From 9e8ad3a5f2fdfc598323055d1bb31fed79998ac0 Mon Sep 17 00:00:00 2001 From: dennisbader Date: Sun, 10 Dec 2023 17:51:02 +0000 Subject: [PATCH] Update gh-pages to output generated at acbd488 --- README.html | 16 +- _images/quickstart_00-quickstart_7_0.png | Bin 18787 -> 34775 bytes .../transformers/base_data_transformer.html | 2 +- .../fittable_data_transformer.html | 2 +- .../invertible_data_transformer.html | 2 +- _modules/darts/metrics/metrics.html | 2 +- .../darts/models/forecasting/baselines.html | 4 + .../models/forecasting/block_rnn_model.html | 177 +++-- .../darts/models/forecasting/dlinear.html | 3 +- .../forecasting/exponential_smoothing.html | 8 +- _modules/darts/models/forecasting/fft.html | 8 +- .../models/forecasting/forecasting_model.html | 117 ++- .../models/forecasting/kalman_forecaster.html | 2 + _modules/darts/models/forecasting/nbeats.html | 3 +- _modules/darts/models/forecasting/nhits.html | 3 +- .../darts/models/forecasting/nlinear.html | 2 +- .../forecasting/pl_forecasting_module.html | 2 + .../models/forecasting/regression_model.html | 2 + .../darts/models/forecasting/rnn_model.html | 226 +++--- .../darts/models/forecasting/sf_auto_ces.html | 1 + .../models/forecasting/sf_auto_theta.html | 1 + .../darts/models/forecasting/tbats_model.html | 8 +- .../darts/models/forecasting/tcn_model.html | 3 +- .../darts/models/forecasting/tft_model.html | 15 +- _modules/darts/models/forecasting/theta.html | 12 +- .../darts/models/forecasting/tide_model.html | 15 +- .../models/forecasting/transformer_model.html | 3 +- _modules/darts/timeseries.html | 10 +- .../darts/utils/data/shifted_dataset.html | 2 +- _sources/README.rst.txt | 16 +- ...multi-time-series-and-covariates.ipynb.txt | 21 +- .../20-RegressionModel-examples.ipynb.txt | 2 +- .../darts.ad.aggregators.aggregators.rst.txt | 1 - ...arts.ad.aggregators.and_aggregator.rst.txt | 1 - ...gators.ensemble_sklearn_aggregator.rst.txt | 1 - ...darts.ad.aggregators.or_aggregator.rst.txt | 1 - ...rts.ad.anomaly_model.anomaly_model.rst.txt | 1 - ...arts.ad.anomaly_model.filtering_am.rst.txt | 1 - ...ts.ad.anomaly_model.forecasting_am.rst.txt | 1 - .../darts.ad.detectors.detectors.rst.txt | 1 - ...rts.ad.detectors.quantile_detector.rst.txt | 1 - ...ts.ad.detectors.threshold_detector.rst.txt | 1 - ...darts.ad.scorers.difference_scorer.rst.txt | 1 - .../darts.ad.scorers.kmeans_scorer.rst.txt | 1 - ...darts.ad.scorers.nll_cauchy_scorer.rst.txt | 1 - ....ad.scorers.nll_exponential_scorer.rst.txt | 1 - .../darts.ad.scorers.nll_gamma_scorer.rst.txt | 1 - ...rts.ad.scorers.nll_gaussian_scorer.rst.txt | 1 - ...arts.ad.scorers.nll_laplace_scorer.rst.txt | 1 - ...arts.ad.scorers.nll_poisson_scorer.rst.txt | 1 - .../darts.ad.scorers.norm_scorer.rst.txt | 1 - .../darts.ad.scorers.pyod_scorer.rst.txt | 1 - .../darts.ad.scorers.scorers.rst.txt | 1 - ...arts.ad.scorers.wasserstein_scorer.rst.txt | 1 - _sources/generated_api/darts.ad.utils.rst.txt | 1 - ...rts.dataprocessing.dtw.cost_matrix.rst.txt | 1 - .../darts.dataprocessing.dtw.dtw.rst.txt | 1 - .../darts.dataprocessing.dtw.window.rst.txt | 1 - ...taprocessing.encoders.encoder_base.rst.txt | 1 - ...s.dataprocessing.encoders.encoders.rst.txt | 1 - .../darts.dataprocessing.pipeline.rst.txt | 1 - ...transformers.base_data_transformer.rst.txt | 1 - ...dataprocessing.transformers.boxcox.rst.txt | 1 - ...s.dataprocessing.transformers.diff.rst.txt | 1 - ...sformers.fittable_data_transformer.rst.txt | 1 - ...ormers.invertible_data_transformer.rst.txt | 1 - ...ataprocessing.transformers.mappers.rst.txt | 1 - ....dataprocessing.transformers.midas.rst.txt | 1 - ...transformers.missing_values_filler.rst.txt | 1 - ...essing.transformers.reconciliation.rst.txt | 1 - ...dataprocessing.transformers.scaler.rst.txt | 1 - ...mers.static_covariates_transformer.rst.txt | 1 - ...ng.transformers.window_transformer.rst.txt | 1 - .../darts.datasets.dataset_loaders.rst.txt | 1 - ...arts.explainability.explainability.rst.txt | 1 - ...plainability.explainability_result.rst.txt | 1 - ...arts.explainability.shap_explainer.rst.txt | 1 - ...darts.explainability.tft_explainer.rst.txt | 1 - .../darts.explainability.utils.rst.txt | 1 - .../darts.metrics.metrics.rst.txt | 1 - ...rts.models.components.feed_forward.rst.txt | 1 - ...rts.models.components.glu_variants.rst.txt | 1 - ...els.components.layer_norm_variants.rst.txt | 1 - ...els.components.statsforecast_utils.rst.txt | 1 - ...arts.models.components.transformer.rst.txt | 1 - ...s.models.filtering.filtering_model.rst.txt | 1 - ....filtering.gaussian_process_filter.rst.txt | 1 - ...rts.models.filtering.kalman_filter.rst.txt | 1 - ...ls.filtering.moving_average_filter.rst.txt | 1 - .../darts.models.forecasting.arima.rst.txt | 1 - ...arts.models.forecasting.auto_arima.rst.txt | 1 - ...darts.models.forecasting.baselines.rst.txt | 1 - ...models.forecasting.block_rnn_model.rst.txt | 10 +- ....models.forecasting.catboost_model.rst.txt | 1 - .../darts.models.forecasting.croston.rst.txt | 1 - .../darts.models.forecasting.dlinear.rst.txt | 1 - ....models.forecasting.ensemble_model.rst.txt | 1 - ....forecasting.exponential_smoothing.rst.txt | 1 - .../darts.models.forecasting.fft.rst.txt | 1 - ...dels.forecasting.forecasting_model.rst.txt | 1 - ...dels.forecasting.kalman_forecaster.rst.txt | 1 - .../darts.models.forecasting.lgbm.rst.txt | 1 - ...orecasting.linear_regression_model.rst.txt | 1 - .../darts.models.forecasting.nbeats.rst.txt | 1 - .../darts.models.forecasting.nhits.rst.txt | 1 - .../darts.models.forecasting.nlinear.rst.txt | 1 - ....forecasting.pl_forecasting_module.rst.txt | 1 - ...s.models.forecasting.prophet_model.rst.txt | 1 - ...s.models.forecasting.random_forest.rst.txt | 1 - ...ecasting.regression_ensemble_model.rst.txt | 1 - ...odels.forecasting.regression_model.rst.txt | 1 - ...darts.models.forecasting.rnn_model.rst.txt | 10 +- ...s.models.forecasting.sf_auto_arima.rst.txt | 1 - ...rts.models.forecasting.sf_auto_ces.rst.txt | 1 - ...rts.models.forecasting.sf_auto_ets.rst.txt | 1 - ...s.models.forecasting.sf_auto_theta.rst.txt | 1 - ...rts.models.forecasting.tbats_model.rst.txt | 1 - ...darts.models.forecasting.tcn_model.rst.txt | 1 - ...darts.models.forecasting.tft_model.rst.txt | 1 - ...s.models.forecasting.tft_submodels.rst.txt | 1 - .../darts.models.forecasting.theta.rst.txt | 1 - ...arts.models.forecasting.tide_model.rst.txt | 1 - ...orecasting.torch_forecasting_model.rst.txt | 1 - ...dels.forecasting.transformer_model.rst.txt | 1 - .../darts.models.forecasting.varima.rst.txt | 1 - .../darts.models.forecasting.xgboost.rst.txt | 1 - .../generated_api/darts.models.utils.rst.txt | 1 - .../generated_api/darts.timeseries.rst.txt | 1 - .../darts.utils.callbacks.rst.txt | 1 - ...s.utils.data.horizon_based_dataset.rst.txt | 1 - ...darts.utils.data.inference_dataset.rst.txt | 1 - ...arts.utils.data.sequential_dataset.rst.txt | 1 - .../darts.utils.data.shifted_dataset.rst.txt | 1 - .../darts.utils.data.tabularization.rst.txt | 1 - .../darts.utils.data.training_dataset.rst.txt | 1 - .../darts.utils.data.utils.rst.txt | 1 - ...ed_historical_forecasts_regression.rst.txt | 1 - ...timized_historical_forecasts_torch.rst.txt | 1 - ...s.utils.historical_forecasts.utils.rst.txt | 1 - .../darts.utils.likelihood_models.rst.txt | 1 - .../generated_api/darts.utils.losses.rst.txt | 1 - .../darts.utils.missing_values.rst.txt | 1 - .../darts.utils.model_selection.rst.txt | 1 - .../darts.utils.multioutput.rst.txt | 1 - .../darts.utils.statistics.rst.txt | 1 - .../darts.utils.timeseries_generation.rst.txt | 1 - .../generated_api/darts.utils.torch.rst.txt | 1 - .../generated_api/darts.utils.utils.rst.txt | 1 - _sources/quickstart/00-quickstart.ipynb.txt | 6 +- .../01-multi-time-series-and-covariates.html | 19 +- .../01-multi-time-series-and-covariates.ipynb | 21 +- examples/14-transfer-learning.ipynb | 2 +- examples/20-RegressionModel-examples.html | 2 +- examples/20-RegressionModel-examples.ipynb | 2 +- ...ng.transformers.base_data_transformer.html | 2 +- ...ransformers.fittable_data_transformer.html | 2 +- ...nsformers.invertible_data_transformer.html | 2 +- ...rocessing.transformers.reconciliation.html | 4 +- .../darts.models.forecasting.arima.html | 24 +- .../darts.models.forecasting.auto_arima.html | 26 +- .../darts.models.forecasting.baselines.html | 124 +++- ...ts.models.forecasting.block_rnn_model.html | 675 +++++++++++++++-- ...rts.models.forecasting.catboost_model.html | 21 +- .../darts.models.forecasting.croston.html | 26 +- .../darts.models.forecasting.dlinear.html | 38 +- ...rts.models.forecasting.ensemble_model.html | 20 +- ...els.forecasting.exponential_smoothing.html | 30 +- .../darts.models.forecasting.fft.html | 26 +- ....models.forecasting.kalman_forecaster.html | 24 +- .../darts.models.forecasting.lgbm.html | 21 +- ...s.forecasting.linear_regression_model.html | 21 +- .../darts.models.forecasting.nbeats.html | 38 +- .../darts.models.forecasting.nhits.html | 38 +- .../darts.models.forecasting.nlinear.html | 25 +- ...arts.models.forecasting.prophet_model.html | 26 +- ...arts.models.forecasting.random_forest.html | 21 +- ...forecasting.regression_ensemble_model.html | 20 +- ...s.models.forecasting.regression_model.html | 42 +- .../darts.models.forecasting.rnn_model.html | 678 ++++++++++++++++-- ...arts.models.forecasting.sf_auto_arima.html | 26 +- .../darts.models.forecasting.sf_auto_ces.html | 26 +- .../darts.models.forecasting.sf_auto_ets.html | 26 +- ...arts.models.forecasting.sf_auto_theta.html | 26 +- .../darts.models.forecasting.tbats_model.html | 60 +- .../darts.models.forecasting.tcn_model.html | 38 +- .../darts.models.forecasting.tft_model.html | 68 +- .../darts.models.forecasting.theta.html | 52 +- .../darts.models.forecasting.tide_model.html | 68 +- ....models.forecasting.transformer_model.html | 38 +- .../darts.models.forecasting.varima.html | 24 +- .../darts.models.forecasting.xgboost.html | 21 +- .../darts.utils.data.shifted_dataset.html | 2 +- genindex.html | 164 +++-- index.html | 16 +- objects.inv | Bin 97923 -> 98611 bytes py-modindex.html | 10 - quickstart/00-quickstart.html | 2 +- quickstart/00-quickstart.ipynb | 6 +- searchindex.js | 2 +- 199 files changed, 2640 insertions(+), 885 deletions(-) diff --git a/README.html b/README.html index be2257aa1a..f6ec1ef004 100644 --- a/README.html +++ b/README.html @@ -245,7 +245,7 @@

Time Series Made Easy in PythonPyPI version Conda Version Supported versions -Docker Image Version (latest by date) +Docker Image Version (latest by date) GitHub Release Date GitHub Workflow Status Downloads @@ -450,28 +450,28 @@

Forecasting Models

NaiveMean

-

🟩 🟥

+

🟩 🟩

🟥 🟥 🟥

🟥 🟥

🟥

NaiveSeasonal

-

🟩 🟥

+

🟩 🟩

🟥 🟥 🟥

🟥 🟥

🟥

NaiveDrift

-

🟩 🟥

+

🟩 🟩

🟥 🟥 🟥

🟥 🟥

🟥

NaiveMovingAverage

-

🟩 🟥

+

🟩 🟩

🟥 🟥 🟥

🟥 🟥

🟥

@@ -494,7 +494,7 @@

Forecasting Models

AutoARIMA

@@ -553,7 +553,7 @@

Forecasting Models

Prophet (see install notes)

