-
Notifications
You must be signed in to change notification settings - Fork 18
/
vis.py
437 lines (375 loc) · 16.3 KB
/
vis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
##############################################################################
"""Detection output visualization module."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import cv2
import numpy as np
import os
import pdb
import pycocotools.mask as mask_util
import time
from detectron.utils.colormap import colormap
import detectron.utils.env as envu
import detectron.utils.keypoints as keypoint_utils
# Matplotlib requires certain adjustments in some environments
# Must happen before importing matplotlib
envu.set_up_matplotlib()
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
plt.rcParams['pdf.fonttype'] = 42 # For editing in Adobe Illustrator
_GRAY = (218, 227, 218)
_GREEN = (18, 127, 15)
_WHITE = (255, 255, 255)
def kp_connections(keypoints):
kp_lines = [
[keypoints.index('left_eye'), keypoints.index('right_eye')],
[keypoints.index('left_eye'), keypoints.index('nose')],
[keypoints.index('right_eye'), keypoints.index('nose')],
[keypoints.index('right_eye'), keypoints.index('right_ear')],
[keypoints.index('left_eye'), keypoints.index('left_ear')],
[keypoints.index('right_shoulder'), keypoints.index('right_elbow')],
[keypoints.index('right_elbow'), keypoints.index('right_wrist')],
[keypoints.index('left_shoulder'), keypoints.index('left_elbow')],
[keypoints.index('left_elbow'), keypoints.index('left_wrist')],
[keypoints.index('right_hip'), keypoints.index('right_knee')],
[keypoints.index('right_knee'), keypoints.index('right_ankle')],
[keypoints.index('left_hip'), keypoints.index('left_knee')],
[keypoints.index('left_knee'), keypoints.index('left_ankle')],
[keypoints.index('right_shoulder'), keypoints.index('left_shoulder')],
[keypoints.index('right_hip'), keypoints.index('left_hip')],
]
return kp_lines
def convert_from_cls_format(cls_boxes, cls_segms, cls_keyps):
"""Convert from the class boxes/segms/keyps format generated by the testing
code.
"""
box_list = [b for b in cls_boxes if len(b) > 0]
if len(box_list) > 0:
boxes = np.concatenate(box_list)
else:
boxes = None
if cls_segms is not None:
segms = [s for slist in cls_segms for s in slist]
else:
segms = None
if cls_keyps is not None:
keyps = [k for klist in cls_keyps for k in klist]
else:
keyps = None
classes = []
for j in range(len(cls_boxes)):
classes += [j] * len(cls_boxes[j])
return boxes, segms, keyps, classes
def get_class_string(class_index, score, dataset):
class_text = dataset.classes[class_index] if dataset is not None else \
'id{:d}'.format(class_index)
return class_text + ' {:0.2f}'.format(score).lstrip('0')
def vis_mask(img, mask, col, alpha=0.4, show_border=True, border_thick=1):
"""Visualizes a single binary mask."""
img = img.astype(np.float32)
idx = np.nonzero(mask)
img[idx[0], idx[1], :] *= 1.0 - alpha
img[idx[0], idx[1], :] += alpha * col
if show_border:
_, contours, _ = cv2.findContours(
mask.copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE)
cv2.drawContours(img, contours, -1, _WHITE, border_thick, cv2.LINE_AA)
return img.astype(np.uint8)
def vis_class(img, pos, class_str, font_scale=0.35):
"""Visualizes the class."""
x0, y0 = int(pos[0]), int(pos[1])
# Compute text size.
txt = class_str
font = cv2.FONT_HERSHEY_SIMPLEX
((txt_w, txt_h), _) = cv2.getTextSize(txt, font, font_scale, 1)
# Place text background.
back_tl = x0, y0 - int(1.3 * txt_h)
back_br = x0 + txt_w, y0
cv2.rectangle(img, back_tl, back_br, _GREEN, -1)
# Show text.
txt_tl = x0, y0 - int(0.3 * txt_h)
cv2.putText(img, txt, txt_tl, font, font_scale, _GRAY, lineType=cv2.LINE_AA)
return img
def vis_bbox(img, bbox, thick=1):
"""Visualizes a bounding box."""
