-
Notifications
You must be signed in to change notification settings - Fork 488
/
Copy pathdetection_train.py
311 lines (266 loc) · 11.5 KB
/
detection_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import argparse
import importlib
import logging
import os
import pprint
import pickle as pkl
from functools import reduce
from core.detection_module import DetModule
from utils import callback
from utils.memonger_v2 import search_plan_to_layer
from utils.lr_scheduler import LRScheduler, WarmupMultiFactorScheduler, LRSequential, AdvancedLRScheduler
from utils.load_model import load_checkpoint
from utils.patch_config import patch_config_as_nothrow
import mxnet as mx
import numpy as np
def train_net(config):
pGen, pKv, pRpn, pRoi, pBbox, pDataset, pModel, pOpt, pTest, \
transform, data_name, label_name, metric_list = config.get_config(is_train=True)
pGen = patch_config_as_nothrow(pGen)
pKv = patch_config_as_nothrow(pKv)
pRpn = patch_config_as_nothrow(pRpn)
pRoi = patch_config_as_nothrow(pRoi)
pBbox = patch_config_as_nothrow(pBbox)
pDataset = patch_config_as_nothrow(pDataset)
pModel = patch_config_as_nothrow(pModel)
pOpt = patch_config_as_nothrow(pOpt)
pTest = patch_config_as_nothrow(pTest)
ctx = [mx.gpu(int(i)) for i in pKv.gpus]
pretrain_prefix = pModel.pretrain.prefix
pretrain_epoch = pModel.pretrain.epoch
prefix = pGen.name
save_path = os.path.join("experiments", prefix)
begin_epoch = pOpt.schedule.begin_epoch
end_epoch = pOpt.schedule.end_epoch
lr_iter = pOpt.schedule.lr_iter
# only rank==0 print all debug infos
kvstore_type = "dist_sync" if os.environ.get("DMLC_ROLE") == "worker" else pKv.kvstore
kv = mx.kvstore.create(kvstore_type)
rank = kv.rank
# for distributed training using shared file system
os.makedirs(save_path, exist_ok=True)
from utils.logger import config_logger
config_logger(os.path.join(save_path, "log.txt"))
model_prefix = os.path.join(save_path, "checkpoint")
# set up logger
logger = logging.getLogger()
sym = pModel.train_symbol
# setup multi-gpu
input_batch_size = pKv.batch_image * len(ctx)
# print config
# if rank == 0:
# logger.info(pprint.pformat(config))
# load dataset and prepare imdb for training
image_sets = pDataset.image_set
roidbs = [pkl.load(open("data/cache/{}.roidb".format(i), "rb"), encoding="latin1") for i in image_sets]
roidb = reduce(lambda x, y: x + y, roidbs)
# filter empty image
roidb = [rec for rec in roidb if rec["gt_bbox"].shape[0] > 0]
# add flip roi record
flipped_roidb = []
for rec in roidb:
new_rec = rec.copy()
new_rec["flipped"] = True
flipped_roidb.append(new_rec)
roidb = roidb + flipped_roidb
from core.detection_input import AnchorLoader
train_data = AnchorLoader(
roidb=roidb,
transform=transform,
data_name=data_name,
label_name=label_name,
batch_size=input_batch_size,
shuffle=True,
kv=kv,
num_worker=pGen.loader_worker or 12,
num_collector=pGen.loader_collector or 1,
worker_queue_depth=2,
collector_queue_depth=2
)
# infer shape
worker_data_shape = dict(train_data.provide_data + train_data.provide_label)
for key in worker_data_shape:
worker_data_shape[key] = (pKv.batch_image,) + worker_data_shape[key][1:]
arg_shape, _, aux_shape = sym.infer_shape(**worker_data_shape)
_, out_shape, _ = sym.get_internals().infer_shape(**worker_data_shape)
out_shape_dict = list(zip(sym.get_internals().list_outputs(), out_shape))
_, out_shape, _ = sym.infer_shape(**worker_data_shape)