+

Prophet

Prophet repo

🟩 🟥

🟥 🟩 🟥

@@ -609,7 +609,7 @@

Forecasting Models

LightGBMModel,

+

LightGBMModel

🟩 🟩

🟩 🟩 🟩

diff --git a/_images/quickstart_00-quickstart_7_0.png b/_images/quickstart_00-quickstart_7_0.png index 4cd4010982e69623c8547141be6f84043b4f1efb..f59f61c13a1c90796a598ac820837a2c241b9d7a 100644 GIT binary patch literal 34775 zcmb5W2RPO7`#*f_Jx8#I(`lqeL6=BARuJrs(N z7lk6ICMSiTv=%%*1^-C7C~CXhw>NijGjcLRsTjF9*xI|;S{ZXcHgj^evbVzuNeW>u za$CB%I5r1`$wYvRG{N?z_b&p#8nhLC&`EtC;gq+7$ z=dV5F{@i}S!NF};KZM(%&}el3BWfJ-`V9-79*vH;F2Zt}hleM~7;{ZQL4mf}FaUnZ z5mHYM|5b|N85(})#7D{tznf8|#^s!@)_=(^VJBZWc=_`MF~YsuoSU&bLs|<(wcm|= zS^s~1*8lg5h_L1s6JsnWC}`{IQgn0_@%Hw1SR4?X_f}9K7GKUGy#-#$58*#0PK zekyp5ho^*#l()aG*rfGavB?d050A-z^L^yx)D<%F3#Dr{>9?@vqMKI9V@oLLwp&%WvG|{(c|FJgH!xE&FpA z8yXrgHUk$sj&9JS`{gCPDR`}@d^%yz_1Prtkpn3{TO z%zc_>Y4p=c&dZOR@T^$nn!z7GScQay`1tw#^$TxkYqONw{_v+_7BZ~&Cvl$+lPL1| zYmSn?d6OcLhCNX3$?nAHCuhmWODvgpk}1P*L@1UkJ~D764pU7ONz$&Ag|&y$dU|>& z)Y{sbJKVO2aT9scWj9)bCmW2kr{wVQSPTB)QrjPwT>cC*T6|5ahizV4$Ss^&pY1^T zEiKu~{O!bAj@QWENtFvz3}rGJtMUlhvM@JKH>mXq4i9f>k2+uMwxT~;?Zy1|#!Jnr z<Hv~jg2+bKO=i?;IpGx;k8u& zi%-wRB~-PyTHydS{#{qD}S`-Kw3`eiM9w{a!Seulb5oA0RhCs zq@=eBQzh)Ves!n5^!F!p_wt&)a+*H9}+eJ zL7b@72~rxifb%KtghZs&b-#Pw_GGK^qUsC|*O{yS_1@O5^^ql|X7N*di+l5+)Eq^9 zU2^VgawDuy#$$4S)PHhWn(N{K$`7teX-{*T+cIpY+oT?IF@2NJnXYKj&elB4O^%FAj|;oUS@vjziGqTHPe>?Gzc2_6?X6q4 zRPWs*G%zp-2nd+yeRsQeajrA|+0CePH^msIFddmHiK~OPhm0Ms1+RCf$WBgAKYMpO zc4~WVy4PzkUpEMD(`aR^dK*pw#`n;BA5sl03)z_GqM*#t{@?A*5&N~DZsU`uj<(6f z9}NdgHU{yYKTp<|se*kF)C1{dUYlb8Z6(U~d&9GIj|YC$E%TRp%wsP3(p*y-1q!km z!yKE09lj%0cpA2*Zu8HGi1RPyi@N31SC00b{fprl zNy&;~12?#0xK-TI;X$!!`w5r%UJ{em@aBx0Q5c5_`3t4ol+@G;e}8p#cz=!Hz40wq zOISHo?xClUoLo)kV*1;+XimC+;l2l+MTGF`)vM-5=Huy#RNjX>bK8e|D`-~M z7aNO%(@if<2IKL>sL={XqEzp7ij*gt50L$ayj9`3!LRQ=Nis7xXYw^kibcxl3{;kg zq$K>w^LGrJg3%Dg*JVBb)pf>W*LrUY*LQS4g4L^gdF3#ePHwv{Z&Mc8=e_Zx@b~w# zrZxr*Zb0rngx7?A44=B=M2K>=3R@~1r!j8Jdc?%U6T@XTLm#Y84&*%`I)DCrR4OMs zJ5}hgs@~N5wA^-XxW2`6~ziPQr?ly1BXS zLuipxQQfD$9cME9!ODI4(;UXUlSO8|jaTXJT`kj_GP1Ic^Sx)0l~Geui<5TcH}8yl zYSoun-`-9!KR@q2`J5TqNhrG}s}uFw6%MCS*9F_UuN>h8v zHCOQH#`o@SI#>c6oDvb!Hu|OU+EbNoE4YK*4ULV{u+=e-cvyZoR{ZM92JEEzSLb2J z{Dvo#Zf+Tws)j^Il`^A7QsopG)&~zBtgfzRug~>w9+rszHw-Gq`6gHMb9>(UG2-5< zNz=eKkn|aS_~BL86Nmu>N!X26JcWX32(^es*7Jh~A(|)sv$9-Ni-!2;+Qs05k$a5P zxVB&S?%l%}H4uNW`^i>Vy~&0PW79B?(d6N|cUMmNFWz=-Ia$m$J5!UX=-$R9*vZc1 z%Y!{#+&nq1Gw~5)oT8E*59F^=I;>K^N*1Ua%r&R(*N$f0St{*b{eJ)MWN|B3|l zMb1@63VMU;*pYjxoOs)@Dpo)sjajKaA*sHHtPqU>p`lbreHPR$=N1=dN|dl~flV!T zp1XqzfSp^{Uxi7I(Mf}Hd&M!wLXHk?UNM`>>K=T9^fQ{duYA+MS0B=GM508-Q>yUC^rP`BsK#}iQ5}2Bu zeO@KgCzSzZ%V=YvKVO}l6 z)3Ix6DVI@=4KFF$=arP&E*y0|<|!c8M{CpvSA1;i5U!<$WBkFghY(Ip6C~h?`S}Zs zC4};Jb_E~81A>Brrjp#p`uh52T+iK2!LLoX3b5<6UgEuZ^QPr!g$Oh4C8GbmAAo}} zZyIH$Q%2q_`(tIhfNKNIrH|Fj&}78JXEioAD;Be-xpP291cdbFZmJwyWZ4Vd9*IZ8 z47wlfV#e;Ps`|~$n2J6c{yyWX_weDO@`M^XU$dk38~<^;5&!ZDtnKaOoPUGQWTxp~ zrhX*ds6y3YM5Ce#pK9t-Wo>%8yQldc9c}{>S5sFHfW~E_^^~uIvNClbHLL%lk@C}0 zQml}9hKh`c;3tGA1dchN5uf?~uN??Ob2We(z}@g?b$$IB zM0K%Q2NPL&TySs>kz)@wpJ~;F%-fWRmTsNHK-gHQ{|z9ZzpvusU%+{r==MFt>U+#G zD%`j+-E-qqGaw=n$0-FohtvrqxkDi#V7bJ3J65PU*1+clTr~%RZ_^b+^A63dbD(Oz zfxqy*4fB0jXnK0pbEc3Yl+!ti?_pS=ao`V2s=bar#N*5|tT;B282S)03_ zY&ibt`e2h`Q;Poj;FmAyUJE@80a!{>`S?$RbGPjIdOPed>FQJQ=f~zbwmdt{c zLP`XJiu-f5a>tU(#V>pQ;{&Jz9WC7{T%msTm#P-%XzJ_hgF`|Z02h!$MO_-JW``UM zX!WY8=^3Q6DKWd9r(Jw)Z7kJim*QuoTTpB)Gqe@-kZS-3qU81TIJkWG9k;i)>jnpz zAAWYJ2Za7^i%ZU%rP^yNFer!&fgXTyE-d)M0YN}>)%H~A>e|}XsBX4 zonm=;`S);{z~iMMf-u~(Qj6|eg*(u+VBA*?0l)F`@sa!P_NBgh{rX(;%E(7y^RG!S zew149Vled2NNE6)yD#Q{g!cF;;OEnjV@l1tO7?w;(P}ijB)oKU!F>J^Y@%hc&pc@( zOTT84@5}6p}Q!=b zm_>>Q>7S90tq?oKmOVV3i4u3$4m&%Q|1A#E_4M>edaR$>T>cpfW$|^q?8Xm^)cXE@ z#v9=r^*2sE34o@IZKY;U2$tsg!QPh1NckgZv7YoF%|Yi#KZOZfY2?nxG{53{I|4Eqm^GA?F#$9!LHr5~jzJwAM99rjw%9R=cpeq=dm?%S; zg_%&~Z=TrflmU?Tsic#?&TMg?O}^85 zcUHU1Q)8&~^{NfT7NUh8yew3uOJNnO00`)l7fJBEGM^~r;m(R-V>Nd+U2(&?~QP7h|HI=n=B_zoS}+xXL4+s(bcVedH(5k2=~LXND5zO5D98b?1KSVR zV{0eg#p*ZgZY+uz)}iohVz&}V7@3)aAaWq+XzpDmzUrr6*c!$z@$Iv#4N5+UmNVlo zR9raI6>ckBCvc;^w)N$y*s)5xpVA16;BJOl3g9pwV&LXOKtr)?h^{3 zOnbE5dZoy!?;Q0hISwf)sW|aR3GLGOb1Df+ty4weO3+p6sA2v`D>PH4_>TFj4U|10 zgBm<+2EoWj`&Kw>#lS}F@Bi&K8&*(IA8Ffqhql2X1eGkY=`4oDv0}n+!S|=E*JfHp z1q+;>*2uHBzrDN7jOV<}1b5T`nCM-nKOf{FSUcgrQgG<5LUzSG*>#zha%A=S^!v9Z zQZnp)_t-r*mtMebrQdkTh4O<|9s1G9vO)bu!1hIO^T^F0P0n*FW@Y_BJxDlB%m&_1 z8yc=z^;AJB;nVK}%FG**2{3W0$^8Ik>#*H2&)^Ut*wnHwlg8)hzzrIyA5-Ed(f!0f z);oij+{8}NVOZYNc5?DNW~{C{WMpJaEdQ)zk#^yO+x(h(G*85gt2eWMBQBlJj!$C3~{WmK?@X?wFW9-?kiVLIsfXc zhkA%KOHlveErdXZpbS~q7NC4e!-@GV`((WJi%MKsi~O z5n+x_oIJS(ubKTE>#KlKF$A#0B4Nkz3*e`pA4;$CF-@ZQqlN@An+f=q^->cPlQ(_y z-|}@OOifJ@oB$|=tf8^7%bFd!g3LC28>Ln=&p-kLUj3-@vEXLk-79YZr#QH|wc6Jn z1Qr!x`tPS?sU!x@rFhYrwBYM`U&{FZ`{$zgx~Z@4WUSD`hF~-=(%(Q%H-_R2QO1^( zl=LbkC7fB`od8-QXa__|>A3K)V}zLR{zw>AIL%UeZY_twwj<5W>C>mpKXyZDgsj;D z1*_-%{qy?=E55DJ6`|yFc!5f&2jB)|4U)`0*pG8T=>w+D;Cb$eT_{no1PIB9pdTc4 z19_QkP-}kCS6M-w@rx1L^gT9XOk~tc>teMODN%p!@A%gPr#-8=;A5el7slM?w;w7Z zh&q24r>Xh+gRh##_y5uQytnp!G%Rd5daY4#|7Sc~C)Xo#CDN+Q*2DXOgQhF}b*-hl z!W0GqK~~wGJ8*A3AFS>N1P1a53DH6lYy_Gj|3om<5RFVq?WZL+VcT(IQRO;Dm}}y( zk&$qNOx)0Ahp~w@WUIYhUGY5{>FMI($?55&!C4cM@|rqBB5MXdk@F`tPrA-o-EwqF zx}U~tmx2rR6BeF8s_$p{zzd^2=<}6Ifn0nhCSf(CB!C6fdC@VOd)v{xDo3P()bwtSX_n-~z&y zr?V+>WUdL8WwT~&o&bLRVQ@U!qnbRe6F*aAj(pJLFJI6Y*Y{jUyUKpNFtQd*l`piea%0$R#R0*SPHG&ogauV|10#1|R(eU-8L$V%=f%*&@R9_g~t1PAE5& znTK{%z(mHF$Ot{e60(%?cK+v=2K%TCbNe z4$JKHaLh*^&jQNY+*+UBei3NmdusYGZ6WJ>!?<&`^n4fIALbTaLRRon<7e5H#9f0{ zwo)`L1rB;r%0Mf>gyL1!k#cn1<_+SA#D-}-lw8;%=hq^Z6N)F)hw z_o2ZeQ+4(J5*;V`qg09TY|rigRAf}(F)f1uZ3-TU#*kx zm>I%@HEv}U_+pf>Zg3tUf3Cwt{=Ip5)02p;t5LC=fh2EJS6kT?)6j`TPuF=moI*JN z2@PUipV`{45gq-x$FrquLVxZ!S{#RZ9siv_uC5~0CWYDOy0ZUs9-oeS%V%LZVwv$n zAN~4QEevI+UqxIHv-+>7W5kH%Gdm~~R38d@<= zjk3=sAmA6$CyB0Cx+9jV)_5ETgqe?*NT{!$*-R-m{_1bRV~$M0tSM$OVI{ch7f+Pw zVvK)%&_}JVxpX>hyf!?}4^P*vaVV3`)0H};ye%ePW!?9XwagywT_m}$uX{u ztJDo%xtvMEXoj1~EgF8S^nH}18^wL*o4fbrY9=91aiDxTq+Q4XyEW{s)Y2V~u80A0yO4b-ehfH~pi4t&C$WKrX3*RqPR8$y3 zPwn9B+!%e~zQfv-;^=4B4xQNZa7cbFKOxw=!+L6N=CV&*OKp-7Tb+J=@LEL)aKv?R z8$ZSW6f;@e9{b?E<8;xWh6C!N`=7GGZ@{7=Y$>#7k@|gA9?ngztwgAT{})DPj+v41 zO?I}@4^<0`iqD^QdPmuA6b=d;W`qaXYvj=A(wXNu`Z6qaAQ@wp>PWZ8pW6L?OUo&M3h%W?P0{DEcnR^T{ z5$1hyAiu4n<5_I1<7y}HvO7D01RwVIy_==hy!BJ&F-|aU)UNg{oB9M338R0%d#n?6 z-<~~tR_Zf_80CL+C)&BS#u@I(lk{EjRFs^jj3H^%ZxaA8FT5vLE7`uoei5_2*3SeNaSsgghowj}%) zMpHmMJ(A`|snTAZnMsUY|5)D1(YP9zDlsvWQB_lzRh;~Zgw3*y@$N@4MHSz7=4`_! zw7aWn$Z14ryD~-xx%uRu>@8jGKk6r=`oFBu=`xprJBq>&}bqY z=*3#0_LzzmTnLx1=q1#YSXJ{h{~Hs{m1wtCH^adYXmv8^6wm3?1Yf^?MHrP3MggS% zgZ`TVy2K`!AG{e{6aktOnKSvF?kjegzjsmR1NrUO7q0@UErPB-(HlWBKfdY_2%TpO zKeb4{{}|23=hPYb%d^@qFGz#*9kUG4t$e2h-OVa7vtKA<8f!DGmBO2+Y{Bt~Iw$el zdwV9(E6=8+0wDykV7smdt$s1INv`?4Jn7OFb7&Jy)BTfdddl>wsxxt&N_T2RP^%IV ztP#SVo7@H{!%8E1u|7}5kTP73Bc|c1DqN1{OlV^B2Z=kWt_tQE>F*{8_GtUm#aKQi zYd+C3GDDJX|Ceg&X~$Q!Yk@1lok}f4)5ULXaJ`qpT4Vm)=B0dZFH`WfQS>+s>wJo} z+P?HT%hqv&Qg zo+U_ZUq$&330^U8Gmn*mFH0~pfSAqZq1`*3;;WiXNJ-0~QN&EySG?GDXS2`jm&Qig zXL}Sg0xaDkNJ{Q9&=XV#Iz1C>jR-x|$|Csp{ut!3I+~hil(^zh)BJhT$;D&MOihLg zUGy}nSSC4>JmAUhSL%b}XyvE)0q*)>g8=#i}&=b<0m6DJ&oMlpY;n!oa{_xchG&86(4y%$U2fw}b_bto!t%6G2vN+pIx~95Jk)cykNsx7A#@d1KV+Kdk()F8((nd27N$05YNBg>TY7Pzg9 zX=sJHx$7`Y5wCy6@!z-)iKwm%sF+I}BUr3cYiFmDU*X#JA<<&LNroBaP(`=H(j3jc zRoZMS<8Yn39%raFE5uX3T6=qYuj6s;r}^X^M8bQ{ycZQXj27859PbPkDay_^R~XaW zam&sb7a~+_4xDBtCD7-3ZKjAa+nXKF{fq!C^&2nZ(LjR{laSm5sCI`ISgxfpu3~*+ z6x;3v`>Lrt~m9sgPsi8Xd<))|a!_RWxGU2jl83dyA}7&yLT=9;XBbq>4_JU!HAB2z!(xtOqs>xA`=1r&TgI@py1TK^tWz=i1b4nvZ#yygGN+%~n zp)NmY%}}G1hvz8B^|;wnE936QtA8|NGZ3!p(uk)hax-rlg?E%?ZH?U|bD`U6F4n~G z41}4^vWSo8-a)cQ|J4{X90w~tx`3HrDU~(i?jlWr!4CZkc*_@1ez=|sQ<8go4%;f7 zY9)vyh=sI;*Q^)#nKIZ-=RMJYsYOYNH{0-Wl`X;9Z)%I548)D)Cf&SW=80BwO*zKr z*|e}mpd7Ls`nH<;kvD6TpGgMGif4KGCxZ1;lpTWgZRq;WWU#!>0YYWR9^>v>*1&LZ&8GZNn4ao5m>YI}X^qWR2x8g<$^ zizdS}FbMKDtYu~X!s*p9pd`tUP48zL*vZD11z9y2HuX2VIG9uTdYA_^ih^cNDbu_+ zxXCaB_*p5b%|s`)o`qcb`Oe@!&(4UjP^^uTcB)%vfPWU&^(q!?mq`t&<~7@|Y6N?o1WbdGSNO0crVxE?FO zSV%Zqh%MRFB`6S*cc=eW`PMZs;5#BCRBu&p?NkcPlTq~PWB7rE%tVJ%H^t2~-rl;D zLyvE>=oS5-?=T^3^HPSz3F4NhhCFpDxIHNm}`Bj=4hl8E?iA?MKBe!AirQwv2qw zcLWBo=@x5i3Ld8wB@ftfjtEvX@m03WHR1Ct1gO-Y`rxi0tL0o>N`2G(uJsePEcoDh z{T8C@wdar3k6yXi`os>(m`DS11}4^UmHyD+sz1@JYLyICZJv#yfmhhK3ApSA@+ax{ zJ}Ov{FCeqH1x3{H_uW#2WSr*nWcueIv_w^Ly|w=7cZ-Aj;if|^`r7;>zAJZRZoZBt zuh=LWd8F2;=7~Ed5lr3Sc*1yXV%99%>4O%A$AIR0Qm2w5g{rn`rD7#4=gadGvv1M? zj=0;-W4ivh$QMd*=sMS9)#kg_BbR?<{-1Z;maqFU!{mNFxuKp-lU+O-`wZ=+vcibv zwJzcDbKT4;He2IYeLPvJfK;@$u^9r~JRsL%yEC$~oStigF6@yOxcw(zx)q?9>Gp@s z{Gw|6D#npZgR7DeUGr@EXee>yyuXNzOt>(y@$%_2$K{Z@ z!f|n~pb>5?PilVjS{(~MKnx|y##D3y9l@DRfkW+4_w!L|3nUEN1a-E(?`WA866_yO zYJQXO;i7z&Ky889t`ouSTH?&3!lzSv21=NkERBkV4y{{q%Ffv4I1;BBdYU>UpzcJF z@g5$Ydz|s?;8_HoW140tiBPldaeZ5RM@zYj)%(K(V+;>@AkCKY&6@LuBf^2x4aS0Z z9*U$?I`pk(l}4Gx$A4+tlUPnz8)9lMu|^VDi3o^od=7R`1LqHFnyBj|z-svT_&7Wk zua=GHg~~zGx9!e`Wh`gQgmC_PM?T1WVcfvem+ii$FR#3Qi1TL7ub?+1!9YZmF z9aCB{Rld`v*Y6>WQNI(2h22TmUo1J5PG#;Xx7;R0G*pI2p_-y@jb6g&ks{F`{#h&yx%zlx5Cm!vX43mFWhiLP~ zP9=>{t*2jN0}RR>z`WbuSD9WM#togjKRKECw9@9s+%ZaV0_HlT6|SeS zYCYuP!0Ick#W@O_qj=gI~O;haoWtoRf3Pl7h1X>9M>p4c~@QOU4{0D_%XCHG+)4oED@t z1o3o>9s>OOBzcv;C6pv584B2!1(a zJsDsaPK-h%70aWaSS~-lNXsGV2lMSI(7S&4Dgm;k7UHX~{3BqXgv_Adym^E2gUM!P zdGn|t$VVUOJZlbt-WVI#ugH}kXE9dy>5~M~$&p~8tMMlceDoH*Lx#nry^o@Ei|gAEC2zsQ%L+K$t?obn zk4%=Ikxn9v>_IF_Dj^}E9Dj*~Sy*4)b_ie>`@5_xUWq}6RvJ2qQ8P9%Yho0rdWBr3 zIKSO_gw|ldqvRU{120GCKSMi1kWg>13uM+ujdp7eIC~d$xsUcYOli~=Wqgj~ zgq-4LTDcZ7S1tRrZQ=y#i&b5D9y39X1;*I3Ig!%T+FjDY2dfO&WABra*%owlabv{O^l4>Avs@u?v&Ho)>h%Fmzd=@6f&9vCCIDTSTZ-a zEhhtkl8o9JR$AYckn!ApHu1vBWYRO^xx+`XA(sSt1VPgDnz=1d3{~)xu*AtPk3-g5 zCZ=*aPz>|oVd3Cgl_(y)+Uaz6-&}{0!-IcYnsRod-^vI3tOdHgvT1Re1$r+)b5-AZ zgSFw;>?|l7Z+k9*+-cvtF-_mcrv~Ila>Cs%B)y{-0fSp zoLo*?GyI1J(s);RCrR=&=icrvuqap8R_0*phDf*h%ewW}uMNYb`ckR)%*>H_D!2fU zv6{gR72k)Sf6>-qVj6F@DO|gz`Mi+sA4SU_QHjwmdIv!{v{259G3m!;ag^#~uHq<7 zztr0>r@lys+m~4+!i=unZTfkw^wo(ZsTGR4S0~n-zRF+oKh0*%z8q>FF0k^F!0uzj zD^=UI4S}~kdxV&;S2w?9!uNjMmr#%JW_Tx)b10$z*@Xg;a)M0gOVZze|Dx|jpk5^= zQqj>}FN^qZ`PILGbr8jv>~F7q2^=WyRJwQX1c+j6H5DEV{)gP`W_xn>@E$1&1OeCF z-6hl0qXn#AG)k18>z4coQmcl=FWsL$e@^Jf-QMkZP=4i>Lfol_#shxuCw-WSQ5t!A zQHQ@2AKioBq&2yZzNJ}RBteP-jZV3x@sA+6@BAm~)EbMwo@JPvl%I5*-q{p9Kyxi0 zVX)~OqG!(R&mct+3w=V*fI}l&@mPaT5wFDL8 ze{^nIF*T7Er(nGNrr(;eu@BhwvXP^py{)j@zT%eO(i#>?Nm!Xv5Cv*KPV68ih8N{t zL7!Nd*#IO6civM+$;rnFq?7fp``t`sFy7%W&#!i0V58pm4HW-pX);!HO_5DP)F*4i zDsUw_$=cQ}DzIhc$2q+Rk>5U`CuWUCQiJ3TO!iRF=&$>H6w|100}WNsQzEikFJnQE z076vd1W^jmNg(V5;<`XQBM4!LHK+dH2}2POCgnY>WCHvp{y-QobYk1H2#_YDRKEw0 z);t-pdxWOae)#ZV2X%7nIfE02Fi2pmDzW~~P(&zinMOJl_JLn9Z^||SWnd_;HIb}^ z=s)Y&eRFnIetiEoX4))=X_?-w@eCkktGzw)<%VcZo(n;4RdqOQi=&&H7J~?wP3jvP ziNIpu{;%hTh|`Rca*`w(X1{Q;jmK&r*$8 zpKA$Gh~Z2MO8!|!&{`6XC?J{*J^#Id1wZ6@jwWqsuFlghtJ0*D$B%?0&&j@e(pa3onGq2s?5W9_xk0E$n-bh+ zehG_>h%t-flM&IgluTU=-C!gvsjO4fO&shcRvu>+iJ|Bd1|-m<~T}_&LgM zh?)+?mYCgbd4gE)XZCxS-<>)#qoUgjf)lM#g!=5W+y6D6OpGX8RP(gXlT?p_uZY#q z?kDA4|9m3R90%x*%g(Qob+6vt!*XH^^UTD$4Lr&#IyI!ZK-RLpRwAwhaH z&GMW2^>`go+T%tq7v_xbo}r6_HM07Cm|5sKyDc#Sz`S`iRMxyNn}V|GO@i)wRok|l z%>)$vgh^szaaFmZUL(*u5_wz_M+?ZbHzEu;jCGg-9b&D&o5Q#bo%_h5kL6GutH(pz z&%khjh|2lLXLDjcMtl;pvfN!9LNM57q<02;IZnQ|I#ba8qp-h5!v1 zZtsLwm-88tL_dnQFpgst2|K>N;P{Ad-&7?p3!E1o2rz6K=<^ax?l;zc-d`8l89dA? z^BTkG5~s6@r#}98$ZX*ZD1<4oZo!1*Gt1qF){pN)CuP=agF!AaULK$kA_x%J%$^Oc zq9NRwtg^|Wicax>l2|?~1tlseIl8-8Kg0X@M$=#}#>c0mquVeBjCSTG;o~;Ewxk}9 zL2hG70=hAExge0F&h~0j9#657BMwt+>8k+n|F~04Gl^a z=D0H0d(R&TPN{Ys*fx5e{q;qd;gx}*c5oJJoZm+D=Ga%GLCV$w*(6w@4f7^FD|B; zL+lN(pxd#h^;YwYVW+YOK-tJ9q+dmjqNT$@%k52RZ`Ci0NGzlwSup*%%S%q!BKZAn zSL(lQS$$QR)b*kVK4XFJi>w14R9xwLLNzE}98eWjPv94d1@0XgT3gfX&>VnBG~}W4 zpPN~Irv?QcG(6r*gAvvn}I(O|VY8K0bwZ7;h+3xww&am2JO5FEnnG8h0Gn#}^Cp zY7mKyFaN4`aN4ZZgpDfYf*p8k6rP;Xr@k*TRKL7&`?d_x#ILQ)-s zMaleKn(f`)t)Lb|RJtI&n*I_afTET#U1M>OH_uQ{TmAcB;vm0e#j2e?EW4+%(CKoQ z3yyD1=#|s>_V!Emz#|1bz&?TpOKTM{$y z0&Gv5{@jM(%93=L@caH6@{dNU?nbB5kGZjpfbN-e zZZQGVDj8&!95EmwySiw=RF?d`=3rB|QrOSju8Z8TdcJyUiL>YMVDDHMhc)kfmEv`D zu=UPIB(}^N_o1XRY`gaDqcimVL+hPN!57=_OA`^HT7{#Jj()aNtge07?lm<#4t9F` zUq(ho?n}k3C=|5qO(4r$8m1L%6dj<%DVqs`#!kRY7f~00{5kt@l-~l14223C;ZI$G zZrQE4g_rlq-<#gto@NefO+U_fpUrC+)fr z0FE$ZtgKyP`hw@SDTQP91<1dkFkaefCklAAE3fKDdfT8s?ctds6`j-BUiuh4LR->P2axf7)z2&FKIA! zPueG2o{0Qd|MRZLL98mxLg4qSD=aYuq?BDkf7-r&#i>OYdDp4c2YZv^#XvrJyA?bw z=CyYtSc~h!%dQ><{&cu)K!q{K=_NhAL+49P`lSRY-}m~*pT}Jr5lZ!<%+l!Mts*T< zdM2ZqcWW z#twzCDta`0{WVer%dWYyW~v>3uDzX|5Etm%+jCV;+8F00GZK91#>3g3f?SUHR|_Av z46y~(GE7^)YWQuK2vK^EWzmd=pt#UCo^LPXBNhUnM)p%0W2P1s z_*G28@c3wRTlGOBwzLITa2=k7*;NrmsO+-{(D$YR9$x+TuW6pwpkZawcFJUq=6Myo zbDnnF^Fj3kl(Mk*hMSJ6jZ^gf)jRf zX^C2%6|YxgtF57&)%V6xJKJTtHkM$t!h|D};=O%k{~eWlF{kCvlXp+uO^g4W@7{J5 z*~>63J-v(l%5C;begGzTd9OS6l{4;O!m2OvzRTLsNsNk$`d}U^!xAA}I-a8;@Xyx9 zySpYzUNd}hNb|aAV7EA_)W^Q3c^m{3bQY&R+J8AaZbONj+3EIDG@?#>Qoa&jbnz8X9UCYno&BM0_@s?#Rcxo)K*m0&_o2mS%8O>VUs>5sj+Ml_<$?(kO%etNy zg(~S#$%)KU_abwrs>?Ytt$y1NdEYH0TOK7_?l8xFG{M|6afk~Hwyp}f#H*6XwxU%2 z6%UE?_6CEsKN{S_&}X8uYwDHe&rZUSE6o;jFG27bqD=5VWvApV(65c{tvEfg(rA>B z;EzO@J0l4%7Z(>8IEf7R44We3Mg5FgZfIy4m2KFvrP-P*$VK5eG70>?3Mv!xis!Ks z;OoC8yG&Da(e`}5h$NtvTs{^8yeluD2v8dpJ-B=^{wD8rSory$zVSSh08-S5%_sX}tC1>>~NFipsOO5-Wli!XHsIohQ z_mTs+>Zjn{rHpF#BIsXpU=89_eZ12I;@jC%_kfB3N}$o!#>3t=vp!| z&dkit5~vP@279*qqjl+eP?;8s4sn_0$Wa$dxRVv-kGc8At(hxx5J{zM2w!#1@=U;{}oJOI*LWB4&`Ym!OaDX&}L45WG zGB|MUy$Pp)(M7)Metg7ozTc{0qvN>c2wiOS*P0L3gcYCR($7sw!x4I`p$UYvujfj0 zXp8IuxO+{OepYJfgsH#nL9Ci@-Yh(}#7eMy^7wo1v)f8|QW6JZumuZO#8)XE7LgcM zM>nGI{O5G*ABR-R_pwWqGVoi;w=o&iHwSRXR`CJuNRuV@88u;&CDKn%kC7E0d!S2mDkMEehQ|5_VjMC^DI(OX4CJS z1*_27&{%u~X#Eq(pz}Liw6+ zL8A<(DF``DmcK}O!5!G^sNs(W(K*l($m0(7cmA${bxC(W-p?p3dcyE}f7W|LQ}Dzi zCK}Xr8hpjCAn&K5x@5fIxq-(=L~zAQC`^<0(Ah*MJ|}!r{)e=L07-*y+p&zBUDIqA<*l+(}+umMa)_~errS;0W~2jwmI(oYMO_N&)oET4Cjnh z%Gw5ANh7BgcM{7BPKwpPe+9N&BO)St*T7M7u|^+8)M7A&<0cQ$(BAqp5(K7R6pG7Z z28|dLr(0hN|Mh{(^jp8ImDQZ#Dd`rm@Xuc=Q4nM%CIv|1hIK# zI2RWev%uj|rNekHbb zb~b@24)JD!Tg(`o29jW1e7rnLfr47x07Df-amyj;fI^;Pl4xIJwIO_6VY3v0fF2%3 z^S$qAZLVu-GC4Ur6R6855V2$)gpi~Uuw(*9{&80hGn>yKFn;%jUY$yAKYu3uWhp6* zIM$NapPc86K?1A&+2y_Q0aJPo=tV*8U56+Xj2u%VBToPxFovyXk@J=W&K}HO!4xOY z8NyFc)O|hwHxF~V@e>qJjui3LI^Ux`14#7nFqN^o7y&JgURvi+ErP}_9S-9nQI?*0 zmtL`aSp_0Kt&o_)ARy#sO8sZ*l|ab%rhnLHrW#RF);zg zO-2)VEJ)blEftj*rZN5t7wQ)aYr}!l)Oq*Bx-Cfg+V$%K2X`RM;E5vAB_$=`eWCUB zJ)$%)_*@8)`wZv2cy6!H+HsLC&2K#@udUVKs%I4m`HcYB{~Kofd%4!Mi@JweDb>ABm8}i z5nEvCd7kSY`?hDCLR0^jX; zwgKPbyYU-`>^jEA=|9E|mIQV-z<%{;{qH$i$1CouC_ok=55&M1SBSncyw(k+DCBt~5aUCioX>+1x9IU7 z9eBEe&i~Qcmxg1xwryV&sSK$|NTI=y455-C88T#rC@DjPNGYL`5G5g{B15Hw4AmWy zNGQv&q~tC%6H-V;$WVOyVLjjTuIJs}Z`=l9Y#^I#p3R zHlTP1-XbsxlA#3P>sUtCO`_neAf|0<#4qk;{D*LnbaMNnU0PxGVw30G zsP>KyCrDh`Ut7sx>V4qo?#|)|A%d&8rT_J}*7H4QDvJQopOx#0*tKkU=4+2IGr6t1 z^jS^x7x9jxT8E*m+v=lbsw8r?hydmT~3M-u56gAk}`w(Ju`wkNI zOw=Wo2E|7YA37wfetEwYReBL+Woz=9=ggix8Lel=B{T*Hvv{C!E4*Jez{TKC(7|ga zb5hE8L{`NuPdO!#9NQAiSWTwKFCxB19ItF&VSaf1H|zT?2^lH*hDd4_%_|*zy^EOY z(ChZ%hBSTdaU>w1*0v{K&gAEASfkzPm9f}O)Z*GW2<{*hWoka~uPJN{zqwo*us&|m z$yfG-8!mL6i_0(u+IcNShp!Kyfn@I^Rc+_>3U)Ze339_YXFpH(gyqO~1_ijIc{Px`!=HzU;^RpIFavu!W zYA>$ZI54nOQecgZ;@bRqp@J!*JMjB3Y~v=!9Ks#GHnC(-M@~;Zb7p~yx#vT6f@%sp zl1!?QfeltV9_xaWo4(qgq|n4|$;lux2afivxL=?f*rsl6F3aD5?zj8g{ky0;IflgP z8d{`Sr11XYMNsZ3Ni~Q6!Rt-I85f1zox5F#mh$ro_Pl$2R6#OV>&=&bef>?=fCO=| z%0?*kF+h;R$e|+RCF3V zckm4wl6NaWllvz+hb`URk?>M^y}f5a?iBj+W#eN%b&!Q`>fPommdwxMNA zt}9HKSWf&r$N{DJpOfW6b8{)mtPS7Z6?i54h{J0M&$Jy09J0e~_NT_|%>pppx)(HF zqPkw1rI*S7kjKIfAXi4>XqC>`(YJ56F=gO?kcZiVRjXcoeHe~1DNNaf6)KtQ>Z(6u zvh0w1eF_)0qDzBpK8lwLoRk<`VQ9vCSR=+Z-42e;5QS0#;e^Z4rq`#pwSvv3qo81B zyQ^Gc&->z&lpxe3PA^1G?{3|g#Vw5hVL77_Legwjk0gHsJneAj;u-m|jWa||jf~Ft zMT6b}k?e1wjoLj4^9uKV2=Q5(+-Z?0vUJgsCDMwDb*e(mH+-*FvQ64c?-)bCVILd zN}1{l$4di-b1Rz8xfy!q7>lDoB5*dv1A2H>(Nn6&8{Xe&*m5Q4liMeOKX33!#Vs39^kGHv~Fg6lteCrM{|Bg ziSEa>oMpShsXIZH1b_{bXmLKHxMF`dB`1;_+8*B=^=qTTlU`V-XFUwR8M#^hAD@`D zGo1Uj7ifARv!lR0c=Y^v9{cBu^XS<4voetQs^6CoOhDww5C?Az*A{=FpFu@-aNlB& z?tDXN%G0!*YUieKT&cbsFBV1V-RhZd{7(s5bgo&4oKscxg=>?v)N?FW!Wrysm=7fieippNtV0k-Sh>Ht@8G;x? zN<;_0KK|-dUFK_E=NazFx6td1W zokGg}=7v@rw{!=8gXi0Of)y1NY?2zZpxMB9uGW`6>kx`dv_B{n4aieJ3(X;eN8I)INeDf&y7woNH{|cyHDGnB-)EvfG01$+(OhHc2E2%S)I` z$vn85A}Px3Bo*G$_sM9qAC zrPt}&YM3GrfY5ew$>lP*Ja|%QfJ!$eN>iSFMR!u?OWRj5_=L`tsFyU}!_dn0N#Y`x z#f1JlmIY7Kk(ZO32H1?r!u@l?kSt-`O@6>*FzwUFho@H&D2AiYl%bhZb5T)7=1i9} z%s!O&yj@u_Kr~I@gD)Q(UJ*F-VT!xk4yjyJ>G}eo!nMJ8hLeE>j`8#L9Nj`W5lN*S zVRnZE#8)oZ?OY1$6M%`qFY;KU>UPU`D9wHc~?9H34zUsh07t{BssH`-3 zSO%!&89Wg>FXpRA_c<;R>H#boeC@4Gu-e6N+HNpq5*uBxBC4RD###RQ6|5= z&R!~m;h~W^wr$wltn*8FKqWg;u|#HG5C}1px$sM9Rm90xYS-cGZ8rJpRgASm;tC^dj zieRX8d{ie=o05U+JTN6~g>4e!C=&%|9+uD3ckkx0N=D?0{CYg<)lOz~;8L1gzSh~P ztiHg@fyxdz=CDJy0*IiR-^sPLD>ZogN@o;o?;wLrjzSr=ILdvT^9FY zZI$-nEO?hvnwr}*KEXQ@0!7{I{4dE7uyIWCblA4-qH6x3>NAqULE3^1{J-V|^O)~2 zpw=qUQ_eQ_QIp$8!!Gs~a$u<=hMiAd;+b>Y>LdV{CIEI|=4tqxiB@3!|juIuFB-n--BX!s`L!8 z9DN9cQ%`-u^UC*FNY|aM&ReZ-wL)3ss>U}M-mQa{lhON-wbD*F*t**g*HPo!bo=6j zPwnkSVzrr)iuOV)n!DL)k*|E^V+EJbhsWPNAfb%2E3WCR%PQ;j^8rU@JvW(i3w7P& zh#!4(7dB{#a4Z$eQWlD`+1PnC5zvnN$zj;B9Q60M{hg?9m4`w=qX*fUg(xqKZRLyjPy;1QhSZdxZ4wcsJWwv z@H9O20A!iY5)@rLj;_bLRt~S-p6*x8$IE*RtK`E z`Z39oC(fqWL_dvIq6Y_%;VoZ`-)z{aYU#HS7w_x#r!!lX%s@aAGRU<~Yw$>uEdhC& zeXFzsS~qY%5FK{r`<HeYVz5+po-|E$W2(rZvJjd0aO5>l64ijFqC%eFG?u4(w{~6icn56e!ek@i5`7w zK<#Y`_FPhZyU^h~m8ff0S+%vcrc`&#uy~g)Cn5`M679lXxHXa=7_4s3rg-c8r)5Be z*O~t`Ym^%kT)|yr(RfgPjxLkyVJSaFUg#6(}g$@Mxvzq4=PGCOO2x zB>6sy+8W1HB;Y{9*Jt^!9i2)jw;?-P&aGuhCDK9to zJFID6?Z!fRmMl4|xP60us+>qKe2Kt+jzX&vNf7)Pd9boZMn+{Ydm^V-Br2qxn6-F4 z{TGIT;DO+d|Kx4|2@uk=FD+xl)Y$kT%qLUFzx>W~-18tj13gn<^PCKsiou(9ldl%) zve~nDQJXUKD(mJE<}65w0q^Y(m=bMjDJwH&y_9`77{Xk&X*RZvAQYY&aHbA$A{c@ z?{BXb?C*KAx%W2?UCH>^;r?&U4g;UIupRnji?FkncRxV3Q3cp9CMhWr%l!fNfok2h zlyI4qQvNzRF6SWd5u4{(_kfY9X*mpm7?F@uZDV${&rWTc4D_#~)98=}_E zdy9VsG!2$UHdc;VUcc3UVbj(_@5@`^R&s^$Dj8mkEOs)oA_RHa%6AWni&N9`e!z_~ z>Mwv6k|?3t-B?=-_~EL$Nt3*gqa?ImvpX7%`ZPjc@4$`ZGS-L2*do)o_}Da=(}`mm zhx$@|wxKMAt*X_?WtbaL%E;WtZ8UAV1($9ajwAA^u&5~B%s@G)Rd4LtvUbK~)Tk}k zi}2XfIdkSrFqXme6NozQKA)d)kZGD<&+FsZ&$8w~($*OohIOU2cSpP)IZ(d|RAE4^ z5m8Y$`qhNFsBcatdi5|`FGd(=7~rbFeoR<@{a?8Cd-Si1e|uei+5oRtbUZez--&iH z1oA`n?0Hf(iH1x4{k**&k>?kz0aDY_J|M<_|M~L-i^a;S%S$c&)1`&uid)@fvQFyP z0xDMtc$yIjlQ4U*1kx6=B-S2opLH&84+`MgqPR3b3z2Xf7ea7i8 zyq)Kdg#xzOt&ob7%_rGOi-~RRC>Du={`g^4Rn?a|A-4vEJ@Va(*bgTKi^)>>-qg0E zW)k^tiK%Xgb?V0vH|pd}D-Px0(wg|4>V)03(t< zqzzwdhSwm=X`ac>oif16x4KqX9EJe_0+c>#Z^qdn5=G(_o^(&Gb7A2bQduD}aO{(v zHf};zp#RPJ;hOCy0Nm_-u=Qi~dM4QJU`)Uzo@ovoRltq1F|B)|GAu!hhbjfl;r4S( zZS&2h^H5(rg3~h)ft>f%Sf5m}Aml^hGsBsh&Ig1mungdbV}4_RE?@D?Jpz_7cCqKr zx4`|9;mtl%<8}?rM@x2U^?Z|VE>cm+tqt>8^QzX!+Iah0s!Ty6$bi#xbN zYIm)R5|NzuxJd?zz7=pIThS+($S%!Xy?V9t(Dx4vZ#O$U`)3xI@3TPwu?486=RbCC zgEohGek~6J&C>=A;S*~?8%;_|DnD>d;Q@yoAXOOCS#|i1{|p*Gf%R(bDQH$d%&|gB zYAe+9e$tBe3YX?`oX_)smdUkVEm}e=0{1DL;|yw(bsQ20@?D>ZZY%OJR!(&?R$>F0 za+hg`F#@Cz7jhMFQ2d7O^t0h#Rl?1C^!e&<#i2Nvc8Mt)^xJu0K)nZF=KA#|@TD~G z2tZpUZHsDOnE@YIXXHjIE*?cTcMRYIEo!3JegaFG2Z`p!Bjlyt$sP2g!;E@a>{aXd z>%&c^NT=nQ!`y=pYaWRb6g|7HF%s@?%N4aa!+%~%`Q=R6Va>yMz3rE z|7h_@SGJ3NHz08sz-5dCtQt0d0?)+Mwk}~>NOBkF_v90__$U%(9{U^7ikw@|#Kc&9 z-L>AVQ_Uc7`Gq;h6Wfr+#Ks*8LYD{d_VRm2qd+?2siOD0hu&j@iTr3W^ zE@A2W-s@dwU|_6gfQGPDeukJ}jI@<|lYI)j{NT1?W!oBrYuLqpqm|V{h1uLznw|>; z3hOwXU>_kL}4%=t!vana!;p+1jA&At{Em6 z9UNo{1#j!lxe2!)PmjeZ+dwaa3FGTAagzZbo^FZQHItQiWlxSOokS^Wv3r^>OoUG& zK+CJF#LEyu;(QiPt0q+d@*=E_Im(@!(PmO+^w!+Qp7uVli<|cq*S^hf;P{sUqer$n zY@AGMs$uW+QbBA1ON=9{Y6jNc3}9=PzC;vLbLuMz`*aYi*==gO8smM-g->`8!~#1- ztC5kQUv2X({amsB>^=2&H)(X6&x_c6GTcL|G3tf)^$p3JW`}UYz!afz@de%j{Z7Xn zFwiAWT}d9!^z{jxm;RW-kZslC_3@64ZiAoeCsChZ24GM2gpl3;v7q(2+e1h^%(gV!z|SL_%#T%&NfQQdij5& zHU(nP2V^-6?{c4Zy|sfXn92fR))DT)ex>Sy7P}uhrV5{9IThh|3Cs%K{_O&grsA69 zAeifS9zT4wIeQi6p~5U-(! z>~LRqpU{Snqj$je&N68N^_5pbQv|Rc!+W^g%H`XfLrUK0FLw^1ykuWi!zF(9);fKC zwK<_NwkGz9Qq9v{5tJv=e)OR223&o-i6+^366drWW}Qg<*WyW`UlqitfnGQKE*R`0 z%y&Qt=oknvsj=HQT417|H}vCVc*cmMlBFrEOt2=XjLrPtgXMv0L4{d!{W)1~3Lgo? zJqy|dKSN2<9ozEL?BucjCBP0vkrv)E`GKJksiNoM6z1--`H&JDcfFilC>(y!|H(H; z!VX_mfiiO&TYnj6_`+F!zYQzZ$XnDRb3Y<595>LYiZI=I5Il7zn9RI`B{RC-Ke%sp z%M^wV71%Imn{47=OBSF!pxGG{Iy>}bHy=609+0~GtTZSnbEPk8ntQ(8!eBdaGbA*2 zdj|dZOsu!$q28=wd;LF32CG1Pw{|F(co+^+!sUQIV`hzqha4=#14JIdmkc8)*uBQn`p=3Adp;!iGVa0M=CR|ylaghbP-cN@Zq1jdgpw)9DHz_-(r}LTE*RAW?DgQ<8cSs68Pjg6oes$0ZlNdN z4Xem$C79=b{al4(BlcJ<3 z>e+)ZbI+%9CUZsa1V7CBvcC_YYYOVi#D}Y>plUpd)7^M$^wCngqS@pi3>(%|msad~ zKkRt}ioRe{FbuAg6M1>dL1ZFJUrvVZJS^LmkG9y7UhVZ}5>R{y*vdm8g}@K!mPA@mC#@7RlxCdbi^ zplX77mglyCngXzn&#c)Dr!-4E5ErSPVI2(ahRd0zom6=j)z4qKcTJ8_{32|rqsPdk z-o#`Y_#L*c+)=L`Co4gtCM;~CruBF1$UO7N zCq`##)%+v<7O}S$HKv8rSSoljTZqPS@IK$eQLfUp`}G~=?)~yvVlg^2KkP$ycXrV` zTwAf*m7FkpO_7VJvj;IrPiih#fCA2|9Ayw|?Z%g}wHST161sGhwYJ8<%Txa&js`{mHD^v`Lsa zMD_XP8dY`$+xg|aeb=lGj*xpc0;}bw$x5t))>ig#3_ceMf&#M!;7IB#U3}ffO25fHeW6c#RIEy+M=xk4dVYDueHnmVH zhViFR=7MHdt$(p{SIw*qnjAM9pFKfulp*e>rE(|aO%;HIT#FN0pm`&JJ0mo6b($Rx)4p)ATc)~?}!no*Zlc*KYJhQ!ZF|ra`s~I z90$2D{`afCtD^f|2@asaUf|UJ93OKiWE}zP;ybB7FW*e;lf5({FfUEU&9 z+W_=XI-2ka_{)x7H@HV9gg&g+J3RPBm)aKPGt4^Y%HoQ&$#dnyDV-rMe&gkVN^xCX zUBWY%@>Zt~4eqc?+!Ei^LZA+aKP`sZ944lpZH*^ojY9I&qNn^zLJ{v_(EJA z)O1LV)2hb5jsMoU&ovp1x_hn4_FtUqguboWL|CyaHiv|gOjE_<-Sbj8SkKt95q-lO&N_gaT zBWuS1glP3WVbX&CGkkT8*GdzmP_*nfdy~S7Q7SQ9tR_@HM;)4ahKrY83fu@YQ<__-9Yg z0=)QTU7ku({v8Q!OE1rJ&P3uJcW4ia2EW~tVB73_RZip;I`EaJ=bv6DaY#QWNr541 zF!+3LziTszzD@%r3&$zYxJ6e1KOp?6 zyu9>CLZk6a8AzzN$=VkQ1tCUIDo3JHH2OsBORDA}cx1u^=0`*I0D0P<8qHU@**jGu zzEp#M_2u#<@-$s$#U+j9Gr$*WX=}T7Fc2Ju&rPiPz)za3qHoq;BhM-W=K{=05X!=?B_U~QSK2h}`wM#xgFEl{qxIK;Cbh1; zy#x*I0thY>u^bRfG=ON8r23OceNvA&r4oFf#aRc|nUt*T)Q|-N(2ID-qFd z*1z>wA}w9s{sXs@-yY*9K85jD32)w>Kj)xUaXr-|FI| zU<6&LfzFQ}LK$BP@Fte;rb|Lh1XyPa7cIJq{F{HPSL$L6bSxiJng91JlP`+W*^{9w zQm?@4O07au4r5Ql5Ub#`@i${jN;V!8VZ~XV)ku;5Wy*2)>3DF~!+(CYmkx5%Z9sxE zx3S^DG!Hmk;n*Uk5-3P7nhJ41CggmvL2F<(gZ;?~9x~XqJH~^eS;s zP5xsTE<)b_Zi?<^$3^(f6BE|*|L@tl|Lc!~PiU*juN|hphE)VcPkNrxagKFXa&kjM zk;*qnXzEwqQ)_TQ&WFCb_`4`kX$1v7@GGX21u^pQeh9(LAR4*h=d;n{82)=3wTe1@ zqW74bDhujv*yransp~9sEi^|GBUf}`$4vGls$TEK;Rj-?(DsN;vsS3i{MX$>gF4ZM z!-So&kLp)3*#x~=16(HLJPs2Ryl}v!tBTwko+9M|>K=)=^AMb7G#K{!b?BVgI2S!XZ)(@!cWQ=@*6l)%JQOOxL3AoS!tL52z zIi(Vs2ZK>Ywp=>!Uf0oa!N_0_1m~g?&GAu_g@YG{-fTiA$*oUd6rKSZ^S)IyCk7*ZrL-rQ}TrLJGM4H1-B1aTy4!z0ii3toTs$)&c1| zO*Tutl04qHHGR)`_MS-uLsAD95p4o1FF`0?88oIzGO$minMO)V^R76}S8Tl8H^czEvsR)iiJ9@Ht-9DM1_!^dZURtmLXNQcgJ zxdz$Y+slC@_!uaC04k+iG>5z%xO9DGtyd>nv=iie#51CSX=~)Z1HzewQu#JAkAF3< z(E=luzCDX|?s!=Gi0L0+?vq65`t@r#N$f&2?C#ya-;~K&6cJd$(4_^MO)$bSO8OHh z%p^g~LyMXT))-j6$-*HYGb1T>JR09X68jXpqzd=zcTA_73skb4=9GdUkOIrYgWp>?)~;RK zRV#3P)$fMe+x4iw<8SBhPud_VEzrG~N`tOwCLAT|`Pwrqo;wIgXrhfVg{G{cA&sG- z_GOS>-1chLMjwUMI3ATbe1D}odm*Xa@oLw>58b>p@CXT80H6CVo?-DLFBTpT04RBB3Dd*^aM$>$e-7@)j+t;&(T?!`KkQ51JkVRibcDfQ^47H2b1vzir<(iNeVu+&gj+5Hr6*QW3tu*?{U!(F^3cTv$!2EEdd`BB91p%CVq6pN*KtE1Y zMH1i|9w)*$HVK8DBP@E;OW%hv&L0n@z;PHZjg3!{K-QYry2m%wTTfTiejqI@njDSj- zT~+$)qv98qcVNl;pz$M!WH>U-Sz~s!&;a6q)6jQpv9mf`7mw@$es7cSAq0x;J`8mx zkt;)EHyb<0G!SP{$44XmaQavi%kD$h)UE{lra2 zvcd47x!hmgZ(4`mw{Of(V6Xy0HJj0IQs(#Pu$Nyi zB{Y>X2!@7|!JABshz#D|-k=0bn?FBUqxV4lYeWPnJb}(nBUDG->wOe>8OQ<9W}ku~ z-n99c@)XO{nteQg6HveNGhtfRB+U4QLB%xV7sH=fw#g~b6aH6L>M@dy0Vd?Mh|W5t z<1G&3BXjU5$LanT!SpON_3IHgrUYF}Ji&ECXl3B9l?3`-)jL6xtT7jk>ZhY_7=MVP zeGpY&FRrN;G}LGqS0XZd0{Ft3mr^c5IR*k224t0lmY(YQk31eDN3rFikz!EsgZm&h z*EE%Xx{bU!v~R$r>AJO@=YxSIz_!cDKM{NtXlNJUQb)Jv5x%b?Y9pg=jqqLDUkLp( zeDy>u`+-Az*`t|rB^e`sVcs8UrrghDwLG#i0t0c2JP!(y$+tHghwEsCd7E^1L zMWW($#s31_q=Qn2dU(u4#*P3*LB%EZ{$ zRotP1LNtmLxu6rsMeLL{R@(m_{xMO;vrFN*MIv{qZ3mO^!Y1Z0b|l{ zHz%Orf04#F>;#-`fV7ZCPOn>WJbWqXq~z3myR16Xb%-Hdi20dNB^!Mj|5-Y|<@X4B zIC0v^;U4n=4yD$Bo3Ib@y|WiIRTM*?%Y@N3CH7=(#~06+PZ4;)phk*C1Ra0-W%BaV zzZL)Br+kcRVv&`57f`T957vk^j6$X!rM4z`9TYE#7LChdHg%k!k(tU+2b>D^PA#Xf zc5Ks4+Z3_+vHSEQC2e^AA$tIOciv_$dnOBos^^0j0B`AW555yBQ7Qwj;cs?r%&|l zP#+3?GQes4+x7_gP3&dGOS+lW0E$~$TRBk^OrAWMVQ^4cUmpv`=#jm%HL`PBb3_wP znIxf{{^bTh@Bt;6RhS*&Ua@FN)?7$MVmwgta5FS=rKRks%hLk)=iCfE3(d)8_M)*1 zrku>vq{o0xHJ;Yh6{P;9Z*?kG;ph^nEPZ@)LcS@yVj@oMFz#kt@O+fj;=-Uj4Jo27 z>{szWER~#Zp(5)%_#(rCssWr|%n-aT7dT5Qi$8v@q*Np&`FO^~b$HVss8Pgu0znaE zW+$4-Ua)5#q*T^+*|silw9zLn5$m3#DVM8Dg+&8af)gcfhH}Jv7LliAE%=dx=9g)s)S%RFknivNTC`Lpk^lwXM{NZfp4}2qwFtW zP)5h({k;39JF{0H*CBl=>EPht>-pH`pY9)GN=2{Hx7~~(+?XN5ZwREwQKhz?MrPrJ zFt`!@-)|B`VNqCgOu@Lo9GT_2bbotjz22MDbbqru7x(~&aOzeBA)%l@^EtEWilO{# zo#_u7Y$id?7Aq>{f0XI;?Sxpy$mlkz0kZ)^z<#Rj>Ui~fEkX6$^LJ5p4=DJeZC$a{ z*R2n?5@pR7Gah?pyG2Ds?+>{#r3;qSc4D8R66P{VsttT5$2)jHr3Akn= zW>#7%D#%#5*)88ZXgqXuUPxrqn1b4ozkByC&2>;XhLSIw@X4zRziSsr9PP`l61^%4 zep`~i5%`s>dWd+h0U#nCEycnCl|7ra?? zjJ=tx)7{BXF!0vO1L4KH_pJ}`LrPJvX9>*8E2D}$>#Bh_#E?eML#vy!?X-ZKZKVv+ z@B6d0D6p|k_erB}O6#=t@_=&=@#{6>SMhWMTO&V(_p8TPxwvrm>9q+&9?QKuZ*9E_ zc-d$a!@GY@4D&ngB)4i0LCgR3t2fPi<9iwWbaO~hF@>AIi{iAGqx{>4)voV5JGL5z zhW0VM8%ymUH^6cVxVyV=Oz4>K>lnEw?at)nFuHCHKjyO;X3)^lu?F7*_wAyv;BG!s zKiw|Kq_T*aZuBgtd~O-Z+x2Y`e&A{KClo6`C+81XhvD4Z+;6{rv7dI5n|yow^VRp0 z6BiA2b@Si9fA@n8GmYW3nyG%jv0L6M&_z+@v9IrXF>ReXH)qHfc<;w&2jkSx(69iv zygMBdEY>LpU((RmxBXRIEOS!(NT9yHet$kJ>#+rv>K$d@43~R&4;1{v{7$>HsN@%p z*-#8Gog4oz|5g?Ku4U)YT%%PB+==tuNj|qNwHl|zL9ppFOH*96bAQAx=VZ!_o4szf z3wXPnZ})4fY$w8ld8CI+E5gNJ>g7TjT-%%lPC8(l?i4!F%nC{If2^A(}+pLL3YHz$=+a ze#KravYBxzlPCl8dT3K0Hw)o`96S14t-JPA+Dk@gs5pXXy*VmDT z^AyP^TV@>_WA&=6jxT1N_&%)2F8Cgbg+HPk{neVvkXA^-f1=rP)nazhF-(!WaMTk~ zmMEggcAl+no2R~mp-}Wjp@?6hXhNZgaM0Cl@JZb{%z*NxM@io#$c2YfWH;UxrTbC# zLfQ-BEpFvx4eIQ4S7^^mg zU@xC_9i_D1p#`ht;Qk}(vKfh`AXma5UYxgtcZ2T(e_=oT#CJlqj{sRPxa(g z3)#zc<`LGi`8wZoM}I!(qK43jK}p=UFl4Up>*Ymz39w# zrMrph@sJ_gQfNf}tOWKVj<>gWZb3nK{loC>8>WcpGWH+=Z*8X@k64?xK`#|ht7*G_vPH(p?#M$afl__o2yUg?NvaW zzR}T9{XM6;_)dCD&gGs@BFRl5j*{esY>WcW@gm<{F39AvXoclEWwhA%5uPzJ7}y!* zCEgGy4$l`L<)n50N>V3Od8>*X_rmeD9sKE0?rEOx7SahQDYt%(|F4VMT1;1dr|ii+ z_-)B0(!#R6?I6Ls)0ev?vZR@ph(dvDkCv0D-lI?yFphI6vc#FEN#ZP0!GsDYMU}$j z*n2awR`z*(;-e0f44iRd(LAYebC-bMVw$k>&$}{`;;8t4k_@yAaL3W47YW92xlfa^I&P`TTRjgx$Z_sX5#a zmilaCdC!a7CMKZSd&U?_nJ@DOZ{L)*m7MHn%Z_ehhb-aFN~?Ojs(lKr>SMA;Yi%pr6K9CE6%PyNdnFk4J=koGOWgXx=A%~sUgz0& z&JWOJjI8c!cN(_fKcsj*OcAof2KF!PjkrTR%j!3%CXow3ov&ft2yxD-vQK*ap}}nW z*V4=vxp&&WJx06yHDWBUI@d>ouP0mYCl-tdLMsY>%{Y(!3|}QZI!6DCpN~3Z>$oR_ zAt>SVvLh!t41rWOwrfofk#;XlqwT9g7UIYN)&W2*`9$Hb*w93yo;35;r}NtxKDW03 ztc9xdNh}1xBTBZ2F&%ZpV?dFm7=K)?;v) z(i;qz3L0Kxa~h0TP)0z$$5%8Tuy5L0U;^J9309MF#EQg!zViPP{kz7*_6dM@(gmG0 z!x$HpHJ#m@kMYpEd$Vg`Cqvy`FNhM7-6K^VIfg4cFNk zgTWRCp25iT_w&@uw_n!`0mzlwh;${jCdLu#5I-wBUUJqoi{6!|3c6 zYZQm6uZN#7(v(f)@b_Kx~*O}+oxp34&!z`l3da>F6Aiw%ilE)V!Z7C z^Xs3&7G80usLl21{Lg#7IL^ixSywl(GsKBjPpulBWpf*`!xG8UWUj!QTA6cy>`dlN ztcKS=slUmd7YgPXC6aAHbtuAG)8p=?9a&RQ0mC)@O3dsAcqhHruWKSiZt6%#r?qRyryg? z&8s^_<`eG-cGfJKOF44JGFN|g?ql#`AHAP@y^^Ma|F6Ubd?B={d}!IIzBS5|^v$yg z{ljtn6o`DHx|qy}8R!-8hnjGcw36*|IR6not_jOnAvrT`kP=mnL_Sl6wtTxFt#+8o z;UV)8|BOb1agWrGG)MoGG2P&jC&HWoO=xZ5v-%Fz5>=2~G}#Bxk<^q;I>@@a^Mm}q zKOdXL0I-|NTID#beYMZWtZz7O9%F0vCpW7|Z$eowU%LE|pu^nW-sYk^We4d^A&W?o?VR2eY3ZI; zXLqilmH18D7poZ`qP`)#;fv`-_){L9p;h|wCkXTio}j4;cC_E_L;3pkp0baRvmy7p zZrllI_?7NID${ee{Ai>{?~>jc-)=i_PUt$k%kNIeSjg)+9+4?o#ZXL@pkw#@PNF=n z|FZe568ZvinTA3q1bb>tG`T!cgpw6iy&4wrqlOtX#Pqo1BwWDg*%N8QPxTEGhgB?c z(Y+;%z-^a6yTWTdWj6uuKj@zOJ_0Ehc^IQy#X+q3!6TVE?t`6_)g* z8R~VKeYuZBNccIB;@2-+-jVj$rT17ShTMmya;0^rzfZg2O{KbIO`uDZ_t>lYbKjMY zP1&3lLf0WDG@!R-svM(DQ^{zAOyq_i9RtC+L(LNzgrb0+0Cd5E;j2DrBJ`LW>b^=AShFXi9`& z3XY_NHK&ik&4?U0Gd7AXU=N-O1uUxbCC99{#wgy44L8GoktjAoVT^xi+Ca2 zh!QnJ;|UU0G1E$WtV?CfQy(|G>?>KwrHCOi6qlXd^zp|$QcB2&zy!5u>! z(|pKxSjlZD8m9CO50c54WgR*qxH11=1viETl>E678~?CHK$8;9L!2`#Ub(g6LWr6@ z@PXW|vC!oi*O|1nu37n7_-z8Q!==jZJj26%TZ6|GWN5PCq0NxOv<74cdv6UD&rHbc4!|Ijjy+J(8b1DtQu=vda-KpXwO%B(W&L% zDXOE3PH~Hkp0_DCT_8b9Gy^8?)$~w6*J`}Pflo7NLP3{HUVY(^B6mo_VdSVz-sgj> zP2=Mp`}m{*tHY)C0En$Qur1k z#k^Qbb!tIcisC4PNV9GYvVJiwCvmSg@ZlG;lFui3(Sx>|PFh^*+=(-E;+Q@=o*!ECUIZ*sHeSh1fc?59<`4so&{CE=tDA8QzIC!X!OBp zUKn++Hwq!Z{c2!y&i_+KLs3MaOG-hou;_fzc43v|ECF69KRTwDb(5tF-lCfSfXqi) z8ri7PBk%X`uV23|C6znvxdbnD<@mbP*DVSz;@2uVlrE?G?Op~4e4hD z@WnkmKvS%SMOO8q>g2OSHa)vz>iPp>Cm_j7pe$HfF%$UVG*|r7KO5tiW*@U6 zF3~;v^Ai?oU2Yi}?XbXauG%#tJne5b6tFuN><{moTwq#|^5fLhY_DXHJ@S%4>9{abGoo&o<5s2c&8jyP7L-rO4b}y& zR>@=|mOwRe^Qb25pnZK5yt_HFrq*q;`^dV)VRRqqI{pD!gWU)9%q5b)jxh+-B6&*Y zQ<3s8OXg#dqG+HJB@NGEHksoNt~1CI&+Kbw{7YAm^&iT6-7_$NmSxf!Q05QfhzWG2 zfEVfQMOLjI&FN!$t@zODPG)(rCWG;Cw-u}uDJ_E|Hq3+Jga9QFNwe&{@ER>gVx`(> zF}4}q;r+aa;HR4+`nKx^pFV{rjEZLNz8R)Bwyir`AW?`nP<{IHLeId&HA}E7fT~B# zhRZ4{=IkDIL?5hbHcBPnT<~a5EI$2=AD@`0pV^A)mYEV*2 zW&cj=EY!&GXJr<>kbT|xVYsSb_sPK~tR=RwWWO-MV3OyyPtmEih9!^RP?J;%ap{j0 z4zmKxO5YGH9UGT}94ZCFDd0B$oE`;n4!eAw&Bh278=a9XH=G4rG zyG<#FS&!PYor!UB0#2Of8klo#2T^z8E3|}Fa|U)I_TsGHzuXhbr&CM!I|vs_7dH&K zZc?uUIO|Jx`q4KtrX; zbuzMV9_-QHZI#_oL(mdBS zS0?UO;2uDD^xIX(v#ps<%aYH56eV`_5YX6|HCdT1y=<12mXISrU7_bWsEWHa>bhlx z91KWH^!N~%mdE2GA57!yJIkBgZJNrppY3A-Kv1|T6p=hV>+%rO^UKlsehY#&KOax0 zK<|@?zuAvsJfc6zmIsM~)M8-Trq7Dh`oED(IMn+;7z78ol-W4IlAN5J%rsI=4NP(#PW+qc@1#*h(F zfQUDb&gF(9kPF!IHq7b`0+7>wB}O5URP=Zox2W$}W)Zv|(HF!@p3s-T65aNryg8vo z`kIomc^p6a<#S~yOG{j5O`OB7CL zPK#ux-@T|69YT>Fv7EnQ5NozeSpECEWL3Ve@k>U=9(0Ibh1z9=2BS~M04FLxPML}E zk06J?+JgveKj`;PMxr(nMYv@b_^OJs1D(-IX%0yNe%zxgr@8XliOGbqC;$Fo&Rb6w zXW5lHK?8LZ-j|-AD-=Zs#|LAZwwxY01u^Mze_KRDoCsu#Mgzbw2i>e+J1o0=ijQYu zWBUZQD2`5ShsY~XSaaOZoI6!X!ic*@H9(Rc!-OmNAEqCf>#m4hs%x8?rv4(C?&Cy@ zh_-HOnm$uaStOn;kt{>%<}(;kkg?--`$mf?MEpo;1%aWxPb%Fo-8Z!vH5nnM%gljZ(0 zMS;~H27_)bfW*Q zfD$qhr<4;;N_08$o}GA#sovHFF;Zlo904i|z26biO%wq8sAJUP+{}Hy(c)j?N9RM5x)PRes%nx8paXR?&5Vd(<&0wqL z3ZVRmzWtSGdbr6Ub^d+spw`O3;L8K$AYW!F>9i!V%EIa*`sSQbH63f|6&Z3IfZk$w z*Vfh`fX^Pys$J9$Ip~qbc$ni3G%?dXXA-R*CtBB$sHsVi_qot`NrRU{-&~p0!r%Q_ zw9k2V5f`I*E$lccph(-h{`hZ}UC7li+H&Y7VCK06I{=%k0!VYU*-PdvFr*Q0^oilU zJB|;0`ts#0bcmc@uwvpdHaq-5M#6lqtEqP%W z9p$#^X%(Kf#LRIgVsiP|bdGBc9At4o*=Irh0b?8$6%`p5moFbrha1QA^y%lXU!}FQ zk`xo05x~Z=`CQwo|64nlqR2Qpa)T!c@|3!qK+rS)+&wm(dGEFy`+l?>aYn|UbEm=6 z=dWrimhV*s^!G`U+FxcG+%{dW`9Buvm9or5z`Gaj-c2XH98z|(HQ@%mG6&_eo#N#n ztie>__%Hqa=cp*`eAP@97nk4NcK*;|e45}NGdGh4B{P(U_eP7dRe?X;7sP9I&wknd z{V{O9nJ9!Kdxq_-US0JVa7jq!26bQ#h-`X&vM%M?Scl`|dSwtbINxAgWrdp=crOgU zz1*zd%sBNaEe~;QG(f+MC_9E7vYdzaJTYkLO5ea1Dxbw$PdeY9M*S;&sDudcpeb{o zLE+73E^Du&qNDZdUEZn9IQD>mK9IjeGZ-Ec-lU)KSOrr@A#Ix z=Haen1aGp#R>@5x8ZIk;l8tz5*oW2txZw!1L9HXM!fZCt*+R1~pV=SO)|=E7`Jf9tkwmPo%27U9yw6%SN{?FrPs30!f zxCf689{;%1w|gj#!X6PzlAvn{4Mm02ILwkI)-+=^?8{tEuA4Wi-aY2!{W3nTiH(CZ z-5MxCNlB@xO&M^C|2NYFeQWUhPh}LGX8w*Yp{;atA?FTk)w#eac9>|L#M!|z1GI7Z zqR;FKLU`JR*Z~NIg`xS6FJG3i;j=Xk2E-gS{Gp@LPPkwOoLf=xdA`w8gF0#OGQeS~ zy7B%BV`gA|MHqYZ34E-?=DUAbU5-J1-0vDfLcD`!{f;JK1WSSB42H2_*z;OJfe}0= zotV$(`ynVA`@p~|A-;!|%e8^tL$KhMJj<)NpAg&`$wb?fT8 zSMs~D93pv8GLbsD29mah{bU^LKhA_75dDQTr0#aeK}GCblR?Ol+$n^PoLn9ZMhlCI zK74Xlq!IV~1^~Rex_V@6tb=-S-ISt4#-k#NZe+nYx`E}`9A2vccvtnWwY;bvd6#s7|n6D{C7l$)9~kwhGUNn zsmF-#u^VcKJ54ctGR6HPA%jNiD1X7+tG+g@IZ;T#U zpzF2HV%6v?f}T9KD3FV+;eU4N#iq*#A(~Q`#yOx25IybZLk#=A^I8A4>>dnEMLELSt z`n%-PFgqzsl)aLV-@kuXj!Or<0|dJa>iFvV_g*q<@q=84sqy4ZJ_i?C8{chyxJqY;U?s>$2i_%>|2jGtRwYy&f|hpG4}Cv^=B?S~j6S zOKL+LJTF-ayD5bE(0^VL6~McCZD)jHW9o&NCfrwm7G!j6%=@Sv=D=YAg8TaU#PYOpXzDiR!$P)u~718a!tq!;Vexi`l)! z)=U%lj*k68)ATJ`z*3KNd~9qUfHw%1A#{;A7~5yHkjh}n!Q>uSa4zWYvU909ZYa=7 zU}IzJR#_>xO+O7=TG6;MEIog<^eAs!uFWaP@xZ~Rv^Y^6=mIbc3R#fkscL^FHlWv` zn~vnjrGe>n@P$OKrjAZRO3LKIJSH~FjxGp)h@`SIF3`Pfo==+K|G?azszeC_VJk43 z2_iBfA>r=~)NUJmsvM>)Du0>*Mo<4-e0rK#5S$#a@lzndf!zQH;B!if{9=p0UZpu2 zpqB8aH_@zZ7 z?2_AgKVwnZX|Xp|S?ZIyH{2!Wd!hFBt(1cUm!6&;F6X^k>jTSpuDW=Fum@$vED zS|^j0RRf)KA$ImCsgLND-ltZ^fpB+8RJg3H)r(M-Xrul*5G@GBMM(+g&d$yi7^R~) z&XPy_3^Q<4zEKP@HZV{G7_$u^@QaSE#={nz$gIprP{Pv53|>1ZdQVlDN&3GwVerD% ztM2LVfBO9SSI{K9efxG~Nf&@YP=Vf!=DzVe83UQRLn7SmAk~jwag$P$H+I)@a z$H!YOx?3Y7BY-i6SSWpbcM=vB=C}EBaT%anX3&>`fWyGd2y=WA60icwgPXqe`|Mkh zPt#NJ;L-Z}zw=F3T3`T;g^ja+1*cmOh^5h=^6^14#3FQzTVSSokyM+~*9l+nFsX5z z?|rzxlu*~u@CJ1ND7CC#D=DGw==jzogT<*g-}_h@^m@w+yxjgEfGb{C%MsL;*pJX- zxz2!SgqV`D=U~1u^{N^Uih9Gok1$B2Zxj_RhO?yn?vA@fk2{ECXkQ9siFbB&HJp@0 zHm-Mc6eQ(@5U}IXi}wp}rpW{ZhyzGs36v&M?`v~%LY!LR$^ZVnP9deGrdHI}CVT0z zXA0CKF;x7$tTkgO+XuuO6ns`OCjRd~ z0S(J<*UiD8QvYlVAQY^o?xHAbxv`y$>Qhb?KvNzDz$BJ897t*iXleInB!Dc-V{fWG znajYB>y{yUYaYDiD*_ zTL`&Og=F0}aj4xiXL&D9ZReKP1Ia|_Hs-@{Dm`mg{RZzHh98?J6K4Ato1 zeT=S-{^BEj6L6pcXt6*wQ#>&xr3x%uR<%>X0Iish+ebLiLAl5^&`1Q#71Y?+^&&|t&epAsQKn4KGhTL9C0tmczFzYHy2%g9mI5A&S5aJB9&w}}YB94x6}NG< z78D|GHdSv~Yp6H+cv{b9v_W+N^Dj_5fD|l6`@EYB!4M&Xpx*+=YlfzjpNWad^4+`o zC~Ax`>Dqa&f^-l4s%|);+iW1+YeUafI~metMojSi)Ul~~_;#-fQ7(gu(+m^=!cIno zXGhQ>FBM3@i~9Zy_4YD8e?Gb?&fh&=r1AZwCwJ|S4(edf_ z#&kinDuL)mQX0w-8?cBMvx0zB`5snoa#$G)-ewenkh^;9&sJJQASoFdrU`o;WqE__ zfomFYw@QD@?-3~UR>ERg9E{``@i)aU@=R(IS*jpVfyjM3C!2sDw> zZf-BY{^nO#lLWD3cp(RYLzD)ph0A)9&Tr60)A=1q9iothK9d9|P*P8iGG6S00#du+ z!vP=yhCa_03i_igAnI)bD#U&uIPHuk7mV!jU}0wNV(QShE58IHR+OdO1QnNwAw=9< zUk?QyoX>#DKG{*|&ofINIQ=fAeo#Z3p(sOg4f|{fxB^9i?Pb1_U z1UMCdNBw#!4^-?>#hyI*IHvM4cGjtNzTA(aCac`2F&URyKn>Je(0>`ESIH5~fEv)= z`TJepzn-4uL=BZ?-^E)x)6R(7T@S3Mo3&h9fJ>>LWI^_na>6|b0Z)}FSO;iLSNYz+N+pE|Qeolmpg7i{HZp;^I*=!R2Tiw{np)dvo+1)R&=x== zRac>7BT#lSmQ2?0cll^~pQtbk!I&l8Pg`dqfuzt4M%d0~<)5olmS(H-vQWwhy47$* z#v6?wL_|bCNID2Y<3ceTAZ^QkBiJ}ObHQ$&0ab20ufedO!;Gw)T-am{GO623w-F5= z1B)2NVFT=sXK0>M5}?q3ii)yzHwYPC@PePQ=XD|BqfAKBIinrcHu-a0qa))zI!lF*)e09s@uLGJk=Tz+Z46U?qAo9v(HjGiPUKLH8bD zX%LhekfiH~-k^~iwt-EnJ80N7>^lRAgYL-J4V*Ps#Aof_m!O&VxXTxmIH;70vrF#> z|FKBvD7d3!V33(&)!m-7>Tkm4?G=%K+Gw+i%vhKT&^mjq6@O`Heqej@e z{KHV-{a=ukhb>9B3*Y`kzL`x2P*xNa0l+dlA1z6>^^Tn&eg)AO0*O3C`+c3WPy8Lz zoVZ0WgT?zmkPj2p-?k~X8R_rRwy6L~tY(b*j*@A@>9}9sI8epPGRWEa7ltv1X`4^3 zr14oJr0UEdL~9oVQo)X0&2=5Gc7GT3er}!N&HU2y05uD+O9(6rl3hIUcXC5#q~YQC zfWziXb%65#t_2l`8ejAXf-iCR>~hXk)h>MNk4JrpL2Vo`-5?}qeM=z4hb_=A*Oo3#l<5j z0s0xhH(p?;u%CX8@(mGq4Gkjkld~3Y73#5-J32bPH8qJ=0iFouTQqmWKRbzy!E`&w z>DJHqAEX@G6m7tDB7B4-@E6cVD?7WulcF(s4;tPd0q`5jHb9#2J-u|~__NJN#`-*2 zKnB~;&CP!IZm(*{V_ok%za3e#&$&4;L5Q#8PwM}K=KEeA^k;~rg8mR#Ys7VCx#a5V z_Wvua(m-X4e%F`$B`JyYt1phUyew+-$E5?u z%1?1|8-H+kP?zRC7td$HjlNg|YYT$@f{0#BS%^N|od#Wsq(Q*acPu+sxU4HI1l&46 z21Rx`GrO1ZYqI2JWnWy6Qt+CiE`nxD#>GTxt1vPvf)G66J3t@+u19dnL_=ehJz$S} z3j*>0%1-fqbqA=#Udv(RkUGGTBkVTc08lYqS3!UfA#l&;i%Okx;~0904DgD;RH6c^ zIWQC*z4yB}C;veq5zwTGON452v=)zbtU5IY3#bM{NXj-t@AafIe?YcbEi`$fKLaJ) zW`%=?lhchGP0ZbAwb3rtc>i^A@>apf zDBT-$cmuFf1L{3|*N1!);LJ*RMjw4O{1W+MB?EYl!T@G6i&+Nj-C7vAF#;&u?V3E; zsvDPr=YB*lo(AwASrxH32!D`d#(v7<-`{OYG+uOfbPNN_jaB(^Xd@FnyC;tBwnKU2 zK?B(sAuxOqyx}5$ieLudmy4?2-ol`-M(F8{Iffd6OQ<_vS^IS$fGP;AXnNgjVPWCD z8Y@U;iSD*pQZ;A}U=yM-1(8IX~y)>j4!U#1&qh z7*Gj^vYaB~JYFK+2sACteYi*nKan>slUp~QVs#)eTG{!W@4SNm*fQkRbb;_M1$`HA z(EkVrr#%A@JjF=;o-L=etv5jRzh{3sEQ5~*RW`vo?KW#gOu5a(lgZq*fXMy6smP=M z3>bned@c_hAg92c+se(=d;Kk9ON!*OY_k$MP z|3I;hc;mr703j;<&+=wm8B}5qEZQO9ZqBeM6Pc zxh?2C_cf?%vf`=uqf#9kK7q1&&~odTshBg}vIou*P7sLpR!D!UVELPNY;Yx(lT12P zDxRA+N=j=i64zL!>x#!<8YCY_gYaDdQ_KdCt3!wUD@tz=N$ZJx+z~)Y#DL2gWhId! z_=7`u2I1{`(HM2wuv><*gm4Dc)YMGdIVdP7AlNcqUfxHP&r#coQ}cKeSXA?Y%xQ1F zF$HnxKzGRtf|`h!7;Y;MFi$k5PY|N8fZPqH7_c@mAR{mVJI}_!VbPb&MK^l|{4NlV z6a_aox8fT>!?ow77-P4YJlyC&K*!Uh4S<1k_gW~y8R)EkS5@^44sHN&h-*7r<1X$n zQ_ZXmZGIZCKLe$k)ot+;9)3otWmmWNyANW>w9*1v81(TBV2+Gd;n@NM#CL!(Qu^`Y z)0+flUdw+37YFmy)ff9T?6IyTkg_mIE-W7-BU-_Ew}ieSaqGdfpqu9a-iPDU<4FQQ ze5XJ46g*177|so#7*v7MK;dwqd3&){qC1}6sp3wIAcnW>x3fmR(tDRVvNHg9N_r{* zxaDrSGN<#|dYtp~r#HwlA?mqaAR$1MGR2K@3{aP4|7v{pi42rh0hAo2kaHGN|H*pa zK)!OSA&xU(N`bbdrEUqVY^^u^e3F_5bcT&cO8WZxRndX$930B__9aODU!KSt-s01W ztSKZg~246&=(2w2y@AnE<<@3#av1UQdE z5SBOatO#6{IXm6#D+uC(4Y8jHrpoYkpW+m(89#Lr*w??n5r{X;@Bv1uV<-ijkAPJH zS*1~Z3H>9e!2lV_f_X^@EFUcUM-{FuK=rdi0PXp)xOWKXc<^+?Xu+h?-?qEV1j~6s zOQ+s=_8_?nt8(uBo=4HIUoOhIWyZ}j>!)PE4wI8X#C8v=HNM0IdjEBZU8wCEe|-6AB5c)KM@V z&wtN!e0=N&`dBA|LpW#=k)3;(QicI}hdyZ-aJ>#GBY|d2HMn!63OFE|1CWo>uTM8M zjEn|A+8F?Aw>1Oh0O!X3*yp9&hk+mbfRt`DQFoNig0T4lxE3%qU$w5S4%; zTmqiFm%#kTZBpB8K9-KdT^AG?i3z6MC?GkDF8r+--0c4@qoni*bocaNQo_A^2h!YA z_FwDOCt!si(TXGj8<;r!Oaq}{lztUKb~aJ01ITTeSFaGPGD;T(LNRa*I`a$wLil{n zwyeVV`1z9%Mn)r}eFdutnl1`spKYeL-)HUmNH@Uj_{Tkt#WQ*UOd*gE-5x@gjY&zX zKMZ(J;kGC$@4d=yT`;`@Pd(>**c|jOy*81!Q^jh%Xa5A4{f+_00_e3&^dxTtl>vAY zq#v3;o$wkhXF=OE-QxceqzR;QY~X9M2`Tv2Meu;y0kE60xp@v!Kj6P&c)P$jEfts) zQN97T{s-V>$jXNX2Ka-3oJSDwzRGcvFxU^kep0s~JbTJ<+9ULil9RQ7CGKPK(FZjw!{KlXjb6Ey`lg4gmRe#Km>I=zl!~O zqbNv8I|1u!RNgtyhzXR@pXG8ug&l|$T)=Gm6NW=glL~;ToSa-)ovW&$OAiwO&B?&w zoD4u%B*+;<2yFr4Q|3y>V@#81E3ugwC=Se^$OxP#ZL{S}c5`#Si-1@lr6916q5FiE z^5C&tKT^QiPkKUdd%%MCfl;|0c*>x@6?!3O1|7o>a%wm5`NM!oQr!Q{Jgi%4WDQ17 zs&aEfad?_O7i9RbXQ65$P#a)>ISp!J`nVfo09O%?N877o;@|m$-|qG6*Ea3}CtaZ8 zAYh`)QX3LFE)_|l0I=`OZL5XQfm?HwH~j(r*MDQG68lw52cPI4uDTId1GN@{;Cw;X z|Lw(lB4GPKsy!TpP8w5>U!a0tKW5)jD0;f&Z_4`2*sfWR4LD@}Km9SHR{a#9AYNxd z1ueQBfmtdmD=UD>UC<~^U|RpV9NoGi^bE&~RFaJpZSGMT8YlXJbA~5<1;IDGIoiFr z@TkH<)|5=Y!8BpzQB+J|QYUHB2R0Ggr7ZQ{1^53Hj%b#^YPvSJ2>MB4Nj7&`wh0Y8 ze^!!oJOR(S4;XB0Y`9;&u)uG=&|j4~#7nGeuA!YifCcb=Mt(uy_J4{5JNIS&0&lnq z=rmDUy;mn`DS=y_5djLkIsfyh*u`d%BhAklPm0vKJKlZ`dJ@Yst}pRv-5SGg!crGZ zu>QCF4n%G4&$vAPkQQPgEjCgVR?`I6!2hM&+h#o=1NNuE5LKWO^`WM~eT06GCyMI# zNE33JUI0he4OtJlHd6Ct1262=$pRYaA$zOKzSzNOY_B0E4)D{^P`uhR69RAw=@6;o zfB!9jb~B|Zd3_W;)+*w@k$0SoII@q6&Fm;jU;Z#>h$1ud*!?@3aE-Vfj*#h(LA=!ENbs-Fzui*F=dgxPE^&eQEdyGC3_- z!MZ1J1r;mg0?7ozk$$VHqp*K~2`hEwOhG<`>;@NC!!VN6O;C8)^3F}g^dEdp zwBMI{zLYa3KcZhMP$=?*!ft1v3F0gFl&-KTF+3$5h52wTR4dw}aF~y$@5LB-nngY8 z6)G!A%O9T~^U+%LkLe=2ZccE)-1S&jZhvt?KM>guWz7QqpaZE&RF|oS&CXV)BDwz2 z1!qgKGRoyC#J3v8BVw|fd@-W5~lQT+kqq+7=w;>*?csV;Gh+pJ7Y&K~9 zR~=PdW%JDz$KcRlYh_H`P+B8x8>B@2n?a?xuipM>JA;cfP*ne-b|yUXEx}*+1n#on z?qD#?HL8ZC1}6mdd+ZkCzu-$oJU*lv=B|sZzA9Q9C?r87NYy9brkOYXY;#$)B11IJ z?9)Hh^vTe5>zePCX{CufI8EX2Ixoib$t|#&;rF5IzGMB?do+3DZ2G(L!T3Sl)v(hb z!C;C!P1(A*&Nn0#$h&XuSQLu*f-i&kg3a`I|LS(V6%9SSUBOBBP#+g2eo$QEVxazp zJcrr=af0YTG=l9a7LHUa@1W)HOBe0q#cM-TDofg^`q1=u!EK~V@NIdAQR;Zpn9KZV z`n=nqZF;)=wwEa2#-7zODFz+gLsP=Ks}!H!VGW{sye~bpjo_}0j6dvqR8kNvt{YN^ zDfA0^|K9hko@uV@H?my-=ih4){Jz(^kURQk$i+)=k0n3OltqpG;q@%SWSB}8Yu@u9 z35)9+ACw{RKemJk!=oDD3pF zQolcCpKDusTV{}TH7v!Z)Co_9_i~-@f>Zl!T)jm8o-c?W{N{ZV&yXo;R4efn=(O z@g0phQznsL(4-Y=C+97PMUgJGK67WzNgPtB zqG&U|g&vyW_FS2^0({W>K47!n?6d{-qsl7KLZrt*3Et7bq=PLt1uzt=+l*wkj2sn&$qG{n2yHltb@pX&b0qL}IgMS@Z6r)@OaC*d{P`kNwGy zT$kiZ&x0@aG9~`kpIBLW$2sJgsJ0-vMZ!&PLtuNxsQpj(7fghnBiWlx`?dLdp=%2R z>HpySA7c7$b=a4`g#LMBdRxFFnh9Y+kq@44o7CUs0lBbL=6}AHF!&-FMsTs%a=&Dy z9Mci?ef}pjAp1#6_J070D8ntk5>?t7I=qSOWLwHH+sG4)s9eAm|Hhh1(QYddQ30G8 zM~e)(L3v<#4oLj}+n^ppu9`8|pamODb<%tz-qC z{$-V0PNF_?KSq~`1{7Pm5mXpA4>DHZdQ^b>yaj|l_TAw1ZMT$-DnUqiM>bA6o*<4t z{xgDa;aU}za!h2eu4Q!tM90Ajs##A&!|1u78`aSH@FwDw$N(( z9|ENwk2F{&R(^%V(Q8V8JZxBBf-#JgRp3_m4FL;rd2b?fr;37TQu>YCQ8v(N0` z^yqfVe63JOrtM&lLDnuER;=vpolg6dWGjGDoDrG0|VsA$6BJtGkgZl&e zyRHAvm`-n;WW`%#{aiolb^Au0zdq@O?K#gk0;Q%)ElmNAR@d@}{d;?6LBET@9)rh4_S6Ggd%bS%eR}8L z(V0bGndZC<+iOyJW#`;AQ+By%ippQ%11{k6n9_aW<;AG|ch0<1jhMVRJlS{Fy2GSource code for darts.dataprocessing.transformers.base_data_transformer

each parallel job. If `parallel_params` is a `Sequence` of fixed attribute names, only those attribute names specified will take on different values between different parallel jobs. mask_components - Optionally, whether or not to automatically apply any provided `component_mask`s to the + Optionally, whether to automatically apply any provided `component_mask`s to the `TimeSeries` inputs passed to `transform`, `fit`, `inverse_transform`, or `fit_transform`. If `True`, any specified `component_mask` will be applied to each input timeseries before passing them to the called method; the masked components will also be automatically diff --git a/_modules/darts/dataprocessing/transformers/fittable_data_transformer.html b/_modules/darts/dataprocessing/transformers/fittable_data_transformer.html index 15796e6d34..03f3309667 100644 --- a/_modules/darts/dataprocessing/transformers/fittable_data_transformer.html +++ b/_modules/darts/dataprocessing/transformers/fittable_data_transformer.html @@ -223,7 +223,7 @@

