-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathequal_weights.py
224 lines (184 loc) · 10.7 KB
/
equal_weights.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import random
import torch, os, glob
from operator import itemgetter
import argparse, datetime
import numpy as np
import matplotlib.pyplot as plt
from torch.autograd import Variable
from torchinfo import summary
import torch.optim as optim
import torch.nn.functional as F
from model.dda import *
from utils.dataload import data_generator
from utils.write_csv import *
parser = argparse.ArgumentParser(description='Sequence Modeling')
parser.add_argument('--batch_size', type=int, default=256, metavar='N',
help='batch size (default: 256)')
parser.add_argument('--iterations', type=int, default=10000,
help='iteration (default: 10000)')
parser.add_argument('--lr', type=float, default=2e-3,
help='initial learning rate (default: 2e-3)')
parser.add_argument('--dataset', default='Crop',
help='UCR dataset (default: Crop)')
parser.add_argument('--da1', default='identity',
help='Data Augmentation 1 (default: identity)')
parser.add_argument('--da2', default='jitter',
help='Data Augmentation 2 (default: jitter)')
parser.add_argument('--da3', default='windowWarp',
help='Data Augmentation 3 (default: windowWarp)')
parser.add_argument('--da4', default='magnitudeWarp',
help='Data Augmentation 4 (default: magnitudeWarp)')
parser.add_argument('--da5', default='timeWarp',
help='Data Augmentation 5 (default: timeWarp)')
parser.add_argument('--consis_lambda', type=float, default=1.0,
help='weights for consistency loss')
parser.add_argument('--gpu_id', type=int, default=0,
help='set gpu_id')
parser.add_argument('--seed', type=int, default=1111,
help='random seed')
args = parser.parse_args()
# fix random
seed = args.seed
if True: # set seed
np.random.seed(seed)
torch.manual_seed(seed) # fix the initial value of the network weight
torch.cuda.manual_seed(seed) # for cuda
torch.cuda.manual_seed_all(seed) # for multi-GPU
torch.backends.cudnn.deterministic = True # choose the determintic algorithm
dt = datetime.datetime.now()
now = "{:0=2}".format(dt.month) + "{:0=2}-".format(dt.day) + "{:0=2}".format(dt.hour) + "{:0=2}".format(dt.minute)
batch_size = args.batch_size
data_name = args.dataset
gpu_id = args.gpu_id
dataset_path = './dataset/UCRArchive_2018'
input_length, n_classes, NumOfTrain = get_length_numofclass(data_name)
z_size = 512 # f's size
input_channels = 1
seq_length = int(input_length / input_channels)
epochs = np.ceil(args.iterations * (batch_size / NumOfTrain)).astype(int)
data_len_after_cnn = int((((((input_length-2)/2)-2)/2)-2)/2)
steps = 0
da1, da2, da3, da4, da5 = args.da1, args.da2, args.da3, args.da4, args.da5
print(args, 'epochs:{}'.format(epochs))
train_loader, test_loader = data_generator(data_name, batch_size, da1, da2, da3, da4, da5, dataset_path)
ts_encoder1, ts_encoder2 = TSEncoder(data_len_after_cnn, z_size), TSEncoder(data_len_after_cnn, z_size)
ts_encoder3, ts_encoder4 = TSEncoder(data_len_after_cnn, z_size), TSEncoder(data_len_after_cnn, z_size)
ts_encoder5 = TSEncoder(data_len_after_cnn, z_size)
classifier = Classifier(n_classes, z_size)
ts_encoder1.cuda(gpu_id)
ts_encoder2.cuda(gpu_id)
ts_encoder3.cuda(gpu_id)
ts_encoder4.cuda(gpu_id)
ts_encoder5.cuda(gpu_id)
classifier.cuda(gpu_id)
lr = args.lr
optimizer = optim.Adam(
[{'params': ts_encoder1.parameters()},
{'params': ts_encoder2.parameters()},
{'params': ts_encoder3.parameters()},
{'params': ts_encoder4.parameters()},
{'params': ts_encoder5.parameters()},
{'params': classifier.parameters()},
], lr=lr, betas=(0.5, 0.999))
MSE_loss, CE_loss = nn.MSELoss(), nn.CrossEntropyLoss()
def train(ep):
global steps, now
train_loss = 0.
