-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtest_voronoi_utility.py
376 lines (316 loc) · 28.8 KB
/
test_voronoi_utility.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import unittest
import numpy
import numpy.linalg
import numpy.random
import numpy.testing
import scipy
import scipy.spatial
import math
import voronoi_utility
import networkx as nx
import random
import pandas
class Test_delaunay_triangulation_on_sphere_surface(unittest.TestCase):
def setUp(self):
#simple sphere parameters for testing a small triangulation:
self.simple_sphere_circumdiameter = 4.0
self.u, self.v = numpy.mgrid[0.01:2*numpy.pi-0.01:20j, 0.01:numpy.pi-0.01:10j]
self.big_u,self.big_v = numpy.mgrid[0:2*numpy.pi:2000j, 0:numpy.pi:1000j] #will have to adjust the boundaries here as well if the large data set is also to be used in testing
def generate_sphere_coords(u,v):
x = (self.simple_sphere_circumdiameter/2.0 * (numpy.cos(u)*numpy.sin(v))).ravel()
y = (self.simple_sphere_circumdiameter/2.0 * (numpy.sin(u)*numpy.sin(v))).ravel()
z = (self.simple_sphere_circumdiameter/2.0 * (numpy.cos(v))).ravel()
simple_sphere_coordinate_array = numpy.zeros((x.size,3))
simple_sphere_coordinate_array[...,0] = x
simple_sphere_coordinate_array[...,1] = y
simple_sphere_coordinate_array[...,2] = z
return simple_sphere_coordinate_array
#trying to work with small and large N points for triangulation to generate data for asymptotic limit test
self.simple_sphere_coordinate_array = generate_sphere_coords(self.u,self.v)
self.simple_sphere_coordinate_array_LARGE = generate_sphere_coords(self.big_u,self.big_v)
self.num_triangulation_input_points = self.simple_sphere_coordinate_array.shape[0]
self.num_triangulation_input_points_LARGE = self.simple_sphere_coordinate_array_LARGE.shape[0]
def tearDown(self):
del self.simple_sphere_circumdiameter
del self.u
del self.v
del self.big_u
del self.big_v
del self.simple_sphere_coordinate_array
del self.simple_sphere_coordinate_array_LARGE
del self.num_triangulation_input_points
del self.num_triangulation_input_points_LARGE
@unittest.skip("Test not working yet.")
def test_asymptotic_upper_bound_polytopes_Delaunay_sphere_surface(self):
'''Any triangulation of n points in d dimensions has O(n ** ( d / 2)) simplices (triangles). This is based on the asymptotic version of the upper bound theorem for polytopes [Seidel1995]_. This doesn't appear to be an expression that may be used to determine the exact number of triangles in a Delaunay triangulation based solely on the number of input points and dimensionality, even though that would be rahter convenient for testing purposes. Rather, the O-notation implies a description of the growth behaviour of the number of simplices as the number of input points approaches infinity, by convention neglecting terms in the equation (for the total number of simplices) that contribute negligibly in the asymptotic limit. This property should hold for the Delaunay triangulation of the points on the surface of a sphere, since it is a property of any triangulation.
References
----------
.. [Seidel1995] R. Seidel (1995) Computational Geometry 5: 115-116.
'''
dimensions = 3.0
increase_in_number_data_set_points = self.num_triangulation_input_points_LARGE - self.num_triangulation_input_points
expected_approximate_increase_in_num_triangulation_facets = increase_in_number_data_set_points ** (dimensions / 2.0)
print 'expected_approximate_increase_in_num_triangulation_facets:', expected_approximate_increase_in_num_triangulation_facets
voronoi_instance_small = voronoi_utility.Voronoi_Sphere_Surface(self.simple_sphere_coordinate_array)
voronoi_instance_large = voronoi_utility.Voronoi_Sphere_Surface(self.simple_sphere_coordinate_array_LARGE)
actual_Delaunay_point_array_small = voronoi_instance_small.Delaunay_triangulation_spherical_surface()
actual_Delaunay_point_array_large = voronoi_instance_large.Delaunay_triangulation_spherical_surface()
actual_increase_in_num_triangulation_facets = actual_Delaunay_point_array_large.shape[0] - actual_Delaunay_point_array_small.shape[0]
print 'actual_increase_in_num_triangulation_facets:', actual_increase_in_num_triangulation_facets
self.assertEqual(actual_increase_in_num_triangulation_facets,expected_approximate_increase_in_num_triangulation_facets)
@unittest.skip("Test not working perfectly on the surface of a sphere (occasional failures).")