Source code for darts.dataprocessing.transformers.fittable_data_transformer< each parallel job. If `parallel_params` is a `Sequence` of fixed attribute names, only those attribute names specified will take on different values between different parallel jobs. mask_components - Optionally, whether or not to automatically apply any provided `component_mask`s to the + Optionally, whether to automatically apply any provided `component_mask`s to the `TimeSeries` inputs passed to `transform`, `fit`, `inverse_transform`, or `fit_transform`. If `True`, any specified `component_mask` will be applied to each input timeseries before passing them to the called method; the masked components will also be automatically diff --git a/_modules/darts/dataprocessing/transformers/invertible_data_transformer.html b/_modules/darts/dataprocessing/transformers/invertible_data_transformer.html index 910aa34c70..c0793b5431 100644 --- a/_modules/darts/dataprocessing/transformers/invertible_data_transformer.html +++ b/_modules/darts/dataprocessing/transformers/invertible_data_transformer.html @@ -232,7 +232,7 @@

Source code for darts.dataprocessing.transformers.invertible_data_transforme each parallel job. If `parallel_params` is a `Sequence` of fixed attribute names, only those attribute names specified will take on different values between different parallel jobs. mask_components - Optionally, whether or not to automatically apply any provided `component_mask`s to the + Optionally, whether to automatically apply any provided `component_mask`s to the `TimeSeries` inputs passed to `transform`, `fit`, `inverse_transform`, or `fit_transform`. If `True`, any specified `component_mask` will be applied to each input timeseries before passing them to the called method; the masked components will also be automatically diff --git a/_modules/darts/metrics/metrics.html b/_modules/darts/metrics/metrics.html index 2cd66a6fe3..49fc7b63ae 100644 --- a/_modules/darts/metrics/metrics.html +++ b/_modules/darts/metrics/metrics.html @@ -351,7 +351,7 @@

Source code for darts.metrics.metrics

     series_b
         A univariate (deterministic or stochastic) ``TimeSeries`` instance (the predicted series).
     intersect
-        A boolean for whether or not to only consider the time intersection between `series_a` and `series_b`
+        A boolean for whether to only consider the time intersection between `series_a` and `series_b`
     stochastic_quantile
         Optionally, for stochastic predicted series, return either all sample values with (`stochastic_quantile=None`)
         or any deterministic quantile sample values by setting `stochastic_quantile=quantile` {>=0,<=1}.
diff --git a/_modules/darts/models/forecasting/baselines.html b/_modules/darts/models/forecasting/baselines.html
index 7ef64eeb50..d22d5bb04a 100644
--- a/_modules/darts/models/forecasting/baselines.html
+++ b/_modules/darts/models/forecasting/baselines.html
@@ -228,6 +228,7 @@ 

Source code for darts.models.forecasting.baselines

n: int, num_samples: int = 1, verbose: bool = False, + show_warnings: bool = True, ): super().predict(n, num_samples) forecast = np.tile(self.mean_val, (n, 1)) @@ -292,6 +293,7 @@

Source code for darts.models.forecasting.baselines

n: int, num_samples: int = 1, verbose: bool = False, + show_warnings: bool = True, ): super().predict(n, num_samples) forecast = np.array([self.last_k_vals[i % self.K, :] for i in range(n)]) @@ -341,6 +343,7 @@

Source code for darts.models.forecasting.baselines

n: int, num_samples: int = 1, verbose: bool = False, + show_warnings: bool = True, ): super().predict(n, num_samples) first, last = ( @@ -411,6 +414,7 @@

Source code for darts.models.forecasting.baselines

n: int, num_samples: int = 1, verbose: bool = False, + show_warnings: bool = True, ): super().predict(n, num_samples) diff --git a/_modules/darts/models/forecasting/block_rnn_model.html b/_modules/darts/models/forecasting/block_rnn_model.html index 48214afaad..47ca6d5a6d 100644 --- a/_modules/darts/models/forecasting/block_rnn_model.html +++ b/_modules/darts/models/forecasting/block_rnn_model.html @@ -170,12 +170,14 @@

Source code for darts.models.forecasting.block_rnn_model

------------------------------- """ -from typing import List, Optional, Tuple, Union +import inspect +from abc import ABC, abstractmethod +from typing import List, Optional, Tuple, Type, Union import torch import torch.nn as nn -from darts.logging import get_logger, raise_if_not +from darts.logging import get_logger, raise_log from darts.models.forecasting.pl_forecasting_module import ( PLPastCovariatesModule, io_processor, @@ -185,11 +187,9 @@

Source code for darts.models.forecasting.block_rnn_model

logger = get_logger(__name__) -# TODO add batch norm -class _BlockRNNModule(PLPastCovariatesModule): +
[docs]class CustomBlockRNNModule(PLPastCovariatesModule, ABC): def __init__( self, - name: str, input_size: int, hidden_dim: int, num_layers: int, @@ -199,24 +199,22 @@

Source code for darts.models.forecasting.block_rnn_model

dropout: float = 0.0, **kwargs, ): + """This class allows to create custom block RNN modules that can later be used with Darts' + :class:`BlockRNNModel`. It adds the backbone that is required to be used with Darts' + :class:`TorchForecastingModel` and :class:`BlockRNNModel`. - """PyTorch module implementing a block RNN to be used in `BlockRNNModel`. + To create a new module, subclass from :class:`CustomBlockRNNModule` and: - PyTorch module implementing a simple block RNN with the specified `name` layer. - This module combines a PyTorch RNN module, together with a fully connected network, which maps the - last hidden layers to output of the desired size `output_chunk_length` and makes it compatible with - `BlockRNNModel`s. + * Define the architecture in the module constructor (`__init__()`) - This module uses an RNN to encode the input sequence, and subsequently uses a fully connected - network as the decoder which takes as input the last hidden state of the encoder RNN. - The final output of the decoder is a sequence of length `output_chunk_length`. In this sense, - the `_BlockRNNModule` produces 'blocks' of forecasts at a time (which is different - from `_RNNModule` used by the `RNNModel`). + * Add the `forward()` method and define the logic of your module's forward pass + + * Use the custom module class when creating a new :class:`BlockRNNModel` with parameter `model`. + + You can use `darts.models.forecasting.block_rnn_model._BlockRNNModule` as an example. Parameters ---------- - name - The name of the specific PyTorch RNN module ("RNN", "GRU" or "LSTM"). input_size The dimensionality of the input time series. hidden_dim @@ -234,6 +232,67 @@

Source code for darts.models.forecasting.block_rnn_model

The fraction of neurons that are dropped in all-but-last RNN layers. **kwargs all parameters required for :class:`darts.model.forecasting_models.PLForecastingModule` base class. + """ + super().__init__(**kwargs) + + # Defining parameters + self.input_size = input_size + self.hidden_dim = hidden_dim + self.num_layers = num_layers + self.target_size = target_size + self.nr_params = nr_params + self.num_layers_out_fc = [] if num_layers_out_fc is None else num_layers_out_fc + self.dropout = dropout + self.out_len = self.output_chunk_length + +
[docs] @io_processor + @abstractmethod + def forward(self, x_in: Tuple) -> torch.Tensor: + """BlockRNN Module forward. + + Parameters + ---------- + x_in + Tuple of Tensors containing the features of the input sequence. The tuple has elements + (past target, historic future covariates, future covariates, static covariates). + The shape of the past target is `(batch_size, input_length, input_size)`. + + Returns + ------- + torch.Tensor + The BlockRNN output Tensor with shape `(batch_size, output_chunk_length, target_size, nr_params)`. + It contains the prediction at the last time step of the sequence. + """ + pass
+ + +# TODO add batch norm +class _BlockRNNModule(CustomBlockRNNModule): + def __init__( + self, + name: str, + **kwargs, + ): + + """PyTorch module implementing a block RNN to be used in `BlockRNNModel`. + + PyTorch module implementing a simple block RNN with the specified `name` layer. + This module combines a PyTorch RNN module, together with a fully connected network, which maps the + last hidden layers to output of the desired size `output_chunk_length` and makes it compatible with + `BlockRNNModel`s. + + This module uses an RNN to encode the input sequence, and subsequently uses a fully connected + network as the decoder which takes as input the last hidden state of the encoder RNN. + The final output of the decoder is a sequence of length `output_chunk_length`. In this sense, + the `_BlockRNNModule` produces 'blocks' of forecasts at a time (which is different + from `_RNNModule` used by the `RNNModel`). + + Parameters + ---------- + name + The name of the specific PyTorch RNN module ("RNN", "GRU" or "LSTM"). + **kwargs + all parameters required for the :class:`darts.model.forecasting_models.CustomBlockRNNModule` base class. Inputs ------ @@ -248,25 +307,24 @@

Source code for darts.models.forecasting.block_rnn_model

super().__init__(**kwargs) - # Defining parameters - self.hidden_dim = hidden_dim - self.n_layers = num_layers - self.target_size = target_size - self.nr_params = nr_params - num_layers_out_fc = [] if num_layers_out_fc is None else num_layers_out_fc - self.out_len = self.output_chunk_length self.name = name # Defining the RNN module - self.rnn = getattr(nn, name)( - input_size, hidden_dim, num_layers, batch_first=True, dropout=dropout + self.rnn = getattr(nn, self.name)( + self.input_size, + self.hidden_dim, + self.num_layers, + batch_first=True, + dropout=self.dropout, ) # The RNN module is followed by a fully connected layer, which maps the last hidden layer # to the output of desired length - last = hidden_dim + last = self.hidden_dim feats = [] - for feature in num_layers_out_fc + [self.out_len * target_size * nr_params]: + for feature in self.num_layers_out_fc + [ + self.out_len * self.target_size * self.nr_params + ]: feats.append(nn.Linear(last, feature)) last = feature self.fc = nn.Sequential(*feats) @@ -298,7 +356,7 @@

Source code for darts.models.forecasting.block_rnn_model

self, input_chunk_length: int, output_chunk_length: int, - model: Union[str, nn.Module] = "RNN", + model: Union[str, Type[CustomBlockRNNModule]] = "RNN", hidden_dim: int = 25, n_rnn_layers: int = 1, hidden_fc_sizes: Optional[List] = None, @@ -335,9 +393,8 @@

Source code for darts.models.forecasting.block_rnn_model

the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). model - Either a string specifying the RNN module type ("RNN", "LSTM" or "GRU"), - or a PyTorch module with the same specifications as - :class:`darts.models.block_rnn_model._BlockRNNModule`. + Either a string specifying the RNN module type ("RNN", "LSTM" or "GRU"), or a subclass of + :class:`CustomBlockRNNModule` (the class itself, not an object of the class) with a custom logic. hidden_dim Size for feature maps for each hidden RNN layer (:math:`h_n`). In Darts version <= 0.21, hidden_dim was referred as hidden_size. @@ -398,7 +455,7 @@

Source code for darts.models.forecasting.block_rnn_model

If set to ``True``, any previously-existing model with the same name will be reset (all checkpoints will be discarded). Default: ``False``. save_checkpoints - Whether or not to automatically save the untrained model and checkpoints from training. + Whether to automatically save the untrained model and checkpoints from training. To load the model from checkpoint, call :func:`MyModelClass.load_from_checkpoint()`, where :class:`MyModelClass` is the :class:`TorchForecastingModel` class that was used (such as :class:`TFTModel`, :class:`NBEATSModel`, etc.). If set to ``False``, the model can still be manually saved using @@ -443,7 +500,6 @@

Source code for darts.models.forecasting.block_rnn_model

"devices", and "auto_select_gpus"``. Some examples for setting the devices inside the ``pl_trainer_kwargs`` dict: - - ``{"accelerator": "cpu"}`` for CPU, - ``{"accelerator": "gpu", "devices": [i]}`` to use only GPU ``i`` (``i`` must be an integer), - ``{"accelerator": "gpu", "devices": -1, "auto_select_gpus": True}`` to use all available GPUS. @@ -524,14 +580,16 @@

Source code for darts.models.forecasting.block_rnn_model

# check we got right model type specified: if model not in ["RNN", "LSTM", "GRU"]: - raise_if_not( - isinstance(model, nn.Module), - '{} is not a valid RNN model.\n Please specify "RNN", "LSTM", ' - '"GRU", or give your own PyTorch nn.Module'.format( - model.__class__.__name__ - ), - logger, - ) + if not inspect.isclass(model) or not issubclass( + model, CustomBlockRNNModule + ): + raise_log( + ValueError( + "`model` is not a valid RNN model. Please specify 'RNN', 'LSTM', 'GRU', or give a subclass " + "(not an instance) of darts.models.forecasting.rnn_model.CustomBlockRNNModule." + ), + logger=logger, + ) self.rnn_type_or_module = model self.hidden_fc_sizes = hidden_fc_sizes @@ -551,24 +609,25 @@

Source code for darts.models.forecasting.block_rnn_model

output_dim = train_sample[-1].shape[1] nr_params = 1 if self.likelihood is None else self.likelihood.num_parameters - if self.rnn_type_or_module in ["RNN", "LSTM", "GRU"]: - hidden_fc_sizes = ( - [] if self.hidden_fc_sizes is None else self.hidden_fc_sizes - ) - model = _BlockRNNModule( - name=self.rnn_type_or_module, - input_size=input_dim, - target_size=output_dim, - nr_params=nr_params, - hidden_dim=self.hidden_dim, - num_layers=self.n_rnn_layers, - num_layers_out_fc=hidden_fc_sizes, - dropout=self.dropout, - **self.pl_module_params, - ) + hidden_fc_sizes = [] if self.hidden_fc_sizes is None else self.hidden_fc_sizes + + kwargs = {} + if isinstance(self.rnn_type_or_module, str): + model_cls = _BlockRNNModule + kwargs["name"] = self.rnn_type_or_module else: - model = self.rnn_type_or_module - return model
+ model_cls = self.rnn_type_or_module + return model_cls( + input_size=input_dim, + target_size=output_dim, + nr_params=nr_params, + hidden_dim=self.hidden_dim, + num_layers=self.n_rnn_layers, + num_layers_out_fc=hidden_fc_sizes, + dropout=self.dropout, + **self.pl_module_params, + **kwargs, + )
diff --git a/_modules/darts/models/forecasting/dlinear.html b/_modules/darts/models/forecasting/dlinear.html index aa759fd33a..52ee986fb4 100644 --- a/_modules/darts/models/forecasting/dlinear.html +++ b/_modules/darts/models/forecasting/dlinear.html @@ -495,7 +495,7 @@

Source code for darts.models.forecasting.dlinear

If set to ``True``, any previously-existing model with the same name will be reset (all checkpoints will be discarded). Default: ``False``. save_checkpoints - Whether or not to automatically save the untrained model and checkpoints from training. + Whether to automatically save the untrained model and checkpoints from training. To load the model from checkpoint, call :func:`MyModelClass.load_from_checkpoint()`, where :class:`MyModelClass` is the :class:`TorchForecastingModel` class that was used (such as :class:`TFTModel`, :class:`NBEATSModel`, etc.). If set to ``False``, the model can still be manually saved using @@ -540,7 +540,6 @@

Source code for darts.models.forecasting.dlinear

"devices", and "auto_select_gpus"``. Some examples for setting the devices inside the ``pl_trainer_kwargs`` dict: - - ``{"accelerator": "cpu"}`` for CPU, - ``{"accelerator": "gpu", "devices": [i]}`` to use only GPU ``i`` (``i`` must be an integer), - ``{"accelerator": "gpu", "devices": -1, "auto_select_gpus": True}`` to use all available GPUS. diff --git a/_modules/darts/models/forecasting/exponential_smoothing.html b/_modules/darts/models/forecasting/exponential_smoothing.html index 4ff069e25c..46e2dd2450 100644 --- a/_modules/darts/models/forecasting/exponential_smoothing.html +++ b/_modules/darts/models/forecasting/exponential_smoothing.html @@ -304,7 +304,13 @@

Source code for darts.models.forecasting.exponential_smoothing

return self
-
[docs] def predict(self, n, num_samples=1, verbose: bool = False): +
[docs] def predict( + self, + n: int, + num_samples: int = 1, + verbose: bool = False, + show_warnings: bool = True, + ): super().predict(n, num_samples) if num_samples == 1: diff --git a/_modules/darts/models/forecasting/fft.html b/_modules/darts/models/forecasting/fft.html index 62d38d793e..68adb80184 100644 --- a/_modules/darts/models/forecasting/fft.html +++ b/_modules/darts/models/forecasting/fft.html @@ -533,7 +533,13 @@

Source code for darts.models.forecasting.fft

return self
-
[docs] def predict(self, n: int, num_samples: int = 1, verbose: bool = False): +
[docs] def predict( + self, + n: int, + num_samples: int = 1, + verbose: bool = False, + show_warnings: bool = True, + ): super().predict(n, num_samples) trend_forecast = np.array( [self.trend_function(i + len(self.training_series)) for i in range(n)] diff --git a/_modules/darts/models/forecasting/forecasting_model.html b/_modules/darts/models/forecasting/forecasting_model.html index 25cb9c301a..158824f99a 100644 --- a/_modules/darts/models/forecasting/forecasting_model.html +++ b/_modules/darts/models/forecasting/forecasting_model.html @@ -402,6 +402,14 @@

Source code for darts.models.forecasting.forecasting_model

""" return getattr(self, "likelihood", None) is not None + @property + @abstractmethod + def supports_transferrable_series_prediction(self) -> bool: + """ + Whether the model supports prediction for any input `series`. + """ + pass + @property def uses_past_covariates(self) -> bool: """ @@ -445,7 +453,13 @@

Source code for darts.models.forecasting.forecasting_model

return None @abstractmethod - def predict(self, n: int, num_samples: int = 1) -> TimeSeries: + def predict( + self, + n: int, + num_samples: int = 1, + verbose: bool = False, + show_warnings: bool = True, + ) -> TimeSeries: """Forecasts values for `n` time steps after the end of the training series. Parameters @@ -455,6 +469,10 @@

Source code for darts.models.forecasting.forecasting_model

num_samples Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 for deterministic models. + verbose + Optionally, set the prediction verbosity. Not effective for all models. + show_warnings + Optionally, control whether warnings are shown. Not effective for all models. Returns ------- @@ -482,49 +500,59 @@

Source code for darts.models.forecasting.forecasting_model

def _fit_wrapper( self, series: TimeSeries, - past_covariates: Optional[TimeSeries], - future_covariates: Optional[TimeSeries], + past_covariates: Optional[TimeSeries] = None, + future_covariates: Optional[TimeSeries] = None, **kwargs, ): - supported_params = inspect.signature(self.fit).parameters - kwargs_ = {k: v for k, v in kwargs.items() if k in supported_params} - + add_kwargs = {} # handle past and future covariates based on model support - for covs, name in zip([past_covariates, future_covariates], ["past", "future"]): - covs_name = f"{name}_covariates" + for covs, covs_name in zip( + [past_covariates, future_covariates], + ["past_covariates", "future_covariates"], + ): if getattr(self, f"supports_{covs_name}"): - kwargs_[covs_name] = covs + add_kwargs[covs_name] = covs elif covs is not None: raise_log( ValueError(f"Model cannot be fit/trained with `{covs_name}`."), logger, ) - self.fit(series, **kwargs_) + self.fit(series=series, **add_kwargs, **kwargs) def _predict_wrapper( self, n: int, + series: Optional[TimeSeries] = None, + past_covariates: Optional[TimeSeries] = None, + future_covariates: Optional[TimeSeries] = None, + predict_likelihood_parameters: bool = False, **kwargs, ) -> Union[TimeSeries, Sequence[TimeSeries]]: - supported_params = set(inspect.signature(self.predict).parameters) - - # if predict() accepts covariates, the model might not support them at inference - for covs_name in ["past_covariates", "future_covariates"]: - if covs_name in kwargs and not getattr(self, f"supports_{covs_name}"): - if kwargs[covs_name] is None: - supported_params = supported_params - {covs_name} - else: - raise_log( - ValueError( - f"Model prediction does not support `{covs_name}`, either because it " - f"does not support `{covs_name}` in general, or because it was fit/trained " - f"without using `{covs_name}`." - ), - logger, - ) + add_kwargs = {} + # not all models supports input `series` at inference + if self.supports_transferrable_series_prediction: + add_kwargs["series"] = series + + # even if predict() accepts covariates, the model might not support them at inference + for covs, name in zip( + [past_covariates, future_covariates], + ["past_covariates", "future_covariates"], + ): + if getattr(self, f"supports_{name}"): + add_kwargs[name] = covs + elif covs is not None: + raise_log( + ValueError( + f"Model prediction does not support `{name}`, either because it " + f"does not support `{name}` in general, or because it was fit/trained " + f"without using `{name}`." + ), + logger, + ) - kwargs_ = {k: v for k, v in kwargs.items() if k in supported_params} - return self.predict(n, **kwargs_) + if self.supports_likelihood_parameter_prediction: + add_kwargs["predict_likelihood_parameters"] = predict_likelihood_parameters + return self.predict(n=n, **add_kwargs, **kwargs) @property def min_train_series_length(self) -> int: @@ -2266,6 +2294,13 @@

Source code for darts.models.forecasting.forecasting_model

# that use an input to predict an output. return -self.min_train_series_length, -1, None, None, None, None + @property + def supports_transferrable_series_prediction(self) -> bool: + """ + Whether the model supports prediction for any input `series`. + """ + return False + class GlobalForecastingModel(ForecastingModel, ABC): """The base class for "global" forecasting models, handling several time series and optional covariates. @@ -2478,6 +2513,13 @@

Source code for darts.models.forecasting.forecasting_model

def supports_optimized_historical_forecasts(self) -> bool: """ Whether the model supports optimized historical forecasts + """ + return True + + @property + def supports_transferrable_series_prediction(self) -> bool: + """ + Whether the model supports prediction for any input `series`. """ return True @@ -2587,6 +2629,8 @@

Source code for darts.models.forecasting.forecasting_model

n: int, future_covariates: Optional[TimeSeries] = None, num_samples: int = 1, + verbose: bool = False, + show_warnings: bool = True, **kwargs, ) -> TimeSeries: """Forecasts values for `n` time steps after the end of the training series. @@ -2604,6 +2648,10 @@

Source code for darts.models.forecasting.forecasting_model

num_samples Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 for deterministic models. + verbose + Optionally, set the prediction verbosity. Not effective for all models. + show_warnings + Optionally, control whether warnings are shown. Not effective for all models. Returns ------- @@ -2747,6 +2795,8 @@

Source code for darts.models.forecasting.forecasting_model

series: Optional[TimeSeries] = None, future_covariates: Optional[TimeSeries] = None, num_samples: int = 1, + verbose: bool = False, + show_warnings: bool = True, **kwargs, ) -> TimeSeries: """If the `series` parameter is not set, forecasts values for `n` time steps after the end of the training @@ -2772,6 +2822,10 @@

Source code for darts.models.forecasting.forecasting_model

num_samples Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 for deterministic models. + verbose + Optionally, set the prediction verbosity. Not effective for all models. + show_warnings + Optionally, control whether warnings are shown. Not effective for all models. Returns ------- @@ -2866,6 +2920,13 @@

Source code for darts.models.forecasting.forecasting_model

""" pass + @property + def supports_transferrable_series_prediction(self) -> bool: + """ + Whether the model supports prediction for any input `series`. + """ + return True + @property def _supports_non_retrainable_historical_forecasts(self) -> bool: return True diff --git a/_modules/darts/models/forecasting/kalman_forecaster.html b/_modules/darts/models/forecasting/kalman_forecaster.html index e4ac4c5247..5dfc0157f6 100644 --- a/_modules/darts/models/forecasting/kalman_forecaster.html +++ b/_modules/darts/models/forecasting/kalman_forecaster.html @@ -291,6 +291,8 @@

Source code for darts.models.forecasting.kalman_forecaster

series: Optional[TimeSeries] = None, future_covariates: Optional[TimeSeries] = None, num_samples: int = 1, + verbose: bool = False, + show_warnings: bool = True, **kwargs, ) -> TimeSeries: # we override `predict()` to pass a non-None `series`, so that historic_future_covariates diff --git a/_modules/darts/models/forecasting/nbeats.html b/_modules/darts/models/forecasting/nbeats.html index 92242a18e9..b7ae872e8f 100644 --- a/_modules/darts/models/forecasting/nbeats.html +++ b/_modules/darts/models/forecasting/nbeats.html @@ -820,7 +820,7 @@

Source code for darts.models.forecasting.nbeats

< If set to ``True``, any previously-existing model with the same name will be reset (all checkpoints will be discarded). Default: ``False``. save_checkpoints - Whether or not to automatically save the untrained model and checkpoints from training. + Whether to automatically save the untrained model and checkpoints from training. To load the model from checkpoint, call :func:`MyModelClass.load_from_checkpoint()`, where :class:`MyModelClass` is the :class:`TorchForecastingModel` class that was used (such as :class:`TFTModel`, :class:`NBEATSModel`, etc.). If set to ``False``, the model can still be manually saved using @@ -865,7 +865,6 @@

Source code for darts.models.forecasting.nbeats

< "devices", and "auto_select_gpus"``. Some examples for setting the devices inside the ``pl_trainer_kwargs`` dict: - - ``{"accelerator": "cpu"}`` for CPU, - ``{"accelerator": "gpu", "devices": [i]}`` to use only GPU ``i`` (``i`` must be an integer), - ``{"accelerator": "gpu", "devices": -1, "auto_select_gpus": True}`` to use all available GPUS. diff --git a/_modules/darts/models/forecasting/nhits.html b/_modules/darts/models/forecasting/nhits.html index 1254519e79..1d61656453 100644 --- a/_modules/darts/models/forecasting/nhits.html +++ b/_modules/darts/models/forecasting/nhits.html @@ -756,7 +756,7 @@

Source code for darts.models.forecasting.nhits

If set to ``True``, any previously-existing model with the same name will be reset (all checkpoints will be discarded). Default: ``False``. save_checkpoints - Whether or not to automatically save the untrained model and checkpoints from training. + Whether to automatically save the untrained model and checkpoints from training. To load the model from checkpoint, call :func:`MyModelClass.load_from_checkpoint()`, where :class:`MyModelClass` is the :class:`TorchForecastingModel` class that was used (such as :class:`TFTModel`, :class:`NBEATSModel`, etc.). If set to ``False``, the model can still be manually saved using @@ -801,7 +801,6 @@

Source code for darts.models.forecasting.nhits

"devices", and "auto_select_gpus"``. Some examples for setting the devices inside the ``pl_trainer_kwargs`` dict: - - ``{"accelerator": "cpu"}`` for CPU, - ``{"accelerator": "gpu", "devices": [i]}`` to use only GPU ``i`` (``i`` must be an integer), - ``{"accelerator": "gpu", "devices": -1, "auto_select_gpus": True}`` to use all available GPUS. diff --git a/_modules/darts/models/forecasting/nlinear.html b/_modules/darts/models/forecasting/nlinear.html index b2af9f47d0..e58f868276 100644 --- a/_modules/darts/models/forecasting/nlinear.html +++ b/_modules/darts/models/forecasting/nlinear.html @@ -449,7 +449,7 @@

Source code for darts.models.forecasting.nlinear

If set to ``True``, any previously-existing model with the same name will be reset (all checkpoints will be discarded). Default: ``False``. save_checkpoints - Whether or not to automatically save the untrained model and checkpoints from training. + Whether to automatically save the untrained model and checkpoints from training. To load the model from checkpoint, call :func:`MyModelClass.load_from_checkpoint()`, where :class:`MyModelClass` is the :class:`TorchForecastingModel` class that was used (such as :class:`TFTModel`, :class:`NBEATSModel`, etc.). If set to ``False``, the model can still be manually saved using diff --git a/_modules/darts/models/forecasting/pl_forecasting_module.html b/_modules/darts/models/forecasting/pl_forecasting_module.html index 4acd5c184c..4fe26f9b3b 100644 --- a/_modules/darts/models/forecasting/pl_forecasting_module.html +++ b/_modules/darts/models/forecasting/pl_forecasting_module.html @@ -170,6 +170,7 @@

Source code for darts.models.forecasting.pl_forecasting_module

""" from abc import ABC, abstractmethod +from functools import wraps from typing import Any, Dict, Optional, Sequence, Tuple, Union import pytorch_lightning as pl @@ -209,6 +210,7 @@

Source code for darts.models.forecasting.pl_forecasting_module

normalizes batch input target features, and inverse transform the forward output back to the original scale """ + @wraps(forward) def forward_wrapper(self, *args, **kwargs): if not self.use_reversible_instance_norm: return forward(self, *args, **kwargs) diff --git a/_modules/darts/models/forecasting/regression_model.html b/_modules/darts/models/forecasting/regression_model.html index a8aaaabafe..c6bfd095b2 100644 --- a/_modules/darts/models/forecasting/regression_model.html +++ b/_modules/darts/models/forecasting/regression_model.html @@ -939,6 +939,8 @@

Source code for darts.models.forecasting.regression_model

**kwargs : dict, optional Additional keyword arguments passed to the `predict` method of the model. Only works with univariate target series. + show_warnings + Optionally, control whether warnings are shown. Not effective for all models. """ if series is None: # then there must be a single TS, and that was saved in super().fit as self.training_series diff --git a/_modules/darts/models/forecasting/rnn_model.html b/_modules/darts/models/forecasting/rnn_model.html index 7ebf23f407..5e138ac751 100644 --- a/_modules/darts/models/forecasting/rnn_model.html +++ b/_modules/darts/models/forecasting/rnn_model.html @@ -170,12 +170,14 @@

Source code for darts.models.forecasting.rnn_model

------------------------- """ -from typing import Optional, Sequence, Tuple, Union +import inspect +from abc import ABC, abstractmethod +from typing import Optional, Sequence, Tuple, Type, Union import torch import torch.nn as nn -from darts.logging import get_logger, raise_if_not +from darts.logging import get_logger, raise_if_not, raise_log from darts.models.forecasting.pl_forecasting_module import ( PLDualCovariatesModule, io_processor, @@ -187,11 +189,9 @@

Source code for darts.models.forecasting.rnn_model

logger = get_logger(__name__) -# TODO add batch norm -class _RNNModule(PLDualCovariatesModule): +
[docs]class CustomRNNModule(PLDualCovariatesModule, ABC): def __init__( self, - name: str, input_size: int, hidden_dim: int, num_layers: int, @@ -200,18 +200,22 @@

Source code for darts.models.forecasting.rnn_model

dropout: float = 0.0, **kwargs, ): + """This class allows to create custom RNN modules that can later be used with Darts' :class:`RNNModel`. + It adds the backbone that is required to be used with Darts' :class:`TorchForecastingModel` and + :class:`RNNModel`. - """PyTorch module implementing an RNN to be used in `RNNModel`. + To create a new module, subclass from :class:`CustomRNNModule` and: - PyTorch module implementing a simple RNN with the specified `name` type. - This module combines a PyTorch RNN module, together with one fully connected layer which - maps the hidden state of the RNN at each step to the output value of the model at that - time step. + * Define the architecture in the module constructor (`__init__()`) + + * Add the `forward()` method and define the logic of your module's forward pass + + * Use the custom module class when creating a new :class:`RNNModel` with parameter `model`. + + You can use `darts.models.forecasting.rnn_model._RNNModule` as an example. Parameters ---------- - name - The name of the specific PyTorch RNN module ("RNN", "GRU" or "LSTM"). input_size The dimensionality of the input time series. hidden_dim @@ -226,55 +230,43 @@

Source code for darts.models.forecasting.rnn_model

The fraction of neurons that are dropped in all-but-last RNN layers. **kwargs all parameters required for :class:`darts.model.forecasting_models.PLForecastingModule` base class. - - Inputs - ------ - x of shape `(batch_size, input_length, input_size)` - Tensor containing the features of the input sequence. The `input_length` is not fixed. - - Outputs - ------- - y of shape `(batch_size, output_chunk_length, target_size, nr_params)` - Tensor containing the outputs of the RNN at every time step of the input sequence. - During training the whole tensor is used as output, whereas during prediction we only use y[:, -1, :]. - However, this module always returns the whole Tensor. """ - # RNNModule doesn't really need input and output_chunk_length for PLModule super().__init__(**kwargs) # Defining parameters + self.input_size = input_size + self.hidden_dim = hidden_dim + self.num_layers = num_layers self.target_size = target_size self.nr_params = nr_params - self.name = name - - # Defining the RNN module - self.rnn = getattr(nn, name)( - input_size, hidden_dim, num_layers, batch_first=True, dropout=dropout - ) - - # The RNN module needs a linear layer V that transforms hidden states into outputs, individually - self.V = nn.Linear(hidden_dim, target_size * nr_params) + self.dropout = dropout - @io_processor +
[docs] @io_processor + @abstractmethod def forward( self, x_in: Tuple, h: Optional[torch.Tensor] = None ) -> Tuple[torch.Tensor, torch.Tensor]: - x, _ = x_in - # data is of size (batch_size, input_length, input_size) - batch_size = x.shape[0] - - # out is of size (batch_size, input_length, hidden_dim) - out, last_hidden_state = self.rnn(x) if h is None else self.rnn(x, h) - - # Here, we apply the V matrix to every hidden state to produce the outputs - predictions = self.V(out) - - # predictions is of size (batch_size, input_length, target_size) - predictions = predictions.view(batch_size, -1, self.target_size, self.nr_params) + """RNN Module forward. - # returns outputs for all inputs, only the last one is needed for prediction time - return predictions, last_hidden_state + Parameters + ---------- + x_in + Tuple of Tensors containing the features of the input sequence. The tuple has elements (past target, + historic future covariates, future covariates, static covariates). The shape of the past target is + `(batch_size, input_length, input_size)`. + h + Optionally, the hidden state. + + Returns + ------- + Tuple[torch.Tensor, torch.Tensor] + Tuple of Tensors with elements (RNN output, hidden state). The RNN output Tensor has shape + `(batch_size, output_chunk_length, target_size, nr_params)`. It contains the outputs at every + time step of the input sequence. During training the whole tensor is used as output, whereas during + prediction we only use y[:, -1, :]. However, this module always returns the whole Tensor. + """ + pass
def _produce_train_output(self, input_batch: Tuple) -> torch.Tensor: ( @@ -368,14 +360,85 @@

Source code for darts.models.forecasting.rnn_model

# bring predictions into desired format and drop unnecessary values batch_prediction = torch.cat(batch_prediction, dim=1) batch_prediction = batch_prediction[:, :n, :] - return batch_prediction + return batch_prediction
+ + +# TODO add batch norm +class _RNNModule(CustomRNNModule): + def __init__( + self, + name: str, + **kwargs, + ): + """PyTorch module implementing an RNN to be used in `RNNModel`. + + PyTorch module implementing a simple RNN with the specified `name` type. + This module combines a PyTorch RNN module, together with one fully connected layer which + maps the hidden state of the RNN at each step to the output value of the model at that + time step. + + Parameters + ---------- + name + The name of the specific PyTorch RNN module ("RNN", "GRU" or "LSTM"). + **kwargs + all parameters required for the :class:`darts.model.forecasting_models.CustomRNNModule` base class. + + Inputs + ------ + x of shape `(batch_size, input_length, input_size)` + Tensor containing the features of the input sequence. The `input_length` is not fixed. + + Outputs + ------- + y of shape `(batch_size, output_chunk_length, target_size, nr_params)` + Tensor containing the outputs of the RNN at every time step of the input sequence. + During training the whole tensor is used as output, whereas during prediction we only use y[:, -1, :]. + However, this module always returns the whole Tensor. + """ + + # RNNModule doesn't really need input and output_chunk_length for PLModule + super().__init__(**kwargs) + self.name = name + + # Defining the RNN module + self.rnn = getattr(nn, name)( + self.input_size, + self.hidden_dim, + self.num_layers, + batch_first=True, + dropout=self.dropout, + ) + + # The RNN module needs a linear layer V that transforms hidden states into outputs, individually + self.V = nn.Linear(self.hidden_dim, self.target_size * self.nr_params) + + @io_processor + def forward( + self, x_in: Tuple, h: Optional[torch.Tensor] = None + ) -> Tuple[torch.Tensor, torch.Tensor]: + x, _ = x_in + # data is of size (batch_size, input_length, input_size) + batch_size = x.shape[0] + + # out is of size (batch_size, input_length, hidden_dim) + out, last_hidden_state = self.rnn(x) if h is None else self.rnn(x, h) + + # Here, we apply the V matrix to every hidden state to produce the outputs + predictions = self.V(out) + + # predictions is of size (batch_size, input_length, target_size) + predictions = predictions.view(batch_size, -1, self.target_size, self.nr_params) + + # returns outputs for all inputs, only the last one is needed for prediction time + return predictions, last_hidden_state
[docs]class RNNModel(DualCovariatesTorchModel): def __init__( self, input_chunk_length: int, - model: Union[str, nn.Module] = "RNN", + model: Union[str, Type[CustomRNNModule]] = "RNN", hidden_dim: int = 25, n_rnn_layers: int = 1, dropout: float = 0.0, @@ -413,9 +476,8 @@

Source code for darts.models.forecasting.rnn_model

input_chunk_length Number of past time steps that are fed to the forecasting module at prediction time. model - Either a string specifying the RNN module type ("RNN", "LSTM" or "GRU"), - or a PyTorch module with the same specifications as - `darts.models.rnn_model._RNNModule`. + Either a string specifying the RNN module type ("RNN", "LSTM" or "GRU"), or a subclass of + :class:`CustomRNNModule` (the class itself, not an object of the class) with a custom logic. hidden_dim Size for feature maps for each hidden RNN layer (:math:`h_n`). n_rnn_layers @@ -475,7 +537,7 @@

Source code for darts.models.forecasting.rnn_model

If set to ``True``, any previously-existing model with the same name will be reset (all checkpoints will be discarded). Default: ``False``. save_checkpoints - Whether or not to automatically save the untrained model and checkpoints from training. + Whether to automatically save the untrained model and checkpoints from training. To load the model from checkpoint, call :func:`MyModelClass.load_from_checkpoint()`, where :class:`MyModelClass` is the :class:`TorchForecastingModel` class that was used (such as :class:`TFTModel`, :class:`NBEATSModel`, etc.). If set to ``False``, the model can still be manually saved using @@ -520,7 +582,6 @@

Source code for darts.models.forecasting.rnn_model

"devices", and "auto_select_gpus"``. Some examples for setting the devices inside the ``pl_trainer_kwargs`` dict: - - ``{"accelerator": "cpu"}`` for CPU, - ``{"accelerator": "gpu", "devices": [i]}`` to use only GPU ``i`` (``i`` must be an integer), - ``{"accelerator": "gpu", "devices": -1, "auto_select_gpus": True}`` to use all available GPUS. @@ -609,14 +670,14 @@

Source code for darts.models.forecasting.rnn_model

# check we got right model type specified: if model not in ["RNN", "LSTM", "GRU"]: - raise_if_not( - isinstance(model, nn.Module), - '{} is not a valid RNN model.\n Please specify "RNN", "LSTM", ' - '"GRU", or give your own PyTorch nn.Module'.format( - model.__class__.__name__ - ), - logger, - ) + if not inspect.isclass(model) or not issubclass(model, CustomRNNModule): + raise_log( + ValueError( + "`model` is not a valid RNN model. Please specify 'RNN', 'LSTM', 'GRU', or give a subclass " + "(not an instance) of darts.models.forecasting.rnn_model.CustomRNNModule." + ), + logger=logger, + ) self.rnn_type_or_module = model self.dropout = dropout @@ -633,29 +694,22 @@

Source code for darts.models.forecasting.rnn_model

output_dim = train_sample[-1].shape[1] nr_params = 1 if self.likelihood is None else self.likelihood.num_parameters - if self.rnn_type_or_module in ["RNN", "LSTM", "GRU"]: - model = _RNNModule( - name=self.rnn_type_or_module, - input_size=input_dim, - target_size=output_dim, - nr_params=nr_params, - hidden_dim=self.hidden_dim, - dropout=self.dropout, - num_layers=self.n_rnn_layers, - **self.pl_module_params, - ) + kwargs = {} + if isinstance(self.rnn_type_or_module, str): + model_cls = _RNNModule + kwargs["name"] = self.rnn_type_or_module else: - model = self.rnn_type_or_module( - name="custom_module", - input_size=input_dim, - target_size=output_dim, - nr_params=nr_params, - hidden_dim=self.hidden_dim, - dropout=self.dropout, - num_layers=self.n_rnn_layers, - **self.pl_module_params, - ) - return model + model_cls = self.rnn_type_or_module + return model_cls( + input_size=input_dim, + target_size=output_dim, + nr_params=nr_params, + hidden_dim=self.hidden_dim, + dropout=self.dropout, + num_layers=self.n_rnn_layers, + **self.pl_module_params, + **kwargs, + ) def _build_train_dataset( self, diff --git a/_modules/darts/models/forecasting/sf_auto_ces.html b/_modules/darts/models/forecasting/sf_auto_ces.html index 04f9c8ff65..c0d016b0bc 100644 --- a/_modules/darts/models/forecasting/sf_auto_ces.html +++ b/_modules/darts/models/forecasting/sf_auto_ces.html @@ -229,6 +229,7 @@

Source code for darts.models.forecasting.sf_auto_ces

n: int, num_samples: int = 1, verbose: bool = False, + show_warnings: bool = True, ): super().predict(n, num_samples) forecast_dict = self.model.predict( diff --git a/_modules/darts/models/forecasting/sf_auto_theta.html b/_modules/darts/models/forecasting/sf_auto_theta.html index c6563496b9..a5828d2684 100644 --- a/_modules/darts/models/forecasting/sf_auto_theta.html +++ b/_modules/darts/models/forecasting/sf_auto_theta.html @@ -237,6 +237,7 @@

Source code for darts.models.forecasting.sf_auto_theta

n: int, num_samples: int = 1, verbose: bool = False, + show_warnings: bool = True, ): super().predict(n, num_samples) forecast_dict = self.model.predict( diff --git a/_modules/darts/models/forecasting/tbats_model.html b/_modules/darts/models/forecasting/tbats_model.html index 075ed79028..fce6868caf 100644 --- a/_modules/darts/models/forecasting/tbats_model.html +++ b/_modules/darts/models/forecasting/tbats_model.html @@ -397,7 +397,13 @@

Source code for darts.models.forecasting.tbats_model

return self - def predict(self, n, num_samples=1, verbose: bool = False): + def predict( + self, + n: int, + num_samples: int = 1, + verbose: bool = False, + show_warnings: bool = True, + ): super().predict(n, num_samples) yhat = self.model.forecast(steps=n) diff --git a/_modules/darts/models/forecasting/tcn_model.html b/_modules/darts/models/forecasting/tcn_model.html index ef48983596..2eb63f609a 100644 --- a/_modules/darts/models/forecasting/tcn_model.html +++ b/_modules/darts/models/forecasting/tcn_model.html @@ -521,7 +521,7 @@

Source code for darts.models.forecasting.tcn_model

If set to ``True``, any previously-existing model with the same name will be reset (all checkpoints will be discarded). Default: ``False``. save_checkpoints - Whether or not to automatically save the untrained model and checkpoints from training. + Whether to automatically save the untrained model and checkpoints from training. To load the model from checkpoint, call :func:`MyModelClass.load_from_checkpoint()`, where :class:`MyModelClass` is the :class:`TorchForecastingModel` class that was used (such as :class:`TFTModel`, :class:`NBEATSModel`, etc.). If set to ``False``, the model can still be manually saved using @@ -567,7 +567,6 @@

Source code for darts.models.forecasting.tcn_model

dict:rgs`` dict: - - ``{"accelerator": "cpu"}`` for CPU, - ``{"accelerator": "gpu", "devices": [i]}`` to use only GPU ``i`` (``i`` must be an integer), - ``{"accelerator": "gpu", "devices": -1, "auto_select_gpus": True}`` to use all available GPUS. diff --git a/_modules/darts/models/forecasting/tft_model.html b/_modules/darts/models/forecasting/tft_model.html index 3bd8684e6a..c271c9a467 100644 --- a/_modules/darts/models/forecasting/tft_model.html +++ b/_modules/darts/models/forecasting/tft_model.html @@ -971,7 +971,7 @@

Source code for darts.models.forecasting.tft_model

If set to ``True``, any previously-existing model with the same name will be reset (all checkpoints will be discarded). Default: ``False``. save_checkpoints - Whether or not to automatically save the untrained model and checkpoints from training. + Whether to automatically save the untrained model and checkpoints from training. To load the model from checkpoint, call :func:`MyModelClass.load_from_checkpoint()`, where :class:`MyModelClass` is the :class:`TorchForecastingModel` class that was used (such as :class:`TFTModel`, :class:`NBEATSModel`, etc.). If set to ``False``, the model can still be manually saved using @@ -1016,7 +1016,6 @@

Source code for darts.models.forecasting.tft_model

"devices", and "auto_select_gpus"``. Some examples for setting the devices inside the ``pl_trainer_kwargs`` dict: - - ``{"accelerator": "cpu"}`` for CPU, - ``{"accelerator": "gpu", "devices": [i]}`` to use only GPU ``i`` (``i`` must be an integer), - ``{"accelerator": "gpu", "devices": -1, "auto_select_gpus": True}`` to use all available GPUS. @@ -1357,17 +1356,7 @@