(x0, y0, w, h) = bbox
x1, y1 = int(x0 + w), int(y0 + h)
x0, y0 = int(x0), int(y0)
cv2.rectangle(img, (x0, y0), (x1, y1), _GREEN, thickness=thick)
return img
def vis_keypoints(img, kps, kp_thresh=2, alpha=0.7):
"""Visualizes keypoints (adapted from vis_one_image).
kps has shape (4, #keypoints) where 4 rows are (x, y, logit, prob).
"""
dataset_keypoints, _ = keypoint_utils.get_keypoints()
kp_lines = kp_connections(dataset_keypoints)
# Convert from plt 0-1 RGBA colors to 0-255 BGR colors for opencv.
cmap = plt.get_cmap('rainbow')
colors = [cmap(i) for i in np.linspace(0, 1, len(kp_lines) + 2)]
colors = [(c[2] * 255, c[1] * 255, c[0] * 255) for c in colors]
# Perform the drawing on a copy of the image, to allow for blending.
kp_mask = np.copy(img)
# Draw mid shoulder / mid hip first for better visualization.
mid_shoulder = (
kps[:2, dataset_keypoints.index('right_shoulder')] +
kps[:2, dataset_keypoints.index('left_shoulder')]) / 2.0
sc_mid_shoulder = np.minimum(
kps[2, dataset_keypoints.index('right_shoulder')],
kps[2, dataset_keypoints.index('left_shoulder')])
mid_hip = (
kps[:2, dataset_keypoints.index('right_hip')] +
kps[:2, dataset_keypoints.index('left_hip')]) / 2.0
sc_mid_hip = np.minimum(
kps[2, dataset_keypoints.index('right_hip')],
kps[2, dataset_keypoints.index('left_hip')])
nose_idx = dataset_keypoints.index('nose')
if sc_mid_shoulder > kp_thresh and kps[2, nose_idx] > kp_thresh:
cv2.line(
kp_mask, tuple(mid_shoulder), tuple(kps[:2, nose_idx]),
color=colors[len(kp_lines)], thickness=2, lineType=cv2.LINE_AA)
if sc_mid_shoulder > kp_thresh and sc_mid_hip > kp_thresh:
cv2.line(
kp_mask, tuple(mid_shoulder), tuple(mid_hip),
color=colors[len(kp_lines) + 1], thickness=2, lineType=cv2.LINE_AA)
# Draw the keypoints.
for l in range(len(kp_lines)):
i1 = kp_lines[l][0]
i2 = kp_lines[l][1]
p1 = kps[0, i1], kps[1, i1]
p2 = kps[0, i2], kps[1, i2]
if kps[2, i1] > kp_thresh and kps[2, i2] > kp_thresh:
cv2.line(
kp_mask, p1, p2,
color=colors[l], thickness=2, lineType=cv2.LINE_AA)
if kps[2, i1] > kp_thresh:
cv2.circle(
kp_mask, p1,
radius=3, color=colors[l], thickness=-1, lineType=cv2.LINE_AA)
if kps[2, i2] > kp_thresh:
cv2.circle(
kp_mask, p2,
radius=3, color=colors[l], thickness=-1, lineType=cv2.LINE_AA)
# Blend the keypoints.
return cv2.addWeighted(img, 1.0 - alpha, kp_mask, alpha, 0)
def vis_one_image_opencv(
im, boxes, segms=None, keypoints=None, thresh=0.9, kp_thresh=2,
show_box=False, dataset=None, show_class=False):
"""Constructs a numpy array with the detections visualized."""