correct = 0
ts_encoder1.train()
ts_encoder2.train()
ts_encoder3.train()
ts_encoder4.train()
ts_encoder5.train()
classifier.train()
for da1_data, da2_data, da3_data, da4_data, da5_data, target, _ in train_loader:
da1_data, da2_data, target = da1_data.cuda(gpu_id).to(dtype=torch.float), da2_data.cuda(gpu_id).to(dtype=torch.float), target.cuda(gpu_id)
da3_data, da4_data, da5_data = da3_data.cuda(gpu_id).to(dtype=torch.float), da4_data.cuda(gpu_id).to(dtype=torch.float), da5_data.cuda(gpu_id).to(dtype=torch.float)
da1_data, da2_data = da1_data.view(-1, input_channels, seq_length), da2_data.view(-1, input_channels, seq_length)
da3_data, da4_data, da5_data = da3_data.view(-1, input_channels, seq_length), da4_data.view(-1, input_channels, seq_length), da5_data.view(-1, input_channels, seq_length)
da1_data, da2_data, target = Variable(da1_data), Variable(da2_data), Variable(target)
da3_data, da4_data, da5_data = Variable(da3_data), Variable(da4_data), Variable(da5_data)
z1, z2, z3, z4, z5 = ts_encoder1(da1_data), ts_encoder2(da2_data), ts_encoder3(da3_data), ts_encoder4(da4_data), ts_encoder5(da5_data)
z = z1 + z2 + z3 + z4 + z5
y = classifier(z)
loss = CE_loss(y, target)
optimizer.zero_grad()
pred = y.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
loss.backward()
optimizer.step()
train_loss += loss
train_loss /= len(train_loader.dataset)
#print(' Train set: Average loss: {:.8f}, Accuracy: {:>4}/{:<4} ({:>3.1f}%) Average Params: {}|{:.4f}, {}|{:.4f}, {}|{:.4f}, {}|{:.4f}, {}|{:.4f}'.format(
# train_loss, correct, len(train_loader.dataset), 100.*correct / len(train_loader.dataset), da1, params_mean1[0], da2, params_mean2[0], da3, params_mean3[0], da4, params_mean4[0], da5, params_mean5[0]))
return train_loss, correct/len(train_loader.dataset)
def test(epoch):
global now
test_loss = 0.
correct = 0
ts_encoder1.eval()
ts_encoder2.eval()
ts_encoder3.eval()
ts_encoder4.eval()
ts_encoder5.eval()
classifier.eval()
with torch.no_grad():
for da1_data, da2_data, da3_data, da4_data, da5_data, target, _ in test_loader:
da1_data, da2_data, target = da1_data.cuda(gpu_id).to(dtype=torch.float), da2_data.cuda(gpu_id).to(dtype=torch.float), target.cuda(gpu_id)
da3_data, da4_data, da5_data = da3_data.cuda(gpu_id).to(dtype=torch.float), da4_data.cuda(gpu_id).to(dtype=torch.float), da5_data.cuda(gpu_id).to(dtype=torch.float)
da1_data = da1_data.view(-1, input_channels, seq_length)
da2_data = da2_data.view(-1, input_channels, seq_length)
da3_data = da3_data.view(-1, input_channels, seq_length)
da4_data = da4_data.view(-1, input_channels, seq_length)
da5_data = da5_data.view(-1, input_channels, seq_length)
da1_data, da2_data, target = Variable(da1_data), Variable(da2_data), Variable(target)
da3_data, da4_data, da5_data = Variable(da3_data), Variable(da4_data), Variable(da5_data)
z1, z2, z3, z4, z5 = ts_encoder1(da1_data), ts_encoder2(da2_data), ts_encoder3(da3_data), ts_encoder4(da4_data), ts_encoder5(da5_data)