Source code for darts.models.forecasting.tft_model

@property def supports_static_covariates(self) -> bool: - return True - -
[docs] def predict(self, n, *args, **kwargs): - # since we have future covariates, the inference dataset for future input must be at least of length - # `output_chunk_length`. If not, we would have to step back which causes past input to be shorter than - # `input_chunk_length`. - - if n >= self.output_chunk_length: - return super().predict(n, *args, **kwargs) - else: - return super().predict(self.output_chunk_length, *args, **kwargs)[:n]
+ return True
diff --git a/_modules/darts/models/forecasting/theta.html b/_modules/darts/models/forecasting/theta.html index 00110ee9b9..8d07f8ce23 100644 --- a/_modules/darts/models/forecasting/theta.html +++ b/_modules/darts/models/forecasting/theta.html @@ -320,7 +320,11 @@

Source code for darts.models.forecasting.theta

return self

[docs] def predict( - self, n: int, num_samples: int = 1, verbose: bool = False + self, + n: int, + num_samples: int = 1, + verbose: bool = False, + show_warnings: bool = True, ) -> "TimeSeries": super().predict(n, num_samples) @@ -567,7 +571,11 @@

Source code for darts.models.forecasting.theta

return self

[docs] def predict( - self, n: int, num_samples: int = 1, verbose: bool = False + self, + n: int, + num_samples: int = 1, + verbose: bool = False, + show_warnings: bool = True, ) -> "TimeSeries": super().predict(n, num_samples) diff --git a/_modules/darts/models/forecasting/tide_model.html b/_modules/darts/models/forecasting/tide_model.html index e8535ff99a..ff0b713f96 100644 --- a/_modules/darts/models/forecasting/tide_model.html +++ b/_modules/darts/models/forecasting/tide_model.html @@ -645,7 +645,7 @@

Source code for darts.models.forecasting.tide_model

If set to ``True``, any previously-existing model with the same name will be reset (all checkpoints will be discarded). Default: ``False``. save_checkpoints - Whether or not to automatically save the untrained model and checkpoints from training. + Whether to automatically save the untrained model and checkpoints from training. To load the model from checkpoint, call :func:`MyModelClass.load_from_checkpoint()`, where :class:`MyModelClass` is the :class:`TorchForecastingModel` class that was used (such as :class:`TFTModel`, :class:`NBEATSModel`, etc.). If set to ``False``, the model can still be manually saved using @@ -690,7 +690,6 @@

Source code for darts.models.forecasting.tide_model

"devices", and "auto_select_gpus"``. Some examples for setting the devices inside the ``pl_trainer_kwargs`` dict: - - ``{"accelerator": "cpu"}`` for CPU, - ``{"accelerator": "gpu", "devices": [i]}`` to use only GPU ``i`` (``i`` must be an integer), - ``{"accelerator": "gpu", "devices": -1, "auto_select_gpus": True}`` to use all available GPUS. @@ -863,17 +862,7 @@

Source code for darts.models.forecasting.tide_model

@property def supports_multivariate(self) -> bool: - return True - -
[docs] def predict(self, n, *args, **kwargs): - # since we have future covariates, the inference dataset for future input must be at least of length - # `output_chunk_length`. If not, we would have to step back which causes past input to be shorter than - # `input_chunk_length`. - - if n >= self.output_chunk_length: - return super().predict(n, *args, **kwargs) - else: - return super().predict(self.output_chunk_length, *args, **kwargs)[:n]
+ return True
diff --git a/_modules/darts/models/forecasting/transformer_model.html b/_modules/darts/models/forecasting/transformer_model.html index 5a362907b5..541fe66a21 100644 --- a/_modules/darts/models/forecasting/transformer_model.html +++ b/_modules/darts/models/forecasting/transformer_model.html @@ -609,7 +609,7 @@

Source code for darts.models.forecasting.transformer_model

If set to ``True``, any previously-existing model with the same name will be reset (all checkpoints will be discarded). Default: ``False``. save_checkpoints - Whether or not to automatically save the untrained model and checkpoints from training. + Whether to automatically save the untrained model and checkpoints from training. To load the model from checkpoint, call :func:`MyModelClass.load_from_checkpoint()`, where :class:`MyModelClass` is the :class:`TorchForecastingModel` class that was used (such as :class:`TFTModel`, :class:`NBEATSModel`, etc.). If set to ``False``, the model can still be manually saved using @@ -654,7 +654,6 @@

Source code for darts.models.forecasting.transformer_model

"devices", and "auto_select_gpus"``. Some examples for setting the devices inside the ``pl_trainer_kwargs`` dict: - - ``{"accelerator": "cpu"}`` for CPU, - ``{"accelerator": "gpu", "devices": [i]}`` to use only GPU ``i`` (``i`` must be an integer), - ``{"accelerator": "gpu", "devices": -1, "auto_select_gpus": True}`` to use all available GPUS. diff --git a/_modules/darts/timeseries.html b/_modules/darts/timeseries.html index 63fd083a55..1f506c05f7 100644 --- a/_modules/darts/timeseries.html +++ b/_modules/darts/timeseries.html @@ -1639,10 +1639,16 @@

Source code for darts.timeseries

         self._assert_deterministic()
         if copy:
             return pd.Series(
-                self._xa[:, 0, 0].values.copy(), index=self._time_index.copy()
+                self._xa[:, 0, 0].values.copy(),
+                index=self._time_index.copy(),
+                name=self.components[0],
             )
         else:
-            return pd.Series(self._xa[:, 0, 0].values, index=self._time_index)
+ return pd.Series( + self._xa[:, 0, 0].values, + index=self._time_index, + name=self.components[0], + )
[docs] def pd_dataframe(self, copy=True, suppress_warnings=False) -> pd.DataFrame: """ diff --git a/_modules/darts/utils/data/shifted_dataset.html b/_modules/darts/utils/data/shifted_dataset.html index 25321be3cc..040d77f52b 100644 --- a/_modules/darts/utils/data/shifted_dataset.html +++ b/_modules/darts/utils/data/shifted_dataset.html @@ -688,7 +688,7 @@

