-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxgBoost_Tuning.py
32 lines (28 loc) · 1.18 KB
/
xgBoost_Tuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import sklearn
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from xgboost import XGBRegressor
from sklearn.metrics import mean_squared_error , r2_score , explained_variance_score, accuracy_score
from sklearn.model_selection import cross_val_score
import xgboost
from xgBoost import *
param_test = {
'n_estimators':range(20,100,20),
'max_depth':range(3,10,2),
'min_child_weight':range(1,6,2),
'gamma':[i/10.0 for i in range(0,5)],
'subsample':[i/10.0 for i in range(6,10)],
'colsample_bytree':[i/10.0 for i in range(6,10)]
}
def tune_xgBoost(X_train, y_train):
gsearch = GridSearchCV(estimator = XGBRegressor(learning_rate=0.1,min_samples_split=500,min_samples_leaf=50,random_state=10, objective="reg:squarederror"), param_grid = param_test,n_jobs=10, cv=5)
gsearch.fit(X_train, y_train)
tuned_params = gsearch.best_params_
tuned_params["objective"] = "reg:squarederror"
return XGBRegressor(**tuned_params)