def test_geometric_spanner_condition_Delaunay_triangulation_sphere_surface(self):
'''The geometric spanner condition (http://en.wikipedia.org/wiki/Delaunay_triangulation#Properties) indicates that the length of the shortest edge-traveled path between two nodes in a Delaunay triangulation is no longer than 2.42 times the straight-line Euclidean distance between them.'''
#create a networkx graph object of the Delaunay triangulation vertices & edges
voronoi_instance_small = voronoi_utility.Voronoi_Sphere_Surface(self.simple_sphere_coordinate_array)
Delaunay_point_array_small = voronoi_instance_small.delaunay_triangulation_spherical_surface() #should be shape (N,3,3) for N triangles and their vertices in 3D space
node_dictionary = {}
node_counter = 1
list_nodes_identified_debug = []
#assign an integer node (vertex) number to each unique coordinate on the test sphere:
for node_coordinate in self.simple_sphere_coordinate_array:
node_dictionary[node_counter] = node_coordinate
node_counter += 1
#print 'self.simple_sphere_coordinate_array:', self.simple_sphere_coordinate_array
#print 'self.simple_sphere_coordinate_array.shape:', self.simple_sphere_coordinate_array.shape
#print 'node_dictionary.values():', node_dictionary.values() #there seem to be multiple duplicates / rounding variations for the polar point at [0. 0. 2.]
def identify_node_based_on_coordinate(coordinate_array,node_dictionary):
'''Return the node number based on the coordinates in the original test sphere data set.'''
nodenum = 0
num_positives_debug = 0
for node_number, node_coordinates in node_dictionary.iteritems():
if numpy.allclose(node_coordinates,coordinate_array,atol=1e-18):
nodenum = node_number
num_positives_debug += 1
#if num_positives_debug > 1:
#print 'duplicate offender:', node_coordinates, coordinate_array
#else:
#print 'original match:', node_coordinates, coordinate_array
assert num_positives_debug == 1, "Only a single node should correspond to the input coordinates."
return nodenum
def produce_networkx_edges_from_triangle_data(triangle_array_data,node_dictionary):
'''Input should be shape (3,3) array of coordinate data for a Delaunay triangle.'''
list_networkx_edge_tuples = []
#each triangle will, of course, have 3 edges
triangle_array_row_indices_for_edge_vertices = [[0,1],[1,2],[2,0]]
for triangle_row_indices_of_edge in triangle_array_row_indices_for_edge_vertices:
first_triangle_row_index, second_triangle_row_index = triangle_row_indices_of_edge
first_vertex_coord = triangle_array_data[first_triangle_row_index]
second_vertex_coord = triangle_array_data[second_triangle_row_index]
graph_node_number_first_vertex_current_edge = identify_node_based_on_coordinate(first_vertex_coord,node_dictionary)
graph_node_number_second_vertex_current_edge = identify_node_based_on_coordinate(second_vertex_coord,node_dictionary)
list_nodes_identified_debug.extend([graph_node_number_first_vertex_current_edge,graph_node_number_second_vertex_current_edge]) #missing nodes with debug list growth here, but no missing nodes if I grow the debug list from within the identify_node_based_on_coordinate() function itself; why????
