022e-222 
TRINITY_DN1789_c0_g3_i1  10.2032564835076      7.32607652700285   1.44273728647186e-213  1.10600240380933e-210 
TRINITY_DN4204_c0_g1_i1  4.81030233739325      9.88844409410644   9.27180216086162e-205  6.46160321501501e-202 
TRINITY_DN799_c0_g1_i1   -4.22044475626154     6.9937398638711    1.24746518421083e-197  7.96922341846683e-195 
TRINITY_DN196_c0_g2_i1   4.60597918494257      9.86878463857276   1.9819997623131e-192   1.16877001368402e-189 
TRINITY_DN5041_c0_g1_i1  -4.27126549355785     9.70894399883      1.8930437900069e-185   1.03657669244235e-182 
TRINITY_DN1619_c0_g1_i1  -4.47156415953777     9.22535948721718   1.76766063029526e-181  9.03392426122899e-179 
TRINITY_DN899_c0_g1_i1   -4.90914328409143     7.93768691394594   1.11054513767547e-180  5.32089939088761e-178 
TRINITY_DN324_c0_g2_i1   4.87160837667488      6.84850312231775   2.20092562166991e-179  9.92487989160089e-177 
TRINITY_DN3241_c0_g1_i1  -4.77760618069256     7.94111259715689   1.60585457735621e-173  6.83915621667372e-171 
TRINITY_DN4379_c0_g1_i1  3.85133572453294      7.23712813663389   3.48140532848425e-164  1.4046554341137e-161 
TRINITY_DN1919_c0_g1_i1  4.05998814332136      6.95937301668582   1.8588621194715e-161   7.12501850393425e-159 
TRINITY_DN2504_c0_g1_i1  -6.92417817059644     6.20370039359785   2.42022459856956e-160  8.83497227268296e-158 
… 

Up	vs.	Down	regulated	 Avg.	expression	level	 Significance	



Adapted	from:	Stephanie	C.	Hicks,	Mingxiang	Teng,	Rafael	A.	Irizarry.			
h^ps://www.biorxiv.org/content/early/2015/09/04/025528	
On	the	widespread	and	cri5cal	impact	of	systema5c	bias	and	batch	effects	in	single-cell	RNA-Seq	data.				

Avoid	Batch	Effects	

Grouping	by	
Study	

Grouping	
by	Batch	

Grouping	by	
Study	or	
Batch?	

Batch	variable	types:	
•  Times	and	dates	
•  Technician	processing	the	samples	
•  Sequencing	machine,	or	flow	cell	lane	(Illumina)	



Adapted	from:	Stephanie	C.	Hicks,	Mingxiang	Teng,	Rafael	A.	Irizarry.			
h^ps://www.biorxiv.org/content/early/2015/09/04/025528	
On	the	widespread	and	cri5cal	impact	of	systema5c	bias	and	batch	effects	in	single-cell	RNA-Seq	data.				

Avoid	Batch	Effects	

Grouping	by	
Study	

Grouping	by	
Study	or	
Batch?	

Grouping	
by	Batch	

(Explore	Batch	Removal	Techniques)	



Adapted	from:	Stephanie	C.	Hicks,	Mingxiang	Teng,	Rafael	A.	Irizarry.			
h^ps://www.biorxiv.org/content/early/2015/09/04/025528	
On	the	widespread	and	cri5cal	impact	of	systema5c	bias	and	batch	effects	in	single-cell	RNA-Seq	data.				

Avoid	Batch	Effects	

Grouping	
by	Batch	

Grouping	by	
Study	or	
Batch?	

Grouping	by	
Study	

(Explore	Batch	Removal	Techniques)	



Flavors	of	Differen5al	Expression	Analyses	

•  Differen5al	Gene	Expression	(DGE)	
•  Differen5al	Transcript	Expression	(DTE)	
•  Differen5al	Transcript	Usage	(DTU)	
•  Differen5al	Exon	Usage	(DEU)	



MyGene	

Iso_1	

Iso_2	

Differen/al	Gene	Expression	(DGE)	and	Differen/al	Transcript	Expression	(DTE)	
(Example	1)	



Sample_A	 Sample_B	

low	

high	

MyGene	

Iso_1	

Iso_2	

Differen/al	Gene	Expression	(DGE)	and	Differen/al	Transcript	Expression	(DTE)	
(Example	1)	

MyGene	

Feature	 Diff	Expressed?	

