-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_utils.py
364 lines (315 loc) · 11.2 KB
/
model_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
from enum import StrEnum, auto
import time
import json
from pathlib import Path
import torch
from transformers import (
AutoModelForCausalLM,
PreTrainedModel,
AutoTokenizer,
BatchEncoding,
)
from vllm import LLM, SamplingParams
class API(StrEnum):
HUGGINGFACE = auto()
OPENAI = auto()
VLLM = auto()
MODEL_TYPE_ERROR = (
"Model is of type {model_type}, but expected type LLM or PreTrainedModel."
)
INVALID_API_ERROR = "Invalid API: {api}. Must be 'vllm' or 'huggingface'."
OPENAI_INPUT_FILE_DIR = "input_files"
OPENAI_INPUT_FILE_NAME = "openai_input_{timestamp}.jsonl"
def load_model(
name_or_path: str,
api: str,
**model_kwargs: dict,
) -> LLM | PreTrainedModel:
"""Returns an LLM.
The model may either be loaded using the VLLM API or the HuggingFace API,
depending on the value of the api parameter.
Args:
name_or_path: The HuggingFace Hub model ID or path to
the model.
api: The API to use ("vllm" or "huggingface").
model_kwargs: Keyword arguments for loading the model. The provided
keywords should be appropriate for the API being used to load the
model.
Raises:
ValueError: If the value of api is invalid.
"""
if api == API.VLLM.value:
model = LLM(
model=name_or_path,
**model_kwargs,
)
elif api == API.HUGGINGFACE.value:
model = AutoModelForCausalLM.from_pretrained(
pretrained_model_name_or_path=name_or_path,
**model_kwargs,
)
model = model.cuda()
else:
raise ValueError(
INVALID_API_ERROR.format(
api=api
)
)
return model
def load_tokenizer(
model_name_or_path: str,
**tokenizer_kwargs: dict,
) -> AutoTokenizer:
"""Returns a tokenizer.
Args:
model_name_or_path: The HuggingFace Hub model ID or path to
the model whose tokenizer to load.
tokenizer_kwargs: Keyword arguments for loading the tokenizer.
"""
if "padding_side" not in tokenizer_kwargs:
tokenizer_kwargs["padding_side"] = "left"
tokenizer = AutoTokenizer.from_pretrained(
pretrained_model_name_or_path=model_name_or_path,
**tokenizer_kwargs,
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
return tokenizer
def get_generation_inputs(
system_prompts: list[str],
chat_history: list,
prompts: list[str],
prefill: str,
tokenizer: AutoTokenizer,
api: str,
apply_chat_template: bool,
) -> list[list[int]] | BatchEncoding:
"""Returns the tokenized inputs to be used for generation.
The list of prompts should contain untemplated user prompts, as this
function will apply the tokenizer's chat template to the prompts.
Args:
system_prompts: A list of system prompts to use for each prompt.
chat_history: The chat history so far preceding the user prompts
specified in the prompts argument. Should end in an assistant
response.
prompts: A list of the latest user prompts for the model.
prefill: A prefill string for the assistant response.
tokenizer: The tokenizer to use.
api: The API used to load the model ("vllm" or "huggingface").
apply_chat_template: Whether to apply the default chat template to the
prompts.
"""
if apply_chat_template:
conversations = [
[] for prompt in prompts
]
for i, (conversation, system_prompt, history, prompt) in enumerate(
zip(
conversations,
system_prompts,
chat_history,
prompts,
)
):
if system_prompt != "":
conversation.append(
{
"role": "system",
"content": system_prompt,
}
)
for j, content in enumerate(history):
conversation.append(
{
"role": "user" if j % 2 == 0 else "assistant",
"content": content,
}
)
conversation.append(
{
"role": "user",
"content": prompt,
}
)
inputs = tokenizer.apply_chat_template(
conversation=conversations,
padding=(api == API.HUGGINGFACE.value),
add_generation_prompt=True,
return_dict=(api == API.HUGGINGFACE.value),
return_tensors=(None if api == API.VLLM.value else "pt"),
)
if prefill != "":
prefill = tokenizer(
text=prefill,
add_special_tokens=False,
return_attention_mask=(api == API.HUGGINGFACE.value),
return_tensors=(None if api == API.VLLM.value else "pt"),
)
if api == API.HUGGINGFACE.value:
prefill_input_ids = prefill["input_ids"].repeat(
inputs["input_ids"].size(0),
1,
)
prefill_attention_mask = prefill["attention_mask"].repeat(
inputs["attention_mask"].size(0),
1,
)
inputs["input_ids"] = torch.cat(
(inputs["input_ids"], prefill_input_ids),
dim=1,
)
inputs["attention_mask"] = torch.cat(
(inputs["attention_mask"], prefill_attention_mask),
dim=1,
)
else:
for sequence in inputs:
sequence.extend(prefill["input_ids"])
if api == API.HUGGINGFACE.value:
for key in inputs:
if isinstance(inputs[key], torch.Tensor):
inputs[key] = inputs[key].cuda()
else:
inputs = tokenizer(
text=prompts,
padding=(api == API.HUGGINGFACE.value),
add_special_tokens=False,
return_attention_mask=(api == API.HUGGINGFACE.value),
return_tensors=(None if api == API.VLLM.value else "pt"),
)
if api == API.VLLM.value:
inputs = inputs["input_ids"]
return inputs
def create_openai_input_file(
model_name: str,
prompts: list[str],
results_dir: str,
experiment_name: str,
experiment_config: dict,
model_alias: str,
) -> str:
"""Creates an input file for OpenAI.
