-
Notifications
You must be signed in to change notification settings - Fork 3
/
DGCN.py
186 lines (154 loc) · 7.73 KB
/
DGCN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
from torch import nn
import torch
# Static GCN w/ dense adj
class GCN(nn.Module):
def __init__(self, K:int, input_dim:int, hidden_dim:int, bias=True, activation=nn.ReLU):
super().__init__()
self.K = K
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.bias = bias
self.activation = activation() if activation is not None else None
self.init_params(n_supports=K)
def init_params(self, n_supports:int, b_init=0):
self.W = nn.Parameter(torch.empty(n_supports*self.input_dim, self.hidden_dim), requires_grad=True)
nn.init.xavier_normal_(self.W)
if self.bias:
self.b = nn.Parameter(torch.empty(self.hidden_dim), requires_grad=True)
nn.init.constant_(self.b, val=b_init)
def forward(self, A:torch.Tensor, x:torch.Tensor):
'''
Batch-wise graph convolution operation on given list of support adj matrices
:param A: support adj matrices - torch.Tensor (K, n_nodes, n_nodes)
:param x: graph feature/signal - torch.Tensor (batch_size, n_nodes, input_dim)
:return: hidden representation - torch.Tensor (batch_size, n_nodes, hidden_dim)
'''
assert self.K == A.shape[0]
support_list = list()
for k in range(self.K):
support = torch.einsum('ij,bjp->bip', [A[k,:,:], x])
support_list.append(support)
support_cat = torch.cat(support_list, dim=-1)
output = torch.einsum('bip,pq->biq', [support_cat, self.W])
if self.bias:
output += self.b
output = self.activation(output) if self.activation is not None else output
return output
def __repr__(self):
return self.__class__.__name__ + f'({self.K} * input {self.input_dim} -> hidden {self.hidden_dim})'
# Dynamic GCN w/ dense batch_adj
class DyGCN(nn.Module):
def __init__(self, K:int, input_dim:int, hidden_dim:int, bias=True, activation=nn.ReLU):
super().__init__()
self.K = K
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.bias = bias
self.activation = activation() if activation is not None else None
self.init_params(n_supports=K)
def init_params(self, n_supports:int, b_init=0):
self.W = nn.Parameter(torch.empty(n_supports*self.input_dim, self.hidden_dim), requires_grad=True)
nn.init.xavier_normal_(self.W)
if self.bias:
self.b = nn.Parameter(torch.empty(self.hidden_dim), requires_grad=True)
nn.init.constant_(self.b, val=b_init)
def forward(self, A:torch.Tensor, x:torch.Tensor):
'''
Batch-wise graph convolution operation on given list of support adj matrices
:param A: support adj matrices - torch.Tensor (batch_size, K, n_nodes, n_nodes)
:param x: graph feature/signal - torch.Tensor (batch_size, n_nodes, input_dim)
:return: hidden representation - torch.Tensor (batch_size, n_nodes, hidden_dim)
'''
assert self.K == A.shape[1]
support_list = list()
for k in range(self.K):
support = torch.bmm(A[:,k,:,:], x) #'bij,bjp->bip'
support_list.append(support)
support_cat = torch.cat(support_list, dim=-1)
output = torch.einsum('bip,pq->biq', [support_cat, self.W])
if self.bias:
output += self.b
output = self.activation(output) if self.activation is not None else output
return output
def __repr__(self):
return self.__class__.__name__ + f'({self.K} * input {self.input_dim} -> hidden {self.hidden_dim})'
class DyAdj_Preprocessor:
def __init__(self, kernel_type:str, K:int):
self.kernel_type = kernel_type
# chebyshev (Defferard NIPS'16)/localpool (Kipf ICLR'17)/random_walk_diffusion (Li ICLR'18)
self.K = K if self.kernel_type != 'localpool' else 1
# max_chebyshev_polynomial_order (Defferard NIPS'16)/max_diffusion_step (Li ICLR'18)
def process(self, flow:torch.Tensor):
'''
Generate adjacency matrices
:param flow: batch flow stat - (batch_size, Origin, Destination) torch.Tensor
:return: processed adj matrices - (batch_size, K_supports, O, D) torch.Tensor
'''
batch_list = list()
for b in range(flow.shape[0]):
adj = flow[b, :, :]
kernel_list = list()
if self.kernel_type in ['localpool', 'chebyshev']: # spectral
adj_norm = self.symmetric_normalize(adj)
# adj_norm = self.random_walk_normalize(adj) # for asymmetric normalization
if self.kernel_type == 'localpool':
localpool = torch.eye(adj_norm.shape[0]) + adj_norm # same as add self-loop first
kernel_list.append(localpool)
else: # chebyshev
laplacian_norm = torch.eye(adj_norm.shape[0]) - adj_norm
rescaled_laplacian = self.rescale_laplacian(laplacian_norm)
kernel_list = self.compute_chebyshev_polynomials(rescaled_laplacian, kernel_list)
elif self.kernel_type == 'random_walk_diffusion': # spatial
# diffuse k steps on transition matrix P
P_forward = self.random_walk_normalize(adj)
kernel_list = self.compute_chebyshev_polynomials(P_forward.T, kernel_list)
'''
# diffuse k steps bidirectionally on transition matrix P
P_forward = self.random_walk_normalize(adj)
P_backward = self.random_walk_normalize(adj.T)
forward_series, backward_series = [], []
forward_series = self.compute_chebyshev_polynomials(P_forward.T, forward_series)
backward_series = self.compute_chebyshev_polynomials(P_backward.T, backward_series)
kernel_list += forward_series + backward_series[1:] # 0-order Chebyshev polynomial is same: I
'''
else:
raise ValueError('Invalid kernel_type. Must be one of [chebyshev, localpool, random_walk_diffusion].')
# print(f"Minibatch {b}: {self.kernel_type} kernel has {len(kernel_list)} support kernels.")
kernels = torch.stack(kernel_list, dim=0)
batch_list.append(kernels)
batch_adj = torch.stack(batch_list, dim=0)
return batch_adj
@staticmethod
def random_walk_normalize(A): # asymmetric
d_inv = torch.pow(A.sum(dim=1), -1) # OD matrix Ai,j sum on j (axis=1)
d_inv[torch.isinf(d_inv)] = 0.
D = torch.diag(d_inv)
A_norm = torch.mm(D, A)
return A_norm
@staticmethod
def symmetric_normalize(A):
D = torch.diag(torch.pow(A.sum(dim=1), -0.5))
A_norm = torch.mm(torch.mm(D, A), D)
return A_norm
@staticmethod
def rescale_laplacian(L):
# rescale laplacian to arccos range [-1,1] for input to Chebyshev polynomials of the first kind
try:
lambda_ = torch.eig(L)[0][:,0] # get the real parts of eigenvalues
lambda_max = lambda_.max() # get the largest eigenvalue
except:
print("Eigen_value calculation didn't converge, using max_eigen_val=2 instead.")
lambda_max = 2
L_rescale = (2 / lambda_max) * L - torch.eye(L.shape[0])
return L_rescale
def compute_chebyshev_polynomials(self, x, T_k):
# compute Chebyshev polynomials up to order k. Return a list of matrices.
# print(f"Computing Chebyshev polynomials up to order {self.K}.")
for k in range(self.K + 1):
if k == 0:
T_k.append(torch.eye(x.shape[0]))
elif k == 1:
T_k.append(x)
else:
T_k.append(2 * torch.mm(x, T_k[k-1]) - T_k[k-2])
return T_k