-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathessay_model.py
119 lines (91 loc) · 5.93 KB
/
essay_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
from keras.layers import Input, Embedding, Bidirectional, LSTM, TimeDistributed, Dense, \
Convolution1D, GlobalMaxPooling1D, merge, Dropout, Merge, BatchNormalization, Activation
from keras.engine import Model
from keras import optimizers
from utils import PARSER_TAGS
class EssayModel:
def __init__(self, hidden_dim, dense_dim, weight, max_words, opt="adam"):
self.hidden_dim = hidden_dim
self.dense_dim = dense_dim
self.vocab_size, self.embedding_dim = weight.shape
self.weights = [weight]
self.filters = 1
self.filter_len = 1
self.max_sens = 10
self.max_words = max_words
self.nb_feature = 21
self.opt = opt
# uses only the semantic network
def model_essay(self):
input_words = Input(shape=(self.max_words,), dtype='int32')
embedding_layer = Embedding(input_dim=self.vocab_size,
output_dim=self.embedding_dim,
weights=self.weights,
trainable=False,
mask_zero=True)(input_words)
bi_lstm_layer = Bidirectional(LSTM(output_dim=self.hidden_dim, return_sequences=False),
merge_mode='concat')(embedding_layer)
sentence_model = Model(inputs=input_words, outputs=bi_lstm_layer)
input_essay = Input(shape=(None, self.max_words), dtype='int32')
essay_layer = TimeDistributed(sentence_model)(input_essay)
essay_bilstm_layer = Bidirectional(LSTM(output_dim=self.hidden_dim, return_sequences=False),
merge_mode='concat')(essay_layer)
bn_merge_layer2 = BatchNormalization()(essay_bilstm_layer)
merge_dense_layer2 = Dense(self.dense_dim, activation='relu')(bn_merge_layer2)
score_layer = Dense(1, activation='sigmoid', name='pred_score')(merge_dense_layer2)
essay_model = Model(inputs=input_essay, outputs=score_layer)
if self.opt == "adam":
optimizer = optimizers.Adam(lr=0.01, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=0, clipvalue=10)
elif self.opt == 'rmsprop':
optimizer = optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=1e-06, clipnorm=0, clipvalue=10)
else:
optimizer = optimizers.Adagrad(lr=0.01, epsilon=1e-06, clipnorm=0, clipvalue=10)
essay_model.compile(optimizer=optimizer,
loss="mean_squared_error",
metrics=['mean_squared_error'])
return essay_model
# uses both the semantic and syntactic networks
def model_feature_parser_only(self):
input_words = Input(shape=(40,), dtype='int32')
embedding_layer = Embedding(input_dim=self.vocab_size,
output_dim=self.embedding_dim,
weights=self.weights,
trainable=False,
mask_zero=True)(input_words)
bi_lstm_layer = Bidirectional(LSTM(output_dim=self.hidden_dim, return_sequences=False),
merge_mode='concat')(embedding_layer)
sentence_model = Model(inputs=input_words, outputs=bi_lstm_layer)
input_essay = Input(shape=(None, 40), dtype='int32')
essay_layer = TimeDistributed(sentence_model)(input_essay)
essay_bilstm_layer = Bidirectional(LSTM(output_dim=self.hidden_dim, return_sequences=False),
merge_mode='concat')(essay_layer)
input_ngrams_parser = Input(shape=(10,), dtype='int32')
embedding_parser_layer = Embedding(input_dim=len(PARSER_TAGS),
output_dim=self.embedding_dim,
trainable=True,
mask_zero=True)(input_ngrams_parser)
bi_lstm_parser_layer = LSTM(output_dim=self.hidden_dim, return_sequences=False)(embedding_parser_layer)
ngrams_parser_model = Model(inputs=input_ngrams_parser, outputs=bi_lstm_parser_layer)
input_sentences_parser = Input(shape=(10, 10), dtype='int32')
sentence_parser_layer = TimeDistributed(ngrams_parser_model)(input_sentences_parser)
sentence_bilstm_parser_layer = LSTM(output_dim=self.hidden_dim, return_sequences=False)(sentence_parser_layer)
sentence_parser_model = Model(inputs=input_sentences_parser, outputs=sentence_bilstm_parser_layer)
input_essay_parser = Input(shape=(None, 10, 10), dtype='int32', name='essay')
essay_parser_layer = TimeDistributed(sentence_parser_model)(input_essay_parser)
essay_bilstm_parser_layer = LSTM(output_dim=self.hidden_dim, return_sequences=False)(essay_parser_layer)
merge_layer = Merge(mode='concat')([essay_bilstm_layer, essay_bilstm_parser_layer])
bn_merge_layer = BatchNormalization()(merge_layer)
merge_dense_layer1 = Dense(self.dense_dim, activation='relu')(bn_merge_layer)
drop1 = Dropout(0.5)(merge_dense_layer1)
bn_merge_layer2 = BatchNormalization()(drop1)
merge_dense_layer2 = Dense(self.dense_dim, activation='relu')(bn_merge_layer2)
score_layer = Dense(1, activation='sigmoid', name='pred_score')(merge_dense_layer2)
essay_model = Model(inputs=[input_essay, input_essay_parser], outputs=score_layer)
if self.opt == "adam":
optimizer = optimizers.Adam(lr=0.01, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=0, clipvalue=10)
else:
optimizer = optimizers.Adagrad(lr=0.01, epsilon=1e-06, clipnorm=0, clipvalue=10)
essay_model.compile(optimizer=optimizer,
loss="mean_squared_error",
metrics=['mean_squared_error'])
return essay_model