Source code for darts.utils.data.shifted_dataset

shift The number of time steps by which to shift the output chunks relative to the input chunks. shift_covariates - Whether or not to shift the covariates forward the same way as the target. + Whether to shift the covariates forward the same way as the target. FutureCovariatesModel's require this set to True, while PastCovariatesModel's require this set to False. max_samples_per_ts This is an upper bound on the number of (input, output, input_covariates) tuples that can be produced diff --git a/_sources/README.rst.txt b/_sources/README.rst.txt index bb5876a2fc..e55638cbd6 100644 --- a/_sources/README.rst.txt +++ b/_sources/README.rst.txt @@ -30,7 +30,7 @@ Time Series Made Easy in Python .. image:: https://img.shields.io/docker/v/unit8/darts?label=docker&sort=date - :target: https://img.shields.io/docker/v/unit8/darts?label=docker&sort=date + :target: https://hub.docker.com/r/unit8/darts :alt: Docker Image Version (latest by date) @@ -326,25 +326,25 @@ on bringing more models and features. - * - `NaiveMean `_ - - - 🟩 🟥 + - 🟩 🟩 - 🟥 🟥 🟥 - 🟥 🟥 - 🟥 * - `NaiveSeasonal `_ - - - 🟩 🟥 + - 🟩 🟩 - 🟥 🟥 🟥 - 🟥 🟥 - 🟥 * - `NaiveDrift `_ - - - 🟩 🟥 + - 🟩 🟩 - 🟥 🟥 🟥 - 🟥 🟥 - 🟥 * - `NaiveMovingAverage `_ - - - 🟩 🟥 + - 🟩 🟩 - 🟥 🟥 🟥 - 🟥 🟥 - 🟥 @@ -364,7 +364,7 @@ on bringing more models and features. - - 🟥 🟩 - 🟥 🟩 🟥 - - 🟥 🟥 + - 🟩 🟥 - 🟥 * - `AutoARIMA `_ - @@ -414,7 +414,7 @@ on bringing more models and features. - 🟥 🟥 🟥 - 🟩 🟥 - 🟥 - * - `Prophet `_ (see `install notes `_\ ) + * - `Prophet `_ - `Prophet repo `_ - 🟩 🟥 - 🟥 🟩 🟥 @@ -462,7 +462,7 @@ on bringing more models and features. - 🟩 🟩 🟩 - 🟥 🟥 - 🟩 - * - `LightGBMModel `_\ , + * - `LightGBMModel `_ - - 🟩 🟩 - 🟩 🟩 🟩 diff --git a/_sources/examples/01-multi-time-series-and-covariates.ipynb.txt b/_sources/examples/01-multi-time-series-and-covariates.ipynb.txt index f3dea1d1bb..8744bb69a7 100644 --- a/_sources/examples/01-multi-time-series-and-covariates.ipynb.txt +++ b/_sources/examples/01-multi-time-series-and-covariates.ipynb.txt @@ -167,32 +167,31 @@ "metadata": {}, "source": [ "## Global Forecasting Models\n", - "Darts contains many forecasting models, but not all of them can be trained on several time series. The models that support training on multiple series are called *global* models. At the time of writing, there are 5 global models:\n", + "Darts contains many forecasting models, but not all of them can be trained on several time series. The models that support training on multiple series are called *global* models. An exhaustive list of the global models can be found [here](https://unit8co.github.io/darts/README.html#forecasting-models) (bottom of the table) with for example:\n", "\n", + "* LinearRegressionModel\n", "* BlockRNNModel\n", - "* RNNModel\n", - "* Temporal Convolutional Networks (TCNs)\n", - "* N-Beats\n", - "* Transformer model\n", + "* Temporal Convolutional Networks (TCNModel)\n", + "* N-Beats (NBEATSModel)\n", + "* TiDEModel\n", "\n", "In the following, we will distinguish two sorts of time series:\n", "\n", "* The **target time series** is the time series we are interested to forecast (given its history)\n", "* A **covariate time series** is a time series which may help in the forecasting of the target series, but that we are not interested in forecasting. It's sometimes also called *external data*.\n", "\n", + "**Note**: Static covariates are invariant in time and correspond to additional information associated with the components of the **target time series**. Detailed information about this kind of covariate can be found in the [static covariates notebook](https://unit8co.github.io/darts/examples/15-static-covariates.html).\n", + "\n", "We further differentiate covariates series, depending on whether they can be known in advance or not:\n", "\n", "* **Past Covariates** denote time series whose past values are known at prediction time. These are usually things that have to be measured or observed.\n", "* **Future Covariates** denote time series whose future values are already known at prediction time for the span of the forecast horizon. These can for instance represent known future holidays, or weather forecasts. \n", "\n", - "Some models use only past covariates, others use only future covariates, and some models might use both. We will dive deeper in this topic in some other notebook, but for now it is enough to know this:\n", - "\n", - "* `BlockRNNModel`, `TCNModel`, `NBEATSModel` and `TransformerModel` all use `past_covariates`.\n", - "* `RNNModel` uses `future_covariates`.\n", + "Some models use only past covariates, others use only future covariates, and some models might use both. We will dive deeper in this topic in some other notebook, but this [table](https://unit8co.github.io/darts/README.html#forecasting-models) details the covariates supported by each model.\n", "\n", - "All of the global models listed above support training on multiple series. In addition, they also all support *multivariate series*. This means that they can seamlessly be used with time series of more than one dimension; the target series can contain one (as is often the case) or several dimensions. A time series with several dimensions is really just a regular time series where the values at each time stamps are vectors instead of scalars.\n", + "All of the global models listed above support training on multiple series. In addition, they also all support *multivariate series*. This means that they can seamlessly be used with time series of more than one dimension; the target series can contain one (as is often the case) or several dimensions. A time series with several dimensions is really just a regular time series where the values at each time stamps are vectors instead of scalars.\n", "\n", - "As an example, the 4 models supporting `past_covariates` follow a \"block\" architecture. They contain a neural network that takes chunks of time series in input, and outputs chunks of (predicted) future time series values. The input dimensionality is the number of dimensions (components) of the target series, plus the number of components of all the covariates - stacked together. The output dimensionality is simply the number of dimensions of the target series:\n", + "As an example, the BlockRNNModel, N-Beats, TCN and Transformer models follow a \"block\" architecture. They contain a neural network that takes chunks of time series in input, and outputs chunks of (predicted) future time series values. The input dimensionality is the number of dimensions (components) of the target series, plus the number of components of all the covariates - stacked together. The output dimensionality is simply the number of dimensions of the target series:\n", "![](static/images/global_io_covs.png)\n", "\n", "The `RNNModel` works differently, in a recurrent fashion (which is also why they support future covariates).\n", diff --git a/_sources/examples/20-RegressionModel-examples.ipynb.txt b/_sources/examples/20-RegressionModel-examples.ipynb.txt index a63b2514de..30a84de818 100644 --- a/_sources/examples/20-RegressionModel-examples.ipynb.txt +++ b/_sources/examples/20-RegressionModel-examples.ipynb.txt @@ -502,7 +502,7 @@ "This key parameter sets the *number of time steps that can be predicted at once by the internal regression model*.\n", "\n", "It is not the same as forecast horizon `n` from `predict()` which is the **desired** the number of generated prediction points, that is achieved either with:\n", - "- a single shot forecast (if `output_chunk_length <= n`), or\n", + "- a single shot forecast (if `n <= output_chunk_length`), or\n", "- an auto-regressive forecast, consuming its own forecast (and future values of covariates) as input for additional predictions (otherwise)\n", "\n", "For example, if we want our model to forecast the next 24 hours of electricity consumption based on the last day of consumption, setting `output_chunk_length=24` ensures that the model will not consume its forecasts or future values of our covariates to predict the entire day." diff --git a/_sources/generated_api/darts.ad.aggregators.aggregators.rst.txt b/_sources/generated_api/darts.ad.aggregators.aggregators.rst.txt index 96c1d96410..864d4ae2aa 100644 --- a/_sources/generated_api/darts.ad.aggregators.aggregators.rst.txt +++ b/_sources/generated_api/darts.ad.aggregators.aggregators.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.ad.aggregators.aggregators :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.ad.aggregators.and_aggregator.rst.txt b/_sources/generated_api/darts.ad.aggregators.and_aggregator.rst.txt index bb161f0ce8..b2a45d4a50 100644 --- a/_sources/generated_api/darts.ad.aggregators.and_aggregator.rst.txt +++ b/_sources/generated_api/darts.ad.aggregators.and_aggregator.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.ad.aggregators.and_aggregator :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.ad.aggregators.ensemble_sklearn_aggregator.rst.txt b/_sources/generated_api/darts.ad.aggregators.ensemble_sklearn_aggregator.rst.txt index dd95b17b96..ad69483bdb 100644 --- a/_sources/generated_api/darts.ad.aggregators.ensemble_sklearn_aggregator.rst.txt +++ b/_sources/generated_api/darts.ad.aggregators.ensemble_sklearn_aggregator.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.ad.aggregators.ensemble_sklearn_aggregator :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.ad.aggregators.or_aggregator.rst.txt b/_sources/generated_api/darts.ad.aggregators.or_aggregator.rst.txt index 261df99928..ebdc784138 100644 --- a/_sources/generated_api/darts.ad.aggregators.or_aggregator.rst.txt +++ b/_sources/generated_api/darts.ad.aggregators.or_aggregator.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.ad.aggregators.or_aggregator :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.ad.anomaly_model.anomaly_model.rst.txt b/_sources/generated_api/darts.ad.anomaly_model.anomaly_model.rst.txt index 5fd4e54b7a..7c3e739cab 100644 --- a/_sources/generated_api/darts.ad.anomaly_model.anomaly_model.rst.txt +++ b/_sources/generated_api/darts.ad.anomaly_model.anomaly_model.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.ad.anomaly_model.anomaly_model :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.ad.anomaly_model.filtering_am.rst.txt b/_sources/generated_api/darts.ad.anomaly_model.filtering_am.rst.txt index 3bdffe9fe4..a37fa89c67 100644 --- a/_sources/generated_api/darts.ad.anomaly_model.filtering_am.rst.txt +++ b/_sources/generated_api/darts.ad.anomaly_model.filtering_am.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.ad.anomaly_model.filtering_am :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.ad.anomaly_model.forecasting_am.rst.txt b/_sources/generated_api/darts.ad.anomaly_model.forecasting_am.rst.txt index be7d5dce02..7a0f44e83e 100644 --- a/_sources/generated_api/darts.ad.anomaly_model.forecasting_am.rst.txt +++ b/_sources/generated_api/darts.ad.anomaly_model.forecasting_am.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.ad.anomaly_model.forecasting_am :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.ad.detectors.detectors.rst.txt b/_sources/generated_api/darts.ad.detectors.detectors.rst.txt index b0fa330d00..9895c1d298 100644 --- a/_sources/generated_api/darts.ad.detectors.detectors.rst.txt +++ b/_sources/generated_api/darts.ad.detectors.detectors.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.ad.detectors.detectors :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.ad.detectors.quantile_detector.rst.txt b/_sources/generated_api/darts.ad.detectors.quantile_detector.rst.txt index 6c1eac1493..914b931f46 100644 --- a/_sources/generated_api/darts.ad.detectors.quantile_detector.rst.txt +++ b/_sources/generated_api/darts.ad.detectors.quantile_detector.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.ad.detectors.quantile_detector :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.ad.detectors.threshold_detector.rst.txt b/_sources/generated_api/darts.ad.detectors.threshold_detector.rst.txt index 1797d76870..0e5e18b94e 100644 --- a/_sources/generated_api/darts.ad.detectors.threshold_detector.rst.txt +++ b/_sources/generated_api/darts.ad.detectors.threshold_detector.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.ad.detectors.threshold_detector :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.ad.scorers.difference_scorer.rst.txt b/_sources/generated_api/darts.ad.scorers.difference_scorer.rst.txt index 4047248c1d..a4303a7956 100644 --- a/_sources/generated_api/darts.ad.scorers.difference_scorer.rst.txt +++ b/_sources/generated_api/darts.ad.scorers.difference_scorer.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.ad.scorers.difference_scorer :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.ad.scorers.kmeans_scorer.rst.txt b/_sources/generated_api/darts.ad.scorers.kmeans_scorer.rst.txt index 883e81b471..cdb9645817 100644 --- a/_sources/generated_api/darts.ad.scorers.kmeans_scorer.rst.txt +++ b/_sources/generated_api/darts.ad.scorers.kmeans_scorer.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.ad.scorers.kmeans_scorer :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.ad.scorers.nll_cauchy_scorer.rst.txt b/_sources/generated_api/darts.ad.scorers.nll_cauchy_scorer.rst.txt index 917a37a44a..b05d5fb15d 100644 --- a/_sources/generated_api/darts.ad.scorers.nll_cauchy_scorer.rst.txt +++ b/_sources/generated_api/darts.ad.scorers.nll_cauchy_scorer.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.ad.scorers.nll_cauchy_scorer :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.ad.scorers.nll_exponential_scorer.rst.txt b/_sources/generated_api/darts.ad.scorers.nll_exponential_scorer.rst.txt index da0b1ae74a..cb2e15d3f3 100644 --- a/_sources/generated_api/darts.ad.scorers.nll_exponential_scorer.rst.txt +++ b/_sources/generated_api/darts.ad.scorers.nll_exponential_scorer.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.ad.scorers.nll_exponential_scorer :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.ad.scorers.nll_gamma_scorer.rst.txt b/_sources/generated_api/darts.ad.scorers.nll_gamma_scorer.rst.txt index ed86017478..8b6370edc0 100644 --- a/_sources/generated_api/darts.ad.scorers.nll_gamma_scorer.rst.txt +++ b/_sources/generated_api/darts.ad.scorers.nll_gamma_scorer.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.ad.scorers.nll_gamma_scorer :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.ad.scorers.nll_gaussian_scorer.rst.txt b/_sources/generated_api/darts.ad.scorers.nll_gaussian_scorer.rst.txt index 08d076a0c9..8b190386a0 100644 --- a/_sources/generated_api/darts.ad.scorers.nll_gaussian_scorer.rst.txt +++ b/_sources/generated_api/darts.ad.scorers.nll_gaussian_scorer.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.ad.scorers.nll_gaussian_scorer :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.ad.scorers.nll_laplace_scorer.rst.txt b/_sources/generated_api/darts.ad.scorers.nll_laplace_scorer.rst.txt index 8694c1ac6f..b143b5f57e 100644 --- a/_sources/generated_api/darts.ad.scorers.nll_laplace_scorer.rst.txt +++ b/_sources/generated_api/darts.ad.scorers.nll_laplace_scorer.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.ad.scorers.nll_laplace_scorer :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.ad.scorers.nll_poisson_scorer.rst.txt b/_sources/generated_api/darts.ad.scorers.nll_poisson_scorer.rst.txt index 070fa465e7..7a37a4a415 100644 --- a/_sources/generated_api/darts.ad.scorers.nll_poisson_scorer.rst.txt +++ b/_sources/generated_api/darts.ad.scorers.nll_poisson_scorer.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.ad.scorers.nll_poisson_scorer :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.ad.scorers.norm_scorer.rst.txt b/_sources/generated_api/darts.ad.scorers.norm_scorer.rst.txt index 5535c52dc6..ecd438208f 100644 --- a/_sources/generated_api/darts.ad.scorers.norm_scorer.rst.txt +++ b/_sources/generated_api/darts.ad.scorers.norm_scorer.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.ad.scorers.norm_scorer :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.ad.scorers.pyod_scorer.rst.txt b/_sources/generated_api/darts.ad.scorers.pyod_scorer.rst.txt index 4ba5fd4cd9..06cf2ea9c8 100644 --- a/_sources/generated_api/darts.ad.scorers.pyod_scorer.rst.txt +++ b/_sources/generated_api/darts.ad.scorers.pyod_scorer.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.ad.scorers.pyod_scorer :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.ad.scorers.scorers.rst.txt b/_sources/generated_api/darts.ad.scorers.scorers.rst.txt index 7f2ba5852f..61eed91745 100644 --- a/_sources/generated_api/darts.ad.scorers.scorers.rst.txt +++ b/_sources/generated_api/darts.ad.scorers.scorers.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.ad.scorers.scorers :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.ad.scorers.wasserstein_scorer.rst.txt b/_sources/generated_api/darts.ad.scorers.wasserstein_scorer.rst.txt index d8ce8be436..7bfdfde63c 100644 --- a/_sources/generated_api/darts.ad.scorers.wasserstein_scorer.rst.txt +++ b/_sources/generated_api/darts.ad.scorers.wasserstein_scorer.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.ad.scorers.wasserstein_scorer :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.ad.utils.rst.txt b/_sources/generated_api/darts.ad.utils.rst.txt index c89dcd593b..350988ccf2 100644 --- a/_sources/generated_api/darts.ad.utils.rst.txt +++ b/_sources/generated_api/darts.ad.utils.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.ad.utils :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.dataprocessing.dtw.cost_matrix.rst.txt b/_sources/generated_api/darts.dataprocessing.dtw.cost_matrix.rst.txt index 5add4afe18..4eb42b4d02 100644 --- a/_sources/generated_api/darts.dataprocessing.dtw.cost_matrix.rst.txt +++ b/_sources/generated_api/darts.dataprocessing.dtw.cost_matrix.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.dataprocessing.dtw.cost_matrix :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.dataprocessing.dtw.dtw.rst.txt b/_sources/generated_api/darts.dataprocessing.dtw.dtw.rst.txt index aef4df5fe3..242e418a1f 100644 --- a/_sources/generated_api/darts.dataprocessing.dtw.dtw.rst.txt +++ b/_sources/generated_api/darts.dataprocessing.dtw.dtw.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.dataprocessing.dtw.dtw :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.dataprocessing.dtw.window.rst.txt b/_sources/generated_api/darts.dataprocessing.dtw.window.rst.txt index 382e61cffc..1b4f71ac9a 100644 --- a/_sources/generated_api/darts.dataprocessing.dtw.window.rst.txt +++ b/_sources/generated_api/darts.dataprocessing.dtw.window.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.dataprocessing.dtw.window :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.dataprocessing.encoders.encoder_base.rst.txt b/_sources/generated_api/darts.dataprocessing.encoders.encoder_base.rst.txt index dadc0d52b5..2cb8c21894 100644 --- a/_sources/generated_api/darts.dataprocessing.encoders.encoder_base.rst.txt +++ b/_sources/generated_api/darts.dataprocessing.encoders.encoder_base.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.dataprocessing.encoders.encoder_base :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.dataprocessing.encoders.encoders.rst.txt b/_sources/generated_api/darts.dataprocessing.encoders.encoders.rst.txt index 4d520abb32..46d5168e9c 100644 --- a/_sources/generated_api/darts.dataprocessing.encoders.encoders.rst.txt +++ b/_sources/generated_api/darts.dataprocessing.encoders.encoders.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.dataprocessing.encoders.encoders :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.dataprocessing.pipeline.rst.txt b/_sources/generated_api/darts.dataprocessing.pipeline.rst.txt index 43c3c607aa..2c269b8808 100644 --- a/_sources/generated_api/darts.dataprocessing.pipeline.rst.txt +++ b/_sources/generated_api/darts.dataprocessing.pipeline.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.dataprocessing.pipeline :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.dataprocessing.transformers.base_data_transformer.rst.txt b/_sources/generated_api/darts.dataprocessing.transformers.base_data_transformer.rst.txt index 3db3758a30..80f619d599 100644 --- a/_sources/generated_api/darts.dataprocessing.transformers.base_data_transformer.rst.txt +++ b/_sources/generated_api/darts.dataprocessing.transformers.base_data_transformer.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.dataprocessing.transformers.base_data_transformer :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.dataprocessing.transformers.boxcox.rst.txt b/_sources/generated_api/darts.dataprocessing.transformers.boxcox.rst.txt index 982c2d4cf4..87a18f33bd 100644 --- a/_sources/generated_api/darts.dataprocessing.transformers.boxcox.rst.txt +++ b/_sources/generated_api/darts.dataprocessing.transformers.boxcox.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.dataprocessing.transformers.boxcox :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.dataprocessing.transformers.diff.rst.txt b/_sources/generated_api/darts.dataprocessing.transformers.diff.rst.txt index 41c1a5f4b1..635cdfa12d 100644 --- a/_sources/generated_api/darts.dataprocessing.transformers.diff.rst.txt +++ b/_sources/generated_api/darts.dataprocessing.transformers.diff.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.dataprocessing.transformers.diff :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.dataprocessing.transformers.fittable_data_transformer.rst.txt b/_sources/generated_api/darts.dataprocessing.transformers.fittable_data_transformer.rst.txt index 29d578f412..fb94d084f5 100644 --- a/_sources/generated_api/darts.dataprocessing.transformers.fittable_data_transformer.rst.txt +++ b/_sources/generated_api/darts.dataprocessing.transformers.fittable_data_transformer.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.dataprocessing.transformers.fittable_data_transformer :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.dataprocessing.transformers.invertible_data_transformer.rst.txt b/_sources/generated_api/darts.dataprocessing.transformers.invertible_data_transformer.rst.txt index 689319d4c0..f233e0dc73 100644 --- a/_sources/generated_api/darts.dataprocessing.transformers.invertible_data_transformer.rst.txt +++ b/_sources/generated_api/darts.dataprocessing.transformers.invertible_data_transformer.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.dataprocessing.transformers.invertible_data_transformer :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.dataprocessing.transformers.mappers.rst.txt b/_sources/generated_api/darts.dataprocessing.transformers.mappers.rst.txt index 382b40f7bd..74f53b3055 100644 --- a/_sources/generated_api/darts.dataprocessing.transformers.mappers.rst.txt +++ b/_sources/generated_api/darts.dataprocessing.transformers.mappers.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.dataprocessing.transformers.mappers :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.dataprocessing.transformers.midas.rst.txt b/_sources/generated_api/darts.dataprocessing.transformers.midas.rst.txt index f44f8cd05f..810ab9c089 100644 --- a/_sources/generated_api/darts.dataprocessing.transformers.midas.rst.txt +++ b/_sources/generated_api/darts.dataprocessing.transformers.midas.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.dataprocessing.transformers.midas :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.dataprocessing.transformers.missing_values_filler.rst.txt b/_sources/generated_api/darts.dataprocessing.transformers.missing_values_filler.rst.txt index ddd534d307..d34e8e7b19 100644 --- a/_sources/generated_api/darts.dataprocessing.transformers.missing_values_filler.rst.txt +++ b/_sources/generated_api/darts.dataprocessing.transformers.missing_values_filler.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.dataprocessing.transformers.missing_values_filler :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.dataprocessing.transformers.reconciliation.rst.txt b/_sources/generated_api/darts.dataprocessing.transformers.reconciliation.rst.txt index 109b2f68d9..9f5d584e56 100644 --- a/_sources/generated_api/darts.dataprocessing.transformers.reconciliation.rst.txt +++ b/_sources/generated_api/darts.dataprocessing.transformers.reconciliation.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.dataprocessing.transformers.reconciliation :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.dataprocessing.transformers.scaler.rst.txt b/_sources/generated_api/darts.dataprocessing.transformers.scaler.rst.txt index 53d53aede4..faca7cacf5 100644 --- a/_sources/generated_api/darts.dataprocessing.transformers.scaler.rst.txt +++ b/_sources/generated_api/darts.dataprocessing.transformers.scaler.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.dataprocessing.transformers.scaler :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.dataprocessing.transformers.static_covariates_transformer.rst.txt b/_sources/generated_api/darts.dataprocessing.transformers.static_covariates_transformer.rst.txt index 3adab261f3..36521c354c 100644 --- a/_sources/generated_api/darts.dataprocessing.transformers.static_covariates_transformer.rst.txt +++ b/_sources/generated_api/darts.dataprocessing.transformers.static_covariates_transformer.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.dataprocessing.transformers.static_covariates_transformer :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.dataprocessing.transformers.window_transformer.rst.txt b/_sources/generated_api/darts.dataprocessing.transformers.window_transformer.rst.txt index 4ff316e87f..202c456c0e 100644 --- a/_sources/generated_api/darts.dataprocessing.transformers.window_transformer.rst.txt +++ b/_sources/generated_api/darts.dataprocessing.transformers.window_transformer.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.dataprocessing.transformers.window_transformer :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.datasets.dataset_loaders.rst.txt b/_sources/generated_api/darts.datasets.dataset_loaders.rst.txt index ffb9e72526..17d9225f46 100644 --- a/_sources/generated_api/darts.datasets.dataset_loaders.rst.txt +++ b/_sources/generated_api/darts.datasets.dataset_loaders.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.datasets.dataset_loaders :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.explainability.explainability.rst.txt b/_sources/generated_api/darts.explainability.explainability.rst.txt index fccc9f4c77..5f0747864a 100644 --- a/_sources/generated_api/darts.explainability.explainability.rst.txt +++ b/_sources/generated_api/darts.explainability.explainability.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.explainability.explainability :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.explainability.explainability_result.rst.txt b/_sources/generated_api/darts.explainability.explainability_result.rst.txt index d87f374c42..d2791b7a71 100644 --- a/_sources/generated_api/darts.explainability.explainability_result.rst.txt +++ b/_sources/generated_api/darts.explainability.explainability_result.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.explainability.explainability_result :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.explainability.shap_explainer.rst.txt b/_sources/generated_api/darts.explainability.shap_explainer.rst.txt index 7abca313b4..9f59ad7d2e 100644 --- a/_sources/generated_api/darts.explainability.shap_explainer.rst.txt +++ b/_sources/generated_api/darts.explainability.shap_explainer.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.explainability.shap_explainer :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.explainability.tft_explainer.rst.txt b/_sources/generated_api/darts.explainability.tft_explainer.rst.txt index 1ca95ef09a..6e1afeac3a 100644 --- a/_sources/generated_api/darts.explainability.tft_explainer.rst.txt +++ b/_sources/generated_api/darts.explainability.tft_explainer.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.explainability.tft_explainer :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.explainability.utils.rst.txt b/_sources/generated_api/darts.explainability.utils.rst.txt index c468aac381..6cf9ae72be 100644 --- a/_sources/generated_api/darts.explainability.utils.rst.txt +++ b/_sources/generated_api/darts.explainability.utils.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.explainability.utils :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.metrics.metrics.rst.txt b/_sources/generated_api/darts.metrics.metrics.rst.txt index 559e44894a..c097d0dd97 100644 --- a/_sources/generated_api/darts.metrics.metrics.rst.txt +++ b/_sources/generated_api/darts.metrics.metrics.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.metrics.metrics :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.components.feed_forward.rst.txt b/_sources/generated_api/darts.models.components.feed_forward.rst.txt index 9a1c272341..06a330efd7 100644 --- a/_sources/generated_api/darts.models.components.feed_forward.rst.txt +++ b/_sources/generated_api/darts.models.components.feed_forward.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.components.feed_forward :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.components.glu_variants.rst.txt b/_sources/generated_api/darts.models.components.glu_variants.rst.txt index 34fe8e99ec..c01c772d5e 100644 --- a/_sources/generated_api/darts.models.components.glu_variants.rst.txt +++ b/_sources/generated_api/darts.models.components.glu_variants.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.components.glu_variants :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.components.layer_norm_variants.rst.txt b/_sources/generated_api/darts.models.components.layer_norm_variants.rst.txt index a8af8dcb2b..0c8b83e9d9 100644 --- a/_sources/generated_api/darts.models.components.layer_norm_variants.rst.txt +++ b/_sources/generated_api/darts.models.components.layer_norm_variants.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.components.layer_norm_variants :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.components.statsforecast_utils.rst.txt b/_sources/generated_api/darts.models.components.statsforecast_utils.rst.txt index b7fc4b0b43..6a5526bab7 100644 --- a/_sources/generated_api/darts.models.components.statsforecast_utils.rst.txt +++ b/_sources/generated_api/darts.models.components.statsforecast_utils.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.components.statsforecast_utils :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.components.transformer.rst.txt b/_sources/generated_api/darts.models.components.transformer.rst.txt index 45d0531d67..075cccf9c8 100644 --- a/_sources/generated_api/darts.models.components.transformer.rst.txt +++ b/_sources/generated_api/darts.models.components.transformer.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.components.transformer :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.filtering.filtering_model.rst.txt b/_sources/generated_api/darts.models.filtering.filtering_model.rst.txt index 2dca0c83e4..450545a5df 100644 --- a/_sources/generated_api/darts.models.filtering.filtering_model.rst.txt +++ b/_sources/generated_api/darts.models.filtering.filtering_model.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.filtering.filtering_model :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.filtering.gaussian_process_filter.rst.txt b/_sources/generated_api/darts.models.filtering.gaussian_process_filter.rst.txt index ec2754f886..51f89eac02 100644 --- a/_sources/generated_api/darts.models.filtering.gaussian_process_filter.rst.txt +++ b/_sources/generated_api/darts.models.filtering.gaussian_process_filter.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.filtering.gaussian_process_filter :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.filtering.kalman_filter.rst.txt b/_sources/generated_api/darts.models.filtering.kalman_filter.rst.txt index 78e009b38a..a1428721d5 100644 --- a/_sources/generated_api/darts.models.filtering.kalman_filter.rst.txt +++ b/_sources/generated_api/darts.models.filtering.kalman_filter.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.filtering.kalman_filter :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.filtering.moving_average_filter.rst.txt b/_sources/generated_api/darts.models.filtering.moving_average_filter.rst.txt index 8557c6d6a3..9b4670ece1 100644 --- a/_sources/generated_api/darts.models.filtering.moving_average_filter.rst.txt +++ b/_sources/generated_api/darts.models.filtering.moving_average_filter.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.filtering.moving_average_filter :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.arima.rst.txt b/_sources/generated_api/darts.models.forecasting.arima.rst.txt index f5f3ba19db..559c2de2bd 100644 --- a/_sources/generated_api/darts.models.forecasting.arima.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.arima.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.arima :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.auto_arima.rst.txt b/_sources/generated_api/darts.models.forecasting.auto_arima.rst.txt index f221cc8333..182332fbd7 100644 --- a/_sources/generated_api/darts.models.forecasting.auto_arima.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.auto_arima.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.auto_arima :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.baselines.rst.txt b/_sources/generated_api/darts.models.forecasting.baselines.rst.txt index a5606cd207..5091d44b85 100644 --- a/_sources/generated_api/darts.models.forecasting.baselines.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.baselines.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.baselines :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.block_rnn_model.rst.txt b/_sources/generated_api/darts.models.forecasting.block_rnn_model.rst.txt index 508509c2b6..149cc6f3ae 100644 --- a/_sources/generated_api/darts.models.forecasting.block_rnn_model.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.block_rnn_model.rst.txt @@ -1,4 +1,10 @@ +Block Recurrent Neural Networks +------------------------------- -.. automodule:: darts.models.forecasting.block_rnn_model +.. autoclass:: darts.models.forecasting.block_rnn_model.BlockRNNModel :members: - :undoc-members: \ No newline at end of file + :exclude-members: + +.. autoclass:: darts.models.forecasting.block_rnn_model.CustomBlockRNNModule + :members: + :no-inherited-members: diff --git a/_sources/generated_api/darts.models.forecasting.catboost_model.rst.txt b/_sources/generated_api/darts.models.forecasting.catboost_model.rst.txt index 4d5433ba1b..1b77e0178c 100644 --- a/_sources/generated_api/darts.models.forecasting.catboost_model.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.catboost_model.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.catboost_model :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.croston.rst.txt b/_sources/generated_api/darts.models.forecasting.croston.rst.txt index 111730ffc8..989be8c208 100644 --- a/_sources/generated_api/darts.models.forecasting.croston.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.croston.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.croston :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.dlinear.rst.txt b/_sources/generated_api/darts.models.forecasting.dlinear.rst.txt index d49cf3ee2a..50edffdd72 100644 --- a/_sources/generated_api/darts.models.forecasting.dlinear.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.dlinear.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.dlinear :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.ensemble_model.rst.txt b/_sources/generated_api/darts.models.forecasting.ensemble_model.rst.txt index 344a91bc57..7a5acf9bb3 100644 --- a/_sources/generated_api/darts.models.forecasting.ensemble_model.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.ensemble_model.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.ensemble_model :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.exponential_smoothing.rst.txt b/_sources/generated_api/darts.models.forecasting.exponential_smoothing.rst.txt index 14a251ca66..6394175456 100644 --- a/_sources/generated_api/darts.models.forecasting.exponential_smoothing.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.exponential_smoothing.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.exponential_smoothing :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.fft.rst.txt b/_sources/generated_api/darts.models.forecasting.fft.rst.txt index a0e497fd08..b597f74697 100644 --- a/_sources/generated_api/darts.models.forecasting.fft.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.fft.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.fft :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.forecasting_model.rst.txt b/_sources/generated_api/darts.models.forecasting.forecasting_model.rst.txt index 87fa515b55..0d1ca08145 100644 --- a/_sources/generated_api/darts.models.forecasting.forecasting_model.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.forecasting_model.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.forecasting_model :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.kalman_forecaster.rst.txt b/_sources/generated_api/darts.models.forecasting.kalman_forecaster.rst.txt index ebdf697982..1d0c10c497 100644 --- a/_sources/generated_api/darts.models.forecasting.kalman_forecaster.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.kalman_forecaster.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.kalman_forecaster :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.lgbm.rst.txt b/_sources/generated_api/darts.models.forecasting.lgbm.rst.txt index d82ff3c39e..c6b039e6d5 100644 --- a/_sources/generated_api/darts.models.forecasting.lgbm.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.lgbm.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.lgbm :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.linear_regression_model.rst.txt b/_sources/generated_api/darts.models.forecasting.linear_regression_model.rst.txt index 6a706f7789..90a2893437 100644 --- a/_sources/generated_api/darts.models.forecasting.linear_regression_model.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.linear_regression_model.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.linear_regression_model :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.nbeats.rst.txt b/_sources/generated_api/darts.models.forecasting.nbeats.rst.txt index 35d426552b..9226d32a17 100644 --- a/_sources/generated_api/darts.models.forecasting.nbeats.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.nbeats.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.nbeats :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.nhits.rst.txt b/_sources/generated_api/darts.models.forecasting.nhits.rst.txt index 589d5fbb59..7fdd3a3b11 100644 --- a/_sources/generated_api/darts.models.forecasting.nhits.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.nhits.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.nhits :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.nlinear.rst.txt b/_sources/generated_api/darts.models.forecasting.nlinear.rst.txt index 90e70fdb1d..6e0e29d010 100644 --- a/_sources/generated_api/darts.models.forecasting.nlinear.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.nlinear.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.nlinear :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.pl_forecasting_module.rst.txt b/_sources/generated_api/darts.models.forecasting.pl_forecasting_module.rst.txt index 516742c993..0c0a2b877d 100644 --- a/_sources/generated_api/darts.models.forecasting.pl_forecasting_module.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.pl_forecasting_module.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.pl_forecasting_module :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.prophet_model.rst.txt b/_sources/generated_api/darts.models.forecasting.prophet_model.rst.txt index 0f8cadb234..d4540abf43 100644 --- a/_sources/generated_api/darts.models.forecasting.prophet_model.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.prophet_model.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.prophet_model :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.random_forest.rst.txt b/_sources/generated_api/darts.models.forecasting.random_forest.rst.txt index 139d5aa9c0..6e5c18bedf 100644 --- a/_sources/generated_api/darts.models.forecasting.random_forest.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.random_forest.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.random_forest :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.regression_ensemble_model.rst.txt b/_sources/generated_api/darts.models.forecasting.regression_ensemble_model.rst.txt index 0590a53de1..2e2838b486 100644 --- a/_sources/generated_api/darts.models.forecasting.regression_ensemble_model.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.regression_ensemble_model.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.regression_ensemble_model :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.regression_model.rst.txt b/_sources/generated_api/darts.models.forecasting.regression_model.rst.txt index 10b8e4ef69..56ed09b5a5 100644 --- a/_sources/generated_api/darts.models.forecasting.regression_model.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.regression_model.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.regression_model :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.rnn_model.rst.txt b/_sources/generated_api/darts.models.forecasting.rnn_model.rst.txt index 11c903bccc..31ecf93cbd 100644 --- a/_sources/generated_api/darts.models.forecasting.rnn_model.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.rnn_model.rst.txt @@ -1,4 +1,10 @@ +Recurrent Neural Networks +------------------------- -.. automodule:: darts.models.forecasting.rnn_model +.. autoclass:: darts.models.forecasting.rnn_model.RNNModel :members: - :undoc-members: \ No newline at end of file + :exclude-members: + +.. autoclass:: darts.models.forecasting.rnn_model.CustomRNNModule + :members: + :no-inherited-members: diff --git a/_sources/generated_api/darts.models.forecasting.sf_auto_arima.rst.txt b/_sources/generated_api/darts.models.forecasting.sf_auto_arima.rst.txt index e50a33b2c1..76418c50e4 100644 --- a/_sources/generated_api/darts.models.forecasting.sf_auto_arima.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.sf_auto_arima.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.sf_auto_arima :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.sf_auto_ces.rst.txt b/_sources/generated_api/darts.models.forecasting.sf_auto_ces.rst.txt index 97ec5623fd..7091d50b74 100644 --- a/_sources/generated_api/darts.models.forecasting.sf_auto_ces.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.sf_auto_ces.