if isinstance(boxes, list):
boxes, segms, keypoints, classes = convert_from_cls_format(
boxes, segms, keypoints)
if boxes is None or boxes.shape[0] == 0 or max(boxes[:, 4]) < thresh:
return im
if segms is not None and len(segms) > 0:
masks = mask_util.decode(segms)
color_list = colormap()
mask_color_id = 0
# Display in largest to smallest order to reduce occlusion
areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
sorted_inds = np.argsort(-areas)
for i in sorted_inds:
bbox = boxes[i, :4]
score = boxes[i, -1]
if score < thresh:
continue
# show box (off by default)
if show_box:
im = vis_bbox(
im, (bbox[0], bbox[1], bbox[2] - bbox[0], bbox[3] - bbox[1]))
# show class (off by default)
if show_class:
class_str = get_class_string(classes[i], score, dataset)
im = vis_class(im, (bbox[0], bbox[1] - 2), class_str)
# show mask
if segms is not None and len(segms) > i:
color_mask = color_list[mask_color_id % len(color_list), 0:3]
mask_color_id += 1
im = vis_mask(im, masks[..., i], color_mask)
# show keypoints
if keypoints is not None and len(keypoints) > i:
im = vis_keypoints(im, keypoints[i], kp_thresh)
return im
def vis_one_image(
im, im_name, output_dir, boxes, segms=None, keypoints=None, body_uv=None, thresh=0.9,
kp_thresh=2, dpi=200, box_alpha=0.0, dataset=None, show_class=False,
ext='jpg', frame_no=None):
"""Visual debugging of detections."""
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if isinstance(boxes, list):
boxes, segms, keypoints, classes = convert_from_cls_format(
boxes, segms, keypoints)
if boxes is None or boxes.shape[0] == 0 or max(boxes[:, 4]) < thresh:
print("Box:None, Shape:0 or MaxBox below thresh")
return
dataset_keypoints, _ = keypoint_utils.get_keypoints()
if segms is not None and len(segms) > 0:
masks = mask_util.decode(segms)
optime = time.time()
color_list = colormap(rgb=True) / 255
kp_lines = kp_connections(dataset_keypoints)
cmap = plt.get_cmap('rainbow')
colors = [cmap(i) for i in np.linspace(0, 1, len(kp_lines) + 2)]
fig = plt.figure(frameon=False)
fig.set_size_inches(im.shape[1] / dpi, im.shape[0] / dpi)
ax = plt.Axes(fig, [0., 0., 1., 1.])
ax.axis('off')
fig.add_axes(ax)
ax.imshow(im)
# Display in largest to smallest order to reduce occlusion
areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
sorted_inds = np.argsort(-areas)
mask_color_id = 0
for i in sorted_inds:
bbox = boxes[i, :4]
score = boxes[i, -1]
if score < thresh:
continue
# show box (off by default)
ax.add_patch(
plt.Rectangle((bbox[0], bbox[1]),
bbox[2] - bbox[0],
bbox[3] - bbox[1],
fill=False, edgecolor='g',
linewidth=0.5, alpha=box_alpha))
if show_class:
ax.text(
bbox[0], bbox[1] - 2,
get_class_string(classes[i], score, dataset),
fontsize=10,
family='serif',
bbox=dict(
facecolor='g', alpha=0.4, pad=0, edgecolor='none'),
color='white')
# show mask
if segms is not None and len(segms) > i:
img = np.ones(im.shape)
color_mask = color_list[mask_color_id % len(color_list), 0:3]
mask_color_id += 1
w_ratio = .4
for c in range(3):
color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio
for c in range(3):
img[:, :, c] = color_mask[c]
e = masks[:, :, i]
_, contour, hier = cv2.findContours(
e.copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE)
for c in contour:
polygon = Polygon(
c.reshape((-1, 2)),
fill=True, facecolor=color_mask,
edgecolor='w', linewidth=1.2,
alpha=0.5)
ax.add_patch(polygon)
# show keypoints
if keypoints is not None and len(keypoints) > i:
kps = keypoints[i]
plt.autoscale(False)
for l in range(len(kp_lines)):
i1 = kp_lines[l][0]
i2 = kp_lines[l][1]