#the edge weight for networkx should be the Euclidean straight-line distance between the vertices
weight = scipy.spatial.distance.euclidean(first_vertex_coord,second_vertex_coord)
networkx_edge_tuple = (graph_node_number_first_vertex_current_edge,graph_node_number_second_vertex_current_edge,weight)
list_networkx_edge_tuples.append(networkx_edge_tuple)
return list_networkx_edge_tuples
#build networkx graph object from Delaunay triangles (simplices)
G = nx.Graph()
triangle_counter = 0
for triangle_coord_array in Delaunay_point_array_small:
current_list_networkx_edge_tuples = produce_networkx_edges_from_triangle_data(triangle_coord_array,node_dictionary)
#print 'current_list_networkx_edge_tuples:', current_list_networkx_edge_tuples
G.add_weighted_edges_from(current_list_networkx_edge_tuples) #duplicates will simply be updated
triangle_counter += 1
#print 'Triangle:', triangle_counter, 'total edges:', G.size(), 'total nodes:', G.order()
#print 'size:', G.size()
#print 'list of edges:', G.edges()
#print 'num nodes:', len(G.nodes())
#print 'dict size:', len(node_dictionary)
#print 'dict keys:', node_dictionary.keys()
#print 'nodes:', G.nodes()
#print 'edges:', G.edges()
#print 'ordered set nodes identified:', set(sorted(list_nodes_identified_debug))
self.assertEqual(len(G),self.num_triangulation_input_points) #obviously, the number of nodes in the graph should match the number of points on the sphere
#perform the geometric spanner test for a random subset of nodes:
num_tests = 0
while num_tests < 10: #do 10 random tests
first_node_number = random.randrange(1,len(G),1)
second_node_number = random.randrange(1,len(G),1)
minimum_distance_between_nodes_following_Delaunay_edges = nx.dijkstra_path_length(G,first_node_number,second_node_number)
#compare with straight line Euclidean distance:
first_node_coordinate = node_dictionary[first_node_number]
second_node_coordinate = node_dictionary[second_node_number]
Euclidean_distance = scipy.spatial.distance.euclidean(first_node_coordinate,second_node_coordinate)
self.assertLess(minimum_distance_between_nodes_following_Delaunay_edges/Euclidean_distance,2.42) #the geometric spanner condition
num_tests += 1
class Test_spherical_polygon_angle_summation(unittest.TestCase):
def setUp(self):
self.spherical_triangle_coordinate_array = numpy.array([[0,0,1],[0,1,0],[1,0,0]]) #3 points on a unit sphere
self.spherical_polygon_4_vertices_coord_array = numpy.array([[0,0,1],[0,1,0],[1,0,0],[0,-1,0]]) #4 points on a unit sphere
def tearDown(self):
del self.spherical_triangle_coordinate_array
def test_spherical_triangle_sum_inner_angles(self):
'''Test my spherical polygon inner angle summation code on the simple case of a spherical triangle where we know that the sum of the inner angles must be between pi and 3 * pi radians (http://mathworld.wolfram.com/SphericalTriangle.html).'''
theta = voronoi_utility.calculate_and_sum_up_inner_sphere_surface_angles_Voronoi_polygon(self.spherical_triangle_coordinate_array,1.0)
self.assertLess(theta,3. * math.pi,msg='theta must be less than 3 * pi radians for a spherical triangle but got theta = {theta}'.format(theta=theta))
self.assertGreater(theta,math.pi,msg='theta must be greater than pi radians for a spherical triangle but got theta = {theta}'.format(theta=theta))
def test_spherical_polygon_4_vertices_sum_inner_angles(self):
'''Test my spherical polygon inner angle summation code on a slightly more complex case of a spherical polygon with n = 4 vertices. The sum of the inner angles should exceed (n - 2) * pi according to http://mathworld.wolfram.com/SphericalPolygon.html.'''