target_list = target.to('cpu').detach().numpy() if not 'target_list' in locals() else np.concatenate([target_list, target.to('cpu').detach().numpy()])
z = z1 + z2 + z3 + z4 + z5
y = classifier(z)
_, predict = torch.max(y.data, 1)
test_correct = (predict == target).sum().item()
loss = CE_loss(y, target)
pred = y.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
pred_list = pred.to('cpu').detach().numpy() if not 'pred_list' in locals() else np.concatenate([pred_list, pred.to('cpu').detach().numpy()])
test_loss += loss
pred_list = np.array([item for l in pred_list for item in l ])
test_loss /= len(test_loader.dataset)
print(' Test set: Average loss: {:.8f}, Accuracy: {:>4}/{:<4} ({:>3.1f}%)'.format(
test_loss, correct, len(test_loader.dataset), 100.*correct / len(test_loader.dataset)))
return test_loss, correct / len(test_loader.dataset)
def test_model():
base_path = './result/Equal-Weights_{}_{}-{}-{}-{}-{}_{}_{}'.format(data_name, args.da1, args.da2, args.da3, args.da4, args.da5, args.consis_lambda, epochs)
ts_encoder1.load_state_dict(torch.load(base_path+'/ts_encoder1.pth', map_location='cuda:0'))
ts_encoder2.load_state_dict(torch.load(base_path+'/ts_encoder2.pth', map_location='cuda:0'))
ts_encoder3.load_state_dict(torch.load(base_path+'/ts_encoder3.pth', map_location='cuda:0'))
ts_encoder4.load_state_dict(torch.load(base_path+'/ts_encoder4.pth', map_location='cuda:0'))
ts_encoder5.load_state_dict(torch.load(base_path+'/ts_encoder5.pth', map_location='cuda:0'))
classifier.load_state_dict(torch.load(base_path+'/classifier.pth', map_location='cuda:0'))
test(epochs)
exit(0)
if __name__ == "__main__":
#test_model()
best_loss, best_acc = 10e5, 0.
for epoch in range(1, epochs+1):
print('Epoch:{}/{}'.format(epoch, epochs))
train_loss, train_acc = train(epoch)
if epoch%25==0 or epoch==epochs or epoch==1:
test_loss, test_acc = test(epoch)
# save to csv file
detached_train_acc, detached_train_loss = train_acc.to('cpu').detach().numpy().tolist(), train_loss.to('cpu').detach().numpy().tolist()
detached_test_acc, detached_test_loss = test_acc.to('cpu').detach().numpy().tolist(), test_loss.to('cpu').detach().numpy().tolist()
update_csv_ts5(data_name, 'Equal-Weights', detached_train_acc, detached_train_loss, detached_test_acc, detached_test_loss, epoch, \
da1, -1, da2, -1, da3, -1, da4, -1, da5, -1, -1, now)
if epoch==epochs:
model_save_path = './result/Equal-Weights_{}_{}-{}-{}-{}-{}_{}_{}/'.format(data_name, args.da1, args.da2, args.da3, args.da4, args.da5, args.consis_lambda, epoch)
if not os.path.exists(model_save_path):
os.makedirs(model_save_path)
torch.save(ts_encoder1.state_dict(), model_save_path+'ts_encoder1.pth')
torch.save(ts_encoder2.state_dict(), model_save_path+'ts_encoder2.pth')
torch.save(ts_encoder3.state_dict(), model_save_path+'ts_encoder3.pth')
torch.save(ts_encoder4.state_dict(), model_save_path+'ts_encoder4.pth')
torch.save(ts_encoder5.state_dict(), model_save_path+'ts_encoder5.pth')
torch.save(classifier.state_dict(), model_save_path+'classifier.pth')