terminal_out_shape_dict = zip(sym.list_outputs(), out_shape)
if rank == 0:
logger.info('parameter shape')
logger.info(pprint.pformat([i for i in out_shape_dict if not i[0].endswith('output')]))
logger.info('intermediate output shape')
logger.info(pprint.pformat([i for i in out_shape_dict if i[0].endswith('output')]))
logger.info('terminal output shape')
logger.info(pprint.pformat([i for i in terminal_out_shape_dict]))
# memonger
if pModel.memonger:
last_block = pModel.memonger_until or ""
if rank == 0:
logger.info("do memonger up to {}".format(last_block))
type_dict = {k: np.float32 for k in worker_data_shape}
sym = search_plan_to_layer(sym, last_block, 1000, type_dict=type_dict, **worker_data_shape)
# load and initialize params
if pOpt.schedule.begin_epoch != 0:
arg_params, aux_params = load_checkpoint(model_prefix, begin_epoch)
elif pModel.from_scratch:
arg_params, aux_params = dict(), dict()
else:
if not os.path.exists("%s-%04d.params" % (pretrain_prefix, pretrain_epoch)):
from utils.download_pretrain import download
download(pretrain_prefix, pretrain_epoch)
arg_params, aux_params = load_checkpoint(pretrain_prefix, pretrain_epoch)
if pModel.process_weight is not None:
pModel.process_weight(sym, arg_params, aux_params)
'''
there are some conflicts between `mergebn` and `attach_quantized_node` in graph_optimize.py
when mergebn ahead of attach_quantized_node
such as `Symbol.ComposeKeyword`
'''
if pModel.QuantizeTrainingParam is not None and pModel.QuantizeTrainingParam.quantize_flag:
pQuant = pModel.QuantizeTrainingParam
assert pGen.fp16 == False, "current quantize training only support fp32 mode."
from utils.graph_optimize import attach_quantize_node
_, out_shape, _ = sym.get_internals().infer_shape(**worker_data_shape)
out_shape_dictoinary = dict(zip(sym.get_internals().list_outputs(), out_shape))
sym = attach_quantize_node(sym, out_shape_dictoinary, pQuant.WeightQuantizeParam,
pQuant.ActQuantizeParam, pQuant.quantized_op)
# merge batch normalization to save memory in fix bn training
from utils.graph_optimize import merge_bn
sym, arg_params, aux_params = merge_bn(sym, arg_params, aux_params)
if pModel.random:
import time
mx.random.seed(int(time.time()))
np.random.seed(int(time.time()))
init = mx.init.Xavier(factor_type="in", rnd_type='gaussian', magnitude=2)
init.set_verbosity(verbose=True)
# create solver
fixed_param = pModel.pretrain.fixed_param
excluded_param = pModel.pretrain.excluded_param
data_names = [k[0] for k in train_data.provide_data]
label_names = [k[0] for k in train_data.provide_label]
if pModel.teacher_param:
from models.KD.utils import create_teacher_module
from models.KD.detection_module import KDDetModule
t_mod, t_label_name, t_label_shape = create_teacher_module(
pModel.teacher_param, worker_data_shape, input_batch_size, ctx, rank, logger)
mod = KDDetModule(sym, teacher_module=t_mod, teacher_label_names=t_label_name,
teacher_label_shapes=t_label_shape,
data_names=data_names, label_names=label_names,
logger=logger, context=ctx, fixed_param=fixed_param,
excluded_param=excluded_param)
else:
mod = DetModule(sym, data_names=data_names, label_names=label_names,
logger=logger, context=ctx, fixed_param=fixed_param, excluded_param=excluded_param)
eval_metrics = mx.metric.CompositeEvalMetric(metric_list)
# callback
batch_end_callback = [callback.Speedometer(train_data.batch_size, len(train_data) * (end_epoch - begin_epoch), frequent=pGen.log_frequency)]