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.sf_auto_ces :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.sf_auto_ets.rst.txt b/_sources/generated_api/darts.models.forecasting.sf_auto_ets.rst.txt index a789d8edfd..2eb3546348 100644 --- a/_sources/generated_api/darts.models.forecasting.sf_auto_ets.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.sf_auto_ets.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.sf_auto_ets :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.sf_auto_theta.rst.txt b/_sources/generated_api/darts.models.forecasting.sf_auto_theta.rst.txt index 33bff03eec..8eebde970c 100644 --- a/_sources/generated_api/darts.models.forecasting.sf_auto_theta.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.sf_auto_theta.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.sf_auto_theta :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.tbats_model.rst.txt b/_sources/generated_api/darts.models.forecasting.tbats_model.rst.txt index d8dc517ffd..e6d1932a0e 100644 --- a/_sources/generated_api/darts.models.forecasting.tbats_model.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.tbats_model.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.tbats_model :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.tcn_model.rst.txt b/_sources/generated_api/darts.models.forecasting.tcn_model.rst.txt index 6306157ced..a85fcc7923 100644 --- a/_sources/generated_api/darts.models.forecasting.tcn_model.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.tcn_model.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.tcn_model :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.tft_model.rst.txt b/_sources/generated_api/darts.models.forecasting.tft_model.rst.txt index 30312491d2..ae6587e9bb 100644 --- a/_sources/generated_api/darts.models.forecasting.tft_model.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.tft_model.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.tft_model :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.tft_submodels.rst.txt b/_sources/generated_api/darts.models.forecasting.tft_submodels.rst.txt index db8678b1ce..58a435f161 100644 --- a/_sources/generated_api/darts.models.forecasting.tft_submodels.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.tft_submodels.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.tft_submodels :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.theta.rst.txt b/_sources/generated_api/darts.models.forecasting.theta.rst.txt index fc9ec96bac..735b8d41cc 100644 --- a/_sources/generated_api/darts.models.forecasting.theta.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.theta.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.theta :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.tide_model.rst.txt b/_sources/generated_api/darts.models.forecasting.tide_model.rst.txt index 1be8511824..d8081d9f20 100644 --- a/_sources/generated_api/darts.models.forecasting.tide_model.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.tide_model.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.tide_model :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.torch_forecasting_model.rst.txt b/_sources/generated_api/darts.models.forecasting.torch_forecasting_model.rst.txt index ee2eb9a100..60324c59f3 100644 --- a/_sources/generated_api/darts.models.forecasting.torch_forecasting_model.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.torch_forecasting_model.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.torch_forecasting_model :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.transformer_model.rst.txt b/_sources/generated_api/darts.models.forecasting.transformer_model.rst.txt index cd095bca46..51c0eedce2 100644 --- a/_sources/generated_api/darts.models.forecasting.transformer_model.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.transformer_model.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.transformer_model :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.varima.rst.txt b/_sources/generated_api/darts.models.forecasting.varima.rst.txt index 2482560c51..f2528375cb 100644 --- a/_sources/generated_api/darts.models.forecasting.varima.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.varima.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.varima :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.forecasting.xgboost.rst.txt b/_sources/generated_api/darts.models.forecasting.xgboost.rst.txt index 2bf0997ce2..c9289839fe 100644 --- a/_sources/generated_api/darts.models.forecasting.xgboost.rst.txt +++ b/_sources/generated_api/darts.models.forecasting.xgboost.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.forecasting.xgboost :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.models.utils.rst.txt b/_sources/generated_api/darts.models.utils.rst.txt index 965ea6b3d8..471c46c805 100644 --- a/_sources/generated_api/darts.models.utils.rst.txt +++ b/_sources/generated_api/darts.models.utils.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.models.utils :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.timeseries.rst.txt b/_sources/generated_api/darts.timeseries.rst.txt index e3d2da6b2a..e73fc820a8 100644 --- a/_sources/generated_api/darts.timeseries.rst.txt +++ b/_sources/generated_api/darts.timeseries.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.timeseries :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.utils.callbacks.rst.txt b/_sources/generated_api/darts.utils.callbacks.rst.txt index d9c20bdeaf..06a1fe62e3 100644 --- a/_sources/generated_api/darts.utils.callbacks.rst.txt +++ b/_sources/generated_api/darts.utils.callbacks.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.utils.callbacks :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.utils.data.horizon_based_dataset.rst.txt b/_sources/generated_api/darts.utils.data.horizon_based_dataset.rst.txt index 0ff361ba87..5ca6e3d9dc 100644 --- a/_sources/generated_api/darts.utils.data.horizon_based_dataset.rst.txt +++ b/_sources/generated_api/darts.utils.data.horizon_based_dataset.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.utils.data.horizon_based_dataset :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.utils.data.inference_dataset.rst.txt b/_sources/generated_api/darts.utils.data.inference_dataset.rst.txt index fbcf0efc7f..c37ac987ea 100644 --- a/_sources/generated_api/darts.utils.data.inference_dataset.rst.txt +++ b/_sources/generated_api/darts.utils.data.inference_dataset.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.utils.data.inference_dataset :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.utils.data.sequential_dataset.rst.txt b/_sources/generated_api/darts.utils.data.sequential_dataset.rst.txt index 14ee5be67a..5363bfb87f 100644 --- a/_sources/generated_api/darts.utils.data.sequential_dataset.rst.txt +++ b/_sources/generated_api/darts.utils.data.sequential_dataset.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.utils.data.sequential_dataset :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.utils.data.shifted_dataset.rst.txt b/_sources/generated_api/darts.utils.data.shifted_dataset.rst.txt index 8ef4c4c83f..a37959f2d7 100644 --- a/_sources/generated_api/darts.utils.data.shifted_dataset.rst.txt +++ b/_sources/generated_api/darts.utils.data.shifted_dataset.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.utils.data.shifted_dataset :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.utils.data.tabularization.rst.txt b/_sources/generated_api/darts.utils.data.tabularization.rst.txt index 77e9a68e81..3f268ee18f 100644 --- a/_sources/generated_api/darts.utils.data.tabularization.rst.txt +++ b/_sources/generated_api/darts.utils.data.tabularization.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.utils.data.tabularization :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.utils.data.training_dataset.rst.txt b/_sources/generated_api/darts.utils.data.training_dataset.rst.txt index ed00f626f2..f9368e59bd 100644 --- a/_sources/generated_api/darts.utils.data.training_dataset.rst.txt +++ b/_sources/generated_api/darts.utils.data.training_dataset.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.utils.data.training_dataset :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.utils.data.utils.rst.txt b/_sources/generated_api/darts.utils.data.utils.rst.txt index e7dc5d3508..889e919d9c 100644 --- a/_sources/generated_api/darts.utils.data.utils.rst.txt +++ b/_sources/generated_api/darts.utils.data.utils.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.utils.data.utils :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.utils.historical_forecasts.optimized_historical_forecasts_regression.rst.txt b/_sources/generated_api/darts.utils.historical_forecasts.optimized_historical_forecasts_regression.rst.txt index e2891357e4..a650d5b263 100644 --- a/_sources/generated_api/darts.utils.historical_forecasts.optimized_historical_forecasts_regression.rst.txt +++ b/_sources/generated_api/darts.utils.historical_forecasts.optimized_historical_forecasts_regression.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.utils.historical_forecasts.optimized_historical_forecasts_regression :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.utils.historical_forecasts.optimized_historical_forecasts_torch.rst.txt b/_sources/generated_api/darts.utils.historical_forecasts.optimized_historical_forecasts_torch.rst.txt index 044e3fc260..ec4090f768 100644 --- a/_sources/generated_api/darts.utils.historical_forecasts.optimized_historical_forecasts_torch.rst.txt +++ b/_sources/generated_api/darts.utils.historical_forecasts.optimized_historical_forecasts_torch.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.utils.historical_forecasts.optimized_historical_forecasts_torch :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.utils.historical_forecasts.utils.rst.txt b/_sources/generated_api/darts.utils.historical_forecasts.utils.rst.txt index 8a46e62c5a..bcb9095084 100644 --- a/_sources/generated_api/darts.utils.historical_forecasts.utils.rst.txt +++ b/_sources/generated_api/darts.utils.historical_forecasts.utils.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.utils.historical_forecasts.utils :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.utils.likelihood_models.rst.txt b/_sources/generated_api/darts.utils.likelihood_models.rst.txt index ce887a261d..dd6781b44a 100644 --- a/_sources/generated_api/darts.utils.likelihood_models.rst.txt +++ b/_sources/generated_api/darts.utils.likelihood_models.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.utils.likelihood_models :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.utils.losses.rst.txt b/_sources/generated_api/darts.utils.losses.rst.txt index b41b1234bd..3dc95e81bf 100644 --- a/_sources/generated_api/darts.utils.losses.rst.txt +++ b/_sources/generated_api/darts.utils.losses.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.utils.losses :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.utils.missing_values.rst.txt b/_sources/generated_api/darts.utils.missing_values.rst.txt index 3782f7ff65..657aa3e6ae 100644 --- a/_sources/generated_api/darts.utils.missing_values.rst.txt +++ b/_sources/generated_api/darts.utils.missing_values.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.utils.missing_values :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.utils.model_selection.rst.txt b/_sources/generated_api/darts.utils.model_selection.rst.txt index f8899d5986..1c20e0c17d 100644 --- a/_sources/generated_api/darts.utils.model_selection.rst.txt +++ b/_sources/generated_api/darts.utils.model_selection.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.utils.model_selection :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.utils.multioutput.rst.txt b/_sources/generated_api/darts.utils.multioutput.rst.txt index b559f583eb..4bcab6098d 100644 --- a/_sources/generated_api/darts.utils.multioutput.rst.txt +++ b/_sources/generated_api/darts.utils.multioutput.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.utils.multioutput :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.utils.statistics.rst.txt b/_sources/generated_api/darts.utils.statistics.rst.txt index 90b13d579a..63baf96590 100644 --- a/_sources/generated_api/darts.utils.statistics.rst.txt +++ b/_sources/generated_api/darts.utils.statistics.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.utils.statistics :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.utils.timeseries_generation.rst.txt b/_sources/generated_api/darts.utils.timeseries_generation.rst.txt index 146884ff6d..9181d6b8f4 100644 --- a/_sources/generated_api/darts.utils.timeseries_generation.rst.txt +++ b/_sources/generated_api/darts.utils.timeseries_generation.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.utils.timeseries_generation :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.utils.torch.rst.txt b/_sources/generated_api/darts.utils.torch.rst.txt index c166409827..0341f085a5 100644 --- a/_sources/generated_api/darts.utils.torch.rst.txt +++ b/_sources/generated_api/darts.utils.torch.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.utils.torch :members: :undoc-members: \ No newline at end of file diff --git a/_sources/generated_api/darts.utils.utils.rst.txt b/_sources/generated_api/darts.utils.utils.rst.txt index 9a677bbcec..17852d3ef9 100644 --- a/_sources/generated_api/darts.utils.utils.rst.txt +++ b/_sources/generated_api/darts.utils.utils.rst.txt @@ -1,4 +1,3 @@ - .. automodule:: darts.utils.utils :members: :undoc-members: \ No newline at end of file diff --git a/_sources/quickstart/00-quickstart.ipynb.txt b/_sources/quickstart/00-quickstart.ipynb.txt index 027ceb95e7..c4bf8a58f6 100644 --- a/_sources/quickstart/00-quickstart.ipynb.txt +++ b/_sources/quickstart/00-quickstart.ipynb.txt @@ -134,7 +134,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEPCAYAAABShj9RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABI0ElEQVR4nO2deXiU1fXHP5M9gZAQIAESMGAEZBcvCLIpVssitYW6VRQq7tJFW6u1lap1+bW2VatWa9Xi1qpoEdzrgiJBlFtAZJXFgAkhYcsG2XN/f7zzTibbLJmZZBLO53nyvJl3ue+9mcl3znvuuec4jDEIgiAIHZ+I9u6AIAiCEBxE0AVBEDoJIuiCIAidBBF0QRCEToIIuiAIQidBBF0QBKGT0J6CbsL958CBA+3eBxmLjKWj/MhY2uynRcRC90BtbW17dyFoyFjCExlLeNJRxyKCLgiC0EkQQRcEQegkiKALgiB0EkTQBUEQOgki6IIgCJ0EEXRBEIROggi6IAhCgBhjqKnxGCLeJoige+D+++9n5cqVvP7669x///0ALFiwgAEDBjB69GjGjBnDZ5991s69FAShPamtNQyfb5jyE0NdXfuKugi6BzZs2MD48eP55JNPmDJlimv/Aw88wMaNG/m///s/rr322nbsYeupqalp7y4IQqfgUDFszYHPtsCaze3bFxH0ZrjlllsYOXIkX375JRMmTOCpp57i+uuv5+67725w3pQpU9i1axdlZWWcc845jBkzhhEjRrB8+XIAjh07xqxZsxg1ahTDhw/n5ZdfBuC2225j6NChjBw5kl/+8pcAHDx4kLlz5zJ27FjGjh1LdnY2AHfeeSdXXnklZ511FgMHDuSvf/2r6/6///3vGTx4MJMmTeLSSy/lT3/6EwC7d+9m+vTpnH766UyePJnt27cD1tPFddddxxlnnMGvfvUrPvnkE0aPHs3o0aM57bTTKC0tDe0fVhA6IUVl9b+/+H47u12MMe31E9Z88cUXZsGCBaaqqsqceeaZrv3z5883S5cuNcYY88orr5hx48aZ6upqU1xcbIwx5uDBg+bkk082dXV15tVXXzVXXXWV69qioiJz6NAhM2jQIFNXV2eMMebo0aPGGGMuvfRS8+mnnxpjjNm7d68ZMmSIMcaY3/3ud2bChAmmoqLCHDx40KSkpJiqqirzxRdfmFGjRpny8nJTUlJisrKyzAMPPGCMMWbatGnm66+/NsYYs3btWnP22Web3NxcM3/+fDNr1ixTU1NjjDHm/PPPN6tXrzbGGFNaWmqqq6tD8rcMNrm5ue3dhaAhYwlP/BnL2i11hsm1hsm1JmVWramsqgthz4wxHnQ1qn2/TlrG4XCEpF3jYw3V9evXM3ToULZv386pp57a4Ngtt9zCPffcQ69evXj66acxxnD77bezatUqIiIiyMvLo6CggBEjRvCLX/yCW2+9lfPPP5/JkydTU1NDXFwcCxcu5Pzzz+f8888H4IMPPmDr1q2ue5SUlFBWZn31z5o1i9jYWGJjY0lNTaWgoIDs7GwuuOAC4uLiiIuLY/bs2QCUlZWxZs0aLrzwQldblZWVrt8vvPBCIiMjAZg4cSI333wzl112GXPmzCEjI6MVf1FBOLFxt9CPlMB7X8Dsie3Tl7AV9PZi48aNLFiwgNzcXJKTk3nkkUcwxjB69GjXBOgDDzzAD3/4Q9c1S5Ys4eDBg/zvf/8jOjqazMxMKioqGDRoEOvXr+ftt9/mt7/9Leeccw6LFy/miy++4MMPP+TVV1/l0Ucf5aOPPqKuro61a9cSFxfXpE+xsbGu3yMjIz36v+vq6khOTmbjxo0N9ufl5QHQpUsX177bbruNWbNm8fbbbzNx4kTee+89hgwZ0qq/myCcqBQ18lS++L5h9sTQGKTe8MmHrpQ6Syn1oVJqpVLqB0qpSUqpNUqp1UqpEc5zeiul/quUylZKzQu0Y54eKwL58cbo0aPZuHEjgwYNYuXKlUybNo333nuPjRs3Eh8f3+w1xcXFpKamEh0dzcqVK9m7dy8A+/fvJyEhgXnz5nHLLbewfv16ysrKKC4uZubMmTz44IN8+eWXAJx33nk88sgjrjYbC3JjJk6cyBtvvEFFRQVlZWW8+eabAHTr1o0BAwawdOlS19/Rvkdjdu/ezYgRI7j11lsZO3asy9cuCILv2Bb6eWOt7YpsOFbePr50rxa6Uioe+AUwQ2td5dz3CTALSASeAGYCtwJ/BD4GPlVKvaq1rghRv0PKwYMH6d69OxEREWzfvp2hQ4d6PP+yyy5j9uzZjBgxAqWUy8r96quvuOWWW4iIiCA6OprHH3+c0tJSLrjgAioqKjDG8Je//AWAv/71r9x4442MHDmSmpoapkyZwhNPPNHiPceOHcv3vvc9Ro4cSVpaGiNGjCApKQmAF198keuvv5577rmH6upqLrnkEhYuXNikjYceeoiVK1cSERHBsGHDmDFjRmv/ZIJwwnLUaaGPyoI9+2FXHuQehMH9274vDm9Wq1JqGnAdkAQcB24AXtRaT3MeX6u1Hq+UygYma63rlFKPAM9qrbWHpts/Ct8LeXl5pKent3c3WqSsrIyuXbty/PhxpkyZwpNPPsmYMWOaPTfcx+IPMpbw5EQdy21P1PGHf8G9VztY9qlBb4fPn3AwbmjI3C4tNuyLDz0NyALGA98B7gJK3I7XKKVigGitdZ1zXzGQ0rghpdQ1wDUAixYt4txzz/Wp9+1FdXW1y/ccjtx4443s3LmTyspKLrzwQtLS0lrsb7iPxR9kLOHJiTqWvIJuQBeoKSI2Mg6IZffeQ6QnVYWkb56+aHwR9CIgW2tdpZT6EEvQ3acBopzHqpVSEU5RTwKONG5Ia/0k8KTzpVjoAfL666/7fG64j8UfZCzhyYk6lmpj2bGZGcmk7rJkLTq+J+npbT8x6suk6DrgVKWUAxgNbAWilFLJSql+1Av3OuAspVQUcDqwJQT9FQRBCCvsSdHkrpDU1fq9uKzl80OJVwtda31IKbUM+ATLqr4SSAfedr6+wXnqH4DngHuAJ7TW5SHpsSAIQhhhT4p2T4QkZ1Rw8bH26YtPceha68eAx9x27QbObHROPhDeTnFBEIQg05yFXnLM4GHuMmRILhdBEIQAaCDoXSwRby8LXQTdA5I+VxAETxhj6gU9DFwuIugekPS5giB4oqIKqqohJhriYqCbLejtNCkqgt4Mkj5XEARfKHKbEHU4HO1uoUv63BaQ9Lnhy4mapjXcORHHsuUbK3Xu4MtqjTH1qXTV1bWh7F4HTJ87pc77Sa3ArPLtoUTS5wqC4A3bQk92RrcktbPLJWwFvb2Q9LmSPlcQfMU9wgXqBb3kePv0J2x96GZVREh+vCHpcwVB8JUmgh7uK0VPRCR9riAIvmALevdEaxsfC1GRdvSLISa6bRcXeU2fG0IkOVeASPrcjo+Mpe2oqzNERPgmsL6O5d7nDL99ynDbZXD/tZYHoMf5dRwpgcIVDnolh0TQW2w0bF0ugneuueYa1wKnuXPntijmgnCis2yVIXG6Ydmq4NqRRWVWe8ld6zW2PSdGxeXSgfnXv/7V3l0QhLCnqtpw06OG4xXw8QbDD6YEz2pu7EMHNz96O8Sii4UuCEKn5um3YO8B6/dgi2yzgt6OFroIuiAInZbySsM9z9W7WUIm6In1+9ozdFEEXRCETss/3oD9h6zoEwi+1eyKcmnO5SIWuiAIQvBY9aVlnV8503odbAvdLm7RnIUuPnRBEIQgcthZzn7YgNDkKW/Oh95NBF0QBCH4HHEK+sC+1jaYbhDjlgs9qT6jRn2Ri7K2X2ojgi4IQqfFttAH9rG2xccsIQ4Gx8qhttbyz8fGNBOHLha6IAhC8LAt9D49IDYGqmugvNLzNb7SeNm/TX1d0eDcxx9E0AVB6JSUVxrKK61qQl3igx8ffqjY2qY0FnSx0AVBEIKLbZ2nhKiaUMFRa5uW0nC/CLogCEKQsf3nPawkpEFfkl9wxNqmdW+4X+LQBUEQgoy7hQ7Bd7m0ZKF3S3DeRyx0QRCE4HDY6eO2LfTkIFvoBw5b0TJp3Rsm+5LkXIIgCEHmiHMVZxMLPcQ+9K7x4HBYYY01NW0biy6CLghCp6SxhR5s37ZL0Bv50CMiHK7VoqXlwbmXr4igC4LQKTlSalnHKYmWS8RewVkUpBWcLU2KWveytm09MSqCLghCp6SJhd5GLpdQ3MtXRNAFQeiUNPGhB9HlUltrXAuLUpuz0NspdNFrCTqlVCawDtji3HUhcBZwE1AOzNda5yqlhgBPOtu8Q2v9YSg6LAhC5+LzrZYL5IyhwS2oHEoL/VAx1NVZbUdHNe23nR/djoVvK3ytKfqJ1vqHAEqpKOBmYCowFrgDuBa4D1gIFADvACLogiB4pOCIYepPDXExcORNa0IxWNgWeo9u1jaYYYstTYjaZKRa29yDgd/LH3x1uUxUSn2qlLoPOAXYprWu0lpnAyOd5/TVWu/UWpcAR5RSPUPRYUEQOg/PvA2VVZZroizIESG2hZ7iFPRgukE8TYgC9E+1vpj2FbRt2KIvFno+kAUcB/4BzAHcHyQinVv3L4diIAU45N6QUuoa4BqARYsWce6557au121EdXU1eXl57d2NoCBjCU9O5LHU1sHjy3phy9CO3Qfo26MuKH0xBg4X9wYclJftJ68KyssigVSOFNeQl+fZdPY2lm2744FkusWVk5dX1OR415g4oDs7cpo/Hgjp6ektHvMq6FrrSqASQCn1H2AB4P4dV+vcur8TScCRZtp6EsvPDtD22d/9JC8vz+MfryMhYwlPTuSxvLPW8O3BehlISOxNenpwXC5lxw3VtYb4WMgaYPUpposBDGWVUV776W0s1VhtZabHk57epcnx0UOs4wdLmz8eKnyZFE3UWju9UUwG3gKuU0rFAArY5DyWr5Q6GSgEUrTWh5q2JgiCYPHE8oY2XTAjQlyJubrV77MnRYvKrCIXDkfrvzwKjjqX/ac030b/NGu7r6DVt2gVvrhcJiml7sFyuXyDNQlaAXzs3M53nvcbYAmWC+Z3we6oIAidh8Kjhjc/g+goGJoJX+6CkuPBa9+VmMtN0GOiHcTFGCqq4HiFlSO9tXjzofftARERkH8YqqoNMdHBjeBpCV9cLu9gRa2487Lzx/28rVgWvCAIgkd27LPC/sadChm9nIIexEU4zVnoYE2MVhyxIl0CEnQPi4oAoqIcpPc0fFsIeQdhQN/W38sfZGGRIAhtTv5ha9u3R2hWVTZnoYNb6GKA7p0DXix0cHO7FAZ2L3/wNQ5dEAQhaNiC3qeHVSIO2shCD9KXhzeXC0A/Zyx6W/rRRdAFQWhz8p25xPv0cFDtTDFbctwAwfE1t2ShB0PQ6+oMBz0s+7fp3w6CLi4XQRDaHHcLPamrJeLBjXKxviR6dGuh+EQA9zpcArW1lvsmNqblL6D+aW2/uEgsdEEQ2pz9boJunHoX6igXaBi62Fpc7pYWJkRtxIcuCMIJgbuFfqzC+j3UcegQHJeLLxOi0D6x6OJyEQShzXEXdLuocjAt9EJnWGGv5Ib7kxNt907r3SD//sC6dtgAz+e5C7oxbeN2EUEXBKEB1dXVLF26lB/84AecfPLJfPHFF0Ftv7LKcKQEIiMtwbXLtQUzysXOcmhnPbQJ1ELfs9/w7HtW32++yPMEbnJXq75oWXlgLh5/EJeLIAgN+NnPfsbjjz/uer18+XLGjRsXtPZtl0XvFCtdblIXy3oNVhx6dY0h/7BVqLlPj4bHAhX0e58z1NbCghmQleFZ0B0OB/3TDFtzLCu9e2Lr7ukPYqELgtAA2yKfMGECAAUFwXUCu7tbIPgW+oHD1kRr75SmxSfshUVHS5u50Avu1vlvLvctvLKt/egi6IIgNOCbb74B4IorrgBCKOjOKJFgrxR1uVt6NT1mR6YUNMkF650Vq61wxQvP8m6d29h9aKtCFyLogiC4KCkp4ciRI8TFxTFypFW7JtQWepd4yz1yvAJqagKfPPQk6PY97bBJf9iVZ/Vt3Km+L36yJ2Xt+qOhRgRdEAQXOTk5AGRmZtKnTx8g+IK+/5C9StR67XA4XG6X0iBULWppQhQsNwxYFnpdnX9fHrv3W9uBfXy/pleyJf6HiiTKRRCENsZ2twwYMIC0NMsBXFBQENSwu3oLvd7SdbldghANklto9TWjV1NLOjbGQUo3qKn132re4xT0k/2oR9LTWaD6oFjogiC0Ne4WekJCAl27dqWyspKSkuCVr2/scoHgxqJ7crm43zffD7dLba3hm3zr94F+pMJ1uVyKfL8mEETQBUFw4W6hAw2s9GCR75yQ7OtWRt7OsRKMSJdQCHruQaiusVw2CXG++9DFQhcEod1oE0H3YKEHI9LFkw/d/b7+CHpr3C0gFrogCO2I7XJpLOgHDhwISvs1NYbCo1ZUi3sulGDFotfWGvY7qxn37dH8Ofb+/X5UPbYnRE/2s/KQbaEfKm6b5f8i6IIgAJbg2BZ6ZmYmEHwLvbDIWvTTK9kq02YTrFj0wqPWhGevZIiLbd41Yk/G2jnZfWHPfuvcgX39y9feJd5BfCxUVMGxIETweEMEXRAEAI4cOUJpaSmJiYmkpFjxfcEW9ObcLRA8C92b/9z93v64XHbnWVt/XS7Q0EoPNSLogiAADd0tDodliQZb0Avc8ri4062Ldb+SY4G5JUIm6K10uUC9H/1gEXy5yzDv93X8443QuF9E0AVBAGjiboHgC/rBImvbOK1tsFwu3iZEIbBJUX9CFm3cLfQvd8GL78PKDSLogiCEkMYRLgC9e/cGgifottvBFjmboLlcPCwqsnFf/u/LROXRUsPRUitFgacaoi3hbqHbvvgBfqw29QcRdEEQgKYRLhB8C/1QsSVoPZMa1foMtoXuweXSJd5BYgJUVfuWddHlP++LyxXlD+4WumtxUp/gFMNujAi6IAhA8xZ6sJf/2xZ6Y5dLW06KQv2iJl/cLoG4W6A+n8vBIsMep6CLhS4IQkjJzc0FoF+/fq59Xbt2JSEhgfLycsrKAk+00qLLJUhL/791FmT25EMH//zogUyIQkMLPdAvB2+IoAuCAEBhoaWGtlVuE0y3iz0p2ljQ7aX/gSTnOlpq5VuJiYaT0jyf60nQH15quPTeFEqPW08kO/ZZW19zoDfGfhrJPWgtZoqM9P4E0VpE0AWhA7F27VoOHfJjiaOP1NXVudrt2bNng2PBFHSXhZ7ccH8wLPS1W6ytGmxlVfSEXVyjsaAfOGy49e+GTzfH8u7n1r6Nu6ztqJNb1y/7y0tvt7YnpTVcVBVMRNAFoYOwbds2JkyYwPjx4yktbUUNNQ8cPXqU2tpaunfvTkxMTINjwVz+35LLxWWhB+BDz/7KsqTPHO79XHu1qJ2b3ebBVwyVVdbva7cYKqsMW76xUhWMbKWgNy5yESr/OYigC0KHYf369QDs3r2bn//850Ft23a39OrV1BcQLAu9ttZwpMQSx5RGBZPjYiAqEiqroLKqdZOv2Zut7cQR3q3f5lwuR0sNf3u9/vXarbA1x0olMKifFR3TGho/jYTKfw5+CLpS6lKl1EHn7xcqpdYopT5USmU49w1RSq1y7j8nVB0WhBOVXbt2uX5/5plneO2114LWti3oqalNZxODJehHS608Lt0Tm7ocGlQt8tHtYozhjqfqeP1TQ3WN4Ytt1n7fLHRr6y7oj/0Hysph3KnW6/99DZ872zztFN/61BwpidaXmM2AEIUsgo+CrpSKBC4EvlVKRQE3A2cBi4E7nKfdBywEpgN3B72ngnCCYwv6hAkTAIJqpXsS9GAtLmrJ3WLjbyz6V3vgnufg0rsMb2RbNUlPyYDU7t4Fs59zmPsK6/c9vtx6MrjvGgdZfWuorIIl71j7Rme1XoQjI60qSTb+lLDzF18t9EuBpUAdcAqwTWtdpbXOBkY6z+mrtd6ptS4BjiilerbQliAIrcAW9Pvvv5+4uDhyc3ODEkoIcPCgFcDtyUIP1IfeUoSLjb3fzvfijQNO67qiCq78g+/+c4D+aZbVnHvQSulbXGal3Y2PhWljYMwpliP9863W+YFY6AC93Mbcrj50p3V+EfCyc1d3wL0eVWQzbRUDjdLvCIIQCLagn3LKKWRkZADw7bffBqVtTz50u1h0oILuzUI/yXoQYK+PDwLu2QvtcEdf/OdgRcH07Qm1tZao5ziHltnbcv+MyapucP7oAAXd3Y8eSh96lA/nzANe0VrXKaUAigC3Bwhqnds6t31JQJPvWaXUNcA1AIsWLeLcc89tRZfbjurqavLy8tq7G0FBxhKe+DqW4uJiDh06RFxcHHV1daSmprJr1y42bNhAt27dvF7vDXuVaExMTJP+2Mvdc3NzPfbV21h25sQDySTEHCcvr2ku2R5dEoGubNpRzJRTvftddu5NAJKIizFUVFl9zEotJC+vxuu1AH1TepB3MIZ1mw9RcswBpNCnewV5eUcZMQAsGYO07rVUHy8kL4CQyq6x3YE4usTVUVFWQF4A0Tzp6S3n8PVF0IcCpyml5mG5W34CnKqUigEUsMl5Xr5S6mSgEEjRWjcJltVaPwk86XwZ+vIdAZKXl+fxj9eRkLGEJ76OxbaObes8KyuLNWvWUF5eHpS/xfHjlloNGjSoSXt2bvSDBw/St2/fFvOZeBtLbYQBDCf1SSA9vWuT48OyrONHy7uRnp7stc81Thty0RwHy1dbC4qmjk0lIsI3K31Q/zrW7YCy6p6UVgEYhmTGkZ6eTk1tHl3iraIUpw+ODPhv3K+31deT0yPIyAjdZ9eroGutb7V/V0pprfX1SqmLgY+BCmC+8/BvgCVYLpjfBb2ngnACY7tbsrKygPrl+W3hcomPjycpKYni4mKOHj3qEnh/OVTUfGIum0w/XS62T35AHwdfLYHICHwWc+s6a5tzwFBUWt8WWCGUY4fAxxsC959DfSx6KP3n4JuF7kJrrZzbl6n3qdvHtgKTg9c1QRBs2krQm5sUBcuPXlxcTH5+fqsF3a583zgu28blQ/fRVe+eW93bytDmyOztAAw5+fVZF90F98czHGzeY/jhWYGHGVpfFIbhA7yeGhB+CbogCO1DqAXdU5QLWKGL27dvJz8/n2HDhrXqHnbl+xYnRZ35V3IOWDHm3lLVeptk9UamU7y/yYci56Squ6BfMd3BFdODEzN++XmQkujgOyoozbWICLogdAB27twJhEbQa2pqOHz4MBERES1a33akS35+fqvv01LqXJukrg6SuhqKy6xzWzrPpqXqR75iu3jcBT0zRC6R2BgHc6aGpm13ZOm/IHQAPFnogeYpt5Ny9ejRg8jIyGbPCUbooi8WdaYfbpdALfR+qRARYYUtlpVbOdm7J3q/LpwRQReEMKe0tJSCggJiY2Nd8edJSUl07dqVY8eOUVRUFFD73vznUL9aNBgWuicBdne7eKKuznDYuRqmRysFPSbaQbrb8scBfVpXkSicEEEXhDBn9+7dAAwcOJCICOtf1uFwuKz0ffv2BdS+N/85BO5yqawylB63okfsnC3N4evE6NFSqKuD5K4QHUAqWvuJAEIfgdIWiKALQpizZ88eAE4+uWH+1mD50T2FLNoE6nJxt849WcFW5AnsLfDsRgrUf27jLuLu4t5REUEXhDDHXn3pXhrO/XWwBD2ULhdvE6I2LpeLl9sE6j+3cZ8EDWUWxLZCBF0Qwpz9+61ClH37NkwCEixBbwuXi68C7Gs+l2BZ6PYTAYjLRRAEJx988AH3338/dXV13k/2k5YEvX///kDbWOh2JaOSkhJXmgB/cMWgJ3s+z1dBD5qF3rv53zsqIuiCEAR+9rOfcfvtt/POO+8Eve1QW+i++NAdDofL7eKLH/1f7xum/qTOVeLNzjvuTYB7JkFCnJU9sai0qR+9otJQV2dC4kMXC10QBIwx5OTkALB06dKgt99Wgu7JQgf/3C5/X2FY9SU8tNQS5Vc/traTR3r2UzscDpcfvbGVvjXHkDzLcNvfDQe95IXxlX6pVnm58cOga4L40AXhhOfo0aMuN8Trr79OZWVlUNv3Jui5ubk+u3qMMfzxj38kOzvbtc8XHzr4J+j7nGL8zNuwabdVHq5bF/i+D9meWgpdfO0Tq+boP96oLx0XqIUeGelg87MOVj/a8cUcRNAFIWDcLeTi4mI++OCDoLV9/PhxioqKiI6OpkePHg2OJSQkkJKSQlVVlUuUvbF27VpuvfVWZsyYwTfffENubi65ubmAd0H31eVSW2vIdXbncDH86G7Lmr7wLIiP9S6c/Z3d+Law4f5PNlrtFJXBO59b+7z55H0hOspBZKQIuiAINHV5vPLKK0Fr27aGW8pD7q/bxT6vtLSUefPm8cMf/pCKigqmT59OcnKyx2t9tdAPHIGa2vrXW6zaGVz+Xd9Es3+add4+t1j0qmrDms3155Q4C0T0CnBStLMhgi4IAWJbuJMmTQJg+fLlQXO7uAt6c/hbis7dul6zZg2ff/45/fv357nnnvN6ra+CbrtbBveHrvHW7yf1hskjW77GneYKOK/bDuWV9e3ZBMNC70yIoAtCgNhies455zBy5EiKi4tZuXJlUNpuyX9u4+5H9wVb0M855xwcDgexsbG89tprHiNcbHxdXGS7SoaeBFd81/p9/nTfi0/0T2vYDsAnG63tvPMgw62rgfrQOxsi6IIQILag9+vXj2nTpgGwcePGoLTtq6D7a6FffPHFZGdns27dOpy1gr1ix73bET0tYVvo/dPgj9c7eP63Dm6f57uP2hb0fW5RLrb//KzRDtfEakx0U4v9REfyoQtCgNjWcb9+/VzRJlu3bg1K26ES9N69ezNhwgS/+jJw4EDAKihdV1fnShQGsOYrw/+2xvGTi2FfoSW+/dMcdIl3MO88v27jyoCYdwhqagwGyHb6z6eOhl7JDh79jyGte8fPjhhsRNAFIUDcLfSEhAQAtm3bFpS2vQm67UP31+Viu0/8ITExkdTUVAoLC9m/fz8ZGRlUVhl+8w/Dn18G6M6Zo00DC701xMY46J1iOHDECk/cf9gq1jy4P/Tu4SC1u+H2y2H4ABHzxoigC0IAGGNcYpqRkeEK/du2bVsTK7Y1hNJCbw0DBw6ksLCQ3bt3UxuVzvd+bdi0u/74B9rN5eI5CtIj/dOsaJl9hbiiW6aOsrYREQ7uvVrEvDnEhy4IAXDo0CEqKipISkoiMTGRHj16kJaWxrFjx4JSHs5XCz0vL4/a2tpmz7Gpq6vzeVVoS9gpfHfv3k3PJKiogqx0uOVS6/hH640rOqW1Fjq4RboUwLrtlgtnwnARcW+IoAtCALj7z21OPfVUIDhuF2+CHhcXR69evaipqXGJdUscPnyY2tpaUlJSiI2NbVV/bEHfs2cPXeIdvPl/DjY87eAXF1tiu+pLazFRTDSkdm/VLYCGkS56u/W7Gtz69k4URNAFIQDc/ec2Q4cOBQKfGC0tLaW0tJT4+HiSklpeQeNrLLrtbklLa73pbE+M2lWUTunnoGuCg7QUB4Mzqqmoss6z6nW23qLun2pdu2Gn4Zt8K2HXkP6tbu6EQQRdEALAFlFbVCF4Frq3VaI2vvrRA/WfQ0OXS2POHFZV36cA/OdQb6G/9Zm1Pe0UiAqg1NyJggi6IARAKC10b+4Wm7YUdNtCt8viuTNxWP3q2EAmRKH+C6HUmXpd3C2+IYIuCAHQnA/dXdCN8Vwb0xP+Crq30MVgCHqfPn2Ij4/n8OHDFBcXNzg2YWgVdlBPIBOizV2vhoh17gsi6IIQAM25XNLS0khOTqaoqIiCAi+ld9x48803WbhwITk5ORhjeP/994H6HCot4a8PPRBBdzgcLVrpSV0MYwZZv9sJtlpLr2SIjal/LRa6b4igC0IANOdycTgcrXK73HXXXTzzzDOMHDmSmTNnsmTJEqKiopgzZ47H6zy5XDZs2MApp5zCU089FRRBh6YTo+78+jIHE0fA7DMDugUREQ5XzpbEBKsIheAdEXRBaCW1tbXNulyg3u3iz8SoLZClpaW8++67JCQk8MYbbzB5sueqEC25XKqrq/nxj3/Mrl27WLx4sUvwAxV0TxOjc6Y6WP1YBL17BO4isf3wpw8OLGLmREIEXRBayf79+6muriYtLc215N9myJAhAGzfvt2ntoqKijh69CgJCQk8/fTTzJgxg48++ojp06d7vTY9Pd3VH/fFRQ8++CBffvklYEXMrF69GgieoDc3MRpMbD+6uFt8x+vSf6VUGrAMqAZqgcuAk4E/AnXA9Vrrr5RSvYHngC7A41rrF0LWa0EIA+ysg5mZmU2OnXLKKQDs3LnTp7a++caqAjFw4ECuvPJKrrzySp/7ERMTQ1paGgUFBeTn55ORkcGePXu48847Afje977HihUrXBO0gcSh232E5i30YHLZuQ7WbTfMny7Wua/4YqEfAiZpradiCfZC4F5gFvAj4A/O827FEvmpwI1Kqbjgd1cQwodgCrpt7dpi6S+NU9v+4x//oLy8nEsuuYR//vOfxMVZ/44RERH07NmzVfew8eRyCSbnjnWw5bkIhg8UQfcVr4Kuta7VWtsVaBOB3UCt1vqo1nofkOI8Ng74SGtdA2hgeCg6LAj+sGvXLtLT03nwwQeD3rZtVQ8YMKDJsYEDBxIREUFOTg5VVVVNjjcmUEEfPNjyS9guni1btgAwd+5cUlJSuOSSSwArh0tkZGSr7mGTmZlJamoqffr08bk4tdA2+ORDV0qNVkp9DiwC1gAlbodrlFIxQLSb8BdTL/SC0G68/fbb7N+/n1/96lds3rzZ+wV+4MlCj42NpX///tTV1bmE3xOBCnrjqBpb2G1f/g033IDD4XCtYg2E2NhYCgoKWLNmTcDZJIXg4lP6XK31RuAMpdRFwG+Abu5taK2rlFLVSqkIp6gnAUcat6OUuga4BmDRokWce+65gfY/pFRXV5OXl9fe3QgKJ+pYNmzYAEBNTQ3z58/n9ddfD5oI7dixA4CuXbs225/+/fuTk5PD2rVr6dq1a7Nt2GOxo2GSkpJa9T7Z2RM3bNjAnj172LNnDxERESQkJJCXl0ffvn1ZsWIFvXv3Dtnn4ET9jLU19iR4c/gyKRqjtbafGYuBMiBKKZWM5YKxhXsdcJZSahVwOvCrxm1prZ8EnnS+bP0SujYiLy/P4x+vI3GijsXOh+JwOFi/fj1vvPEGN9xwQ1D6YbetlGq2P8OHD2fVqlUcOXKkxf7aY7HFY+zYsa16n+zQxj179lBRUUFtbS1ZWVkNLP5Qv/8n6mcsnPDFVBmtlFqllFoJ/Bx4APgt8DbwEvBr53l/cP6+CnhCa10e/O4Kgn/Yk5J33XUXAI888khQ2q2pqWHfvn0AnHTSSc2e4+vEaG1trUf3jS8MHDiQmJgY9u3bx7p164B6d4tw4uDVQtdafwFMabQ7Hziz0Xn5QHj7UIQTiqqqKnJycoiIiOBnP/sZd955J19//TUVFRWuqI/WYheU6NOnT4tt+Sroubm51NTU0LdvX+LjW1f1OCoqikGDBrF582Zef/11QAT9RERmNIROi13MuH///nTr1o2srCzq6ur4+uuvA27bF4t60CArsUlLgl5bW0tlZWXAE6I29sTou+++C4ign4iIoAudFltIbUt52LBhQH1IXyB4Clm0yczMJDIykn379lFRUdHgWG5uLkOHDmXSpEl89NFHQOCCbkew2PcSQT/xEEEXOi2NBd22YIMh6L5Y6NHR0QwYMABjTINl8oWFhXznO9/h66+/Jj8/n3vuuQcInoVuI4J+4iGCLnRaQmmh+zqJ2diPXltby8yZM9mxYwcjRoxocH2wLHSAnj170qNHj4DaEzoeIuhCp8X2lbeXy8X93nZftm7dyv/+9z9SU1N5//33eeaZZ0hMTATqV3u2lkGDBrli7IOxgEjoeIigC+3Otm3bePjhhxtkCgwGjS30wYMHExkZye7du5v4tP2ltRa67Xo5/fTTSUtLY9CgQXz88cc88cQTjB07NqA+xcbGuvKsiLvlxMSnlaKCECoOHz7MOeecQ35+PgMHDmT27NlBabeiooJvv/2WyMhIlxUdGxtLVlYWO3bsYMeOHYwaNcqvNsvKynjrrbf44osvyM3NxeFwNMmD3hg70sVeVdpcRMuYMWMYM2aMX31piaFDh7Jz586ArX2hYyKCLrQbxhiuvvpq14rLTZs2BU3Qd+/ejTGGAQMGEB0d7do/dOhQduzYwZYtW3wW9OLiYhYtWsRrr71GeXn9ernRo0cTGxvr8VrbUrYF3c5QGKi/vCVuuukmqqurmTdvXkjaF8IbEXSh3Xj66adZtmyZ67U/5dq80djdYjNs2DCWLVvmlx/9P//5Dy+8YKX3nzhxItOnT2fUqFFMnTrV67UZGRnEx8dTUFBAUVGRy0K3XSPBZurUqT71S+iciA9daBeMMSxevBjAlVvFn3Jt3rAt4uYEHfybGLX7tXjxYlavXs1vf/tbZs+eTbdu3bxcaeUfd3e7BGsRkSA0hwi60C5s2bKF/Px8+vTp44rD3r59e9Dya2/cuBGgiVvFFnR/ngbsCJXGcd6+Yrtdtm3b5nN0jCC0BhF0oV348MMPAZg2bRrdu3enT58+lJeXs3fv3qC0b6fNHT16dIP9gwYNckW6HD9+3Ke2bGu/tRON9nUfffQRVVVVpKWltZhOVxACQQRdaBdsQT/nnHOA+rjpYPjRjx07xtdff01UVJTLIreJjY1lyJAh1NXV+eR2qampcU1kNnbf+Iot6HaOFXG3CKFCBF1oc2pqavjkk0+AekG33RnB8KN/9dVXGGMYOnRos1Eothvmyy+/9NpWTk4O1dXVZGRk0KVLl1b1xxb0gwcPAiLoQugQQRfaHK01JSUlZGVluYobB9NCt90tp512WrPH/RF0238eSFx342tDFeEiCCLoQpvT2N0CwbXQ7QnRxv5zG38EPVD/OVgl6tyr34iFLoQKEXTBI9XV1UFvszlBd7fQjQmsOmFLE6I2tqBv2rSpxXtVVlYC9YJuhx62FvcvBBF0IVSIoAst8vXXX5OWlsaiRYuC1uahQ4fIzs7G4XBw9tlnu/anpqaSkpJCSUkJ+/fvb3X7NTU1fPXVV0DLgt67d29SU1MpLi5uNqpm6dKlxMfH89hjjwXF5QINc6uIy0UIFSLoQovcd999HD16lOXLlwetzSVLllBVVcWMGTPo2bOna7/D4XBZ6YG4XXbs2EFFRQWZmZkkJye3eN7IkSOBpm4XYwx33nknxhhuueUWl7UfqKDb18fFxdG7d++A2hKElhBBF5pl3759vPjii4BVXaeoqMiv67/99lvOO+88fvjDH3L33Xe7ysE9+eSTAFx33XVNrmlNAYrt27fz8ccfu17b/vOWJkRtWvKjf/DBB66J2fLycoqKioiNjXVN3rYWW9AHDBjgSnErCMFGPllCs/zpT3+ipqbG9drfHOIvv/wy77//Pq+99hq/+93vOOOMM/j73//Ozp07ycjIYMaMGU2usV0k//vf/3y+z9y5czn77LNZsWIFgKucW0vuFpuWBP2hhx4C4Kc//anLws/KyiIyMtLnPjXH1KlTmTt3LrfddltA7QiCR4wx7fUT9uTm5rZ3F4KGP2MpKCgwcXFxBjBjx441gHniiSf8ut8NN9xgAHPppZeaqVOnGsD1c9dddzV7zbp16wxgBg8e7NNYampqTFRUlAFMz549zWOPPWYAExkZadavX++xjS+//NIA5uSTT3bt27FjhwFMXFycOXjwoHn66acNYH784x/7NXZ/OFE/Y+FOmI+lRV0VC11owiOPPEJFRQWzZ8/moosuAmDz5s1+tWHnLLn44ot56623OOOMMwCIjIxk4cKFzV4zcuRIYmNj2bFjh08unsLCQtdTxKFDh7jxxhsBeOCBB7y6XIYMGUJ0dDS7d++mtLQUgCeeeAKAyy+/nJ49e3LllVeybt06HnzwQe8DFoQwQARdaEBZWRmPPfYYALfeeivDhw8HWi/oAwYMoEuXLrz11lvMmjWLxYsXN4jJdicmJsYlxFprr/fIy8sD4KSTTnLVz7z44ov5+c9/7vXamJgY18SofS/bF3/ZZZe5zlNKkZSU5LU9QQgHRNCFBjzzzDMcPXqUCRMmMHHiRJeg28vpfcEY06REW48ePXjzzTddKXNbYty4cQB88cUXXu+Tm5sLwIgRI3j//fe59957efrpp3E4HD71c/z48QB8/vnnlJeXs2nTJiIiIlBK+XS9IIQbIuiCi5qaGpd74ZZbbgEgPT2dpKQkDh8+TEFBgU/tHDhwgIqKClJSUnzKGe5OawQ9IyOD0047jdtvv92vfCu2oK9du5YNGzZQW1vL8OHDW52zRRDaGxF0wcWyZcvIycnhlFNO4Xvf+x5gxYf763YJJOe3Leiff/651ycCd0FvDe6C/vnnnze4vyB0RETQBRcrV64EYOHChQ3C9PwVdNvd0hpBz8rKIjk5mQMHDrgEuyUCFfSTTz6ZHj16UFBQwNKlSwERdKFjI4IuuLBXaDau8tOWFrrD4fDZ7RKooDscDpeV/tlnnwEi6ELHRgRdcGGvkLSX4Nu0paADrhDHUAs61LtdABISEpoUxBCEjoQIugDA4cOHKSwspEuXLvTr16/BMVvQN23aREVFhde2AhV0O3TRU3pbY4xL0FsKg/QFd0E//fTTiYqKanVbgtDeeP30KqXGAQ8D1UAecAXwfeAmoByYr7XOVUoNAZ50tnmH1vrDUHVaCD62u+XUU09tkmukZ8+ejBkzhvXr1/Phhx8ya9Ysj20FKugtLcs/duwYS5YsISoqirlz51JZWUlycnJA9TnHjh2Lw+HAGCPuFqHD44uF/i0wTWs9BcgBLgBuBs4CFgN3OM+7D1gITAfuDnZHhdDSkrvFxo56sXOmtERNTQ379u0DrAU/rSEzM5PExEQOHDhAYWEhAM8++yxZWVksWrSI66+/3hWVEoi7BSApKcmVFGzs2LEBtSUI7Y1XQdda52uty50vq4DBwDatdZXWOhsY6TzWV2u9U2tdAhxRSvVsrj0hMB5++GEuuOACLrjgAm6++eYGCbQCwbbQbXFrjC3ob7zxBnV1dS22k5ubS21tLX379iUuLq5VfYmIiGiQ3nbTpk0sWLCAAwcOEBsbizGGP/3pT0Dggg5WmuAFCxa4xigIHRWfHYZKqZOA84DbgF5uh+z4Nvcvh2IgBTjUqI1rgGsAFi1axLnnntuKLrcd1dXVruXl4cChQ4eaLGsfOnRos5kLG+NtLHbe79TU1GbP69WrF3369CE/P5933nmnQTbDmpoa1qxZQ3Z2tuva9PT0gP52WVlZZGdns2rVKlc8+gUXXMCMGTO47rrrXMv0u3fvHvB7dPrpp3P66adz5MiRgNppDeH2GQsEGUvb4GnOyCdBV0p1A54HFmAJuPvyv1rn1t1sSwKa/HdorZ/E8rODlXkvrMnLywtowi3YfPrpp4AVWjd27Fgee+wxVqxYwVVXXeX1WvexbNu2jbKysgYuhj179gAwefLkFsf8gx/8gL/97W+sXbvW5Uf/z3/+ww033NBkFemoUaMC+tudeeaZPPvss+Tk5HDw4EHAytPygx/8gF/96leUlJQAVmm4cHqP/CXcPmOBIGNpf7y6XJRSUcBLwF1a6x3ATuBUpVSMUupMYJPz1Hyl1MlKqUQgRWt9qIUmhVZi1+KcM2cOixcvJioqirfffpsDBw743Mbx48eZPHkyZ555Jjt37gSgtLSUb7/9lpiYGI8TmRdccAHQ0I9+7733UlBQQFZWFrfddhsPPPAADz/8MPfcc09rhujCdrmsW7eOVatWAXD22WcTFxfX4IkkGC4XQegs+GKhXwqcAdyhlLoDeBx4CPgYqADmO8/7DbAEy4L/XZD7KdCwuHJqaiozZ85kxYoVvPDCC/zyl7/0qY2XXnqJw4cPA1aa2SeffJLt27cDVlUdT2F7U6dOJTExkU2bNpGTk0NycjIbNmwgJiaGL7/8koSEhABHWM+IESNwOByuIs3Dhg1zlW6bM2cOL7/8MiCCLggN8JQsPcQ/YU84Jbnfs2ePAUxycrKpqakxxhizbNkyA5ihQ4eauro6j9fbY1FKuQpNxMTEmLy8PLNkyRIDmIsuushrP+bOnWsA8+ijj5oVK1YYwEyePDnwATbDKaec4urrT3/6U9f+vXv3mn79+hnA7Ny5MyT3bivC6TMWKDKWNkMKXHR0bOv87LPPduVZmTVrFr169WLr1q0+5Q/XWqO1pnv37syePZuqqiruu+8+V9stRbi4M3v2bMCKdrEnJqdOndqaIXnFPQXBOeec4/o9MjKSt956i2XLlpGVlRWSewtCR0QEvYPg7m6xiY6O5sILLwTg3Xff9dqGXZFnwYIF3HXXXQA89thjPP/884D3OpwAM2fOxOFwsHLlSt5++20AzjrrLJ/H4Q+2oEdERDT50hgxYgTf//73Q3JfQeioiKCHEXv37mXRokXk5+c32F9TU+Mqfuwu6ADTpk0D6qvttMSePXt44YUXALj22ms57bTTmDt3LmDlTnniiSc4//zzvfaxV69ejB8/nqqqKrZv3050dDQTJkzwaXz+YheaGD9+vFQNEgRf8OSPCfFP2NPWfrRFixYZwFx55ZWufbW1tWbevHkGMAMGDGjiKy8sLHQVNq6oqGi23bq6OjNx4kQDmCuuuMK1v7Ky0hQWFvrdz/vuu8/l2540aZLf1/tKXV2defzxx83WrVsb7A9z/6ZfyFjCkzAfi/jQOwL24p5XXnmFY8eOYYzhxhtv5IUXXqBLly7861//alJerVevXgwfPpyKiooWsxM+99xzZGdn06NHD/785z+79sfExNCrV69mr/GEuyUfKncLWOltr7vuuhbTEQiC0BBJLRck9u3bx/333095eTlRUVHceOONXivPu1NXV8emTVZIf1lZGa+99hpg+b1jY2N54403GmQGdOess85i8+bNfPzxx0yePLnBsY0bN3LzzTcD8Je//IWePQPPyDB8+HAyMzPJycnh7LPPDrg9QRCChCfzPcQ/YY8/j13XX3+9yw0BmFGjRnkNJXTHDku0f8aOHWt69eplAPPMM894vPbVV181gJk2bVqD/e+9957p2rWrAcx3vvMdv/rjjezsbPPQQw8FtU1fCfPHYb+QsYQnYT6WFnVVBN0D/rypdsz0PffcY3r37m0A8/bbb/t8vR1TPn78eBMfH+8S9smTJ3sVzeb86Js3bzZRUVEGMD/60Y/M7t27fe5LuBPm/2x+IWMJT8J8LOJDDyX79u1j586ddOvWjVtvvdXl4rjvvvt8bsPO/T158mRX9ElUVBSPP/54E795Y5rzoy9dupSamhouuuginn/+eWJjY1szNEEQOhAi6EHAjhGfOnUqUVFRXHfddSQnJ7N69WpWr17tUxu2oI8aNYqbbrqJxMRE7r77bp9Lotm+7LfeeguA//73vwDMmzevScEKQRA6J/KfHgQaL/pJTEzkJz/5CWDlS/EFW9BHjhzJmDFjKC4u5te//rXPfbCt+pdeeokjR47w+eefExUVFdIoFEEQwgsR9AAxxjS7ivO6664D4KOPPqK2trbZa21KSkrYs2cPMTExDBkyBMCrm6UxkydPpl+/fuzdu5ff//731NXVMXHiRBITE/1qRxCEjosIeoBs27aNAwcOkJaW1sA90rdvXzIzMykrK2PLli0e2/jqq68AK5dKdHR0q/oRERHBpZdeCsBf//pXAM4777xWtSUIQsfkhBD0/Px8srOzyc7O5ttvvw1q27Z1Pm3atCZWtb0kfu3atR7bWL58OdAwGVVruOyyywBcJeK++93vBtSeIAgdi04v6EePHmXYsGFMmjSJSZMmMWTIEPbu3Ru09u0cKo1zrACuhUAtCXpdXR033XSTy88+Z86cgPoycuRIhg8fDkCPHj38WtgkCELHp9ML+j//+U+OHj1K79696d+/P8ePH2+w/D0QjDGusnBTpkxpctwW9M8++6zJsYqKCi6++GIeeughoqOjeeGFF4JSpHjevHkATJ8+XaJbBOFEw1OQeoh/Qk5tba0ZOHCgAczy5cvNpk2bXAtwCgoKvF7vvrjg3//+t3n99dcbHN++fbsBTFpaWrOLfyorK01sbKwBzJEjR1z7Dx065EqW1a1bN/Phhx8GMMqm93zkkUfM/v37WxxLR0fGEp7IWNqME3Nh0TvvvMOePXvIzMxk1qxZjBgxgvPPP5+Kigoefvhhn9vZvXs3l156Kd///vd55plnXPvtGPNJkyY1G5USExPD6aefDtAgcdYVV1xBdnY2GRkZZGdnu1LgBoOYmBgWLVpEnz59gtamIAgdg04t6I8++igAN9xwg6vKz+233w5YhR2Ki4t9aseuXwlw1VVXuV7b7pbGCbHcaex2qaqqck2krl692uXzFgRBCJROIegVFRVN9u3atYt3332XuLg4rrzyStf+CRMmMHnyZIqLi3n11Vd9at8W8BkzZmCM4fLLL2fHjh1+Cbo9Mbpp0yYqKysZPHgwJ510km8DFARB8IEOL+iPPvoo8fHxfP/7328Q7/3kk08CcMkll9CjR48G11x++eUArhS1nti6dSubNm0iOTmZ119/nfnz51NdXc3VV1/Nnj176Nq1KyNHjmzxejt0cc2aNVRXV7tcL+PGjfNvoIIgCF7o0IJeV1fnilhZvnw5I0aM4O9//zuVlZUuX7e9YtOdCy64gIiICD744AOKioo83sO2zufMmUNMTAz33XcfCQkJLuv8zDPPJCqq5bTyGRkZDB06lNLSUj799FMRdEEQQkaHFvTVq1eTk5NDRkYGN9xwA8YYfvazn/H73/+ew4cPM3r06GaFMzU1lcmTJ1NdXe1KZtUcxhheeuklwLL0wVoB+otf/MJ1jid3i83s2bMBePPNN0XQBUEIGR1a0J977jnAihp57LHHWLhwIZWVldx7772AZZ23lBPFTmblye3y3nvv8fXXX9OnT58GlXluueUWUlNTAZpUo28Ou2Tb0qVL2b59OzExMQGvChUEQWiCp5jGEP8ExPHjx01iYqIBzLZt24wxxhQXF5vMzEwDmK5du5qSkpIWr8/NzTWAiY+PN2VlZU2O19bWmsGDBxvAPPLII02Or1+/3vzjH//wqWJPdXW1SUlJcRWtGDdunB8jDQ5hHlfrFzKW8ETG0mZ0vjj0l19+mdLSUsaNG+fKUNitWzeee+45unbtys9//nOPmQbT09MZP3485eXlLrdLYWEhF198MX/4wx9YsmQJO3bsoH///lx99dVNrj/ttNO46qqrfMqKGBUVxcyZM12vxd0iCEIo6JBFolevXs2NN94IwMKFCxscmzx5MkVFRa64c09ccsklrF27lmeffZaLLrqIP//5z7zyyiu88sorrnMWL14clGo/559/Pi+88AIggi4IQmjocBb6+vXrmTVrFsePH2fBggVcddVVTc7xRcwBfvSjHxEVFcW7777L3r17WbJkCYDL4h84cCBXXHFFUPr93e9+1xUNI4IuCEIo6FAWul0js6SkhAsvvJCnnnoqoARUvXr1Yvbs2SxbtozLLruMwsJChg4dyldffcWaNWtISEhodX7yxiQnJ/Poo49y4MABBg0aFJQ2BUEQ3OlQgh4VFcUrr7zCgw8+yNNPP+2zJe6JH//4xyxbtozs7GwArr76aiIiIpg0aRJ5eXkBt+/OtddeG9T2BEEQ3PEq6EqpJOB9YCgwXmu9WSl1IXATUA7M11rnKqWGAE8627xDa/1hKDo8ZswYnn/++aC1N2PGDNLS0igoKCAmJsa1ilQQBKGj4Yu/4jgwC3gVQCkVBdwMnAUsBu5wnncfsBCYDtwd7I6GiqioKJeffM6cOU3SBAiCIHQUvFroWutq4KBSyt51CrBNa10FZCul/uTc31drvRNAKXVEKdVTa30oFJ0ONnfccQcpKSkNkngJgiB0NFrjQ+8OlLi9th3Z7tZ+MZACNBB0pdQ1wDUAixYt4txzz23F7UPD5ZdfTnV1dQO/eePXHRkZS3giYwlPwnks6enpLR5rjaAXAd3cXtc6t3Vu+5KAI40v1Fo/ieVnB2vVZFiTl5fn8Y/XkZCxhCcylvCko46lNYK+EzhVKRUDKGCTc3++UupkoBBI6SjuFkEQhM6CT4KulHobGA0MBv4OPAR8DFQA852n/QZYguWC+V1QeykIgiB4xSdB11rPbGb3y43O2Qp4zyUrCIIghIQOt/RfEARBaB4RdEEQhE6CCLogCEInwWFM2EcPCoIgCD4gFrogCEInQQRdEAShkyCCLgiC0EkQQRcEQegkiKALgiB0EkTQBUEQOgki6IIgCJ0EEXRAKdXFuXW0d18CRSmV4Nx2hrGc5Nx2hrGc0RnGAaCU6t/efQgWSqnu7d2HYHJCLyxSSp0HXA3sB/6gtd7fzl1qNUqp7wPzgG+BBzr4WBKAPwL9gB86q2Z1SJRSo4CHgbXAYmelrw6JUmo6sAioBP4NvKu1LmvfXrUOpdRU4BdYRXgeA7ZorSvat1eBc6Jb6D8CngI2A9cppTpktkil1PnAj4E/YBUgudW5v0NahFrr40AVkIg1rg47FqwMpPdprW8DBrZ3Z1qLUioSuA6rQM1dWLUQunTg9+Vi4J9YX0wzgbnt253g0JoCFx0Wp+V3MbAaKAD2AV8AK537T1dK7e4I1q1zLJcC7wDrgau01geVUl8DLymlUrXWhe3aSR9xe19Waa13O0ViF/Af4KdKqXe11vvatZM+4v4Zc9bYPQ5MV0rdhlUEZh3whtZ6d3v20xecY7kE+AQoA77Ceprdi1UfIR6IxvryDWuUUvFYRe3f1Vp/AnwD5GP9/1cAs5RSQ7TW29uxmwFzwljoSqlLsYpyJAB7tNYlQG9ggvMxeAMQh1U+L6xxG0scUKi13u8U8wgsq/abDiTm9ljisb5g0VobYCjWe/Ef4FqlVL/26qOvNBpLjnN3AtAH+CVwA5a7YlY7dM8vGo9Fa10AfIjl1tuA5aq4GrixvfroK87Pzr+xjLjPnLsdwACsUphbsT57We3SwSByQgi6UqobcBHwe6wP5XeUUj2Bx4GrlFJdtNabgZOAzHbrqA80M5azlFJDALTWdVgCUuM8t384PxI3GstHwFSl1DDn4U+wnjyOYYnIT53XhOVntpmxnK2U6gu8hmXF9tNaF2MJvf3+hOV708xn7Byl1Cla64+BD4DHtNbzgDeBGKVURLiOxUkUsALrSfwnSqkzgfeAM4FhWuvDWMZRPITv++ILnXZS1DkT/0vgLSAbmALcBMQAbwBXAFOBa7De8E+x/LWvaa3fbI8+t4SXsazAGssFWuscpdRCrA9qMdADuDGcJq58HMt5wLXAWVg1avcDx7TWd7RDl1vEx8/YOVjjGIllCc4Edmmt72qHLreIj+/LDKyniz5YgrgIOKq1/ml79Lkl3MayAmt+LMP5Og/LSFgA/B8wAqvg/XbgfCyX31Pt0OWgEZbWTqAopTKAP2P5+noDz2mt3wYeAM7WWv8JeA74o9b6D1gf4GuBTWEo5t7G8mesyZ0/OC/pjyXoO7XW88NMzH0Zy3PAncCfgGe01pdorW8OQzH35TP2LFb01FKsR/4zgDVhKOb+vC/PYBWKvxP4IgzF3H0s6cDftNYay7ip0lq/6Dx+HvA8lktvKrCuo4s5dDJBV0pNcXtcStZa/1lr/SyQqJT6tdb6v1i+M7AKXScopRKdj5LztdYPtn2vm8fPsTyK8zEe65F4gtb68Tbucov4OZaHsawmtNYvOK8Pm89pK8YSo5Tq5qy5+4sO/r50AeK01v/GeiJ8pB263SwexpKklLoKuBcYB6C1fhcY4jxvM/DTcBpLIITNP0ogKKW6KqXex/L3zcSasFmtlLrWecqnwPeUUsla61ql1BTgdaxIijIArXVN05bbngDGsgdAa/2p1rqo7XvelEDeF2foIuCaG2hXAhjLbucEPFrr2nboehMCfF+OAYRLPL0PY1kFXOncrlZK/c55/n7nuWHzvgSDTuNDV0qdjrUQZRzWQoFk5zYHS7SPYVmvW4B/YD3Ov9YeffWGjEXGEmpOsLFUYn0hfQakYU2E/rcduhpyOo2g2yil/orl23tBKdUH6/F9F/Bz4EWt9YH27J8/yFjCExlLeOJlLM93lFDeQOgULhdoEGr0IlbIWKrWOh8rlnkpVkhiaTj5Y1tCxhKeyFjCEx/HUtaRwxF9pdNZ6ABKqZ8AJwNHgd3A11rrL9q3V61DxhKeyFjCk840ltYQ9t++/uBmTYzEipndo7V+oSO+oTKW8ETGEp50prEEQme10OcCb2qtK9u7L4EiYwlPZCzhSWcaS2volIIuCIJwItKpXC6CIAgnMiLogiAInQQRdEEQhE6CCLogCEInQQRdEAShk3BClaATTgyUUplYJcbAKsz8e+f+p7ESNaG1btWqQaXUUKziDx87s3SilFoCzAfGOlO1CkK7IIIudHYWKKXuwUr9elEQ2hsK/M75+8dBaE8QgobEoQudDjcLfQ8wEJiGVT/yb1gpU9Ox3I2/waqLmQJoYJHWeotS6k4s0X4Kq9pQMlY90HXUW/42Z2NVwJmPVTjhQmfbP9JafxqSAQpCC4gPXejMbAM+x3KzXImVQrXIeezHWDUzN2EJ+1hguVIq2u36yVjFQ5KwSpYdxCqMAlat0EuxysrZnImVajYDq6KPILQpIuhCZ+cZLKt5IlapPpuZzu3NWuu/AsuxkjoNcjvnL1rrh7Es/UxncYds57HNWuuXGqVkvVNrfQ9W/u3MoI9EELwggi50dl4CaoFc4P1mjptGW3eOOLc11P+vePJRup8f6V83BSFwRNCFTo2z/NuVwLWNStm95dz+xZly9QKc6Va9NHnUuZ2slLpEKRUf1A4LQgBIlIvQ6dFav9zM7iVYk6NXY02arsOaFK1WSnlqbjVW/copzuv6BbWzghAAEuUiCILQSRCXiyAIQidBBF0QBKGTIIIuCILQSRBBFwRB6CSIoAuCIHQSRNAFQRA6CSLogiAInQQRdEEQhE7C/wO7xtvbXVIP4QAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAG9CAYAAADHrnYfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHRElEQVR4nO3dd3xUVfo/8M9MeiUJgYQkkIQSeglNICIICIIFkC6sgCgo8GVxfwu4LrKy7OIKC4qroIIQRRABqYqoFJUmUoPSCZACBJKQQnoyc39/DPfOvckkmTuZkvJ5v16+uDN3Zu6ZY+A+ec5zztEIgiCAiIiIyEG0jm4AERER1W0MRoiIiMihGIwQERGRQzEYISIiIodiMEJEREQOxWCEiIiIHIrBCBERETkUgxEiIiJyKAYjRERE5FAMRqohvV6PGzduQK/XO7opNQL7Sx32l/nYV+qwv9RhfxkxGCEiIiKHYjBCREREDsVghIiIiByKwQgRERE5FIMRIiIicigGI0RERORQDEaIiIjIoRiMEBERkUMxGCEiIiKHYjBCREREDsVghIiIiByKwQgRERE5FIORaiA1NRWurq7Izc1FcXExfHx8cOvWLel8REQENBoNNBoNvLy80LlzZ2zZssWBLSYiIrIeBiPVwLFjx9CxY0d4eXnh9OnTCAgIQGhoqOI1//znP3Hnzh2cOXMG3bp1w5gxY3D06FEHtdjxioqKHN0EIiKyEgYj1cDRo0cRExMDADh8+DB69epV5jU+Pj4IDg5GVFQUPvzwQ3h4eGD37t3Q6XSYMmUKIiMj4eHhgZYtW2LFihWK9/7000/o3r07vLy84Ofnh5iYGCQkJAAA4uLi8Pjjj8PHxwe+vr7o0qULTp48Kb338OHD6N27Nzw8PNC4cWPMmjULubm50vmIiAgsXrwYL774Inx8fNCkSRN88sknZb5fp06d4O7ujq5du2LHjh3QaDQ4e/as9Jo//vgDgwcPhre3N4KCgvCnP/0JaWlp0vm+ffti5syZmD17NgIDAzFo0CAIgoC33noLERERaNWqFcLCwjBr1izL/0cQEdVAN24LeHONHmeuCI5uisUYjDhIYmIi/Pz84Ofnh+XLl+Pjjz+Gn58f3njjDezcuRMdO3bEjBkzTL7X2dkZLi4uKCoqgl6vR1hYGLZs2YILFy5gwYIFeOONN7B582YAQElJCYYNG4Y+ffrg3LlzOHbsGKZOnQqNRgMAGD9+PMLCwnDixAmcOnUKr7/+OlxcXAAA8fHxePLJJzFixAicO3cOX331FQ4fPoyZM2cq2rNs2TJ07doVZ86cwfTp0/Hqq6/i8uXLAIDs7Gw888wzaN++PU6fPo1FixZh3rx5ivdnZmaiX79+iI6OxsmTJ7F3717cvXsXo0ePVrzus88+g6urK44cOYKPPvoIX3/9Nd59912sWrUK+/fvx7Zt29C+ffuq/88hIqpBZrwr4F+fA0+/LqCkpIYGJAI5RHFxsXDjxg0hLi5OcHFxEeLi4oRr164J3t7ewsGDB4VffvlFuHv3riAIghAeHi68++67giAIQmFhobB48WIBgPDNN9+Y/OwZM2YII0aMEARBENLT0wUAwk8//WTytT4+PkJsbKzJc1OmTBGmTp2qeO7QoUOCVqsV8vPzpbZNmDBBOq/X64WGDRsKq1atEgRBEFatWiXUr19fer0gCMLq1asFAMKZM2cEQRCERYsWCQMHDlRcJykpSQAgXL58WRAEQejTp48QHR2teM2yZcuEqKgooaCgQLh+/bqg0+lMfg9S0ul07C8zsa/UYX+pY63+ajZWJ6C34b+Dp/VWap19OTs2FLKNrl27IiUlxe7XDQ4OVgxxVMTZ2RkRERHYvHkzunXrhg4dOuDIkSMICgrCY489hoSEBAQGBkqvnzdvHubPn4+CggJ4e3vjP//5D5566ikAwIcffoi1a9ciMTER+fn5KCoqQqdOnQAAAQEBmDRpEgYNGoQnnngCAwYMwOjRo9GoUSMAwF/+8he89NJLWL9+PQYMGIBRo0ahWbNmAAxDOOfOncOGDRukdgiCAL1ejxs3bqB169YAgA4dOkjnNRoNgoODce/ePQDA5cuX0aFDB7i7u0uv6d69u6Iv4uLicPDgQXh7e5fpp/j4eERFRQEAunTpojg3atQovPfee2jevDliYmIwatQoDB06FM7OtfLHmojIpGzjyDl2HhbQN1rjuMZYqFb+q52SkqKYjVIdtW3bFgkJCSguLoZer4e3tzdKSkpQUlICX19fhISE4NKlS9Lr58yZg0mTJkk1FeIwy6ZNm/DXv/4Vy5YtQ8+ePeHj44OlS5fi+PHj0nvXrVuHWbNmYe/evfjqq68wf/58/Pjjj+jRowfeeustPP/88/j222/x3Xff4R//+Ac2bdqE4cOHIycnB9OmTTNZh9GkSRPpWBzWEWk0Guj1erP7IicnB8888wzeeeedMufEoAkAvLy8FOcaN26My5cv44cffsD27dsxc+ZMLFu2DD///HOZNhER1VbZecbjnYeB5TMF6R5RU9TKYCQ4OLjaX3fPnj0oLi5G//79sWTJEnTp0gVjx47FpEmTMHDgQCmzIAoMDETz5s3LfM6RI0fQq1cvTJ8+XXouPj6+zOuio6MRHR2Nv/3tb+jZsyc2btyIHj16AACioqIQFRWF1157DePGjcO6deswfPhwdO7cGRcuXDB5XXO1bNkSX3zxBQoLC+Hm5gYAOHHihOI1nTt3xtdff42IiAjVWQ0PDw8888wz6NChA+bNm4c2bdrg999/R+fOnS1uMxFRTVFYJKBQNrnwxh3gj+tA+2aOa5MlamUwYu5QiSOFh4cjJSUFd+/exdChQ6HRaHD+/HmMGDECQUFBZv9m36JFC3z++ef4/vvvERkZifXr1+PEiROIjIwEANy4cQOffPIJnn32WYSEhODy5cu4evUqXnjhBeTn52POnDkYOXIkIiMjkZycjBMnTmDEiBEADENDPXr0wMyZM/HSSy/By8sLFy5cwI8//ogPPvjArPY9//zz+Pvf/46pU6fi9ddfR2JiIv773/8CgBS5z5gxA6tXr8a4ceMwd+5cBAQE4Nq1a9i0aRPWrFkDJycnk58dGxsLnU6Hbt26ISMjAz/++CM8PDwQHh5uVtuIiGq6B3lln9t5uOYFI5xN40A//fQTunXrBnd3d/z2228ICwtTDEuYY9q0aXjuuecwZswYPPLII0hPT1dkSTw9PXHp0iWMGDECUVFRmDp1KmbMmIFp06bByckJ6enpeOGFFxAVFYXRo0dj8ODBWLhwIQBDLcjPP/+MK1euoHfv3oiOjsaCBQsQEhJidvt8fX2xe/dunD17Fp06dcLf//53LFiwAACkOpKQkBAcOXIEOp0OAwcORPv27TF79mz4+flBqy3/R9TPzw+rV69G7969MWTIEOzfvx+7d+9G/fr1VfUhEVFNlW0iGNlxuObNqNEIglDzWl3L6fV6JCQkIDw8vMKbcU21YcMGTJ48GVlZWfDw8Kjy59X2/rI29pf52FfqsL/UsUZ/nb0qIHpK2dt40lYNwhrWnLoR/rSQzX3++ec4fPgwbty4gR07dmDevHkYPXq0VQIRIqK6TD6TxlU2ur/riP3bUhUMRsjmUlJSMGHCBLRu3RqvvfYaRo0aVWaVViIiUk8+TPOMbPHunTVsqKZWFrBS9TJ37lzMnTvX0c0gIqp15JmR3h00OHlZQEIKcPAMkJ0rwNerZgzVWJQZ+eyzz/DUU0/hsccew/PPPy/tVRIbG4sBAwagX79+WLFiBeTlKOfPn8fYsWMRExODqVOn4s6dO9b5BkRERHVUliwYqecN9H+4qkFxCRBfvZfbUlAdjGzevBnHjh3Dp59+ip9//hkLFy6Ei4sLDh8+jC1btiA2NhabN2/G0aNHsXPnTgCGHVbnzp2LsWPH4sCBA+jYsSPefPNNq38ZIiKiukSeGannBQT4Gh+bmvZbXakKRnQ6HdauXYv58+cjODgYGo0GLVq0gKurK/bs2YPhw4cjLCwMgYGBmDBhAvbs2QMAOHXqFFxcXDBs2DC4ublhypQpuHjxYrVfJZWIiKg6y84zjkD4egE+nsZhmQf5jmiRZVTVjNy7dw8FBQXYt28fNm7cCG9vb/zpT3/C8OHDcePGDQwaNEh