if kps[2, i1] > kp_thresh and kps[2, i2] > kp_thresh:
x = [kps[0, i1], kps[0, i2]]
y = [kps[1, i1], kps[1, i2]]
line = plt.plot(x, y)
plt.setp(line, color=colors[l], linewidth=1.0, alpha=0.7)
if kps[2, i1] > kp_thresh:
plt.plot(
kps[0, i1], kps[1, i1], '.', color=colors[l],
markersize=3.0, alpha=0.7)
if kps[2, i2] > kp_thresh:
plt.plot(
kps[0, i2], kps[1, i2], '.', color=colors[l],
markersize=3.0, alpha=0.7)
# add mid shoulder / mid hip for better visualization
mid_shoulder = (
kps[:2, dataset_keypoints.index('right_shoulder')] +
kps[:2, dataset_keypoints.index('left_shoulder')]) / 2.0
sc_mid_shoulder = np.minimum(
kps[2, dataset_keypoints.index('right_shoulder')],
kps[2, dataset_keypoints.index('left_shoulder')])
mid_hip = (
kps[:2, dataset_keypoints.index('right_hip')] +
kps[:2, dataset_keypoints.index('left_hip')]) / 2.0
sc_mid_hip = np.minimum(
kps[2, dataset_keypoints.index('right_hip')],
kps[2, dataset_keypoints.index('left_hip')])
if (sc_mid_shoulder > kp_thresh and
kps[2, dataset_keypoints.index('nose')] > kp_thresh):
x = [mid_shoulder[0], kps[0, dataset_keypoints.index('nose')]]
y = [mid_shoulder[1], kps[1, dataset_keypoints.index('nose')]]
line = plt.plot(x, y)
plt.setp(
line, color=colors[len(kp_lines)], linewidth=1.0, alpha=0.7)
if sc_mid_shoulder > kp_thresh and sc_mid_hip > kp_thresh:
x = [mid_shoulder[0], mid_hip[0]]
y = [mid_shoulder[1], mid_hip[1]]
line = plt.plot(x, y)
plt.setp(
line, color=colors[len(kp_lines) + 1], linewidth=1.0,
alpha=0.7)
# DensePose Visualization Starts!!
## Get full IUV image out
IUV_fields = body_uv[1]
#
All_Coords = np.zeros(im.shape)
All_inds = np.zeros([im.shape[0],im.shape[1]])
K = 26
##
inds = np.argsort(boxes[:,4])
##
for i, ind in enumerate(inds):
entry = boxes[ind,:]
if entry[4] > 0.65:
entry=entry[0:4].astype(int)
####
output = IUV_fields[ind]
####
All_Coords_Old = All_Coords[ entry[1] : entry[1]+output.shape[1],entry[0]:entry[0]+output.shape[2],:]
All_Coords_Old[All_Coords_Old==0]=output.transpose([1,2,0])[All_Coords_Old==0]
All_Coords[ entry[1] : entry[1]+output.shape[1],entry[0]:entry[0]+output.shape[2],:]= All_Coords_Old
###
CurrentMask = (output[0,:,:]>0).astype(np.float32)
All_inds_old = All_inds[ entry[1] : entry[1]+output.shape[1],entry[0]:entry[0]+output.shape[2]]
All_inds_old[All_inds_old==0] = CurrentMask[All_inds_old==0]*i
All_inds[ entry[1] : entry[1]+output.shape[1],entry[0]:entry[0]+output.shape[2]] = All_inds_old
#
All_Coords[:,:,1:3] = 255. * All_Coords[:,:,1:3]
All_Coords[All_Coords>255] = 255.
All_Coords = All_Coords.astype(np.uint8)
All_inds = All_inds.astype(np.uint8)
# pdb.set_trace()
#draw frame and contours to canvas
plt.contour( All_Coords[:,:,1]/256.,10, linewidths = 1 )
plt.contour( All_Coords[:,:,2]/256.,10, linewidths = 1 )
plt.contour( All_inds, linewidths = 3 )
plt.axis('off') ;
fig.canvas.draw()
# convert canvas to image
img = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
img = img.reshape(fig.canvas.get_width_height()[::-1] + (3,))
# img is rgb, convert to opencv's default bgr
img = cv2.cvtColor(img,cv2.COLOR_RGB2BGR)
# display image with opencv
cv2.imshow("plot",img)
cv2.waitKey(1)
print('\t-Visualized in {: .3f}s'.format(time.time() - optime))
output_name = os.path.basename(im_name) + '.' + ext
filetime = time.time()
out_dir = os.path.join(output_dir, 'vid')
if not os.path.exists(out_dir):
os.mkdir(out_dir)
out_file = 'file%02d.png' % frame_no
fig.savefig(os.path.join(out_dir, out_file), dpi=dpi)
print('\t-Output file wrote in {: .3f}s'.format(time.time() - filetime))
plt.close('all')
return True