batch_end_callback += pModel.batch_end_callbacks or []
epoch_end_callback = callback.do_checkpoint(model_prefix)
sym.save(model_prefix + ".json")
# decide learning rate
lr_mode = pOpt.optimizer.lr_mode or 'step'
base_lr = pOpt.optimizer.lr * kv.num_workers
lr_factor = pOpt.schedule.lr_factor or 0.1
iter_per_epoch = len(train_data)
total_iter = iter_per_epoch * (end_epoch - begin_epoch)
lr_iter = [total_iter + it if it < 0 else it for it in lr_iter]
lr_iter = [it // kv.num_workers for it in lr_iter]
lr_iter = [it - iter_per_epoch * begin_epoch for it in lr_iter]
lr_iter_discount = [it for it in lr_iter if it > 0]
current_lr = base_lr * (lr_factor ** (len(lr_iter) - len(lr_iter_discount)))
if rank == 0:
logging.info('total iter {}'.format(total_iter))
logging.info('lr {}, lr_iters {}'.format(current_lr, lr_iter_discount))
logging.info('lr mode: {}'.format(lr_mode))
if pOpt.warmup and pOpt.schedule.begin_epoch == 0:
if pOpt.warmup.in_pct:
pOpt.warmup.iter //= kv.num_workers
if rank == 0:
logging.info(
'warmup lr {}, warmup step {}'.format(
pOpt.warmup.lr,
pOpt.warmup.iter)
)
if lr_mode == 'step':
lr_scheduler = WarmupMultiFactorScheduler(
step=lr_iter_discount,
factor=lr_factor,
warmup=True,
warmup_type=pOpt.warmup.type,
warmup_lr=pOpt.warmup.lr,
warmup_step=pOpt.warmup.iter
)
elif lr_mode == 'cosine':
warmup_lr_scheduler = AdvancedLRScheduler(
mode='linear',
base_lr=pOpt.warmup.lr,
target_lr=base_lr,
niters=pOpt.warmup.iter
)
cosine_lr_scheduler = AdvancedLRScheduler(
mode='cosine',
base_lr=base_lr,
target_lr=0,
offset=pOpt.warmup.iter,
niters=(iter_per_epoch * (end_epoch - begin_epoch)) - pOpt.warmup.iter
)
lr_scheduler = LRSequential([warmup_lr_scheduler, cosine_lr_scheduler])
else:
raise NotImplementedError
else:
if lr_mode == 'step':
lr_scheduler = WarmupMultiFactorScheduler(step=lr_iter_discount, factor=lr_factor)
elif lr_mode == 'cosine':
lr_scheduler = AdvancedLRScheduler(
mode='cosine',
base_lr=base_lr,
target_lr=0,
offset=pOpt.warmup.iter,
niters=iter_per_epoch * (end_epoch - begin_epoch)
)
else:
lr_scheduler = None
# optimizer
optimizer_params = dict(
momentum=pOpt.optimizer.momentum,
wd=pOpt.optimizer.wd,
learning_rate=current_lr,
lr_scheduler=lr_scheduler,
rescale_grad=1.0 / (len(ctx) * kv.num_workers),
clip_gradient=pOpt.optimizer.clip_gradient
)
if pKv.fp16:
optimizer_params['multi_precision'] = True
optimizer_params['rescale_grad'] /= 128.0
profile = pGen.profile or False
if profile:
mx.profiler.set_config(profile_all=True, filename=os.path.join(save_path, "profile.json"))
# train
mod.fit(
train_data=train_data,
eval_metric=eval_metrics,
epoch_end_callback=epoch_end_callback,
batch_end_callback=batch_end_callback,
kvstore=kv,
optimizer=pOpt.optimizer.type,
optimizer_params=optimizer_params,
initializer=init,
allow_missing=True,
arg_params=arg_params,
aux_params=aux_params,
begin_epoch=begin_epoch,
num_epoch=end_epoch,
profile=profile
)
logging.info("Training has done")
time.sleep(10)
logging.info("Exiting")
def parse_args():
parser = argparse.ArgumentParser(description='Train Detection')
parser.add_argument('--config', help='config file path', type=str)
args = parser.parse_args()
config = importlib.import_module(args.config.replace('.py', '').replace('/', '.'))
return config
if __name__ == '__main__':
train_net(parse_args())