Yes	

Iso_1	

Iso_2	

Yes	

Yes	

Diff.	Transcript	Usage	?	
(eg.	Isoform	switching)	

No	



Sample_A	 Sample_B	

low	

high	
MyGene	

Feature	 Diff	Expressed?	

No	

Iso_1	 Yes	

Iso_2	 Yes	

MyGene	

Iso_1	

Iso_2	

Diff.	Transcript	Usage	?	
(eg.	Isoform	switching)	

Yes	

Differen/al	Gene	Expression	(DGE)	and	Differen/al	Transcript	Expression	(DTE)	
(Example	2)	



Sample_A	 Sample_B	

low	

high	
MyGene	

Feature	 Diff	Expressed?	

Yes	

Iso_1	 Yes	

Iso_2	 Yes	

MyGene	

Iso_1	

Iso_2	

Diff.	Transcript	Usage	?	
(eg.	Isoform	switching)	

Yes	

Differen/al	Gene	Expression	(DGE)	and	Differen/al	Transcript	Expression	(DTE)	
(Example	3)	



(Ex-2)	

(Ex-1)	

Differen/al	Transcript	Usage(DTU)	
vs	

Differen/al	Gene	Expression	(DGE)	
vs.	

Differen/al	Transcript	Expression	(DTE)	

(Ex-3)	



High	Confidence	Differen5al	Transcript	Expression	is	
Difficult	to	A^ain	With	Many	Candidate	Isoforms	

(Ex.)		NDRG2	
78	Isoforms	(Gencode	v19)	

Which	isoforms	are	expressed?	
Is	there	evidence	of	differen5al	transcript	usage?	



Measure	Differen5al	Transcript	Usage	(DTU)	via	Differen5al	Exon	Usage	(DEU)	

Flaben	Transcripts	to	Exonic	Regions	



Measure	Differen/al	Transcript	Usage	(DTU)	via	Differen/al	Exon	Usage	(DEU)	

Rela/ve	
	Expression	

P	=	1e
-8	

P	=	1e
-11	

P	=	1e
-9	

P	=	1e
-6	

Sample	A	
Sample	B	



Fla^ened	gene	structure:	

Averaged	Replicates	

Each	Replicate	
*	

*	



Enabling	Differen/al	Transcript	Usage	Analysis	for	De	novo	Transcriptome	Assemblies	



Enabling	Differen/al	Transcript	Usage	Analysis	for	De	novo	Transcriptome	Assemblies	

Similar	method	and	protocols	now	integrated	into	Trinity:	
h^ps://github.com/trinityrnaseq/trinityrnaseq/wiki/SuperTranscripts	

Linearize	graph	via	topological	sor5ng		
or	graph	mul5ple	alignment	

DEXseq	for	DTU,	
GATK	for	Variant	Detec5on	



Enabling	Differen/al	Transcript	Usage	Analysis	for	De	novo	Transcriptome	Assemblies	

Similar	method	and	protocols	now	integrated	into	Trinity:	
h^ps://github.com/trinityrnaseq/trinityrnaseq/wiki/SuperTranscripts	

Linearize	graph	via	topological	sor5ng		
or	graph	mul5ple	alignment	

DEXseq	for	DTU,	
GATK	for	Variant	Detec5on	



Further	Pushing	the	Envelope	with	RNA-Seq	Analysis		



Visualiza5on	of	DE	results	
and	Expression	Profiling	



Volcano	plot	
(	fold	change	vs.	significance)	

MA	plot	
(abundance	vs.	fold	change)	

Significantly	differently	expressed	transcripts	have	FDR	<=	0.001	
(shown	in	red)	

Ploxng	Pairwise	Differen5al	Expression	Data	

Log2	Average	Expression	level	(A	of	MA)	Log2	(fold	change)	
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Comparing	Mul5ple	Samples	

Heatmaps	provide	an	effec5ve	tool	
for	naviga5ng	differen5al	expression	across	
mul5ple	samples.	
	
Clustering	can	be	performed	across	both	axes:	

	-cluster	transcripts	with	similar	expression	
	pa^ers.	
	-cluster	samples	according	to	similar	
	expression	values	among	transcripts.	
		



Examining	Pa^erns	of	Expression	Across	Samples	
Can	extract	clusters	of	transcripts	and	examine	them	separately.	