6bfPmzaWVQK9fv44WLVpI59zd3REWFobr168jNDS0zHWKiopQVFSkeM7Z2Rmurq6qvlxNJS6lrmZJ9bqM/aUO+8t87Ct12F/qWKO/snKMx94eArw95OcE6PWOL2Q1Z9qy6mAkJycHiYmJ2LVrF5KSkvDqq68iIiICeXl5ir1DvLy8kJ9vCMvy8/PL7Cvi5eWFvDzTOaR169Zh9erViudGjRpVZkv52i4pKcnRTahR2F/qsL/Mx75Sh/2lTlX66869+gAMm4zmZN5CUZ47AMPCjwnJ6UhIyCn/zXYirgheEVXBiLi3yMsvvwx3d3e0aNECAwcOxJEjR+Dp6SkVsgJAbm6utI6Eh4eH4px43tPT0+R1Jk+ejPHjxysbWscyI0lJSWjcuDEXDjID+0sd9pf52FfqsL/UsUZ/6WSTZVq1CMU92e/4rh71ER5eM1akVhWMhIeHw8XFRbEboHgcGRmJa9euoU+fPgAMm7WJW9E3bdoUW7duld5TUFCA5ORkNG3a1OR1XF1d60zgURGtVsu/0Cqwv9Rhf5mPfaUO+0udqvTXgzzjEI+ftwb1vADAMDSTk6+BVlsLp/Z6eHigf//++PTTT1FUVIQbN27gxx9/RExMDIYMGYJt27YhOTkZ6enp2LBhA4YMGQIA6NKlCwoLC7Fz504UFRVh7dq1aN26tcl6kbooNTUVrq6uyM3NRXFxMXx8fBTFvREREdBoNNBoNPDy8kLnzp2xZcsWB7aYiIiqA3HRM60W8HQHfGQDDg/yHF8vYi7Vodi8efOQmZmJAQMG4M9//jNeeeUVREdH49FHH8XIkSMxceJEjBw5Ej169MDQoUMBGDIdS5cuxZdffonHH38cZ86cwaJFi6z+ZWqqY8eOoWPHjvDy8sLp06cREBBQJlD75z//iTt37uDMmTPo1q0bxowZg6NHjzqoxY5XusCZiKguEqf2+noaRiqUwYhj2mQJ1cGIj48Pli5dil9++QW7du3Cc889J52bPHky9u/fj4MHD+LPf/6zYjinbdu22LRpE44cOYLVq1er3p22Njt69ChiYmIAAIcPH0avXr3KvMbHxwfBwcGIiorChx9+CA8PD+zevRs6nQ5TpkxBZGQkPDw80LJlS6xYsULx3p9++gndu3eHl5cX/Pz8EBMTg4SEBABAXFwcHn/8cfj4+MDX1xddunTByZMnpfcePnwYvXv3hoeHBxo3boxZs2Yp6n8iIiKwePFivPjii/Dx8UGTJk3KLPV+9OhRdOrUCe7u7ujatSt27NgBjUaDs2fPSq/5448/MHjwYHh7eyMoKAh/+tOfkJaWJp3v27cvZs6cidmzZyMwMBCDBg2CIAh46623EBERgVatWiEsLAyzZs2y/H8EEVENIwUjD+eIKIKRGjS1l4N6DpKYmAg/Pz/4+flh+fLl+Pjjj+Hn54c33ngDO3fuRMeOHTFjxgyT73V2doaLiwuKioqg1+sRFhaGLVu24MKFC1iwYAHeeOMNbN68GQBQUlKCYcOGoU+fPjh37hyOHTuGqVOnSoHi+PHjERYWhhMnTuDUqVN4/fXX4eJi2G0pPj4eTz75JEaMGIFz587hq6++wuHDhzFz5kxFe5YtW4auXbvizJkzmD59Ol599VVcvnwZAJCdnY1nnnkG7du3x+nTp7Fo0SLMmzdP8f7MzEz069cP0dHROHnyJPbu3Yu7d++WmT312WefwdXVFUeOHMFHH32Er7/+Gu+++y5WrVqF/fv3Y9u2bWjfvn3V/+cQEdUQ4jCN78MgpKZmRiCQQxQXFws3btwQ4uLiBBcXFyEuLk64du2a4O3tLRw8eFD45ZdfhLt37wqCIAjh4eHCu+++KwiCIBQWFgqLFy8WAAjffPONyc+eMWOGMGLECEEQBCE9PV0AIPz0008mX+vj4yPExsaaPDdlyhRh6tSpiucOHTokaLVaIT8/X2rbhAkTpPN6vV5o2LChsGrVKkEQBGHVqlVC/fr1pdcLgiCsXr1aACCcOXNGEARBWLRokTBw4EDFdZKSkgQAwuXLlwVBEIQ+ffoI0dHRitcsW7ZMiIqKEgoKCoTr168LOp3O5PcgJZ1Ox/4yE/tKHfaXOlXtr6JivYDeOgG9dULMdMNn5BUYn+s7q+b8f6iVG+V1fVmPlPv2v25wAHBytXnJJmdnZ0RERGDz5s3o1q0bOnTogCNHjiAoKAiPPfYYEhISEBgYKL1+3rx5mD9/PgoKCuDt7Y3//Oc/eOqppwAAH374IdauXYvExETk5+ejqKgInTp1AgAEBARg0qRJGDRoEJ544gkMGDAAo0ePlobJ/vKXv+Cll17C+vXrMWDAAIwaNUqaBRUXF4dz585hw4YNUjsEQYBer8eNGzfQunVrAECHDh2k8xqNBsHBwbh37x4A4PLly+jQoQPc3d2l13Tv3l3RF3FxcTh48CC8vb3L9FN8fDyioqIAGAqh5UaNGoX33nsPzZs3R0xMDEaNGoWhQ4fC2blW/lgTESnIMx9iZsTdFXByAnS6mpUZqZX/aqfcB26lOroVFWvbti0SEhJQXFwMvV4Pb29vlJSUoKSkBL6+vggJCcGlS5ek18+ZMweTJk2SairEYZZNmzbhr3/9K5YtW4aePXtKNT3Hjx+X3rtu3TrMmjULe/fuxVdffYX58+fjxx9/RI8ePfDWW2/h+eefx7fffovvvvsO//jHP7Bp0yYMHz4cOTk5mDZtmsk6jCZNmkjH4rCOSKPRqFpRMCcnB8888wzeeeedMufktUWlF85r3LgxLl++jB9++AHbt2/HzJkzsWzZMvz8889l2kREVNvI96URa0Y0Gg28PQRk5TAYcbjggOp/3T179qC4uBj9+/fHkiVL0KVLF4wdOxaTJk3CwIEDpcyCKDAwEM2bNy/zOUeOHEGvXr0wffp06TlxGX656OhoREdH429/+xt69uyJjRs3okePHgCAqKgoREVF4bXXXsO4ceOwbt06DB8+HJ07d8aFCxdMXtdcLVu2xBdffIHCwkJp0bwTJ04oXtO5c2d8/fXXiIiIUJ3V8PDwwDPPPIMOHTpg3rx5aNOmDX7//Xd07tzZ4jYTEdUE2fLMiOx3NR8PMBipDswdKnGk8PBwpKSk4O7duxg6dCg0Gg3Onz+PESNGICgoyOzf7Fu0aIHPP/8c33//PSIjI7F+/XqcOHFCWn73xo0b+OSTT/Dss88iJCQEly9fxtWrV/HCCy8gPz8fc+bMwciRIxEZGYnk5GScOHECI0aMAGAYGurRowdmzpyJl156CV5eXrhw4QJ+/PFHfPDBB2a17/nnn8ff//53TJ06Fa+//joSExPx3//+F4BxwbwZM2Zg9erVGDduHObOnYuAgABcu3YNmzZtwpo1a+Dk5GTys2NjY6HT6dCtWzdkZGTgxx9/hIeHB8LDw81qGxFRTabIjMgKV8Ui1poUjFT/u3Yt9tNPP6Fbt25wd3fHb7/9hrCwMNVTnqdNm4bnnnsOY8aMwSOPPIL09HRFlsTT0xOXLl3CiBEjEBUVhalTp2LGjBmYNm0anJyckJ6ejhdeeAFRUVEYPXo0Bg8ejIULFwIw1IL8/PPPuHLlCnr37o3o6GgsWLAAISEhZrfP19cXu3fvxtmzZ9GpUyf8/e9/x4IFCwBAqiMJCQnBkSNHoNPpMHDgQLRv3x6zZ8+Gn59fhasS+vn5YfXq1ejduzeGDBmC/fv3Y/fu3ahfv2Ysf0xEVBXKYRrjUhpiMJKTj2qxUZ45NIIg1IyW1iF6vR4JCQkIDw+vlUsqb9iwAZMnT0ZWVpa0f1FV1Pb+sjb2l/nYV+qwv9Span9t2i9g3ELDLfzdmRrMHm0ISAa8psf+U4bXZO/VwMez+i8JXyuHaah6+fzzz9G0aVOEhoYiLi4O8+bNw+jRo60SiBAR1VWmCliBsmuN+Jjek7ZaYTBCNpeSkoIFCxYgJSUFjRo1wqhRo/Dvf//b0c0iIqrRzA1GagIGI2Rzc+fOxdy5cx3dDCKiWiVbthGeooBVlnSuKcEIB/WIiIhqIHlmpJ5szciamBlhMEJERFQDZZU7tddYsMpghIiIiGymNtWMMBghIiKqgcpdgVUejOTbrz1VwWCEiIioBhIzIxoN4GXci5SZESIiIrIPMRjx8QS02rIrsALAg7yasa4pgxEiIqIaSBym8S21qBmn9hIREZFdiJkReb0IoMyM5LBmhIiIqHbKyhEwdake//pMgCO2eNPpBCnQqCgYqSmZEa7ASkREpNLrHwtYvRsABDzVU4PoKPteX57xKD1M481hGiIiototNVNA7HfGx8mp9m9DeauvAjUzM8JghIiISIVVO4CCIuNjR9zwFWuMlMqMuLlq4PJw3IPrjBAREdUy+YUCPtimrBFxRDCSlWM8Ll0zAhizI8yMEBER1TJf/ACkZiqfy65mmRGAwQgREVGtpNcLWP5V2ZkzjlhYTLkvjabMeXGtEQYjREREtch3x4FLiYZjfx/j8w6vGalgmCa/ECgpqf6rsDIYISIiMsO6Pcab+l/HGrMRDglG5JmRCoZpgJqx8BmDESIiIjMk3TP8qdEAY/oZn3dMMGIMjCrKjAA1Y6iGwQgREZEZMh4Y/qznBfjJ1vaozgWsQM2Y3stghIiIyAyZD6fT+nk7PvOgLGAte97R7VOLwQgREVElBEEwBiM+gKuLBm6uhseOLmCtx2CEiIio9ssvBIpLDMfiEI0jp89WmhnxcGyBrVoMRoiIiCqRKVvxVApGHLiwWJYsGJFvjCdiZoSIiKiWqSgYcUgB68NgxNsDcHIysegZp/YSERHVLpkPjMelg5GiYqCo2L4Li4nBiKkhGoCZESIiolpHnhnx9zFkInwdeMMX22OqeBUoHYxwBVYiIqIaL6OCzAhg32CkoFCQhl4C65l+DTMjREREtUxFNSOAfetG0rONx+UFI/KiVi56RkREVAtUFozYM/uQlmU8buBn+jXMjBAREdUymTnGugsxGJEXj9rzhp+aaTwO9DP9GgYjREREtYwiM+Jj+NNRC4vJMyOB9cpO6wWMC7IBDEaIiIhqhWo1TJNpPC6vZsTZWQN3By5XrxaDESIiokoop/Ya/lQUsObCbtKyjENG5QUjgGNXiFWLwQgREVElxKm9Wq1xpooiM2LHGSvKYZryXycFI5xNQ0REVPNJO/Z6AxrNw0XPFAWs9ltYTHUwwswIERFRzScPRkSOKhJVBCN+5b/OkcvVq8VghIiIqAKCIJgORhxUwCpO7XV1Mb1jr6gmzahhMEJERFSB3HxApzMclxeM2LeA1fBnYD3jkJEpNWmtEQYjREREFTA1rRdwTAGrIAhSMFLe6qsiBiNERES1hKlpvQDg6W6YXQPY72afk2+oAQEqLl4FlMFITjWfUcNghIiIqAKmduwFDEMk9p6xYs6CZyJmRoiIiGoJ5TCNskZDLBK1WzBi5rReAPDxdMxy9ZZgMEJERFSB8mpGAGP2IbtaBiPGY3u1z1IMRoiIqNrS6wUs+kzAnJV65Bc6Zq0MU5vkicQbfm6+oa22ptixt5xN8kQN/YzHd+/bpDlWozoYmTp1Knr16oXevXujd+/emDVrlnQuNjYWAwYMQL9+/bBixQoIgvF/zPnz5zF27FjExMRg6tSpuHPnjnW+ARER1Vqb9gMLPhXw303A1z87pg0VZUbkq7Dao0jU3AXPACAk0Hh8O70WLno2f/58HDp0CIcOHcL7778PADh8+DC2bNmC2NhYbN68GUePHsXOnTsBAEVFRZg7dy7Gjh2LAwcOoGPHjnjzzTet9y2IiKhW+vx740008a5j2pD5wNiGMsM0dl5YzNxN8gBlMHIr1UYNshKrDdPs2bMHw4cPR1hYGAIDAzFhwgTs2bMHAHDq1Cm4uLhg2LBhcHNzw5QpU3Dx4kXcunXLWpcnIqJa5u59AftOGR/n5Dt+mMa/nGEawF7BiPG4smAkOMB4fDvdNu2xFmdL3rR8+XIsX74cUVFReO2119CiRQvcuHEDgwYNkl7TvHlzxMfHAwCuX7+OFi1aSOfc3d0RFhaG69evIzQ0tMznFxUVoaioSNlQZ2e4urpa0twaR6/XK/6kirG/1GF/mY99pY61++urA8aVTwHDKqeO+H+RIQtGfD0FRW2IfDn2zBxBVd2IJf0lrxmp71vx9ZydDAujpWYCt9Mc93Os1Vae91AdjMyaNQtNmzaFVqvFV199hVmzZmHr1q3Iy8uDl5dx8MzLywv5+YYBtPz8fMU58Xxenukwct26dVi9erXiuVGjRmH06NFqm1ujJSUlOboJNQr7Sx32l/nYV+pYq79ivw0G4CY9TknNQUKC/X/FT0kNAuAOAMjOSESJbIdefbEfAEOK4tqNuwjyLFD9+Wr669ZdY1tyMxOQUEk2JtC3EVIzXXEnTcCNG4kwIy6wusjIyEpfozoYadeunXQ8ceJE7Nq1C7///js8PT2Rm2tcnD83NxceHoaQ0cPDQ3FOPO/p6QlTJk+ejPHjxysbWscyI0lJSWjcuLFZEWVdx/5Sh/1lPvaVOtbsr/hbwJl45XOC1hvh4d6m32BDBSWGP52dgFYtmkC+HUzjEOOxp08QwsPN/1xL+iun0PCntwcQ1aLyi4U3Ai4mAsU6Dbz9wytdQt5RLBqmkRM7MDIyEteuXUOfPn0AAPHx8WjWrBkAoGnTpti6dav0noKCAiQnJ6Np06YmP9PV1bXOBB4V0Wq1/AdQBfaXOuwv87Gv1LFGf206IABQDkHk5JuX8re2zBzD8IafN+DkpLy+r6exnbkFGmi1FU+3NUVNf6VmGtoSWM+8vggNNA7NpNzXIChAffvsQdX/1QcPHuDXX39FUVERiouLsWHDBmRnZ6Ndu3YYMmQItm3bhuTkZKSnp2PDhg0YMmQIAKBLly4oLCzEzp07UVRUhLVr16J169Ym60WIiKhuEwQBG34sWwvhqP1VxALW0jNpAPsWsOp0Au4/XJq+smm9IsX03jSrN8lqVGVGSkpK8OGHHyIhIQHOzs6IiorCihUr4O3tjUcffRQjR47ExIkTodfrMWzYMAwdOhSAIdOxdOlSLFq0CEuWLEGbNm2waNEim3whIiKq2c5cAS4nGo4f6wj8dhEoKHLMkuZ6vYCsh1UGpRc8A0qtcppb9rw1ZeYAYg1qZTNpRKGBGoiZm1oTjPj7+2P9+vXlnp88eTImT55s8lzbtm2xadMmda0jIqI6Z+cRY1Zk/BMaXEwQUFDkmMxITr4xAPA3kRmRL3r2IF8AYLthEDXTekWKtUaqcTDCQVAiIqpW5IubxbQ3Tp91RGakoqXgAfsO01Q1GLmdVn1XYWUwQkRE1cq9DONxkL/xhu+IzEjGA+Oxo2tG0jKNx5XtSyMKqW88rs7DNAxGiIioWrmXafhTqwUCfI2ZkYIioKTEvr/dV7QvDWDf5eDlmRFzp+g29Ie0tkh1XoWVwQgREVUrYmakgR+g1WqU2Qc7Z0cyFZmRstkIexawWjJM4+SkkZaFZ2aEiIjIDIIgSMFIQz/Dn/Il13PsXDdSaWbEjoFSaqb5m+TJiXUjdzPsn1kyF4MRIiKqNnLyDcMxgGGIAbDvDb+0yoIRJycNPA2rs9u3gNXP/PeJdSN6vXEIrLphMEJERNWGvHhVrIuQByPVLTMCGNtXHWfTADVj4TMGI0REVG3IgxFTwzT2z4wYhzX8TUztBYxFrPasGQkopy2mhAQaa11upVqxQVbEYISIiKoNRTDib7iJ+ngab6bVOjOSb6h5sRUxGPH3AZydzV9cLVSeGammM2oYjBARUbWRKvvtX6wZcWRmpLJ1RgDjKqw6nbHexRbEYETNEA1QMxY+YzBCRETVhqlhGkXNiCMLWMsbprHDwmfFJQKyHralasGI9dpkTQxGiIio2riXYfzN3WRmxEHDNK4ugLur6dfYIxi5e994rDoYka/CymEaIiKiismnnpqc2ptn32EGcWgkwAfQaEzXachXYbVVEevmg8bjFmHq3lu/HuDycFtcZkaIiKjas2UBpjmUBayGP+U3e3sO0+j1gpSRaFS//NfZOjOi0wn439fG/y8vP6NuZ2CNRiMN1TAYISKiaunu3bt4++230bx5c/j6+uLAgQMOa4sYjLi7GodnvO24GZ1cejZQojMcVxSM+HoZgwNbFNjuOgLcTDEcP/kI0CpcXTACGIdq0rKAwqLqV8Tq7OgGEBGRYxQUFGD69OlYv349SkpKpOc/++wz9OvXzyFtEodpGvgZh0UclRm5I6uvEPd3McXWmZEVW43Bw59Hqg9EAGURa8p9IDy4qq2yLmZGiIjqqF27dmHdunWKQAQAUlMdszKWXi8gNdNwLA7RAI7LjKTIgxEHDdOcvSrg57OG41ZNgIHdLPsceTBSHRc+YzBCRFRHXb16VTqeOHEitA/3mndUMHI/27B/CmCc1gs4LjOSIpvB0iig/IyELQtYFVmRURpotRZmRuob31cdZ9QwGCEiqqOSkpKk4xkzZiAgwDAWkZbmmCpHUzNpAMDNFXByMhzbMzNyx8zMSICv8fj+A+vVY6RlCti4z3Ds5w38aaDlnxXawHhcHYtYGYwQEdVRycnJ0nFYWBgCAw25fIcFIyZm0gCG2hEx+2DfzIgxsKioZkTeVvl3qKrfLgJFxYbjFwYBXh6WZUUAZfvl36u6YDBCRFRHiZkRZ2dnBAUFScFITk4OCgoK7N4esV4EABr6KW+84swau9aMyIdpKsiMyIeUrBmMJN4zHrdvZnkgAiizN/Il7qsLBiNERHWUmBkJDQ2FVquVghEASE+3f2FBeZkRQLYZnaOGaSrIjAT6GY/lQ01VlXjXmMFo0rBqnyXf5ZfBCBERVQt5eXm4f9/wq3/jxo0BAA0aGAsLHDFUcy+z7FLwIjEYyS0wzLqxBzEz4uNZ8RCJi7NGyjxYNTNy13jcJKhqn6Woa8mu2mfZAoMRIqI6qHS9CABFZsQhwYiJTfJE4jCNIAB5dhpBEjMjFWVFRGJ7rRmMJFgxGPH1MhYB32dmhIiIqgP5TBoxM1KtgpFyMiOAfYpY8woEaZquOcFIAz/Dnzn5QH6hdTI3YmYksB7g6V61mhGNRgN/b8MxMyNERFQtyDMjpoIRR6w1Iq+3EG/uInvv3HvXzOJVkTx4khfiWqqkRMCth/FgVbMiIv+HdSPMjBARUbUgz4xUt2EaXy/AzVWZCbB3ZsTc4lWRtaf33kkHdA/3xbFWMCLWjWTlGDbfq04YjBAR1UGVZUYcGYyUrhcB7J8ZkU/rDa5f+RCJtaf3yqf1VnUmjUg+oyYzxzqfaS0MRoiI6qDqlhkpKhakG2TpehEA8PE0BgT2yIyYu8aIqKG/sX3WmN6rnElTtXoRUXWeUcNghIioDhIzIy4uLmjY0PCrtyOn9ioWPDMZjBiP7ZEZuZNu3uqrImsP0ySkGI+ttcOuctl663ymtTAYISKqg8TMiLjgGQB4e3vD1dUVgIODEb+y5xXDNNUxM+JnPL6XUfV6jMR71lvwTCQfpmFmhIiIHCo3NxcZGYZf38V6EcAw/dNR+9NUNK0XKFXAapfMiPFYdWYks+rXt+aCZ6IAX+NwD4MRIiJyKFMLnonEYCQ1NRWCYL8ZF8ode8vWSDgqM6LVGtb5qIy1h2nEYMTVxXRwZgl/eWaEwzRERORIpmbSiMRgpKioCDk59ptyUdHqq0DpzIjtgyQxGAnyB5ycKi8g9fMGnB+ucGqNdUbE2TSNGwJarfULWKvb/jQMRoiI6hhTq6+KHDWjRl5nUXrBM8C+mRG9XpAWPTNniAYwBAxiu6uaGcnKEZD1MA60Vr0IULpmhOuMEBGRA5kzTAPYORjJNB5XWjNi42AkPRsoebjgmDnFqyKx3fcyUaUhLnm9iLVm0gDVezaNs6MbQERE9lVRZsRR03vTMo3Hpmo07LnomdriVZE4vFRUDGTnAvW8Lbu+YsEzKxWvAuWvM7L2WwGuLkB4ENC7o3WGhNRiMEJEVMdUx8xIhqw8RX7TFNkzM5IiD0ZUZEbkw0v3MqoQjMhn0jS0XnDgL2uPPBh5/WMBqZlAWAMg6WvHBCMcpiEiqmPEzIirq6siEwI4LhgRb45eHoCrS9kbope78djWmRHFGiMB5t+crTW9N/GubI0RK2ZGnJ018PUyHIvDNPmFglRwa81rqcVghIiojhEzI/IFz0SO2rlXDEbkRZZyWq0GXg+Hauw6TKOqZkS2JHwVilhtscaISNq592F/J8uGhBpbsVhWLQYjRER1SHkLnokckRkRBEEapvEvJxgBAJ+HwYjNh2nuq1sKXmStzfISbBiMiMFexgNDvycxGCEiInurqF4EcEwwkl8IFBYZjk3Vi4i87ZQZUbsUvMh6wzSGPxv4AR5u1q3hEPu3RGcI6pTBiGPqRQAGI0REdUpFM2kAoH59493XXsGIvJjSv4KiT7GI1daZEYtn08iCkdRMy6b2lpQIuPWw221Rw1F6Rg0zI0REZHeVZUY8PDzg5WWocrRXMCJfDdSczEhxCVBYZLtFu8TMiI8n4OWhooDVz3hs6TDN7XRArzccW3PBM1HpzfKS7tmmWFYtBiNERHXIrVu3pGNTwQhgXGvEbpkRM4MRe03vFTMjarIigHX2p7Fl8SpQduGzRGZGiIjI3uQBRulpvSKxbiQ9PR168dd0G5JnRvx9ys9EyIMRW9WN5OYLyM41HKsNRrw8NPB8OAXZ0poRZTBi/RqOAB/lzr3iMI2bq+ll+O2FwQgRUR2Snm4siJDXh8iJwYher5dm3tiSvGakvKm9gHIVVltlRs7FG49bmE4cVUgcqqksM5KaKeD1j4GDce6K56/fNh6H2yAzIp+tlPHAGIyENQA0GhawEhGRHagJRgD7DNUoClgrmtprh8zIqcvG4y4t1d+cxaGatCxApyu/rmX6cgFLvwSm/6+B4vtfSDC+p1W46stXSj5MczPFmAVy5BANwGCEiKhOkQcj/v4mdqSD/YORjBzjDdicAlbAdsHIycvGtnRpqf79YjAiCIYN90xJvidg2y+G48JiLU5dMZ67cNPwp7OTZZmZysj7N+6a8dgWxbJqMBghIrIxnU6Hfv36ITAwED/99JND2yIGI35+fnB2Nr09mSMzIxUN0/h4GjMVthqmETMjzk5Ah2bq3196fxpTVn8jQF6Kc/aq4U+dTsClRMNxizDTy+JXlbx/42RDUsyMEBHVcqdOncLBgweRnp6OF154ATk5OZW/yUbEYKS8IRrAAZkRRQFr+a+zdWYkr0DAhQTDcdtIyxYck0/vFfd8kSsuEfDJLuVzZx4GI9dvGxd/axOh+tJmkWdGbslW+3fkgmcAgxEiIpu7ceOGdJyUlISFCxc6pB06nQ6ZmZkAKg5G5LNs7J4ZceDU3rhrxjU+ukRZ9hmV7U+z45ByhVfAmBkRh2gA+wQjcsyMEBHVcjdv3lQ8fvfdd3Hu3Dm7tyMzMxOCYKiJqE6ZEXGdEa1WGXCUZuvMSFWLV4HKl4RftcNYkyLuRHwl2TCl+PxN4+vaRtgmU+HhpoG7a9nnGYwQEdVyCQkJisc6nQ6vvPKKXdbwkDNnJg1g/517xWEafx/D7rzlUWZGqrYCqyAI2HVYwM5Dxs85daVqxatA6VVYlW28eFPAwTOG46jGwJh+YlsMU4ov3DS+3laZEcD0UJgjV18FGIwQEdmcPDMirnp67NgxfPrpp3ZthzwYCQgof0UvRxWwVlS8Clh3au+hOGDoGwKG/V3Al/sMQYCYGXGysHgVAIJk3Srf4wYAPtppDDZeHapBZ9lQ0JmrxmEaJydDsGIrpYdqfDyBet41tGbk3Llz6NatG9asWSM9FxsbiwEDBqBfv35YsWKFlA4EgPPnz2Ps2LGIiYnB1KlTcefOnaq1nIiohhAzI+7u7vjss8+k5x0ZjFSUGZEHKrYORnQ6AZkP63krKl4FrLvomXxxs3+sFfAgT1a8GmH5brlhskVtk0sllXYcNvzp7gpMHAx0amE8d+qygIsPr988FHBztV1wUDroc/QQDWBhMKLX67F8+XK0adNGeu7w4cPYsmULYmNjsXnzZhw9ehQ7d+4EABQVFWHu3LkYO3YsDhw4gI4dO+LNN9+0zjcgIqrGBEGQgpHw8HD069cPoaGhAIDExES7tsXcYMTZ2Vlag8TWwzRZucbjiopXAWWwUt4aHuaS74dzNRl44xMBOp3hsaVDNIDhO4g1GfJgpKREkB63a2pY9r59JKDRGH5p330UKBBn0thgsbPSbZSrscHItm3b0K5dO0RGRkrP7dmzB8OHD0dYWBgCAwMxYcIE7NmzB4BhWpuLiwuGDRsGNzc3TJkyBRcvXlRs2EREVBulp6cjN9dwxw0PN9xlGjVqBAC4e/cudOId0E5tEVUUjABAw4aGO5StgxFzV18FDPUY2od3rVtVTNjcz1bWc3ywzXjc1cLiVcCwpLqYHZEHI3dku/GK5709gcjgEgDKacC2rBcBqmcwYnrFmwpkZmbiyy+/RGxsLJYtWyY9f+PGDQwaNEh63Lx5c8THG/Jg169fR4sWxnyUu7s7wsLCcP36dek3BLmioiIUFRUpG+rsDFdXEyXAtZBY1Gbv4raaiv2lDvvLfNboK/m03vDwcOj1egQHB0ufm5KSIgUntiYfcvH396/wezVo0ACXL1/GgwcPkJeXB3d393JfK7Kkv+QZDn/vit+r1Ro2r7udBiTfq9r/l4oyK9EtBOj1lhfIhjUArt0CsnKArBw9fDyVu+OGNTC0Xa/Xo02TIly/46J4f6tw2/799PdWPm7c0LbX02orz3uoDkZWrlyJcePGwcdHGcLm5eXBy8tLeuzl5YX8fMOgXn5+vuKceD4vz3QF0rp167B69WrFc6NGjcLo0aPVNrdGS0pKcnQTahT2lzrsL/NVpa9OnDghHfv6+iIhIUHx7+epU6fQvn37KrXPXPJC2qKiojKzfOTk/2afOXMGISEhZl9HTX9duuYOwDCVw0nIREJCVoWvD/QJxu00N9zNEHAtPhEuqu9iBrfuNgBQdh6xk1aAn0sSEhIsD0b8POsDMNzxT8TdQrOQEpw57wnAkBLxcs5AQoIhGmob7otvjivvjwFut5GQUGzx9Suj0fsCMM5B9tCmISEht/w3VJF8FKU8qv43Xrp0CRcuXMC8efPKnPP09JRSkQCQm5sLDw9DtZGHh4finHje09P0hPLJkydj/PjxyobWscxIUlISGjdubFZEWdexv9Rhf5nPGn0l/lIGAJ06dUJ4eDiiopQraonDN7Ymzzi3a9euwuvKz7m6uprVRkv6y1m2P0pEmB/Cw/0qfH3TMODcDUAQNHDzCbd4iKGgxHjcow3w6wXDcdtIDVq2aGLZhz7UKhLAUcOxziUU4eFA4XHj+fYt/REe7v8wM6IcBtNqgT7dQ+DhVqUmVCiy1EydTq0DER4eaPrFdqIqGDl9+jQSEhIwZMgQAEBOTg6cnJxw69YtREZG4tq1a+jTpw8AID4+Hs2aGeZGNW3aFFu3bpU+p6CgAMnJyWjatKnJ67i6utaZwKMiWq2WNwsV2F/qsL/MV5W+kmcfIiMjodVqFcPTd+/etdv/h/v3jUt/NmjQoMLrBgUZF55IT09X1UY1/ZWVIwB4uBCbr6bCdUYAIKyBcTjhdpoG4cGW1XdkPDB8jo8n8M8pGgz8f4Y29Ghj3rBCRRo3NH6n22mG75Scamx3k4bG79kmXFmS0LQR4OVh25+HQF9j+wAgPLjyfrc1VcHIc889h4EDB0qPly1bhpCQEEyaNAlxcXF4++23MWjQIHh4eGDDhg0YM2YMAKBLly4oLCzEzp07MXjwYKxduxatW7c2WS9CRFSbyIORiIgIAFDUiNy+fdtubRELWF1dXcsMnZcmXxL+3r17FbyyatQUsAJAaKAG4o20KkWs4myaAF9gQFfgnVc0OHlZwBt/qvpN2dT03mTFPjDG4/q+eoQGGr9L28pHNKqsdAGrvL2OoioYcXd3VxQxubm5wcPDAz4+Pnj00UcxcuRITJw4EXq9HsOGDcPQoUMBGH7wly5dikWLFmHJkiVo06YNFi1aZN1vQkRUDYl1Gi4uLlIQIg9G7LnmknyTPI2m4puuOJsGsO2MmowHxt/QK5vaCwChshvnLQubJQiCYqE1jUaDuc8DgHWyA4pg5J4AQIOkh/GcRgOElBoR6dTCGIzYeiYNoOznwHqAp7tjsyKABQWscm+99Zbi8eTJkzF58mSTr23bti02bdpUlcsREdU4YmakSZMmUvpfXgzqqGCkMnbLjMjW+zAnGJHf6G+lGW70auXkAyU686+pVpgs8yFmRMRgJMgfcHVRtjm6BfDtMcOxrfakkZMvelYdpvUCXA6eiMhmMjMzkZVlmB0iLwBt2LChFJjYa5gmPz8fBQUFAMwLRuyVGblfampvZUIrWOHUkmvaIhgJrAe4Ppytm3QPKC4RpKXhw0zc/Kc8BTQLBbq1Aob1tn57Sguub1xa39Jl762tSpkRIiIqn6l6EQBwcnJCw4YNkZKSYrfMiJoFzwBlMGLLzEiGLDNiXs2I8djSYRpFMGLGNdXSajUIDRRw444hYLqTbtgMDwAam6jPaBIEXN2oqXTozFo83DT46i3gx5MCXhvl+CEagJkRIiKbka/rUXpqrDhUk5KSYpdVWNUGI/K6EptmRh4GIx5ugLsZ+8F4eWjg9zCDYmkBq9qhIUuIwx8ZD4DLslX/TWVGANgtEBEN7qHB8plaNA5iMEJEVKvJMyOlgxGxiFWn09llZ1xzd+wVOTk5SUGLPWbTqAkKxKGaW6lQbMiq9poAEOBjm5uxvLZFXMMEABo3rB43/+qGwQgRkY3IMyPyYRrA/jNq1GZGAGMRq21n0xj+VDNcIg7VFBQpAwtz2bpmBCgVjJwXTD5PRgxGiIhspKLMiHxGjT2KWC0JRsS6kdzc3DKraFtDfqEg7VRrTr2ISDG914Kkkj2GacJkGRBlZsQ216vpGIwQEdmImBlxcnJCWFiY4lxNyowAtsmOZFgYFIRVca0R+Y69tihgBZRtlGdimBkxjcEIEZGNiJmR0NBQODsrJy/WhGDE1tN7LZ3VYliF1cCSzIjaGTyWMBV0mFrwjAwYjBAR2UBOTo4UAJSuFwFqxjCNrRc+U7sUvCi0zAqnll/XHjUjIlMLnpEBgxEiIhuoqF4EYGYEKD1MY/5NWrHWSDWtGQkKAJydlM+xXqR8DEaIiGygsmAkKChIWlvC3pkRc6b2AnbIjFg4XCJfq8OymhHDn+6uhgXAbEGr1SgyOADrRSrCYISIyAbu3r0rHcuHZEQuLi7Szd6emZF69eqVqV8pT3WtGZEvt27JkvDyHXttqXTwwcxI+RiMEBHZgDwYCQoKMvkacagmJSUFer3epu1Rs0meyNaZEbU79oo0Gg1CHn4Ni4ZpZDv22lLZYIT1IuVhMEJEZAPyYESeYZATg5Hi4mLFMIq16XQ6ZGRkAFAXjNg8M1KFWS3iUM39bMN6JebKLxSQX2g4tndmpLyl4InBCBGRTcgzCeVlRuTDN7YcqsnKypKWTVcTjAQEBEi7C9smMyK7lsrAQF7EeltFdqQq11QrrIEyE8JhmvIxGCGiWiU/Px9XrlyxaM8Sa1KTGQFsG4xYMpMGALRaLQIDDXd9W9eMqM2MyIMRNXUjtt6xV650JoQFrOVjMEJEtYZOp0OXLl3QsmVLrFy50qFtETMJbm5u8PU1/Su4vdYasWQmjUisG7l3757VAzxxmEajAep5qXtvqCzroGZGjT3WGBHJMyFc8KxiDEaIqNa4du0aLl68CAAOD0bEzIh8Cm9p1T0zAhizOgUFBRbtTyMIAsYt1KPNn/T4PV5QPJ/ysFl+3oapsGqEWbg/zX0L1zaxhLyNwQGAizMLWMvDYISIag35Df3ChQuKXXPtSafTIS3NcIcsb4gGUAYj9sqMqA1Gqjqj5swVYNN+4GICMH+NMRg5f8M4vNKxueqPVW6Wl1p+xqagUMCba/RYtcPwGnssBS8KDgC8PAzHLcIqfm1dx2CEiGqN0jf0PXv2OKQd6enp0lTd8opXAfsVsFojMwJYVjeSKItfvjtu3KRu2y/G5597TH3GwNyakY93Af/6HJi+XMBPZwS71ow4OWmw6i8aDOgKLJ7KrEhFGIwQUa1R+obuqGDEnDVGACA4OFg6tlYwYqquw5GZEflMl+ISYOtPhuNtvxjbOexR1R+rqL+oaJjm4BnjdXYfEXDfwrVNLPWnQRr8uFyLmPYMRirCYISIao3SN/QDBw4gPz/f7u0wZyYNALi6ukrBgTWGaaZOnQpXV1esWrVK8bwjMyO305TB0cZ9Aq7fFhB3zfC4WyugcZD6G7WriwYN/AzHd8pZokUQBBy/YHz8wwn7zqYh8zEYIaJao3Qwkp+fj59++snu7TBnjRGROFRz586dKs1Wyc/Px5o1a1BSUoLZs2fjypUrAAw3ZPEYcEBmpFSg8PNZ4P2txu9pyRCNqNHDr3I7zXRGKPEukHLf+PiPG4b/RPbIjJB5GIwQUa1haqjj22+/tXs7zM2MAMYi1qKiImmVVEukpqZKN+SioiJMnz4dgiBg06ZNOHDggNSW0NBQVZ9b9cxI2efe/9p4/Fwf1R8pEYdqikuA9Kyy5+VZEdHhc8ZjBiPVB4MRIqo1xGDEzc0NLi6GndS+/fZbuy+AZm7NCGC96b3i7B3R/v378d///hczZsyQnnv//felfjGXtWpGtLK7jfi/o20kENXY8sxIiCzJUzoDAwDHL5T//93JCfDxtPjSZGUMRoio1hBv5mFhYXjssccAADdv3sSlS5fs2g41wzTWCkZMZS3mzp0rZVvGjh2LMWPGqP7cKmdGHgYJTRoC3Vsrzz33mOqPUwipZEn44xeNx57uynMBPih3/ReyPwYjRFQr5OfnIyvLkKtv1KgRhgwZIp2z91CNJcM0QNWKWOWBgoeHR5lrfPjhhxZ9rp+fH5ycnACoz4wUFgnS8ElIIDD+CeXNf3jvqgUDIYHG95cuYi0uEXDqsuE4shEwqJvyPIdoqhcGI0RUK8izCo0aNcJTTz0lPbb3FF8xGNFqtZUWjNoiM7Jw4UJ4e3tLj9esWaN6GXiRVquVhmrUZkbkAUJIIDCmn3G4JiIY6NTCoiYZP1M+TFMqM/J7PFBQZDju0RYY2F0Z+HAmTfXCYISIaoXSwUhUVBQaN24MADh16pRd60bEDEJgYKCUVSiPLWpGOnXqhPXr16Ndu3ZYsmSJIktkCXGoKSUlBTqdzuz3yQOEkPpAUIAGS1/VoF0ksGKWpsrDJMphGuX/X/kQzSOtNcyMVHMMRoioVigdjGg0GrRq1QoAkJ2dXabA01YEQVDsS1MZW2RGAgMDMWzYMPz++++YM2eOxZ8patKkCQCgpKQEKSkpZr/vtiIzYgg8/jJGg98/0+LZR6ter6EIRkoN0/x63hicPNIGiAzRoLlsIpGtl4IndRiMEFGtUDoYAYDmzY2bnly7ds0u7cjOzkZRkWF8wFHBiHwGjDWEh4dLx4mJiWa/T5EZscGOtUH+ht1wS18LMGZGXJyBTg9/DAbKsiMcpqleGIwQUa0gv5GLC4m1aGEsSrBXMKKmeBUAPD094etrGDOorsGImBkByg9Gjv4uYPpy4Kk3G+HoH4bn5EMntghGnJ01aOgvXsv4fMYDAZcfNrNTc8DdzRCxDOlpzMY0bsiZNNUJgxEiqhUqy4xcvXrVLu1Qs8aISGyvNYIRHx8fuLm5Wfw5psiDkYSEBJOvuZBg2JTuYqKrMRiRD9OoW/jVbOLnptwH9HpD8HNCXi/Sxng8pAcwZxwwbgAwabBt2kOWYTBCRLVCdRmmUbPGiEhsb25uLh48eFDJq00Ta2KsnRUBys+MpKam4sKFCygqKkKvdsbXGzMjxudskRmRf26JDkh7OI1YXrzao40xA6LRaLDkVS02LtAi0I+ZkeqEwQgR1QpiMOLq6ipNY42MjJRmbFTXYRqg6nUjJSUluH/fsAmLPYORLVu2oG3btvD09MTpI1/C7+Fs4mPnDYW8YjDi6Q74elm9WQBML3x24qKyeJWqPwYjRFQriDfx4OBgKQBxd3eXbqSOCEbUZkYAy4IR+a68tghGgoOD4ezsDEAZjFy+bFhVTKfToXFYqHTjv5cB3LhjHKYJqW+71U5NrTVy7rrhTx9PoJm6rXjIQRiMEFGNV1xcLNVMyG/sgHGoJiMjQ3HTthX5MI29MiOlp/Vam5OTk7RmizwYkS+z36pVK/Rsa3zPvpNAVo7h2FZDNIbPNgY5t9OBrBwBCQ9nH7dvyiXfawoGI0RU48mzEeUFI4B9siOOyIzYciaNSMwwZWRkSHUtYmakXr16aNiwoSIY+fpn286kETUqlRn544bxcfumtrsuWReDESKq8UwVr4ocGYyYmxkRpyIDlgUj8gXdbB2MAIbsSF5enjSzplWrVtBoNOjeGtBqDEHIgdPG99pqJg1QdhXWc/HGxx2aMStSUzg7ugFERFVVUTBi77VGxGGaevXqmT3FtiZlRgBDMFJSUiI9btmyJQBDkWpUWDEuJbmiRLZqvHwoxdpK14xotcaMDDMjNQeDESKq8eS73VaUGbHHWiNqloIX1cRgJDs7W3osLrsPAJ2bF+JSkqvivbYcpmnob9h8T68H7twH7stmRrdjMFJjcJiGiGq8ijIjTZsa70i2zozk5+dL9RRqghFfX194eHgAqL7BSOkl4cV6EaBsMFKaLYMRJycNgh9uSHwr1Vgz0rgh4O/DYZqagsEIEdV4FQUjHh4eCAsLA2D7YMSSmTSAYcZHVVZhtfVsGqBsZkQ+k0YcpgGAzi1MBCM2rBkBjMHOnXTjDB4O0dQsDEaIqMarKBgBjHUj6enpyMjIsFk7LJlJIxLbnZGRgYKCAlXvtUcBqzi1FzAsCS8GI05OTmjWrJl0LrxhCRr4Kd/byNbBiInP79Cs7HNUfTEYIaIaTwxGtFqtyYyEvG4kPj6+zHlrsTQzAiiDqJSUFFXvFTMjbm5u8Pb2VvVec3l7e0sr2968eVMapomMjFQU6mo0QA/ZFF9fL8Db07bDJaaCnfZNOURTkzAYIaIaTwxGGjZsCCcnpzLn7VXEao3MCKB+qEYMRho0aGDTRb7EoZqkpCTk5eUBUNaLiHrJghFbD9EApmfrcJimZmEwQkQ1mk6nk4IAU0M0gPXXGjl27BhGjhyJDRs2SM8JgoADBw5Ij+0VjAiCYNNN8uTkRawieb2ISJ4ZsWXxannXcHEGWjYx/VqqnhiMEFGNlpaWBp3OsKhFecGItdcaee211/D1119jwoQJeOWVV1BUVIQ5c+Zg48aNAAAXFxd0795d1WeqCUYuXryITZs2oaSkBJmZmdKaH7YORuRFrCJTmZHurYDwYMNx32jbD5eUzr60agK4unCYpibhOiNEVKNVVrwKWH9678WLxj3qP/74Y+zdu1dajVSj0SA2Nhahoep2aDM3GLl58ya6d++OnJwcnD17FlOmTJHOOSIYMZUZcXcDjq3U4GIC0KeTTZsEoGxmhMWrNQ8zI0RUo926dUs6li+rLufl5SWdq2rNSFZWlmLBLwBSIAIAn3zyCZ5//nnVn2tuMDJ//nzk5Bjmr65Zs0ax4JutpvWKzM2MAECjQA36ddHAyckOmZFSX5vFqzUPgxEiqtGSk5OlY/n009LEupHU1FRkZWVZfD35rrU9e/ZUZEBWrFiBl156yaLPNScYOXXqlKJOJT09XfHY3pmRgIAAmwdA5gisBzjL6pZZvFrzMBghohpNHoyIi5uZIl8L4+bNmxZfLykpSToeMGAATp06hUWLFmH37t2YNWuWxZ9bv359ODsbRs5NBSOCIGDOnDllnl+/fr10bO9gpGXLljadvWMurVajmN7LYZqah8EIEdVo5gYjERER0nFVghF5ZqRJkyYICgrC/Pnz8fTTT1v8mYBhjZTgYEPVp6lgZM+ePTh48CAAQw2MuOaHfIE0WwcjwcHBcHFxkR6XN0TjCNEPa5SbhQKhtu0GsgEGI0RUo8kzFfYIRuTXq2hYyBLiUM29e/cUu+KWlJRg7ty50uP//Oc/GDVqVJn32zoY0Wq1iu9sqnjVUVb+RYN3XtFg52JNtcjWkDoMRoioRhMzI15eXvDz8yv3dZGRkdLxjRs3LL5e6cyINYnBiCAIilVY9+3bhwsXLgAAHnnkEYwcORLjx48v835bByOA8jtXp8xIaAMN5j6vQdtIBiI1kepg5N///jcGDRqEPn36YMyYMfjll1+kc7GxsRgwYAD69euHFStWQBAE6dz58+cxduxYxMTEYOrUqRZtBkVE1Yv877ijri8GI2FhYRX+RmyLYRprZ0bkbZQHTH/88Yd0PGPGDGg0GsTExJS5vj2CEXk2pH379ja/HtUNqoOR8ePHY/fu3fj555+xYMECvPnmm8jMzMThw4exZcsWxMbGYvPmzTh69Ch27twJACgqKsLcuXMxduxYHDhwAB07dsSbb75p9S9DRPazcOFCeHl5YenSpQ5rQ1ZWFnJzcwFUPEQDGKb9igWi1him8ff3t/o+MOWtFCvfT0dcwE2r1SqmEDs5OVWYGbKWuXPnYtiwYVi6dKli/RaiqlAdjERERMDV1RWAYXGfkpISpKamYs+ePRg+fDjCwsIQGBiICRMmYM+ePQAM09FcXFwwbNgwuLm5YcqUKbh48aJifQAiqjkEQcB///tf5Ofn44033sCVK1cc0g5zi1cBw81aHGKwNBjR6XTSNa09RAMoV4qVr4ciD0bks4LkwUj9+vWh1dp+5L1p06bYvn07/vrXv9r8WlR3WLQC63/+8x/s3r0bhYWFiImJQfPmzXHjxg0MGjRIek3z5s2lv0DXr19X/CVzd3dHWFgYrl+/bnKVwqKiIhQVFSkb6uwsBUG1nV6vV/xJFWN/qWON/kpNTZUW3iopKcHrr7+OrVu3WqV9asiHTEJDQyv9TpGRkbh+/TqysrKQnp4Of3//Cl9fuq/u3LmD4uJiAIYhGmv/zMkzDVevXpU+X8yS+Pj4ICAgQHq+Xbt26N27Nw4dOoQePXo4/O8A/y6qU1f6y5wg2aJg5PXXX8ecOXNw6tQpxMfHQ6PRIC8vD15eXtJrvLy8kJ+fDwDIz89XnBPPi7s+lrZu3TqsXr1a8dyoUaMwevRoS5pbY8mr9qly7C91qtJfcXFxisfbt2/H119/ja5du1a1WRa3w8PDQ7ESqin16xsXozh27Bjatm1bwauNxL46e/as9Jyfn1+l17OEk5MTdDodLl68iISEBBQXF0tBV5MmTRQBGGBYaO3EiROIiYmxSXsswb+L6tT2/pIXj5fH4r1pnJyc0L17d3z55Zdo3LgxPD09pbFbAMjNzYWHhwcAwz8S8nPieU9PT5OfPXny5DKV4nUtM5KUlITGjRvbJe1a07G/1LFGfx0/frzMc++++y4OHTpk12mV4i88ANCxY0eTu8rKtWvXDps3bwYAFBYWVvr60n3122+/Sefatm1b6fstERERgfj4eCQmJqJJkyaIj4+XNgJs1apVmWuGh4ejY8eOVm+HJfh3UR32l1GVN8oTx1AjIyNx7do19OnTB4BhjFMc22zatKkihVtQUIDk5ORyi59cXV3rTOBREa1WW+d/QNVgf6lTlf6S/3Yu/iZ/7NgxbN++HSNHjrRWEyslrztr0qRJpd9H/htaYmKi2d9f7Cv59cLDw23y8yYOcT948ADp6emKWTXNmzevET/j/LuoDvtLZQFrTk4O9u7di7y8PJSUlGDfvn04efIkoqOjMWTIEGzbtg3JycnSfglDhgwBAHTp0gWFhYXYuXMnioqKsHbtWrRu3Vr1rpZEVD3IC0DfeOMNxbE9p/uqKWAFqr7WiC2n9YpKF7GWV7xKVJuoDsW2b9+OIUOGoH///oiNjcW//vUvtGzZEo8++ihGjhyJiRMnYuTIkejRoweGDh0KwJDpWLp0Kb788ks8/vjjOHPmDBYtWmT1L0NE9iG/kc+YMQO9evUCYLh5lq5psCUxGHF3d5eWR69IVdcaseWCZ6LS03sZjFBdoGqYxtvbGx9//HG55ydPnozJkyebPNe2bVts2rRJXeuIqFoSb+Senp5o2LAhevXqhaNHjwIwBCS2qKUwxdwFz0SNGjWCi4sLiouLLQpGxEJDrVaLkJAQ1e83B4MRqovq9iAVEakmCIJ0I4+IiIBGoyl3fQxbys7ORnZ2NgDzh0y0Wq0UKN28eVP1kJKYGZEvoGZt5QUjLi4uZg1FEdVEDEaISJV79+5JO8WKwx5RUVHSeXstgKa2XkQk1o08ePAA9+/fN/t9BQUFuHfvHgDbDdEAhvaJxYxXr17F9evXpeednJxsdl0iR2IwQkSqyOtFxGDEEZkRS4MRNXUjqamp+OWXXxQrrwK2K14FDDV2YvYmLi5OWo+JQzRUmzEYISJV5Ddw8cYeEhIirRtUW4KRpKQkREdHY9KkSfjTn/6kWFDMlpkRwDhUU1JSIj3HYIRqMwYjRKSK/AYuDnloNBrpBnr9+nXFTdRWbBmM5ObmYujQodLu4l999RXefvtt6by9ghE5BiNUmzEYISJVTA3TAMa6kZKSkirtimsu+RLaaoZNKltrRK/XY9KkSThz5ozi+f3791t0PUswGKG6hsEIEaliapgGsH/diK0yI4sWLZJWjPbx8cHjjz9e5jXMjBBZF4MRIlJFvIF7eXkpNp5zVDDi6uqKwMBAs98XFBQENzc3AGWDkfj4eLz11lsADENPGzduxIoVK8oEArYORuR9KTJnszGimorBCBGZTa/XS4WckZGRioXG5DdQe0zvVbvgmaiitUZOnTolHb/22msYMmQIvL298fnnn0vTan18fMxa7bUqSvdtaGiotPEoUW3EYISIzJaSkoLCwkIAyuEOQLnWiK0zIzk5OcjMzASgbohGJGYZcnNzkZaWJj0vX+69W7du0nGPHj3w6aefonnz5li8eLHNdyZ2d3dX1KWYGrYhqk0YjBDVICUlJVi5ciX27NnjkOuXVy8CAA0aNICvry8A2wcj8t1zLQlG5G2XF7FWtPfMxIkTcfXqVcycOVP19SwhD0BYL0K1HYMRohpk9uzZmDFjBp599llcu3bN7tevKBiRLwufkJAgZVBswdKZNKKmTZtKx+YGI/bGYITqEgYjRDXEb7/9hpUrVwIAdDodfvvtN7u3QX7jNlVQKQ7V6PV6aRlzazl9+jT+/Oc/o2vXrhgyZIj0vCWZEXkwIt+ITgxynJyc0KhRoyq0turatm0rHbdu3dqBLSGyPdvs9EREVlVSUoJp06Ypii3ttdKpXEWZEaDsjJqq3kRLSkrw2Wef4aOPPsLJkydNvqZLly6qP1cejMiDJjEzEhoaCicnJ+j1etWfbS0TJ07EgQMH4Ovri6efftph7SCyBwYjRDXA//73P5w9e1bxXHUbpgGsP713zpw5eO+99xTPaTQatGrVCt27d8fQoUPRo0cP1Z8rH/YQg5G8vDypmNXRQzQAUK9ePezYscPRzSCyCwYjRNVcUlIS3nzzTQCGG7GYHXFEMCIO0/j4+MDf37/MeWtP7923b590HB0djWnTpmHMmDHw8/Or0ufWq1cPAQEBuH//vjRMI69DqQ7BCFFdwmCEqJr7xz/+gdzcXADAtGnT8M033yA5OdnuwYhOp5OGMUqvgyGyZmZEEAQp+GnRogVOnTpl1Sm1TZs2xf3795GUlISioqJqVbxKVNewgJWoGhMEAXv37gVgWPF08eLF0g0/LS1NWmvDHm7evIni4mIAypoLuYCAAGlV1qoGI6mpqVIQ1rRpU6uv7SEO1QiCgISEBAYjRA7EYISoGktISJB2ju3Zsyf8/f0VUz7tmR25cOGCdCyf6VGaGCwlJycjLy/P4uvJC0vLC36qonQRK4MRIsdhMEJUjR05ckQ6jomJAQCHBSPnz5+Xjtu0aVPu6+RDNVVpn3wasa2Dkfj4eAYjRA7EYISoGjt69Kh03KtXLwCOC0bMzYzIl4W/fPmyxdeTZ0ZssUkcMyNE1QeDEaJqTAxGNBqNNIXV3rvjisRgRKvVKgKO0uRri1y8eNHi69l6mKb09F4xGPH19UW9evWsfj0iKh+DEaJq6sGDBzh37hwAoH379tK+L/Ibs70yI3q9XgosmjZtWuEOstYKRmw9TBMWFgZnZ8OEwmvXrklTe5kVIbI/BiNE1dTx48elFUDFehHAMKsmJCQEgP2CkYSEBKkYtaJ6EcAwjOTk5ATAOpkRf39/m2QqnJycpIXbLly4IO2lw2CEyP4YjBBVU/LiVbFeRCTWjdy7dw/Z2dk2b4u59SIA4OrqKg2BXL582aIl1YuLi6VMhS2yIiKxnTqdTnqOwQiR/TEYIaqm5MWr8swIYL0ZK+aSByOVZUYA41BNQUEBEhISVF8vMTFRCmJsGYyY+mwGI0T2x2CEqBrS6XT49ddfAQDBwcFl9oGx94wac6f1iqpaN2LrmTQiBiNE1QODEaJq6Pz589LwS69evcqsPmrvYETMjIib1FWmqsGIrYtXK/psBiNE9sdghKgaqmiIBrBvMCIIghSMREZGwtPTs9L31JTMiHx6r6hx48Y2ux4RmcZghKgcOp0OBQUFDrl2RcWrgPImauu1RhITE6U9YswZogGgyJ6YG4wUFxdLOxLbeo0RUelAR6PRIDQ01GbXIyLTGIwQmZCUlIQmTZogLCzM7rvj6vV6HDx4EADg5uaGzp07l3mNj48PgoODAdg+M6JmJo3Ix8cHYWFhAAzBiBhklOcf//gHXF1d8dprrwEwDtNotVqbDpv4+voiMDBQehwSEgIXFxebXY+ITGMwQmTC8uXLcfv2baSnp2Pz5s12vfYvv/yCW7duAQAGDBgAV1dXk68Th2pSUlKQk5Njs/aonUkjEodqMjIycO/evXJfl5aWhrfffhsAsGLFChw6dEjKjISFhZX7/a1FnmVivQiRYzAYISolNzcX69atkx5XZX8VS2zYsEE6Hj9+fLmvk9eNxMfH26w9lgYj5g7VbNy4EcXFxdLjGTNm4P79+wBsO0Qjkl+DwQiRYzAYISpl06ZNyMrKkh5fuXLFqp9/9+5dXLt2zeRiYIWFhdi6dSsAw0qrzz77bLmfIw9GbFk3Ip/Wa85MGpG5Raxr165VPP7999+lYwYjRHUDgxEiGUEQsHLlSsVz1gxGLly4gMjISLRo0QJ+fn7o27cvFi5cKA2zfPfdd8jMzAQADBs2DF5eXuV+lnzhs6pmb/Ly8vDf//4Xu3fvVjwvn0kTEREBb29vsz/TnGDkzJkziIuLAwBF7YbIljNpRC1btpSOTc2uISLbYzBCJHPixAmcPn1a8dz9+/eRlpZmlc//8ccfkZ+fD8CwEd7PP/+Mt956C8OHD0dJSQk2btwovbaiIRoAaNeunXQs3tAt9f7772POnDl49tlnsX//fun55ORkPHjwAIC6IRrAvGBEnhVZtGgR+vXrpzhvj8zIyJEj8fTTT+OJJ57AuHHjbH49IiqLwQiRjDwr0qBBA+nYWtmR5ORk6TggIEA63rdvH2bNmiVlJgIDAzFgwIAKPysqKgpubm4Aqh6MyIdGXn31VWlK89KlS6Xn5cGPORo2bAh/f38AwKVLl8qcLygokOpj3N3dMW7cOMX1APsEIx4eHti9ezd++OEHaWdkIrIvBiNED6Wnp+Orr74CAPj5+UnTTAHrFbGKm78Bhl15Dxw4IG1jv2rVKikIGDNmTKVTTJ2dnaUA4erVq9JaIJZISUmRjq9evYp33nkH+/fvx//+9z8AhmBhypQpqj5To9FI2RF5hkW0a9cuZGRkAABGjBiBevXqoXPnzpg4cSIAwNvbW3U2hohqJgYjRA/FxsZKwcCkSZPQqVMn6Zy1MiPyYCQsLAyPP/443n333TKvq2yIRtSxY0cAhtqOP/74w+J2yYMRAFi8eDFeeOEF6fF//vMfREVFqf5c+VBN6eyIfMbSiy++KB1/9NFHWLlyJQ4ePMhMBVEdwWCECIab+SeffCI9fuWVVxSFjdYepmnQoAHc3d0BGKayTpo0SXpNZGQkevToYdbnyQOmqgzV3LlzR/G4qKgIt2/fBgA8/vjj+L//+z+LPlcejMinCGdmZuKHH34AYCiM7du3r3TO3d0dr776Krp27WrRNYmo5mEwQgTDQmNiwNG3b1+0bNkS4eHh0oJb1him0el00mJm4uqkgGE4Y9WqVXjyySfh7OyMRYsWldkYrzxiZgQAzp49a1G7CgsLpeGSjh07Ijw8XDrn4+ODdevWQau17J+K9u3bm2xfXFycNLV5yJAhFn8+EdUO/BeACFBkRaZOnQoAcHJyktbyuHbtGnQ6XZWukZKSIn1G6c3Y3N3dsWfPHuTl5Zk9RAMAHTp0kI4tzYzcvXtXOm7WrBlWrlwpBQcffPCBIjhRKzo6Wjo+c+aMdCxvqzy7Q0R1E4MRqvPS0tKkhcbq16+P5557Tjon1kkUFhYiMTGxSteRz6SRZ0ZEGo1G9b4ofn5+UrBw7tw5kwupVUY+RNOoUSMMGTIEv/32G44dO6aoG7FEgwYNpI3nzp49K+1RI8+SyLM7RFQ3MRihOu/zzz9HUVERAEPhqjhdFoBV60bkxavW3KZevJnn5ORIG8ypIS9eFTff69Kli9l1K5URMx9ZWVm4efMmAGNmRKvVqp4yTES1D4MRqtNKF66+/PLLivPyGSTVPRgBLBuqMRWMWFPpoZqSkhJpifmoqCh4enpa/ZpEVLMwGKE67dChQ1Jxap8+fRSZEEAZjFS1iLWyYRpLVXVGTelhGmsrHYxcvnwZhYWFADhEQ0QGzo5uAJEjrV+/XjqeNm1amfM1aZgGsGxGjb0zI/LpvgxGiAhgZoTqOPlCYaZ2yA0MDISfnx+AqmdG5MGIWNRpDZGRkdIGdtVxmCYiIgL16tUDYAiWWLxKRKUxGKE67erVqwAMwyamdsjVaDRSdiQxMVHa5M4S4jBNw4YNFUWyVaXVaqUpvgkJCdKuv+YSh2k0Gg0aNmxotXaJNBqNNJR069Yt7Nu3TzrHYISIAAYjVIdlZGQgPT0dANCiRYtyXyevG7l27ZpF1yopKZFWNLXmEI1IflM/d+6cqveKmZHAwEDVU4vNZWq9kfr16yMkJMQm1yOimoXBCNVZ8fHx0rG4uJkp8roRS4dq7ty5I60BYs3iVZGlM2oEQZCCEVsM0YjkwYioU6dOZq80S0S1G4MRqrPkWY6KghFrTO+Vz6SxdWbk999/N/t9GRkZ0hortphJIzIVjHCIhohEDEaozhLrRQDzgxE1N3q50rv1Wpt8hsrFixfNfp+ti1dFrVq1KlMnw2CEiEQMRqjOMjcz0qZNG2m2ysGDB6UlzdWw1bReUb169aT6C0uDEVtmRlxcXMqstMpghIhEDEaozpIHI82aNSv3dS4uLujTpw8Aw6Zy4uqhath6mAYwZkfS09ORmppq8jWZmZlYt26dNNwkX/DMlpkRQDlU4+LiosjmEFHdpioYKSoqwsKFC/HUU0+hT58+mDRpkqJyPzY2FgMGDEC/fv2wYsUKxW+Q58+fx9ixYxETE4OpU6cq/hEkcgQxGAkJCTE5rVduwIAB0rF8aqq5bD1MA1Q8VCMIAj7//HO0bNkSL730EsaMGYPs7Gy7DdMAymCkTZs2cHV1ten1iKjmUBWM6HQ6hISE4NNPP8XBgwcxbtw4vPbaa8jLy8Phw4exZcsWxMbGYvPmzTh69Ch27twJwBDEzJ07F2PHjsWBAwfQsWNHvPnmmzb5QkTmyM7Oxr179wBUPEQjqmowIs+MWHPBM7nygpGbN2+ib9++mDhxovSds7Ky8N1339ltmAYwbL4nki9hT0SkKhjx8PDAyy+/jODgYGi1WgwaNAguLi5ISEjAnj17MHz4cISFhSEwMBATJkzAnj17AACnTp2Ci4sLhg0bBjc3N0yZMgUXL17ErVu3bPKlqPpLSUnBsWPHpP/s/bNgbr2IqG3btggKCgIA/PTTTyguLlZ1PTEzEhQUZLOMQKtWraTjS5cuSccTJkzAL7/8Uub1u3btsuswTffu3TFhwgS0bNkSr732mk2vRUQ1S5X2pklMTER2djYaN26MGzduYNCgQdK55s2bS+s4XL9+XbGolLu7O8LCwnD9+nWTvyUWFRVJ0w2lhjo715m0rrgehfhnbXPkyBH07dtX8f00Gg2+//579O/fX/XnWdJf8im6zZo1M+u9/fv3x8aNG5Gbm4tjx47h0UcfNetaxcXF0k2/cePGNvv/Kl8P5cKFC9Dr9UhLS8ORI0cAGIKNjz76CJMmTUJmZib27NmjKCJt2LChzX/mPvvsM+m4Jvx81/a/i9bG/lKnrvSXVlt53sPiYKSgoABvvvkmJk2aBG9vb+Tl5SnG3b28vKSls/Pz88uMyXt5eSEvL8/kZ69btw6rV69WPDdq1CiMHj3a0ubWSPI6g9pk1apVZf7yCYKAJUuWmJWlKI+a/jp58qR0XK9ePSQkJFT6nujoaGzcuBEAsHXr1goLUQVBwMWLF5GWloaMjAypfiogIMCsa1lCEAT4+PjgwYMH+OOPP5CQkID9+/dL559++ml06NABjz32GHbt2oXs7GwpUHF3d0dGRobqpeTritr6d9FW2F/q1Pb+ioyMrPQ1FgUjJSUleP3119G4cWO8/PLLAABPT0/k5uZKr8nNzYWHhwcAw/CO/Jx43tPT0+TnT548GePHj1c2tI5lRpKSktC4cWOzIsqaRix6dnJywsyZM7FhwwakpaXh0KFD8Pf3h6+vr6rPs6S/xGXgAaBnz54IDw+v9D2jR4/GnDlzABiGHk29JzMzE1988QU++eQTk7NuoqKizLqWpdq2bYtff/0Vt2/fRv369RVrqQwaNAjh4eEYN24cdu3aBcD4G1mjRo0QERFhs3bVVLX976K1sb/UYX8ZqQ5G9Ho93nzzTWg0Grz11lvScs6RkZG4du2aNAUyPj5emi7ZtGlTbN26VfqMgoICJCcno2nTpiav4erqWmcCj4potdpa9wOamZkp3aQ7deqE9957DyUlJfjwww9RWFiIPXv24Pnnn7fos0v3161bt5CammqyWFJeM9KiRQuz+rlJkyZo1aoVLl26hOPHjyMnJ0cROO3evRtjx44tN+MHAL169bLp/9PWrVvj119/BWBY1O3YsWPSuUcffRRarRaDBw+Gq6urYihUrAMj02rj30VbYn+pw/6yYJ2RxYsXIz09Hf/5z3/g7GyMZYYMGYJt27YhOTkZ6enp2LBhA4YMGQLAUEVfWFiInTt3oqioCGvXrkXr1q1tNquAqi/xRgkYbsyAYQhOJA9aq+Lu3bvo0qULoqOjERsbW+a8GIwEBQXBx8fH7M8VZ9XodDr8/PPPinNLlixRBCK9evXC/PnzsWDBAixYsAAbNmyw+VCjfEZNXFwcTpw4AcDwC4FYoOrj44OePXsq3mfrmTRERBVRlRm5c+cOduzYATc3N8VUx/fffx+PPvooRo4ciYkTJ0Kv12PYsGEYOnQoAEOmY+nSpVi0aBGWLFmCNm3aYNGiRdb9JlQjiDUKgDEYefTRRxEUFIS7d+/iu+++Q05OjrTiqaW++OIL3L17FwCwaNEivPDCC9JvHjk5OdKU1op26zVlwIAB+OCDDwAYpvg+88wzAAxFqmIdSmhoKPbu3VtmxVF7kAcjGzduREFBAQBjX4sGDBigCKZsPZOGiKgiqoKRRo0aKQr/Sps8eTImT55s8lzbtm2xadMmda2jWufo0aPScUxMDABD7chzzz2HVatWoaCgAN9++y3GjBlTpets2LBBOr5+/Tp++OEHPPnkkwDM363XlL59+8LJyQk6nU6x3si5c+ekG3+fPn0cEogAyum98uJVsa9FAwYMUKz1w2CEiBypbg9SkV2VlJTg+PHjAAyrkMpno4wcOVI63rJlS5Wuc/HiRZw5c0bx3MqVK6VjtWuMyNWrVw9du3YFYJg+K07ZlQ8/9ejRQ3WbrSUyMrLMhnRA2cxIUFAQunfvLj3mMA0RORKDEbKbc+fOSbOqSv+m/thjj6FBgwYAgD179pSZfaWGPCsi+uabb6Qptebu1lse+VooBw8eBAApyAIcG4w4OTkpdhkGAF9fX7Rt27bMa0eMGCEdy9coISKyNwYjZDfyIZrSv6k7Oztj+PDhAAzr0oir96olCIIUjGi1WsyYMUN6/pNPPgFQtcwIAPTr1086FodCxMyIm5ubw3ejLb0BXY8ePeDk5FTmdf/3f/+HuXPn4u233zZ7ATciIltgMEJ2Iy9eLZ0ZAZSzarZt22bRNY4ePYqbN28CMNRFzJ8/X5r1tWbNGly6dEkxpGJJMNKrVy9pKOTAgQNIT0+Xsi2dO3d2+LT00sGIqb4GDIHTO++8g9dff12aok9E5AgMRshuxMyIp6cnOnToUOZ83759pVk08sBFDfkQzfjx4xEcHIznnnsOAHDv3j20bt1aWuckKCgI9erVU30NDw8P6QZ/8+ZNfPnll9I5Rw7RiEoHI6WzUERE1Q2DEbKL5ORkJCYmAjBsmObi4lLmNc7OzlJxaFJSEm7fvq3qGkVFRdi8eTMAQ8AgDvu8+uqrZV7r6uqKBQsWqPp8OflQzZIlS6Tj6haMaLVaPPLIIw5sDRFR5RiMUJX98MMPeOutt5CRkVHua0xN6TVFfjOXF4Wa49NPP5WWeX/22Welxcz69OkjbeLYpEkTvP3220hKSsL06dNVfb6cvIhVvq9EdbjxR0VFSUNFHTt2VLWoGxGRI1Rp116i9PR0DB06VFrif82aNWVeU1RUJC0UBlQ8bCAPRn799Vcpu1GZnJwc/POf/5Qey7eo12g02LlzJ+7cuYPGjRubLOZUq2vXrvD19UV2drb0XHBwMJo0aVLlz64qd3d3LFu2DOvXr8fixYsd3RwiokoxM0JVEhcXJy32tWXLFhQWFirOC4KAWbNm4dChQwCAkJAQ9O3bt9zPk2cW5IWmlfnkk09w7949AIYN7UpnKNzc3BAREWGVQAQwDCmJ+zCJevToUW0KQWfOnInjx48rMjhERNUVgxGqkosXL0rH2dnZilVJAcNiYx9//DEAQ0Cwbdu2cndrBgzZBXFX25MnT6KkpKTSNty6dUvKyLi4uNgtGyCvGwGqxxANEVFNxGCEqkQejADKje4OHDiAP//5z9LjNWvWmHXDFodq8vLy8Mcff1T6+n/84x9Sdmb69OnSbtG2VjrrUB2KV4mIaiLWjNRyp0+fVhSCBgQEYNiwYSaXDLdE6WBkx44d+PjjjyEIAqZMmQKdTgcAmDt3LiZMmGDWZ/bo0QNfffUVAMNQTadOncp97ZEjR/DZZ58BMCzVLt9vxdbatWuHBg0aIDU1FVqtVpoJRERE6jAYqcUuXryI7t27SwGBaNasWVixYoXVriGXmZmJAwcO4OrVq9LiY3379lU1dFK6iPWVV14x+bpff/0VgwcPhl6vBwD87W9/Q/369VV+A8tpNBrMnz8fc+fOxfTp06u80zARUV3FYZpa7JtvvikTiADA6tWrkZmZWeXPz8rKkjaKk686um7dOixatEh6vGzZMlWFo506dZLWISlveu9vv/2GQYMG4cGDBwAMM3TkQ0L2MmvWLOTk5GD58uV2vzYRUW3BYKQWk69iumzZMgwbNgyAYe+Xzz//vMqff+nSJel4zJgxUmZg8+bNSE1NlZ7v3Lmzqs91d3dHdHS0dI3S65ecP38eAwcOlKbV9uvXD6tXr3bYMuzicvNERGQZBiO1lCAI0kJjfn5+mD17Nv71r39J51euXAlBEKp0DfkQTXR0NJ5++mnFeScnJ0WGRA35UM1vv/2mOLd48WJkZWUBMAwB7dy5Ex4eHhZdh4iIHI/BSC117do1KTvRq1cvaLVatG3bVlob4/Llyzh48GCVriEPRlq3bo2RI0cqzr/00kto0aKFRZ9d3kqsgiDgp59+AgB4eXnhm2++qXCqMBERVX8MRmop+fLr8hVP5fu0rFq1qkrXKB2MDB48GF5eXgAMe8NUZe8XeTBy7Ngx6fj69evSnjW9evWSrkdERDUXg5FaSl4vIt8LZvjw4QgKCgIAbN++XfVmdHJiMOLp6YnGjRvD09MTq1atQnR0NGJjYxESEmLxZ0dERCA4OBgA8PPPPyMvLw8ApJVcAeCxxx6z+POJiKj6YDBSS4mZEScnJ3Tr1k163tXVFS+//DIAQKfTYfXq1RZ9fkFBAa5fvw4AaNWqFbRaw4/Sn/70J5w+fRqjR4+uSvOh0WikGpT8/HxpZVd5MNK7d+8qXYOIiKoHBiO1UGZmJs6fPw/AUFhaeihj6tSpUvCwfv16i65x9epVaX0P+Zb11jR06FDpeOfOnQCAX375BYAhqOrevbtNrktERPbFYKQWktdYmNoht3HjxujZsycAID4+Hvfv31d9jdL1IrbQv39/qTh19+7duHXrFq5duwYA6NatG2fQEBHVEgxGaiF58aq8XkROvvbH2bNnVV/DHsGIh4cHnnzySQBAamoqli5dKp3jEA0RUe3BYKQWkhevmsqMAJAWFQOAM2fOqL6GPYIRQDlUs3LlSumYxatERLUHg5FapqSkRFqXo3HjxggLCzP5OmsFI87OzmjevLkFLTXPU089JS0lX1xcDMBQ3FpekEVERDUPgxEr0ev1uH79Oq5du4Zr165VacpsVcTFxUnTYMsbogGANm3aSPu/qA1GTpw4IQUjzZs3lz7HFurXr49HH31U8VzHjh1Rr149m12TiIjsi8GIFRQXF6Nnz55o1qwZWrRogRYtWiA0NBSzZ8+2e1sqK14Vubq6ol27dgAM+7+IAUxlTp48iSeeeELKUgwaNKgKrTWPfKgG4BANEVFtw2DECr777rsy+6cAwAcffIBbt27ZtS0nTpyQjh955JEKXysO1ej1epw7d67Szz59+jSeeOIJxb4w//73v6vQWvOUDkZYvEpEVLswGLEC+Q64Tz/9tDRttiqLillKDEZcXFzQsWPHCl+rpm7kzJkzGDBgADIzMwEYshPffPONXZZjb9q0Kdq3by89Lj1sQ0RENRuDkSq6f/8+du/eDQAICgrC9u3bsXnzZqno8pNPPpGGNGztwYMHuHTpEgCgQ4cOcHNzq/D15gYjcXFxGDBgADIyMgAYgoFvv/3WrvvCLF26FC1btsSCBQukZeKJiKh2YDBSRV999RWKiooAAOPHj4ezszPCwsLw7LPPAgDu3LmDXbt2WeVa586dw4IFC6Rl2Es7ffo0BEEAAHTt2rXSz+vYsSM0Gg2A8oORc+fOoX///tLCaDExMdizZw+8vb0t+QoWGzRoEC5duoSFCxfa9bpERGR7DEaqSD5E88ILL0jH8t1x5etjWEqv1+PZZ5/FokWLEBMTg+Tk5DKvkdeLyPejKY+3tzdatGgBAPj999/LZHBu3bqF/v37Iz09HQDQs2dPfPfdd/Dx8anKVyEiIlJgMFIFly9fxq+//grAkGWQ12j0799futEfOHBAsUiYJU6cOIGEhAQAQEpKCoYOHVpmBozaYAQwDtUUFhZKQzyi2NhYpKWlAQB69OiBvXv3MhAhIiKrYzBSBfJN5uRZEQDQarV45ZVXpMcfffRRla4l1qWITp8+jRdffFEalgEM024BwzLqbdq0MetzK6obkT/+9NNP4evrq7rdRERElWEwYiG9Xi8FI05OTnj++efLvGbSpElwd3cHAHz22WcoKCiw+HrffPONdCwWjn711VfS1Nr09HSplqRz585wdnY263MrCkbi4uIAGIKbli1bWtx2IiKiijAYsdAvv/yCxMREAIbiSlMzPAICAjBy5EgAQFZWFg4dOmTRtZKSkqTAoFu3bti4caNUePrWW2/h+vXrUlYEMK94VVReMJKTk4P4+HgAQLt27aTZQURERNbGYMSEM2fOYPjw4fjvf/+LwsJCk6/ZsGGDdDxhwoRyP+vpp5+Wjvfu3WtRe+RZkaeffhrPPvssXn/9dQCGtUyWLFliUb0IADRo0EDav+bMmTPQ6/UADAWt4hBQZeuVEBERVQWDERNeffVV7NixA3PmzEHHjh2xf/9+xfnCwkJs3boVgGHIRJzGa8oTTzwBrdbQzdYKRgBgzpw5UjHpunXrFDUlaoIR+euzs7OlDIz4J8BghIiIbIvBSClJSUnSrreAYcbMgAEDMGXKFOh0OgCG5d/FlUiHDx9e4eJfAQEB0rLsFy5ckIZ2zJWbmysFQyEhIdKwir+/P6ZPnw4AKCoqkpajr1evnupddPv16ycdi9diMEJERPbCYKSUHTt2SMf+/v7S8dq1a6UZMRs3bpSeN1W4WtqTTz4pHX///feq2rN//35pqOjpp5+WakUA4LXXXpMKZEVdunSRMjHm6t+/v+J6AHD27FnpuQ4dOqj6PCIiIjUYjJSybds26fjnn3/Gxx9/LD2eP38+4uPjpSGRBg0aYMCAAZV+pjwY+e6771S1x9QQjSgoKAgvvfSS4jm1QzQA0KpVKzRq1AgAcOjQIRQWFuL3338HAERGRqJevXqqP5OIiMhcDEZkUlNT8csvvwAAoqKi0K5dO0ydOhUTJ04EAGRmZqJ///7SFN3Ro0fDxcWl0s/t2rUrAgMDAQD79u0ze6+a3NxcqTbF3d1dkcEQzZkzRzGN15JgRKPRSEM1ubm5+PLLL5GbmwuAQzRERGR7DEZkdu3aJc0mGT58uDQk8s4770jZAXEVVMCwF405tFotBg4cCMCwmd2xY8fMel9sbKy0Od3o0aPh6elZ5jVNmjTB5MmTAQCurq6IiYkx67NLkwc6y5cvl44ZjBARka0xGJGRD9E899xz0nFQUBD++c9/Kl4bGRmJHj16mP3Z8qEac2bV6HQ6vPfee9Lj//f//l+5r33vvffwzjvvYM+ePRbvaCsvYhWHaAAGI0REZHsMRh7Kzs7Gvn37AABhYWFlFg6bPn26opDz+eefVxSTVkbMjADmBSM//PCDtKLqE088UWERqaenJ+bOnWtyGMdc4eHhaNasWZnnO3XqZPFnEhERmYPByEN79uxBUVERAMMQTekZKc7OzlizZg0CAgIQHBys2HfGHEFBQejSpQsAw+Jid+7ckc4JgoD33nsPs2fPxs2bNwEY9oIRVZQVsabSwYyvry8iIiLscm0iIqq7GIzAUJj61ltvSY/lQzRy3bp1Q1JSEpKSkqRVS9UYMmSIdCyfQrx//3689tprWLFiBdq0aYNXXnkFp0+fBmBYil2eVbGl0sFIhw4dVGV/iIiILFHng5GSkhKMHTsWly9fBmC4Affu3bvc13t6epq9CV1pI0aMkI63bNkiHcuXls/Pz8fq1aulx//v//0/uwUEjz/+uOIx60WIiMge6nwwMnfuXGkhsvr162P79u022xSuQ4cO0uqoP//8M+7du4fCwkJs374dgGE2jPzawcHBGDdunE3aYkqDBg0UtSkMRoiIyB7qdDCydu1avPvuuwAMNSFff/01mjZtarPraTQajBo1CgCg1+uxfft2fP/998jKygIAjBkzBqdOnULfvn3h4eGBJUuWwM3NzWbtMWXw4MHSsZrZQkRERJaybLyhFoiLi1MUoX744Yfo06ePza87cuRIvP322wCArVu3omHDhtK5MWPGSBvz3bhxA5GRkTZvT2l/+9vfkJeXhzZt2qB9+/Z2vz4REdU9dTYYadu2LWbMmIH33nsPM2fOxNSpU+1y3ejoaERGRuLGjRs4ePCglPnw9/fHE088Ib1O7f4y1lKvXj28//77Drk2ERHVTXV2mMbZ2Rnvvvsudu3aJQ3V2IN8qEan0yEvLw+AobjV1dXVbu0gIiKqLupsMCJ65plnLJ4dY6mRI0eWeW7MmDF2bQMREVF1oSoY2bp1K8aPH49HHnlEsZstAOzevRtDhgxBnz59sHDhQsVmcMnJyXjxxRcRExOD8ePH48qVK9ZpfQ3VtWtXhIeHS48bNmyIvn37Oq5BREREDqQqGAkMDMTUqVMV+5gAwLVr17B8+XIsXboU3377Le7evYs1a9ZI59944w088sgjOHDgAIYPH445c+agpKTEOt+gBtJoNIrsyKhRo+yenSEiIqouVAUjffv2RZ8+feDj46N4fu/evejXrx/atm0Lb29vvPjii/j2228BADdv3sSNGzcwefJkuLm5YeTIkdDr9Th79qzVvkRN9Morr8DHxweenp6YMWOGo5tDRETkMFb5dfz69evo3r279Lh58+ZISUlBXl4ebty4gSZNmiiKM5s3b474+Pgym9GJioqKpH1ipIY6O9eqAs+mTZsiKSkJgiDA19cXer1eOicey5+j8rG/1GF/mY99pQ77S5260l/mzA61SjCSn58PLy8v6bG3tzcAIC8vD3l5eYpzAODl5YX8/PxyP2/dunWKJdEBw1DG6NGjrdHcaicjI8Pk80lJSXZuSc3G/lKH/WU+9pU67C91ant/mbNmllWCEQ8PD+Tm5kqPc3JyABj2cfH09FScA4Dc3Fx4eHiU+3mTJ0/G+PHjlQ2tZZmRiuj1eiQlJaFx48YOW2+kJmF/qcP+Mh/7Sh32lzrsLyOrBCNNmzbFtWvXpMfx8fEIDg6Gp6cnIiMjkZSUhKKiIimYiI+PLxNsyLm6utaZwKMiWq22zv+AqsH+Uof9ZT72lTrsL3XYXyoLWEtKSlBYWAi9Xg+dTofCwkLodDo8+eSTOHDgAC5evIicnBysXbsWTz31FAAgIiICERERiI2NRVFREbZt2waNRoNOnTrZ4vsQERFRDaMqGPn0008RExODHTt2YO3atYiJicGePXvQvHlzvPbaa/jLX/6CIUOGoEGDBpgyZYr0vn//+9/49ddf8fjjj2Pr1q1YsmQJp7ISERERAEAjCILg6EaQkl6vR0JCAsLDw+t86s4c7C912F/mY1+pw/5Sh/1lVLe/PRERETkcgxEiIiJyKAYjRERE5FAMRoiIiMihGIwQERGRQzEYISIiIodiMEJEREQOxWCEiIiIHIrBCBERETkUV2AlIiIih2JmhIiIiByKwQgRERE5FIMRIiIicigGI0RERORQDEaIiIjIoRiMEBERkUMxGCEiIiKHYjBCREREDsVghIiIiByKwQgRERE5FIMRB+JK/GRL/PkyD/uJbI0/Y5VjMGJnmZmZuHXrFgBAo9E4uDXVX3Z2NtLS0hzdjBojLS0N+/fvB8B/ACuTkpKCTz75BJcvX3Z0U2qE+/fv48KFC9DpdI5uSo3Af+vVcXZ0A+qSZcuWYe/evQgJCUHXrl0xePBgNG/eHHq9Hlot48LSli1bhl9++QVBQUHo0qULnnrqKYSFhUEQBP7lNqG4uBhTp05FUlIStmzZgoiICOh0Ojg5OTm6adXO2rVrERsbi0GDBsHb2xslJSVwduY/h+VZtmwZvv/+ewQHByM8PByjR49G+/bt+XexHPy3Xj32ip0cPXoU58+fx5YtWzBjxgzk5uZi8eLFAMAfzlLu3buHv/71r7h+/To+/fRTPP/880hOTsbevXsB8LcMU/R6PVxcXNCxY0d069YNK1asAAAGIiZkZWXhwoULWLNmDf7+978jLCyMgUgFtmzZgvPnz2PXrl2YP38+fH19+XexAvy33jLsGRsqKCiQjpOSkuDk5AQ/Pz90794dL730EkpKSqSbhl6vd1Qzqw2xvx48eIAWLVrgnXfeQWBgIPr27YsGDRogPT0dAPtKJPaX+NtWVlYWrly5gpdeegmpqan48ccfAQAlJSWObGa1IP+7eOXKFSQnJyMqKgpxcXFYunQpvvvuO1y5cgUAf74AZX+lpKQgNDQU7u7uiIqKgre3N3x8fBzYuuonLy9POua/9ZZhMGIDGRkZeP311/HRRx9Jzzk5OSEiIkKqfwgMDMSMGTOwbds2pKWlQavV1tkxfrG/Vq1aBQBo1qwZnnrqKXh7e6O4uBgAEBAQII2/1vXfLkr/fGm1Wuh0OtSrVw9t2rSBn58f+vbti/Xr1wNAnf6t39TfRY1Gg+joaGzcuBFvvPEGXFxc8MMPP2DBggX8u2iivzw8PODs7IwjR46guLgYJ06cwN27d/Hrr79KN+G63F9z5szBokWLpKCf/9Zbpm7/q24DH3/8MYYNGwYPDw/MmDFDer558+Y4f/48kpOTpec6deqEXr164auvvgJQN1Oe8v6aOXOm9HxYWBgA44300qVL6N69u0PaWJ2U9/Pl5OQkFRg2aNAAkydPhpubG1588UW8/fbbDmyx45TXV15eXoiPj8fx48fx9ttvY/bs2fjXv/6F1q1bY/ny5QD4d1HeX8OGDUNMTAw+++wzPPbYYwgNDUVoaCi++OILfPjhhwDqZn9duHABEydOhI+PD6ZMmSJlPPhvvWXq7q9MNvDpp59i48aNWLx4MWJiYgBAKvDq1KkTwsLCsH37doSFhSEwMBBarRaNGjWCXq+vk4WGpvpLTuy7kpISpKeno1OnTtK5goICuLu716kCuop+vgDAx8cHHTp0gKenJ/bt24dbt24hNzcXEyZMAIA69TNWUV+1bt0aTZs2xfbt2zFy5EgAgKenJ3r27IkdO3YgOzsbvr6+jmy+3VXUX4GBgRgwYAASEhLQpUsXTJs2DQDw3XffYfv27cjMzISfn58DW+8YcXFxiImJwbx58wAAOTk5cHV1RadOnRAeHo5t27bx33oVGIxUkfxm8Nhjj+HkyZPw9PTE77//jk2bNiE0NBT169fHmDFj8Oc//xnz5s3Djz/+iIEDB6J+/fp48OABQkJC6swPpzn91bBhQ4wcOVJ6XXp6OrKystCuXTtcunQJH374IR5//HE899xztT4QUdNfDx48wIEDB3D+/Hnk5eXhhRdewIkTJ7Bv3z7069ev1v+Mqfm7OGnSJPz++++Ij49HmzZtUL9+fSQmJqJZs2Z1JhBR87OVn5+P48ePY9CgQdL7kpOTER4eXmcCEfF7C4KA4uJiJCYmIiYmBklJSViwYAHq168Pf39//N///R/+8pe/YPbs2fjhhx8waNCgOvlvvVoMRiyUl5eHlStXwsXFBb169UK7du3QokULtGvXDm+++SaKi4vxzDPPwM3NDatXr4YgCBg7diwmTZqEPXv24Mcff0SDBg1w+vRpLF261NFfx+bU9NdHH30EQRDw1FNPwdPTE3/88QcKCwuxcOFCHDhwAOPHj8dzzz3n6K9kU2r7q6SkBGPHjsWQIUOg1+vxyiuvwMPDAy1btsTt27cd/XVsytK/iy+++CL27t2LQ4cOoWHDhjh9+jTefPNNR38dm7P0Z6t79+7Ys2cPUlJSkJaWhiNHjuBvf/ubo7+Ozcn7KyYmBm3btoWHhwfS0tLw7bffokGDBnj00UfRq1cvrFixAu+99x5mzZqFadOmYfv27di3b1+d+rfeUhqBlTSqXb16Fa+//jratGmDwMBAXLx4EY0aNcI//vEPZGdn47PPPsOIESMQEhICANi3bx+++OIL/O9//4OPjw/S09Nx5MgR3Lt3D2PHjoW3t7eDv5FtWdJfGzduxLJly+Dv7481a9bg448/xjPPPIO//OUv7K9yfr7ef/99eHt716kC36r+XczMzMTx48dx584djBw5kj9bJvpr/fr1WLVqFVxdXXHw4EGcPXsWAPDqq6/W6f46f/48pk+fjrZt22LlypXS6z///HMMHDgQvXv3rnP/1leJQKpt3bpVmDt3rvT4xo0bQs+ePYX9+/cLgiAImZmZgiAIQkFBgSAIgvDgwQOhb9++wunTp+3f2GrA0v46efKkIAiCEBcXJ1y/ft3OrXYcS/qrT58+wpkzZ+zeVkfj30V1qvp3URAEoaSkxI4tdqzy+uvgwYOCIAjCvHnzhJEjRwqCYOyXcePGCdu3b7d3U2u8uvMrVBWkpaUhMTERgKEI8MGDB/Dy8pKmtdWvXx+BgYFYvXo1AKBevXoAADc3NwCGQqdOnTqhRYsWDmi9/Vmrv1q2bAkA6NChAyIjI+39NezGGv0VHR2N5s2bO6D19sW/i+pY++8iULsX0jOnv+rXr49PPvkEADB9+nTcvn0bX3zxBXJycpCamgofH5868XfR2hiMVEAQBKxatQrPPvssNm/ejOzsbDg5OcHHxwf5+fk4ffo0AMOiUo888ghSU1OxY8cOAIY9VX777Tf8+9//xoIFC9CrV69an6Jjf6nD/jIf+0od9pc6avqrR48euHv3Lnbs2IEmTZrgX//6F06dOoW//vWvGD16NKKjo9GuXTsHf6OahwWsFTh+/Dhu3bqFoUOHIicnB8ePH8cTTzyBZ555BklJSXj//ffxww8/4NChQ5g2bRqaN2+OhIQEAIbfLL7//nvk5uZi8+bNqF+/voO/je2xv9Rhf5mPfaUO+0udqvTX448/jt69e+PKlSsIDQ2VskukDgtYK1BQUIBr164hIiJCWh103LhxCAsLw4MHD5CQkIALFy4gKioKnTp1wr/+9S9ERERI6zqIa2HUFewvddhf5mNfqcP+Uqcq/cXN76yDPVgBd3d3tGvXDt7e3ujTpw/u37+P48ePAzAsMNWuXTuMHj0anTp1wt27d3H79m20adNG8f66hP2lDvvLfOwrddhf6lSlvxiIWAd70Uzdu3dHREQEzp8/j/Pnz0vP379/H4sXL8Zzzz2HqKgodO7c2YGtrD7YX+qwv8zHvlKH/aUO+8sxGIyYQRzJ6t+/P4qKivDHH38AAC5evIji4mJ06NABmzdvxuzZsx3YyuqD/aUO+8t87Ct12F/qsL8chzUjZhIeLgX83XffYdu2bbhw4QJatmyJ5cuX15nlkNVgf6nD/jIf+0od9pc67C/H4GwaM2k0GhQUFGDLli24fv06Zs2ahTFjxji6WdUW+0sd9pf52FfqsL/UYX85BoMRFY4cOYKWLVti1apV0qJAVD72lzrsL/Oxr9Rhf6nD/rI/DtOoIAh1Z7t6a2B/qcP+Mh/7Sh32lzrsL/tjMEJEREQOxdk0RERE5FAMRoiIiMihGIwQERGRQzEYISIiIodiMEJEREQOxWCEiIiIHIrBCBHVaF27dkXXrl2xe/duRzeFiCzEYISIKjV16lTppj9u3DjFuczMTMTExEjn//e//1n9+rt375Y+n4hqHwYjRKTK1atXcfr0aenxjh07UFhY6MAWEVFNx2CEiMzm7GzYzuqrr74CAOh0OmzdulV6Xi4rKwvvvPMOnnrqKTzyyCMYOHAg3nzzTaSkpEiv+fjjj9G1a1c888wz2LdvH0aMGIFHH30UL7/8Mm7evAkAeOutt7Bw4ULpPWKG5OOPP1ZcLycnBwsXLkSfPn0wePBgrFmzxtpfn4hshMEIEZktKioKoaGh+Omnn3D37l388ssvSElJQf/+/RWvKywsxNSpU7FlyxakpaUhPDwcubm5+O677zB58mRkZGQoXn/v3j3Mnz8fGo0GhYWFOHPmDP75z38CAMLCwhAaGiq9tl27dmjXrh2CgoIUn/HBBx/g2LFjcHFxQWpqKj766CP8+uuvNuoJIrImBiNEZDatVotRo0ZJGRExQ1J6i/Xvv/8e8fHxAIB33nkHmzdvxqeffgqtVovU1FRs3rxZ8XqdToclS5Zg69atUk3KuXPnUFBQgJdeegkvvfSS9NrY2FjExsZi2LBhis9o2bIldu/ercjUnDhxwqrfn4hsg8EIEakydOhQeHh4YPPmzTh58iRat26NDh06KF5z4cIFAIC7uzv69u0LAGjVqhXCw8MV50Xe3t547LHHAABNmzaVni+dQanIgAED4OLiAj8/PwQEBAAA7t+/r+7LEZFDMBghIlV8fHwwePBg5ObmAiibFbH0M0VOTk7SsZpNxU19BjclJ6oZGIwQkWqjR48GAPj7+2PgwIFlzrdp0wYAUFBQgJ9++gkAcOnSJSQkJCjOm8vd3V06zs/Pt6TJRFSNlS2BJyKqRPPmzbF//344OTnB1dW1zPlBgwZhw4YNiI+Px7x58xAeHo5bt25Br9ejQYMGUjBjroiICOl41KhRCAwMxOzZs9GpU6cqfhMiqg6YGSEii9SrVw/e3t4mz7m5ueGTTz6RAoeEhAR4enpi8ODBWLduHfz9/VVdq0WLFnjppZdQv359pKSk4I8//sCDBw+s8TWIqBrQCBxUJSIiIgdiZoSIiIgcisEIERERORSDESIiInIoBiNERETkUAxGiIiIyKEYjBAREZFDMRghIiIih2IwQkRERA7FYISIiIgcisEIERERORSDESIiInIoBiNERETkUP8fwRyVeTleX98AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -146,7 +146,7 @@ } ], "source": [ - "series1, series2 = series.split_before(0.75)\n", + "series1, series2 = series.split_after(0.75)\n", "series1.plot()\n", "series2.plot()" ] @@ -2970,7 +2970,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.16" + "version": "3.10.13" }, "pycharm": { "stem_cell": { diff --git a/examples/01-multi-time-series-and-covariates.html b/examples/01-multi-time-series-and-covariates.html index 921407747f..f02dac6802 100644 --- a/examples/01-multi-time-series-and-covariates.html +++ b/examples/01-multi-time-series-and-covariates.html @@ -829,31 +829,28 @@