Args:
model_name: The name of the model being evaluated.
prompts: A list of prompts to generate outputs for.
results_dir: The directory to save results to. Used to save the input
file.
experiment_name: The name of the experiment.
experiment_config: The configuration for the experiment.
model_alias: The alias for the model being evaluated.
Returns:
The path to the input file.
"""
current_results_dir = Path(
results_dir,
experiment_name,
model_alias,
OPENAI_INPUT_FILE_DIR,
)
current_results_dir.mkdir(
parents=True,
exist_ok=True
)
input_file_path = current_results_dir / OPENAI_INPUT_FILE_NAME.format(
timestamp=str(time.time()).replace(".", "_"),
)
greedy = experiment_config.greedy
with open(input_file_path, "w") as input_file:
for i, prompt in enumerate(prompts):
request = {
"custom_id": str(i),
"method": "POST",
"url": "/v1/chat/completions",
"body": {
"model": model_name,
"messages": [
{
"role": "user",
"content": prompt,
},
],
"max_completion_tokens": \
experiment_config.max_new_tokens,
"seed": experiment_config.seed,
"temperature": 0 if greedy else \
experiment_config.temperature,
"top_p": 1 if greedy else \
experiment_config.top_p,
},
}
input_file.write(json.dumps(request) + "\n")
return input_file_path
def get_generation_outputs(
model: LLM | PreTrainedModel,
tokenizer: AutoTokenizer,
inputs: list[list[int]] | BatchEncoding,
output_samples: int,
max_new_tokens: int,
greedy: bool,
temperature: float,
top_p: float,
random_seed: int,
vllm_use_tqdm: bool = False,
) -> list[str]:
"""Returns the generated outputs for the given inputs.
If the model is of type LLM (i.e. VLLM is used), the inputs should be of
type list[list[int]]. Otherwise, the inputs should be of type BatchEncoding.
Args:
model: The model to use for generation.
tokenizer: The tokenizer to use.
inputs: The tokenized inputs to the model.
output_samples: The number of output samples to generate.
max_new_tokens: The maximum number of tokens to generate.
greedy: Whether to use greedy decoding.
temperature: Temperature scaling factor for sampling. Ignored if greedy
is True.
top_p: The cumulative probability of top tokens to sample from. Ignored
if greedy is True.
random_seed: The random seed to use for generation.
vllm_use_tqdm: Whether to use tqdm for VLLM generation.
"""
torch.manual_seed(random_seed)
if isinstance(model, LLM):
sampling_params = SamplingParams(
n=output_samples if not greedy else 1,
temperature=(0 if greedy else temperature),
top_p=(1 if greedy else top_p), # Use default if greedy
max_tokens=max_new_tokens,
seed=random_seed,
)
outputs = model.generate(
prompt_token_ids=inputs,
sampling_params=sampling_params,
use_tqdm=vllm_use_tqdm,
)
outputs = [
[
o.text.strip() for o in output.outputs
] for output in outputs
]
elif isinstance(model, PreTrainedModel):
tokenized_output = model.generate(
inputs=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_new_tokens=max_new_tokens,
do_sample=(not greedy),
temperature=(1 if greedy else temperature), # Use default if greedy
top_p=(1 if greedy else top_p), # Use default if greedy
num_return_sequences=output_samples if not greedy else 1,
)[:, inputs["input_ids"].size(1):]
outputs = tokenizer.batch_decode(
sequences=tokenized_output,
skip_special_tokens=True,
)
outputs = [output.strip() for output in outputs]
outputs = [
outputs[i:i + output_samples]
for i in range(0, len(outputs), output_samples)
]
else:
raise ValueError(
MODEL_TYPE_ERROR.format(
model_type=type(model).__name__
)
)
return outputs