theta = voronoi_utility.calculate_and_sum_up_inner_sphere_surface_angles_Voronoi_polygon(self.spherical_polygon_4_vertices_coord_array,1.0)
minimum_allowed_angle = 2 * math.pi
self.assertGreater(theta,minimum_allowed_angle,msg='theta must be greater than 2 * pi for spherical polygon with 4 vertices but got theta = {theta}'.format(theta=theta))
class Test_voronoi_surface_area_calculations(unittest.TestCase):
def setUp(self):
#generate a random distribution of points on the unit sphere (http://mathworld.wolfram.com/SpherePointPicking.html)
#go for 5000 random points that are always the same thanks to a pinned down pnrg object (http://stackoverflow.com/a/5837352/2942522):
self.prng = numpy.random.RandomState(117) #if I don't pin this down, then I can sometimes get pathological generator sets for which Voronoi diagrams are not available
self.cartesian_coord_array = voronoi_utility.generate_random_array_spherical_generators(5000,1.0,self.prng)
#and similarly for a generator data set using a much larger sphere radius:
self.prng_2 = numpy.random.RandomState(556)
self.large_sphere_radius = 87.0
self.cartesian_coord_array_large_radius = voronoi_utility.generate_random_array_spherical_generators(5000,self.large_sphere_radius,self.prng_2)
self.spherical_triangle_coordinate_array = numpy.array([[0,0,1],[0,1,0],[1,0,0]]) #3 points on a unit sphere
self.spherical_polygon_4_vertices_coord_array = numpy.array([[0,0,1],[0,1,0],[1,0,0],[0,-1,0]]) #4 points on a unit sphere
self.unit_sphere_surface_area = 4 * math.pi
def tearDown(self):
del self.prng
del self.prng_2
del self.cartesian_coord_array
del self.spherical_triangle_coordinate_array
del self.spherical_polygon_4_vertices_coord_array
del self.unit_sphere_surface_area
del self.large_sphere_radius
del self.cartesian_coord_array_large_radius
def test_spherical_voronoi_surface_area_reconstitution(self):
'''Given a pseudo-random set of points on the unit sphere, the sum of the surface areas of the Voronoi polygons should be equal to the surface area of the sphere itself.'''
random_dist_voronoi_instance = voronoi_utility.Voronoi_Sphere_Surface(self.cartesian_coord_array,1.0)
dictionary_Voronoi_region_surface_areas_for_each_generator = random_dist_voronoi_instance.voronoi_region_surface_areas_spherical_surface()
sum_Voronoi_polygon_surface_areas = sum(dictionary_Voronoi_region_surface_areas_for_each_generator.itervalues())
percent_reconstituted_surface_area = sum_Voronoi_polygon_surface_areas / self.unit_sphere_surface_area * 100.
self.assertGreater(percent_reconstituted_surface_area,99.0,msg='Reconstituted surface area of Voronoi polygons on unit sphere should match theoretical surface area of sphere within 1 %.') #using a slightly more relaxed testing requirement as it seems fairly clear that the code won't match to multiple decimal places anytime soon
self.assertLessEqual(percent_reconstituted_surface_area,100.0,msg='Reconstituted surface area of Voronoi polygons should be less than or equal to 100% of the theoretical surface area of spherebut got {percent} %.'.format(percent=percent_reconstituted_surface_area))
def test_spherical_voronoi_surface_area_reconstitution_non_origin(self):
'''Given a pseudo-random set of points on the unit sphere, the sum of the surface areas of the Voronoi polygons should be equal to the surface area of the sphere itself.
Introduces additional complication of not having its center point at the origin.'''
random_dist_voronoi_instance = voronoi_utility.Voronoi_Sphere_Surface(self.cartesian_coord_array + 3.0,1.0,numpy.array([3.0,3.0,3.0])) # +3 translation to all Cartesian coords [amazingly, this seems to fail is I use a value of 4.0, but 3.0 is fine --floating-point sensitivity somewhere?!]
dictionary_Voronoi_region_surface_areas_for_each_generator = random_dist_voronoi_instance.voronoi_region_surface_areas_spherical_surface()
sum_Voronoi_polygon_surface_areas = sum(dictionary_Voronoi_region_surface_areas_for_each_generator.itervalues())
percent_reconstituted_surface_area = sum_Voronoi_polygon_surface_areas / self.unit_sphere_surface_area * 100.
self.assertGreater(percent_reconstituted_surface_area,99.0,msg='Reconstituted surface area of Voronoi polygons on unit sphere should match theoretical surface area of sphere within 1 %.')
self.assertLessEqual(percent_reconstituted_surface_area,100.0,msg='Reconstituted surface area of Voronoi polygons should be less than or equal to 100% of the theoretical surface area of spherebut got {percent} %.'.format(percent=percent_reconstituted_surface_area))
def test_spherical_voronoi_surface_area_reconstitution_large_radius(self):
'''Given a pseudo-random set of points on a sphere, the sum of the surface areas of the Voronoi polygons should be equal to the surface area of the sphere itself. Using a much larger radius (self.large_sphere_radius) than the standard unit sphere in this test.'''
