-
Notifications
You must be signed in to change notification settings - Fork 488
/
detection_module.py
187 lines (166 loc) · 8.91 KB
/
detection_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=too-many-instance-attributes, too-many-arguments, protected-access, too-many-branches
# pylint: disable=too-many-public-methods
"""A `Module` implement the `BaseModule` API by wrapping a `Symbol` and one or
more `Executor` for data parallelization.
"""
import time
import logging
import warnings
import mxnet as mx
from mxnet import metric
from mxnet import context as ctx
from mxnet import optimizer as opt
from mxnet import ndarray as nd
from mxnet.base import _as_list
from mxnet.module.executor_group import DataParallelExecutorGroup
from mxnet.model import _create_kvstore, _initialize_kvstore, _update_params, _update_params_on_kvstore
from mxnet.model import load_checkpoint
from mxnet.model import BatchEndParam
from mxnet.initializer import Uniform, InitDesc
from mxnet.io import DataDesc, DataBatch
from mxnet.ndarray import zeros
from mxnet.module.base_module import BaseModule, _check_input_names, _parse_data_desc
from mxnet.module.module import Module
from core.detection_module import DetModule
class KDDetModule(DetModule):
"""Module is a basic module that wrap a `Symbol`. It is functionally the same
as the `FeedForward` model, except under the module API.
Parameters
----------
symbol : Symbol
data_names : list of str
Defaults to `('data')` for a typical model used in image classification.
label_names : list of str
Defaults to `('softmax_label')` for a typical model used in image
classification.
logger : Logger
Defaults to `logging`.
context : Context or list of Context
Defaults to ``mx.cpu()``.
work_load_list : list of number
Default ``None``, indicating uniform workload.
fixed_param_names: list of str
Default ``None``, indicating no network parameters are fixed.
state_names : list of str
states are similar to data and label, but not provided by data iterator.
Instead they are initialized to 0 and can be set by `set_states()`.
group2ctxs : dict of str to context or list of context,
or list of dict of str to context
Default is `None`. Mapping the `ctx_group` attribute to the context assignment.
compression_params : dict
Specifies type of gradient compression and additional arguments depending
on the type of compression being used. For example, 2bit compression requires a threshold.
Arguments would then be {'type':'2bit', 'threshold':0.5}
See mxnet.KVStore.set_gradient_compression method for more details on gradient compression.
"""
def __init__(self, symbol, teacher_module=None, teacher_label_names=None, teacher_label_shapes=None,
data_names=None, label_names=None, logger=logging, context=ctx.cpu(),
fixed_param=None, excluded_param=None):
super().__init__(symbol=symbol, data_names=data_names,
label_names=label_names + teacher_label_names, logger=logger, context=context,
fixed_param=fixed_param, excluded_param=excluded_param)
assert isinstance(teacher_module, DetModule)
self.teacher_module = teacher_module
self.teacher_label_shapes = teacher_label_shapes
self.t_output = None
def forward(self, data_batch, is_train=None):
"""Forward computation. It supports data batches with different shapes, such as
different batch sizes or different image sizes.
If reshaping of data batch relates to modification of symbol or module, such as
changing image layout ordering or switching from training to predicting, module
rebinding is required.
See Also
----------
:meth:`BaseModule.forward`.
Parameters
----------
data_batch : DataBatch
Could be anything with similar API implemented.
is_train : bool
Default is ``None``, which means ``is_train`` takes the value of ``self.for_training``.
"""
assert self.binded and self.params_initialized
curr_data_shapes = tuple(i.shape for i in self._data_shapes)
if isinstance(data_batch, list):
assert data_batch is not None, "Encountered empty data batch"
new_data_shapes = []
for i in range(len(data_batch[0].data)):
shape = data_batch[0].data[i].shape
for db in data_batch:
assert shape == db.data[i].shape, \
"All data batches in a list need to have the same shape"
new_batch_size = len(data_batch) * shape[0]
new_data_shapes.append((new_batch_size,) + shape[1:])
new_data_shapes = tuple(new_data_shapes)
else:
new_data_shapes = tuple(i.shape for i in data_batch.data)
if curr_data_shapes != new_data_shapes:
if hasattr(data_batch, "provide_data") and data_batch.provide_data:
new_dshape = data_batch.provide_data
else:
new_dshape = [DataDesc(i.name, shape, i.dtype, i.layout) \
for i, shape in zip(self._data_shapes, new_data_shapes)]
if hasattr(data_batch, "provide_label") and data_batch.provide_label:
new_lshape = data_batch.provide_label
elif hasattr(data_batch, "label") and data_batch.label:
new_lshape = [DataDesc(i.name, j.shape, i.dtype, i.layout) \
for i, j in zip(self._label_shapes, data_batch.label)]
else:
new_lshape = None
# TODO: hard code
self.teacher_module.reshape(new_dshape[:1], None)
t_data_batch = DataBatch(data=data_batch.data[:1],
provide_data=data_batch.provide_data[:1])
self.teacher_module.forward(data_batch=t_data_batch, is_train=True)
# TODO: should handle multi teacher label
self.t_output = self.teacher_module.get_outputs()
t_shape = self.t_output[0].shape
new_lshape += [('teacher_label', t_shape)]
self.reshape(new_dshape, new_lshape)
if self.t_output is None:
t_data_batch = DataBatch(data=data_batch.data[:1],
provide_data=data_batch.provide_data[:1])
self.teacher_module.forward(data_batch=t_data_batch, is_train=True)
self.t_output = self.teacher_module.get_outputs()
for data in self.t_output:
data.wait_to_read()
data_batch.label += self.t_output
self.t_output = None
self._exec_group.forward(data_batch, is_train)
def fit(self, train_data, eval_data=None, eval_metric='acc',
epoch_end_callback=None, batch_end_callback=None, kvstore='local',
optimizer='sgd', optimizer_params=(('learning_rate', 0.01),),
eval_end_callback=None,
eval_batch_end_callback=None, initializer=Uniform(0.01),
arg_params=None, aux_params=None, allow_missing=False,
force_rebind=False, force_init=False, begin_epoch=0, num_epoch=None,
validation_metric=None, monitor=None, sparse_row_id_fn=None, profile=False):
assert num_epoch is not None, 'please specify number of epochs'
self.bind(data_shapes=train_data.provide_data,
label_shapes=train_data.provide_label + self.teacher_label_shapes,
for_training=True, force_rebind=force_rebind)
super().fit(force_rebind=False, train_data=train_data, eval_data=eval_data, eval_metric=eval_metric,
epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback,
kvstore=kvstore, optimizer=optimizer, optimizer_params=optimizer_params,
eval_end_callback=eval_end_callback,
eval_batch_end_callback=eval_batch_end_callback, initializer=initializer,
arg_params=arg_params, aux_params=aux_params, allow_missing=allow_missing,
force_init=force_init, begin_epoch=begin_epoch,
num_epoch=num_epoch, validation_metric=validation_metric, monitor=monitor,
sparse_row_id_fn=sparse_row_id_fn, profile=profile)