-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_VIGOR.py
184 lines (152 loc) · 7.92 KB
/
train_VIGOR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = "5"
os.environ["MKL_NUM_THREADS"] = "3"
os.environ["NUMEXPR_NUM_THREADS"] = "3"
os.environ["OMP_NUM_THREADS"] = "3"
import cv2
import random
import numpy as np
import copy
import scipy
import scipy.stats as stats
import tensorflow as tf
from tensorflow.python.ops.gen_math_ops import *
from model import CVML
from readdata_VIGOR import DataLoader
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-a', '--area', type=str, help='same or cross area testing', required=True)
parser.add_argument('-l', '--learning_rate', type=float, help='learning rate', default=1e-5)
parser.add_argument('-e', '--start_epoch', type=int, help='start epoch', default=0)
parser.add_argument('-b', '--batch_size', type=int, help='batch size', default=8)
args = vars(parser.parse_args())
area = args['area']
learning_rate_val = args['learning_rate']
start_epoch = args['start_epoch']
batch_size = args['batch_size']
is_training = True
number_of_epoch = 30
keep_prob_val = 0.8
dimension = 8
beta = 1e4
temperature=0.1
label = 'VIGOR_'+area
save_model_path = './models/'
def contrastive_loss(scores, labels, temperature=1.0):
"""Contrastive loss over matching score. Adapted from https://arxiv.org/pdf/2004.11362.pdf Eq.2
We extraly weigh the positive samples using the ground truth likelihood on those positions
loss = - 1/sum(weights) * sum(inner_element*weights)
inner_element = log( exp(score_pos/temperature) / sum(exp(score/temperature)) )
"""
exp_scores = tf.math.exp(scores / temperature)
bool_mask = tf.cast(labels>1e-2, tf.bool) # only keep positive samples, we set a threshod on the likelihood in GT
denominator = tf.reduce_sum(exp_scores, [1, 2, 3], keepdims=True)
inner_element = tf.math.log(tf.boolean_mask(exp_scores/denominator, bool_mask))
return -tf.reduce_sum(inner_element*tf.boolean_mask(labels, bool_mask)) / tf.reduce_sum(tf.boolean_mask(labels, bool_mask))
def train(start_epoch=0, learning_rate_val=learning_rate_val):
'''
Train the model from epoch N. Default is 0.
'''
# Import data
input_data = DataLoader(area, 'train')
# Define placeholers
sat = tf.placeholder(tf.float32, [None, 512, 512, 3], name='sat')
grd = tf.placeholder(tf.float32, [None, 320, 640, 3], name='grd')
gt = tf.placeholder(tf.float32, [None, 512, 512, 1], name='gt')
gt_bottleneck = tf.nn.max_pool(gt, ksize=[1, 64, 64, 1], strides=[1, 64, 64, 1], padding='SAME', name='gt_bottleneck')
keep_prob = tf.placeholder(tf.float32)
learning_rate = tf.placeholder(tf.float32)
tf.summary.scalar('learning_rate', learning_rate)
training = tf.placeholder(tf.bool)
# Build model
logits, matching_score = CVML(sat, grd, keep_prob, dimension, is_training, False)
logits_reshaped = tf.reshape(logits, [tf.shape(logits)[0], 512*512])
gt_reshaped = tf.reshape(gt, [tf.shape(logits)[0], 512*512])
gt_reshaped = gt_reshaped / tf.reduce_sum(gt_reshaped, axis=1, keepdims=True)
loss_heatmap = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=gt_reshaped, logits=logits_reshaped))
loss_bottleneck = contrastive_loss(matching_score, gt_bottleneck, temperature)
loss_bottleneck_summary = tf.summary.scalar('loss_bottleneck', loss_bottleneck)
loss = loss_heatmap + loss_bottleneck*beta
loss_summary = tf.summary.scalar('loss', loss)
heatmap = tf.reshape(tf.nn.softmax(logits_reshaped), tf.shape(logits))
# Get all summaries
summary = tf.summary.merge_all()
# set training
global_step = tf.Variable(0, trainable=False)
with tf.name_scope('train'):
train_step = tf.train.AdamOptimizer(learning_rate, 0.9, 0.999).minimize(loss, global_step=global_step)
saver = tf.train.Saver(tf.global_variables(), max_to_keep=None)
# run model
print('run model...')