random_dist_voronoi_instance = voronoi_utility.Voronoi_Sphere_Surface(self.cartesian_coord_array_large_radius,self.large_sphere_radius)
dictionary_Voronoi_region_surface_areas_for_each_generator = random_dist_voronoi_instance.voronoi_region_surface_areas_spherical_surface()
sum_Voronoi_polygon_surface_areas = sum(dictionary_Voronoi_region_surface_areas_for_each_generator.itervalues())
percent_reconstituted_surface_area = sum_Voronoi_polygon_surface_areas / (math.pi * 4.0 * (self.large_sphere_radius ** 2)) * 100.
numpy.testing.assert_almost_equal(percent_reconstituted_surface_area,99.98,decimal=1)
def test_spherical_triangle_surface_area_calculation(self):
'''Test spherical polygon surface area calculation on the relatively simple case of a spherical triangle on the surface of a unit sphere.'''
#the surface area of a spherical triangle is a special case of a spherical polygon (http://mathworld.wolfram.com/SphericalTriangle.html)
sum_spherical_triangle_inner_angles = voronoi_utility.calculate_and_sum_up_inner_sphere_surface_angles_Voronoi_polygon(self.spherical_triangle_coordinate_array,1.0)
spherical_excess = sum_spherical_triangle_inner_angles - math.pi #because the radius of the sphere is 1 the spherical excess is also the surface area
self.assertGreater(spherical_excess,0.0)
test_surface_area = voronoi_utility.calculate_surface_area_of_a_spherical_Voronoi_polygon(self.spherical_triangle_coordinate_array,1.0)
numpy.testing.assert_almost_equal(test_surface_area,spherical_excess,decimal=12)
def test_spherical_polygon_4_vertices_surface_area_calculation(self):
'''Test spherical polygon surface area calculation on the more complex case of a spherical polygon with 4 vertices on a unit sphere.'''
sum_spherical_polygon_inner_angles = voronoi_utility.calculate_and_sum_up_inner_sphere_surface_angles_Voronoi_polygon(self.spherical_polygon_4_vertices_coord_array,1.0)
subtraction_value = 2 * math.pi # (n-2) * pi
target_area = sum_spherical_polygon_inner_angles - subtraction_value
#print 'target_area (should be pi):', target_area
self.assertGreater(sum_spherical_polygon_inner_angles,subtraction_value,'The polygon with 4 vertices has a negative surface area.')
measured_surface_area = voronoi_utility.calculate_surface_area_of_a_spherical_Voronoi_polygon(self.spherical_polygon_4_vertices_coord_array, 1.0)
numpy.testing.assert_almost_equal(measured_surface_area,target_area,decimal=12)
def test_spherical_polygon_4_vertices_nearly_colinear_surface_area_calculation(self):
'''Test spherical polygon surface area calculation for a polygon with 4 vertices AND an internal angle that is very close to 180 degrees. Trying to stress test / probe possible issues with arc cosine accuracy, etc.'''
regular_spherical_triangle_coords = self.spherical_triangle_coordinate_array #([[0,0,1],[0,1,0],[1,0,0]]) #3 points on a unit sphere
#I want to generate a fourth point that is ALMOST on the same great circle arc as two other vertices, because this is a nasty test case
linear_midpoint_last_two_vertices = (regular_spherical_triangle_coords[1] + regular_spherical_triangle_coords[2]) / 2.0
linear_midpoint_spherical_polar_coords = voronoi_utility.convert_cartesian_array_to_spherical_array(linear_midpoint_last_two_vertices)
spherical_midpoint_spherical_polar_coords = numpy.zeros((1,3))
spherical_midpoint_spherical_polar_coords[0,0] = 1.0
spherical_midpoint_spherical_polar_coords[0,1] = linear_midpoint_spherical_polar_coords[1] + 0.000001 #slightly off the arc
spherical_midpoint_spherical_polar_coords[0,2] = linear_midpoint_spherical_polar_coords[2] + 0.000001 #slightly off the arc
near_midpoint_cartesian = voronoi_utility.convert_spherical_array_to_cartesian_array(spherical_midpoint_spherical_polar_coords)
polygon_coords = numpy.zeros((4,3))
polygon_coords[0] = regular_spherical_triangle_coords[0]
polygon_coords[1] = regular_spherical_triangle_coords[1]
polygon_coords[2] = near_midpoint_cartesian[0,...]
