diff --git a/.github/workflows/release.yml b/.github/workflows/release.yml
index 9a520ce..e60ed08 100644
--- a/.github/workflows/release.yml
+++ b/.github/workflows/release.yml
@@ -26,5 +26,6 @@ jobs:
env:
PYPI_TOKEN: ${{ secrets.PYPI_TOKEN }}
run: |
+ poetry version patch
poetry config pypi-token.pypi $PYPI_TOKEN
poetry publish --build
diff --git a/README.md b/README.md
index 4067f05..110a547 100755
--- a/README.md
+++ b/README.md
@@ -128,27 +128,32 @@ python -m turbo_alignment train_kto --experiment_settings_path configs/exp/train
```
-⌛️ in progress..
-## Multimodal Tasks
+## Multimodal train
+⌛️ in progress..
+
-⌛️ in progress..
-## RAG
-To launch RAG:
-- **Choose a base encoder**, create a document index.
-- For **end-to-end**:
- - **Train both** the retriever and the generator.
- - **Prepare the data** in `"dataset_type": "chat"` **with query -> response.**
- - **Suitable config**: [end2end_rag](configs/exp/train/rag/end2end_rag.json)
+## RAG (Retrieval-Augmented Generation)
+
+
+### SFT-RAG
+- **📚 Dataset type**: prepare your dataset in `ChatDataset`, examples available [here](docs/dataset_example.md#-chat-dataset) format.
+- **📝 Configs Example**: [sft_with_retrieval_utility](configs/exp/train/sft/llama/sft_with_retrieval_utility.json)
+- **🖥️ CLI launch command**: ```bash
+python -m turbo_alignment train_sft --experiment_settings_path configs/exp/train/sft/llama/sft_with_retrieval_utility.json
+```
-- For **sft-rag**:
- - **Train only** generator
- - **Prepare the data** in `"dataset_type": "chat"` with **query+retrieved_documents -> response.**
- - **Suitable config**: [sft_with_retrieval_utility](configs/exp/train/sft/llama/sft_with_retrieval_utility.json)
+
+### End2End-RAG
+- **📚 Dataset type**: prepare your dataset in `ChatDataset`, examples available [here](docs/dataset_example.md#-chat-dataset) format.
+- **📝 Configs Example**: [end2end_rag](configs/exp/train/rag/end2end_rag.json)
+- **🖥️ CLI launch command**: ```bash
+python -m turbo_alignment train_rag --experiment_settings_path configs/exp/train/rag/end2end_rag.json
+```
@@ -156,15 +161,15 @@ To launch RAG:
## Chat Inference
- **📚 Dataset type** prepare your dataset in the `ChatDataset`, examples available [here](docs/dataset_example.md#-chat-dataset) format.
-- **📝 Configs Example**: [sft.json](configs/exp/train/sft/sft.json)
+- **📝 Configs Example**: [sft.json](configs/exp/inference/generation/default_llama_adapter.json)
- **🖥️ CLI launch command**
```bash
-python -m turbo_alignment inference_chat --inference_settings_path configs/exp/train/sft/sft.json
+python -m turbo_alignment inference_chat --inference_settings_path configs/exp/inference/generation/default_llama_adapter.json
```
## Classification Inference
-- **📚 Dataset type** prepare your dataset in the `ChatDataset`, examples available [here](docs/dataset_example.md#-chat-dataset) format.
+- **📚 Dataset type** prepare your dataset in the `ClassificationDataset`, examples available [here](docs/dataset_example.md#-classification-dataset) format.
- **📝 Configs Example**: [classification_inference.json](configs/exp/inference/classification/classification_inference.json)
- **🖥️ CLI launch command**
```bash
@@ -173,11 +178,11 @@ python -m turbo_alignment inference_classification --inference_settings_path con
## Multimodal Inference
-- **📚 Dataset type** prepare your dataset in the `ChatDataset`, examples available [here](docs/dataset_example.md#-chat-dataset) format.
+- **📚 Dataset type** prepare your dataset in the `MultimodalDataset`, examples available [here](docs/dataset_example.md#-multimodal-dataset) format.
- **📝 Configs Example**: [mlp.json](configs/exp/inference/multimodal/mlp.json)
- **🖥️ CLI launch command**
```bash
-python -m turbo_alignment inference_multimodal --inference_settings_path configs/exp/train/sft/sft.json
+python -m turbo_alignment inference_multimodal --inference_settings_path configs/exp/inference/multimodal/mlp.json
```
@@ -186,7 +191,7 @@ python -m turbo_alignment inference_multimodal --inference_settings_path configs
- **📝 Configs Example**: [rag_inference.json](configs/exp/inference/rag/rag_inference.json)
- **🖥️ CLI launch command**
```bash
-python -m turbo_alignment inference_rag --inference_settings_path configs/exp/train/sft/sft.json
+python -m turbo_alignment inference_rag --inference_settings_path configs/exp/inference/rag/rag_inference.json
```
@@ -211,7 +216,7 @@ python -m turbo_alignment rso_sample --experiment_settings_path tests/fixtures/c
## Reward Model Sampling
-- **📚 Dataset type** prepare your dataset in the `ChatDataset`, examples available [here](docs/dataset_example.md#-sampling-dataset) format.
+- **📚 Dataset type** prepare your dataset in the `SamplingRMDataset`, examples available [here](docs/dataset_example.md#-sampling-dataset) format.
- **📝 Configs Example**: [rm.json](tests/fixtures/configs/sampling/rm.json)
- **🖥️ CLI launch command**
```bash
@@ -292,6 +297,13 @@ Tutorials are available [here](tutorials/tutorial.md).
This project is licensed, see the [LICENSE](https://github.com/turbo-llm/turbo-alignment/-/blob/main/LICENSE) file for details.
+## References
+
+- DPO Trainer implementation inspired by Leandro von Werra et al. (2020) TRL: Transformer Reinforcement Learning. GitHub repository, GitHub. Available at: [https://github.com/huggingface/trl](https://github.com/huggingface/trl).
+
+- Registry implementation inspired by Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Peters, Michael Schmitz, and Luke S. Zettlemoyer. 2017. AllenNLP: A Deep Semantic Natural Language Processing Platform. Available at: [arXiv:1803.07640](https://arxiv.org/abs/1803.07640).
+
+
## Citation
```bibtex
diff --git a/pyproject.toml b/pyproject.toml
index 843713b..543e268 100755
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -3,7 +3,7 @@ name = "turbo-alignment"
packages = [
{ include = "turbo_alignment" },
]
-version = "0.0.3"
+version = "0.0.2"
description = "turbo-alignment repository"
authors = ["T Mega Alignment Team " ]
readme = "README.md"