config = tf.ConfigProto(log_device_placement=False, allow_soft_placement=True)
config.gpu_options.allow_growth = True
config.gpu_options.per_process_gpu_memory_fraction = 1
with tf.Session(config=config) as sess:
sess.run(tf.global_variables_initializer())
print('load model...')
if start_epoch == 0:
load_model_path_init = save_model_path+'Initialize/initial_model.ckpt'
variables_to_restore_init = tf.contrib.framework.get_variables_to_restore(include=['VGG_grd','VGG_sat'])
init_fn = tf.contrib.framework.assign_from_checkpoint_fn(load_model_path_init, variables_to_restore_init)
init_fn(sess)
print(" Model initialized from: %s" % load_model_path_init)
else:
load_model_path = save_model_path+label+'/' + str(start_epoch - 1) + '/model.ckpt'
saver.restore(sess, load_model_path)
print(" Model loaded from: %s" % load_model_path)
print('load model...FINISHED')
# Define tensorboard writer
logdir = './graph/'+label
if not os.path.exists(logdir):
os.makedirs(logdir)
graph = tf.get_default_graph()
writer = tf.summary.FileWriter(logdir, sess.graph)
# Train
for epoch in range(start_epoch, number_of_epoch):
iter = 0
while True:
batch_sat, batch_grd, batch_gt = input_data.next_pair_batch(batch_size)
if batch_sat is None:
break
global_step_val = tf.train.global_step(sess, global_step)
feed_dict = {sat: batch_sat, grd: batch_grd, gt: batch_gt,
learning_rate: learning_rate_val,
keep_prob: keep_prob_val, training: True}
_, loss_val, summary_val = sess.run([train_step, loss, summary], feed_dict=feed_dict)
# Write to tensorboard
writer.add_summary(summary_val, global_step_val)
if iter % 200 == 0:
print('global %d, epoch %d, iter %d: loss : %.8f' %
(global_step_val, epoch, iter, loss_val))
iter += 1
# Save model
model_dir = save_model_path+label+'/' + str(epoch) + '/'
if not os.path.exists(model_dir):
os.makedirs(model_dir)
save_path = saver.save(sess, model_dir + 'model.ckpt')
print("Model saved in file: %s" % save_path)
# ---------------------- validation ----------------------
print('validate...')
print('go through all the ground images in the validation set...')
input_data.reset_scan()
distance = []
while True:
batch_sat, batch_grd, batch_gt = input_data.next_batch_scan(batch_size)
if batch_sat is None:
break
feed_dict = {sat: batch_sat, grd: batch_grd, gt: batch_gt, keep_prob: 1.0, training: False}
heatmap_val = sess.run(heatmap, feed_dict=feed_dict)
for batch_idx in range(batch_gt.shape[0]):
current_gt = batch_gt[batch_idx, :, :, :]
loc_gt = np.unravel_index(current_gt.argmax(), current_gt.shape)
current_pred = heatmap_val[batch_idx, :, :, :]
loc_pred = np.unravel_index(current_pred.argmax(), current_pred.shape)
distance.append(np.sqrt((loc_gt[0]-loc_pred[0])**2+(loc_gt[1]-loc_pred[1])**2))
distance_error = np.mean(distance)
print('mean distance error on validation set: ', distance_error)
file = 'results/'+label+'_error.txt'
with open(file,'ab') as f:
np.savetxt(f, [distance_error], fmt='%4f', header='validation_set_mean_distance_error_in_pixels:', comments=str(epoch)+'_')
tf.reset_default_graph()
train(0)