polygon_coords[3] = regular_spherical_triangle_coords[2]
measured_surface_area = voronoi_utility.calculate_surface_area_of_a_spherical_Voronoi_polygon(polygon_coords,1.0) #the function itself will pass an exception if there is a negative surface area
self.assertGreater(measured_surface_area,0.0)
def test_spherical_polygon_4_vertices_exactly_colinear_surface_area_calculation(self):
'''Test spherical polygon surface area calculation for a polygon with 4 vertices--3 of which are on the same great circle arc--this should surely cause a problem!! (Apparently not.)'''
regular_spherical_triangle_coords = self.spherical_triangle_coordinate_array #([[0,0,1],[0,1,0],[1,0,0]]) #3 points on a unit sphere
linear_midpoint_last_two_vertices = (regular_spherical_triangle_coords[1] + regular_spherical_triangle_coords[2]) / 2.0
linear_midpoint_spherical_polar_coords = voronoi_utility.convert_cartesian_array_to_spherical_array(linear_midpoint_last_two_vertices)
spherical_midpoint_spherical_polar_coords = numpy.zeros((1,3))
spherical_midpoint_spherical_polar_coords[0,0] = 1.0
spherical_midpoint_spherical_polar_coords[0,1] = linear_midpoint_spherical_polar_coords[1]
spherical_midpoint_spherical_polar_coords[0,2] = linear_midpoint_spherical_polar_coords[2]
near_midpoint_cartesian = voronoi_utility.convert_spherical_array_to_cartesian_array(spherical_midpoint_spherical_polar_coords)
polygon_coords = numpy.zeros((4,3))
polygon_coords[0] = regular_spherical_triangle_coords[0]
polygon_coords[1] = regular_spherical_triangle_coords[1]
polygon_coords[2] = near_midpoint_cartesian[0,...]
polygon_coords[3] = regular_spherical_triangle_coords[2]
measured_surface_area = voronoi_utility.calculate_surface_area_of_a_spherical_Voronoi_polygon(polygon_coords,1.0) #the function itself will pass an exception if there is a negative surface area
self.assertGreater(measured_surface_area,0.0)
def test_problematic_spherical_polygon_surface_area(self):
'''Test the surface area of a spherical polygon that I know has previously caused issues with negative surface area as part of a Voronoi diagram. Now using a simplified version of that polygon with 1 less vertex--but still get a negative result.'''
problematic_polygon_array = numpy.array([[-0.12278101, 0.38828208, 0.90397089],
[-0.18533492 ,0.28384049, 0.9317119 ],
[ 0.07210294 ,0.29806975, 0.94284522],
[ 0.1316095 ,0.32464041, 0.92751769]])
measured_surface_area = voronoi_utility.calculate_surface_area_of_a_spherical_Voronoi_polygon(problematic_polygon_array,1.0)
self.assertGreater(measured_surface_area,0.0)
def test_planar_polygon_surface_area(self):
'''Test the surface area calculation for a planar polygon in 3D Cartesian space using a simple shape.'''
planar_polygon_vertex_array = numpy.array([[0,0,0],[math.sqrt(21),0,2],[math.sqrt(21),-1,2],[0,-1,0]]) #a tilted rectangle
theoretical_surface_area = 5.0 #rectangle of length 5 and width 1
test_surface_area = voronoi_utility.calculate_surface_area_of_planar_polygon_in_3D_space(planar_polygon_vertex_array)
self.assertEqual(test_surface_area,theoretical_surface_area)
class Test_haversine_and_Vincenty_code(unittest.TestCase):
def setUp(self):
self.coordinates_on_sphere_1 = numpy.array([[0,0,1],[1,0,0]])
self.distance_on_sphere_1 = math.pi / 2.
self.coordinates_on_sphere_2 = numpy.array([[0,0,87.0],[87.0,0,0]]) #sphere of larger radius
self.distance_on_sphere_2 = (math.pi / 2.) * 87.0
def tearDown(self):
del self.coordinates_on_sphere_1
del self.distance_on_sphere_1
def simple_test_haversine_distance(self):
'''A simple unit test of the haversine distance formula for two points on the unit sphere.'''
calculated_spherical_distance = voronoi_utility.calculate_haversine_distance_between_spherical_points(self.coordinates_on_sphere_1[0],self.coordinates_on_sphere_1[1],1.0)
numpy.testing.assert_almost_equal(calculated_spherical_distance,self.distance_on_sphere_1,decimal=6)
def simple_test_haversine_distance_larger_sphere(self):
'''A simple unit test of the haversine distance formula for two points on a larger sphere.'''
calculated_spherical_distance = voronoi_utility.calculate_haversine_distance_between_spherical_points(self.coordinates_on_sphere_2[0],self.coordinates_on_sphere_2[1],87.0)
numpy.testing.assert_almost_equal(calculated_spherical_distance,self.distance_on_sphere_2,decimal=6)
def simple_test_Vincenty_formula(self):
'''Test special case for Vincenty formula for two points on the unit sphere.'''
calculated_spherical_distance = voronoi_utility.calculate_Vincenty_distance_between_spherical_points(self.coordinates_on_sphere_1[0],self.coordinates_on_sphere_1[1],1.0)
numpy.testing.assert_almost_equal(calculated_spherical_distance,self.distance_on_sphere_1,decimal=6)
def simple_test_Vincenty_formula_larger_sphere(self):
'''Test special case for Vincenty formula for two points on a larger sphere.'''
calculated_spherical_distance = voronoi_utility.calculate_Vincenty_distance_between_spherical_points(self.coordinates_on_sphere_2[0],self.coordinates_on_sphere_2[1],87.0)
numpy.testing.assert_almost_equal(calculated_spherical_distance,self.distance_on_sphere_2,decimal=6)
class Test_Spherical_Voronoi_Diagram_Properties(unittest.TestCase):
def setUp(self):
self.test_sphere_radius = 1.0
self.num_generators = 100
self.prng = numpy.random.RandomState(117)
self.random_spherical_coord_array = voronoi_utility.generate_random_array_spherical_generators(self.num_generators, self.test_sphere_radius, self.prng)
def tearDown(self):
del self.test_sphere_radius
del self.num_generators
del self.prng
del self.random_spherical_coord_array
def test_max_allowed_spherical_Voronoi_vertices(self):
'''My empirical testing suggests that there is a maximum of 2n - 4 Voronoi vertices allowed on the surface of the sphere (where n is the number of generators), although ideally we'd like to see a formal proof for this. This maximum is one greater than the maximum allowed for the planar case, 2n - 5, as proven formally in Theorem 4.12 in Discrete and Computational Geometry (Devadoss and O'Rourke, 2011).'''
max_allowed_spherical_Voronoi_vertices = (2 * self.num_generators) - 4
#loop through and identify the actual number of unique Voronoi vertices produced by the algorithm in this code
spherical_voronoi_instance = voronoi_utility.Voronoi_Sphere_Surface(self.random_spherical_coord_array, self.test_sphere_radius)
dictionary_voronoi_regions = spherical_voronoi_instance.voronoi_region_vertices_spherical_surface()
list_voronoi_vertices = []
for generator_index, voronoi_vertex_array in dictionary_voronoi_regions.iteritems():
for voronoi_vertex in voronoi_vertex_array:
list_voronoi_vertices.append(voronoi_vertex)
array_voronoi_vertices = numpy.array(list_voronoi_vertices)
df = pandas.DataFrame(array_voronoi_vertices)
df_unique_vertices = df.drop_duplicates()
actual_number_unique_spherical_Voronoi_vertices = df_unique_vertices.shape[0]
self.assertLessEqual(actual_number_unique_spherical_Voronoi_vertices, max_allowed_spherical_Voronoi_vertices, 'The maximum number of Voronoi vertices allowed on the spherical surface should be 2n - 4.')