Train / Validation split

Global Forecasting Models

-

Darts contains many forecasting models, but not all of them can be trained on several time series. The models that support training on multiple series are called global models. At the time of writing, there are 5 global models:

+

Darts contains many forecasting models, but not all of them can be trained on several time series. The models that support training on multiple series are called global models. An exhaustive list of the global models can be found here (bottom of the table) with for example:

    +
  • LinearRegressionModel

  • BlockRNNModel

  • -
  • RNNModel

  • -
  • Temporal Convolutional Networks (TCNs)

  • -
  • N-Beats

  • -
  • Transformer model

  • +
  • Temporal Convolutional Networks (TCNModel)

  • +
  • N-Beats (NBEATSModel)

  • +
  • TiDEModel

In the following, we will distinguish two sorts of time series:

  • The target time series is the time series we are interested to forecast (given its history)

  • A covariate time series is a time series which may help in the forecasting of the target series, but that we are not interested in forecasting. It’s sometimes also called external data.

+

Note: Static covariates are invariant in time and correspond to additional information associated with the components of the target time series. Detailed information about this kind of covariate can be found in the static covariates notebook.

We further differentiate covariates series, depending on whether they can be known in advance or not:

  • Past Covariates denote time series whose past values are known at prediction time. These are usually things that have to be measured or observed.

  • Future Covariates denote time series whose future values are already known at prediction time for the span of the forecast horizon. These can for instance represent known future holidays, or weather forecasts.

-

Some models use only past covariates, others use only future covariates, and some models might use both. We will dive deeper in this topic in some other notebook, but for now it is enough to know this:

-
    -
  • BlockRNNModel, TCNModel, NBEATSModel and TransformerModel all use past_covariates.

  • -
  • RNNModel uses future_covariates.

  • -
+

Some models use only past covariates, others use only future covariates, and some models might use both. We will dive deeper in this topic in some other notebook, but this table details the covariates supported by each model.

All of the global models listed above support training on multiple series. In addition, they also all support multivariate series. This means that they can seamlessly be used with time series of more than one dimension; the target series can contain one (as is often the case) or several dimensions. A time series with several dimensions is really just a regular time series where the values at each time stamps are vectors instead of scalars.

-

As an example, the 4 models supporting past_covariates follow a “block” architecture. They contain a neural network that takes chunks of time series in input, and outputs chunks of (predicted) future time series values. The input dimensionality is the number of dimensions (components) of the target series, plus the number of components of all the covariates - stacked together. The output dimensionality is simply the number of dimensions of the target series: image0

+

As an example, the BlockRNNModel, N-Beats, TCN and Transformer models follow a “block” architecture. They contain a neural network that takes chunks of time series in input, and outputs chunks of (predicted) future time series values. The input dimensionality is the number of dimensions (components) of the target series, plus the number of components of all the covariates - stacked together. The output dimensionality is simply the number of dimensions of the target series: image0

The RNNModel works differently, in a recurrent fashion (which is also why they support future covariates). The good news is that as a user, we don’t have to worry too much about the different model types and input/output dimensionalities. The dimensionalities are automatically inferred for us by the model based on the training data, and the support for past or future covariates is simply handled by the past_covariates or future_covariates arguments.

We’ll still have to specify two important parameters when building our models:

Returns
@@ -1700,6 +1705,17 @@

ARIMA +
+
+property supports_transferrable_series_prediction: bool
+

Whether the model supports prediction for any input series.

+
+
Return type
+

bool

+
+
+
+
property uses_future_covariates: bool
diff --git a/generated_api/darts.models.forecasting.auto_arima.html b/generated_api/darts.models.forecasting.auto_arima.html index deca189a6d..9124fdc70f 100644 --- a/generated_api/darts.models.forecasting.auto_arima.html +++ b/generated_api/darts.models.forecasting.auto_arima.html @@ -935,13 +935,16 @@

AutoARIMA

supports_static_covariates

Whether model supports static covariates

-

uses_future_covariates

+

supports_transferrable_series_prediction

+

Whether the model supports prediction for any input series.

+ +

uses_future_covariates

Whether the model uses future covariates, once fitted.

-

uses_past_covariates

+

uses_past_covariates

Whether the model uses past covariates, once fitted.

-

uses_static_covariates

+

uses_static_covariates

Whether the model uses static covariates, once fitted.

@@ -988,7 +991,7 @@

AutoARIMA

load(path)

Loads the model from a given path or file handle.

-

predict(n[, future_covariates, num_samples])

+

predict(n[, future_covariates, num_samples, ...])

Forecasts values for n time steps after the end of the training series.

residuals(series[, past_covariates, ...])

@@ -1534,7 +1537,7 @@

AutoARIMA
-predict(n, future_covariates=None, num_samples=1, **kwargs)
+predict(n, future_covariates=None, num_samples=1, verbose=False, show_warnings=True, **kwargs)

Forecasts values for n time steps after the end of the training series.

If some future covariates were specified during the training, they must also be specified here.

@@ -1546,6 +1549,8 @@

AutoARIMAint) – Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 for deterministic models.

+
  • verbose (bool) – Optionally, set the prediction verbosity. Not effective for all models.

  • +
  • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

  • Returns
    @@ -1687,6 +1692,17 @@

    AutoARIMA +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +

    +
    property uses_future_covariates: bool
    diff --git a/generated_api/darts.models.forecasting.baselines.html b/generated_api/darts.models.forecasting.baselines.html index 53e6a046d5..6f6863a48a 100644 --- a/generated_api/darts.models.forecasting.baselines.html +++ b/generated_api/darts.models.forecasting.baselines.html @@ -899,13 +899,16 @@

    Baseline Models

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -952,7 +955,7 @@

    Baseline Models

    load(path)

    Loads the model from a given path or file handle.

    -

    predict(n[, num_samples, verbose])

    +

    predict(n[, num_samples, verbose, show_warnings])

    Forecasts values for n time steps after the end of the training series.

    residuals(series[, past_covariates, ...])

    @@ -1492,7 +1495,7 @@

    Baseline Models
    -predict(n, num_samples=1, verbose=False)[source]
    +predict(n, num_samples=1, verbose=False, show_warnings=True)[source]

    Forecasts values for n time steps after the end of the training series.

    Parameters
    @@ -1500,6 +1503,8 @@

    Baseline Modelsint) – Forecast horizon - the number of time steps after the end of the series for which to produce predictions.

  • num_samples (int) – Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 for deterministic models.

  • +
  • verbose (bool) – Optionally, set the prediction verbosity. Not effective for all models.

  • +
  • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

  • Returns
    @@ -1641,6 +1646,17 @@

    Baseline Models +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +

    +
    property uses_future_covariates: bool
    @@ -1750,13 +1766,16 @@

    Baseline Models

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -2524,6 +2543,17 @@

    Baseline Models +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +

    +
    property uses_future_covariates: bool
    @@ -2619,13 +2649,16 @@

    Baseline Models

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -2672,7 +2705,7 @@

    Baseline Models

    load(path)

    Loads the model from a given path or file handle.

    -

    predict(n[, num_samples, verbose])

    +

    predict(n[, num_samples, verbose, show_warnings])

    Forecasts values for n time steps after the end of the training series.

    residuals(series[, past_covariates, ...])

    @@ -3212,7 +3245,7 @@

    Baseline Models
    -predict(n, num_samples=1, verbose=False)[source]
    +predict(n, num_samples=1, verbose=False, show_warnings=True)[source]

    Forecasts values for n time steps after the end of the training series.

    Parameters
    @@ -3220,6 +3253,8 @@

    Baseline Modelsint) – Forecast horizon - the number of time steps after the end of the series for which to produce predictions.

  • num_samples (int) – Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 for deterministic models.

  • +
  • verbose (bool) – Optionally, set the prediction verbosity. Not effective for all models.

  • +
  • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

  • Returns
    @@ -3361,6 +3396,17 @@

    Baseline Models +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +

    +
    property uses_future_covariates: bool
    @@ -3460,13 +3506,16 @@

    Baseline Models

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -3513,7 +3562,7 @@

    Baseline Models

    load(path)

    Loads the model from a given path or file handle.

    -

    predict(n[, num_samples, verbose])

    +

    predict(n[, num_samples, verbose, show_warnings])

    Forecasts values for n time steps after the end of the training series.

    residuals(series[, past_covariates, ...])

    @@ -4053,7 +4102,7 @@

    Baseline Models
    -predict(n, num_samples=1, verbose=False)[source]
    +predict(n, num_samples=1, verbose=False, show_warnings=True)[source]

    Forecasts values for n time steps after the end of the training series.

    Parameters
    @@ -4061,6 +4110,8 @@

    Baseline Modelsint) – Forecast horizon - the number of time steps after the end of the series for which to produce predictions.

  • num_samples (int) – Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 for deterministic models.

  • +
  • verbose (bool) – Optionally, set the prediction verbosity. Not effective for all models.

  • +
  • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

  • Returns
    @@ -4202,6 +4253,17 @@

    Baseline Models +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +

    +
    property uses_future_covariates: bool
    @@ -4304,13 +4366,16 @@

    Baseline Models

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -4357,7 +4422,7 @@

    Baseline Models

    load(path)

    Loads the model from a given path or file handle.

    -

    predict(n[, num_samples, verbose])

    +

    predict(n[, num_samples, verbose, show_warnings])

    Forecasts values for n time steps after the end of the training series.

    residuals(series[, past_covariates, ...])

    @@ -4897,7 +4962,7 @@

    Baseline Models
    -predict(n, num_samples=1, verbose=False)[source]
    +predict(n, num_samples=1, verbose=False, show_warnings=True)[source]

    Forecasts values for n time steps after the end of the training series.

    Parameters
    @@ -4905,6 +4970,8 @@

    Baseline Modelsint) – Forecast horizon - the number of time steps after the end of the series for which to produce predictions.

  • num_samples (int) – Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 for deterministic models.

  • +
  • verbose (bool) – Optionally, set the prediction verbosity. Not effective for all models.

  • +
  • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

  • Returns
    @@ -5046,6 +5113,17 @@

    Baseline Models +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +

    +
    property uses_future_covariates: bool
    diff --git a/generated_api/darts.models.forecasting.block_rnn_model.html b/generated_api/darts.models.forecasting.block_rnn_model.html index 11d4b6da88..994b3bde6f 100644 --- a/generated_api/darts.models.forecasting.block_rnn_model.html +++ b/generated_api/darts.models.forecasting.block_rnn_model.html @@ -834,7 +834,7 @@
    -
    +

    Block Recurrent Neural Networks

    @@ -862,9 +862,8 @@

    Block Recurrent Neural NetworksUnion[str, Module]) – Either a string specifying the RNN module type (“RNN”, “LSTM” or “GRU”), -or a PyTorch module with the same specifications as -darts.models.block_rnn_model._BlockRNNModule.

    +
  • model (Union[str, Type[CustomBlockRNNModule]]) – Either a string specifying the RNN module type (“RNN”, “LSTM” or “GRU”), or a subclass of +CustomBlockRNNModule (the class itself, not an object of the class) with a custom logic.

  • hidden_dim (int) – Size for feature maps for each hidden RNN layer (\(h_n\)). In Darts version <= 0.21, hidden_dim was referred as hidden_size.

  • n_rnn_layers (int) – Number of layers in the RNN module.

  • @@ -903,7 +902,7 @@

    Block Recurrent Neural NetworksTimeSeries is passed to the fit() method). Default: 1.

  • force_reset – If set to True, any previously-existing model with the same name will be reset (all checkpoints will be discarded). Default: False.

  • -
  • save_checkpoints – Whether or not to automatically save the untrained model and checkpoints from training. +

  • save_checkpoints – Whether to automatically save the untrained model and checkpoints from training. To load the model from checkpoint, call MyModelClass.load_from_checkpoint(), where MyModelClass is the TorchForecastingModel class that was used (such as TFTModel, NBEATSModel, etc.). If set to False, the model can still be manually saved using @@ -932,8 +931,8 @@

    Block Recurrent Neural Networkslink for more details. Default: None.

  • -
  • pl_trainer_kwargs

    -
    By default TorchForecastingModel creates a PyTorch Lightning Trainer with several useful presets

    that performs the training, validation and prediction processes. These presets include automatic +

  • pl_trainer_kwargs

    By default TorchForecastingModel creates a PyTorch Lightning Trainer with several useful presets +that performs the training, validation and prediction processes. These presets include automatic checkpointing, tensorboard logging, setting the torch device and more. With pl_trainer_kwargs you can add additional kwargs to instantiate the PyTorch Lightning trainer object. Check the PL Trainer documentation for more information about the @@ -941,8 +940,6 @@

    Block Recurrent Neural Networkspl_trainer_kwargs by specifying keys "accelerator", "devices", and "auto_select_gpus". Some examples for setting the devices inside the pl_trainer_kwargs dict:

    -

  • -
  • -
    -
    show_warnings

    whether to show warnings raised from PyTorch Lightning. Useful to detect potential issues of -your forecasting use case. Default: False.

    -
    -

    References

    1
    @@ -1032,9 +1026,15 @@

    Block Recurrent Neural Networks

    extreme_lags

    A 6-tuple containing in order: (min target lag, max target lag, min past covariate lag, max past covariate lag, min future covariate lag, max future covariate lag).

    -

    min_train_samples

    +

    first_prediction_index

    +

    Returns the index of the first predicted within the output of self.model.

    + +

    min_train_samples

    The minimum number of samples for training the model.

    +

    min_train_series_length

    +

    Class property defining the minimum required length for the training series; overriding the default value of 3 of ForecastingModel

    +

    output_chunk_length

    Number of time steps predicted at once by the model, not defined for statistical models.

    @@ -1053,13 +1053,16 @@

    Block Recurrent Neural Networks

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -1118,39 +1121,45 @@

    Block Recurrent Neural Networks

    historical_forecasts(series[, ...])

    Compute the historical forecasts that would have been obtained by this model on (potentially multiple) series.

    -

    load(path, **kwargs)

    +

    initialize_encoders()

    +

    instantiates the SequentialEncoder object based on self._model_encoder_settings and parameter add_encoders used at model creation

    + +

    load(path, **kwargs)

    Loads a model from a given file path.

    -

    load_from_checkpoint(model_name[, work_dir, ...])

    +

    load_from_checkpoint(model_name[, work_dir, ...])

    Load the model from automatically saved checkpoints under '{work_dir}/darts_logs/{model_name}/checkpoints/'.

    -

    load_weights(path[, load_encoders, skip_checks])

    +

    load_weights(path[, load_encoders, skip_checks])

    Loads the weights from a manually saved model (saved with save()).

    -

    load_weights_from_checkpoint([model_name, ...])

    +

    load_weights_from_checkpoint([model_name, ...])

    Load only the weights from automatically saved checkpoints under '{work_dir}/darts_logs/{model_name}/ checkpoints/'.

    -

    lr_find(series[, past_covariates, ...])

    +

    lr_find(series[, past_covariates, ...])

    A wrapper around PyTorch Lightning's Tuner.lr_find().

    -

    predict(n[, series, past_covariates, ...])

    +

    predict(n[, series, past_covariates, ...])

    Predict the n time step following the end of the training series, or of the specified series.

    -

    predict_from_dataset(n, input_series_dataset)

    +

    predict_from_dataset(n, input_series_dataset)

    This method allows for predicting with a specific darts.utils.data.InferenceDataset instance.

    -

    reset_model()

    +

    reset_model()

    Resets the model object and removes all stored data - model, checkpoints, loggers and training history.

    -

    residuals(series[, past_covariates, ...])

    +

    residuals(series[, past_covariates, ...])

    Compute the residuals produced by this model on a (or sequence of) univariate time series.

    -

    save([path])

    +

    save([path])

    Saves the model under a given path.

    -

    to_cpu()

    +

    to_cpu()

    Updates the PyTorch Lightning Trainer parameters to move the model to CPU the next time :fun:`fit()` or predict() is called.

    +

    untrained_model()

    +

    Returns a new (untrained) model instance create with the same parameters.

    +
    @@ -1273,16 +1282,6 @@

    Block Recurrent Neural Networks -
    -property epochs_trained: int
    -
    -
    Return type
    -

    int

    -
    -
    -

    -
    property extreme_lags: Tuple[Optional[int], Optional[int], Optional[int], Optional[int], Optional[int], Optional[int]]
    @@ -1333,6 +1332,17 @@

    Block Recurrent Neural Networks +
    +property first_prediction_index: int
    +

    Returns the index of the first predicted within the output of self.model.

    +
    +
    Return type
    +

    int

    +
    +
    +

    +
    fit(series, past_covariates=None, future_covariates=None, val_series=None, val_past_covariates=None, val_future_covariates=None, trainer=None, verbose=None, epochs=0, max_samples_per_ts=None, num_loader_workers=0)
    @@ -1721,22 +1731,14 @@

    Block Recurrent Neural Networks -
    -property input_chunk_length: int
    -
    -
    Return type
    -

    int

    -
    -
    -

    - -
    -
    -property likelihood: Optional[darts.utils.likelihood_models.Likelihood]
    -
    +
    +
    +initialize_encoders()
    +

    instantiates the SequentialEncoder object based on self._model_encoder_settings and parameter +add_encoders used at model creation

    +
    Return type
    -

    Optional[Likelihood]

    +

    SequentialEncoder

    @@ -1982,21 +1984,13 @@

    Block Recurrent Neural Networks -
    -property model_created: bool
    -
    -
    Return type
    -

    bool

    -
    -
    -

    - -
    -
    -property model_params: dict
    -
    +
    +property min_train_series_length: int
    +

    Class property defining the minimum required length for the training series; +overriding the default value of 3 of ForecastingModel

    +
    Return type
    -

    dict

    +

    int

    @@ -2072,7 +2066,8 @@

    Block Recurrent Neural Networksbool) – If set to True, the model predict the parameters of its Likelihood parameters instead of the target. Only supported for probabilistic models with a likelihood, num_samples = 1 and n<=output_chunk_length. -Default: False

    +Default: False.

    +
  • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

  • Returns
    @@ -2203,11 +2198,6 @@

    Block Recurrent Neural Networks -
    -supports_future_covariates = False
    -

    -
    property supports_likelihood_parameter_prediction: bool
    @@ -2263,6 +2253,17 @@

    Block Recurrent Neural Networks +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +

    +
    to_cpu()
    @@ -2270,6 +2271,12 @@

    Block Recurrent Neural Networkspredict() is called.

    +
    +
    +untrained_model()
    +

    Returns a new (untrained) model instance create with the same parameters.

    +
    +
    property uses_future_covariates: bool
    @@ -2305,6 +2312,526 @@

    Block Recurrent Neural Networks +
    +class darts.models.forecasting.block_rnn_model.CustomBlockRNNModule(input_size, hidden_dim, num_layers, target_size, nr_params, num_layers_out_fc=None, dropout=0.0, **kwargs)[source]
    +

    Bases: darts.models.forecasting.pl_forecasting_module.PLPastCovariatesModule, abc.ABC

    +

    This class allows to create custom block RNN modules that can later be used with Darts’ +BlockRNNModel. It adds the backbone that is required to be used with Darts’ +TorchForecastingModel and BlockRNNModel.

    +

    To create a new module, subclass from CustomBlockRNNModule and:

    +
      +
    • Define the architecture in the module constructor (__init__())

    • +
    • Add the forward() method and define the logic of your module’s forward pass

    • +
    • Use the custom module class when creating a new BlockRNNModel with parameter model.

    • +
    +

    You can use darts.models.forecasting.block_rnn_model._BlockRNNModule as an example.

    +
    +
    Parameters
    +
      +
    • input_size (int) – The dimensionality of the input time series.

    • +
    • hidden_dim (int) – The number of features in the hidden state h of the RNN module.

    • +
    • num_layers (int) – The number of recurrent layers.

    • +
    • target_size (int) – The dimensionality of the output time series.

    • +
    • nr_params (int) – The number of parameters of the likelihood (or 1 if no likelihood is used).

    • +
    • num_layers_out_fc (Optional[List]) – A list containing the dimensions of the hidden layers of the fully connected NN. +This network connects the last hidden layer of the PyTorch RNN module to the output.

    • +
    • dropout (float) – The fraction of neurons that are dropped in all-but-last RNN layers.

    • +
    • **kwargs – all parameters required for darts.model.forecasting_models.PLForecastingModule base class.

    • +
    +
    +
    +

    Attributes

    + ++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

    automatic_optimization

    If set to False you are responsible for calling .backward(), .step(), .zero_grad().

    current_epoch

    The current epoch in the Trainer, or 0 if not attached.

    example_input_array

    The example input array is a specification of what the module can consume in the forward() method.

    global_rank

    The index of the current process across all nodes and devices.

    global_step

    Total training batches seen across all epochs.

    hparams

    The collection of hyperparameters saved with save_hyperparameters().

    hparams_initial

    The collection of hyperparameters saved with save_hyperparameters().

    local_rank

    The index of the current process within a single node.

    logger

    Reference to the logger object in the Trainer.

    loggers

    Reference to the list of loggers in the Trainer.

    on_gpu

    Returns True if this model is currently located on a GPU.

    output_chunk_length

    Number of time steps predicted at once by the model.

    + ++++ + + + + + + + + + + + + + + + + + +

    device

    dtype

    epochs_trained

    fabric

    trainer

    +

    Methods

    + ++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

    add_module(name, module)

    Adds a child module to the current module.

    all_gather(data[, group, sync_grads])

    Gather tensors or collections of tensors from multiple processes.

    apply(fn)

    Applies fn recursively to every submodule (as returned by .children()) as well as self.

    backward(loss, *args, **kwargs)

    Called to perform backward on the loss returned in training_step().

    bfloat16()

    Casts all floating point parameters and buffers to bfloat16 datatype.

    buffers([recurse])

    Returns an iterator over module buffers.

    children()

    Returns an iterator over immediate children modules.

    clip_gradients(optimizer[, ...])

    Handles gradient clipping internally.

    compile(*args, **kwargs)

    Compile this Module's forward using torch.compile().

    configure_callbacks()

    Configure model-specific callbacks.

    configure_gradient_clipping(optimizer[, ...])

    Perform gradient clipping for the optimizer parameters.

    configure_model()

    Hook to create modules in a strategy and precision aware context.

    configure_optimizers()

    configures optimizers and learning rate schedulers for model optimization.

    configure_sharded_model()

    Deprecated.

    configure_torch_metrics(torch_metrics)

    process the torch_metrics parameter.

    cpu()

    See torch.nn.Module.cpu().

    cuda([device])

    Moves all model parameters and buffers to the GPU.

    double()

    See torch.nn.Module.double().

    eval()

    Sets the module in evaluation mode.

    extra_repr()

    Set the extra representation of the module

    float()

    See torch.nn.Module.float().

    forward(x_in)

    BlockRNN Module forward.

    freeze()

    Freeze all params for inference.

    get_buffer(target)

    Returns the buffer given by target if it exists, otherwise throws an error.

    get_extra_state()

    Returns any extra state to include in the module's state_dict.

    get_parameter(target)

    Returns the parameter given by target if it exists, otherwise throws an error.

    get_submodule(target)

    Returns the submodule given by target if it exists, otherwise throws an error.

    half()

    See torch.nn.Module.half().

    ipu([device])

    Moves all model parameters and buffers to the IPU.

    load_from_checkpoint([map_location, ...])

    Primary way of loading a model from a checkpoint.

    load_state_dict(state_dict[, strict, assign])

    Copies parameters and buffers from state_dict into this module and its descendants.

    log(name, value[, prog_bar, logger, ...])

    Log a key, value pair.

    log_dict(dictionary[, prog_bar, logger, ...])

    Log a dictionary of values at once.

    lr_scheduler_step(scheduler, metric)

    Override this method to adjust the default way the Trainer calls each scheduler.

    lr_schedulers()

    Returns the learning rate scheduler(s) that are being used during training.

    manual_backward(loss, *args, **kwargs)

    Call this directly from your training_step() when doing optimizations manually.

    modules()

    Returns an iterator over all modules in the network.

    named_buffers([prefix, recurse, ...])

    Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

    named_children()

    Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

    named_modules([memo, prefix, remove_duplicate])

    Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

    named_parameters([prefix, recurse, ...])

    Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

    on_after_backward()

    Called after loss.backward() and before optimizers are stepped.

    on_after_batch_transfer(batch, dataloader_idx)

    Override to alter or apply batch augmentations to your batch after it is transferred to the device.

    on_before_backward(loss)

    Called before loss.backward().

    on_before_batch_transfer(batch, dataloader_idx)

    Override to alter or apply batch augmentations to your batch before it is transferred to the device.

    on_before_optimizer_step(optimizer)

    Called before optimizer.step().

    on_before_zero_grad(optimizer)

    Called after training_step() and before optimizer.zero_grad().

    on_fit_end()

    Called at the very end of fit.

    on_fit_start()

    Called at the very beginning of fit.

    on_load_checkpoint(checkpoint)

    Called by Lightning to restore your model.

    on_predict_batch_end(outputs, batch, batch_idx)

    Called in the predict loop after the batch.

    on_predict_batch_start(batch, batch_idx[, ...])

    Called in the predict loop before anything happens for that batch.

    on_predict_end()

    Called at the end of predicting.

    on_predict_epoch_end()

    Called at the end of predicting.

    on_predict_epoch_start()

    Called at the beginning of predicting.

    on_predict_model_eval()

    Sets the model to eval during the predict loop.

    on_predict_start()

    Called at the beginning of predicting.

    on_save_checkpoint(checkpoint)

    Called by Lightning when saving a checkpoint to give you a chance to store anything else you might want to save.

    on_test_batch_end(outputs, batch, batch_idx)

    Called in the test loop after the batch.

    on_test_batch_start(batch, batch_idx[, ...])

    Called in the test loop before anything happens for that batch.

    on_test_end()

    Called at the end of testing.

    on_test_epoch_end()

    Called in the test loop at the very end of the epoch.

    on_test_epoch_start()

    Called in the test loop at the very beginning of the epoch.

    on_test_model_eval()

    Sets the model to eval during the test loop.

    on_test_model_train()

    Sets the model to train during the test loop.

    on_test_start()

    Called at the beginning of testing.

    on_train_batch_end(outputs, batch, batch_idx)

    Called in the training loop after the batch.

    on_train_batch_start(batch, batch_idx)

    Called in the training loop before anything happens for that batch.

    on_train_end()

    Called at the end of training before logger experiment is closed.

    on_train_epoch_end()

    Called in the training loop at the very end of the epoch.

    on_train_epoch_start()

    Called in the training loop at the very beginning of the epoch.

    on_train_start()

    Called at the beginning of training after sanity check.

    on_validation_batch_end(outputs, batch, ...)

    Called in the validation loop after the batch.

    on_validation_batch_start(batch, batch_idx)

    Called in the validation loop before anything happens for that batch.

    on_validation_end()

    Called at the end of validation.

    on_validation_epoch_end()

    Called in the validation loop at the very end of the epoch.

    on_validation_epoch_start()

    Called in the validation loop at the very beginning of the epoch.

    on_validation_model_eval()

    Sets the model to eval during the val loop.

    on_validation_model_train()

    Sets the model to train during the val loop.

    on_validation_model_zero_grad()

    Called by the training loop to release gradients before entering the validation loop.

    on_validation_start()

    Called at the beginning of validation.

    optimizer_step(epoch, batch_idx, optimizer)

    Override this method to adjust the default way the Trainer calls the optimizer.

    optimizer_zero_grad(epoch, batch_idx, optimizer)

    Override this method to change the default behaviour of optimizer.zero_grad().

    optimizers([use_pl_optimizer])

    Returns the optimizer(s) that are being used during training.

    parameters([recurse])

    Returns an iterator over module parameters.

    predict_dataloader()

    An iterable or collection of iterables specifying prediction samples.

    predict_step(batch, batch_idx[, dataloader_idx])

    performs the prediction step

    prepare_data()

    Use this to download and prepare data.

    print(*args, **kwargs)

    Prints only from process 0.

    register_backward_hook(hook)

    Registers a backward hook on the module.

    register_buffer(name, tensor[, persistent])

    Adds a buffer to the module.

    register_forward_hook(hook, *[, prepend, ...])

    Registers a forward hook on the module.

    register_forward_pre_hook(hook, *[, ...])

    Registers a forward pre-hook on the module.

    register_full_backward_hook(hook[, prepend])

    Registers a backward hook on the module.

    register_full_backward_pre_hook(hook[, prepend])

    Registers a backward pre-hook on the module.

    register_load_state_dict_post_hook(hook)

    Registers a post hook to be run after module's load_state_dict is called.

    register_module(name, module)

    Alias for add_module().

    register_parameter(name, param)

    Adds a parameter to the module.

    register_state_dict_pre_hook(hook)

    These hooks will be called with arguments: self, prefix, and keep_vars before calling state_dict on self.

    requires_grad_([requires_grad])

    Change if autograd should record operations on parameters in this module.

    save_hyperparameters(*args[, ignore, frame, ...])

    Save arguments to hparams attribute.

    set_extra_state(state)

    This function is called from load_state_dict() to handle any extra state found within the state_dict.

    set_predict_parameters(n, num_samples, ...)

    to be set from TorchForecastingModel before calling trainer.predict() and reset at self.on_predict_end()

    setup(stage)

    Called at the beginning of fit (train + validate), validate, test, or predict.

    share_memory()

    See torch.Tensor.share_memory_()

    state_dict(*args[, destination, prefix, ...])

    Returns a dictionary containing references to the whole state of the module.

    teardown(stage)

    Called at the end of fit (train + validate), validate, test, or predict.

    test_dataloader()

    An iterable or collection of iterables specifying test samples.

    test_step(*args, **kwargs)

    Operates on a single batch of data from the test set.

    to(*args, **kwargs)

    See torch.nn.Module.to().

    to_dtype(dtype)

    Cast module precision (float32 by default) to another precision.

    to_empty(*, device[, recurse])

    Moves the parameters and buffers to the specified device without copying storage.

    to_onnx(file_path[, input_sample])

    Saves the model in ONNX format.

    to_torchscript([file_path, method, ...])

    By default compiles the whole model to a ScriptModule.

    toggle_optimizer(optimizer)

    Makes sure only the gradients of the current optimizer's parameters are calculated in the training step to prevent dangling gradients in multiple-optimizer setup.

    train([mode])

    Sets the module in training mode.

    train_dataloader()

    An iterable or collection of iterables specifying training samples.

    training_step(train_batch, batch_idx)

    performs the training step

    transfer_batch_to_device(batch, device, ...)

    Override this hook if your DataLoader returns tensors wrapped in a custom data structure.

    type(dst_type)

    See torch.nn.Module.type().

    unfreeze()

    Unfreeze all parameters for training.

    untoggle_optimizer(optimizer)

    Resets the state of required gradients that were toggled with toggle_optimizer().

    val_dataloader()

    An iterable or collection of iterables specifying validation samples.

    validation_step(val_batch, batch_idx)

    performs the validation step

    xpu([device])

    Moves all model parameters and buffers to the XPU.

    zero_grad([set_to_none])

    Resets gradients of all model parameters.

    + ++++ + + + + + + + + +

    __call__

    set_mc_dropout

    +
    +
    +abstract forward(x_in)[source]
    +

    BlockRNN Module forward.

    +
    +
    Parameters
    +

    x_in (Tuple) – Tuple of Tensors containing the features of the input sequence. The tuple has elements +(past target, historic future covariates, future covariates, static covariates). +The shape of the past target is (batch_size, input_length, input_size).

    +
    +
    Returns
    +

    The BlockRNN output Tensor with shape (batch_size, output_chunk_length, target_size, nr_params). +It contains the prediction at the last time step of the sequence.

    +
    +
    Return type
    +

    torch.Tensor

    +
    +
    +
    + +

    +

    diff --git a/generated_api/darts.models.forecasting.catboost_model.html b/generated_api/darts.models.forecasting.catboost_model.html index e1b85d9c43..de69e5a720 100644 --- a/generated_api/darts.models.forecasting.catboost_model.html +++ b/generated_api/darts.models.forecasting.catboost_model.html @@ -969,13 +969,16 @@

    CatBoost model

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -1649,6 +1652,7 @@

    CatBoost modelFalse

  • **kwargs (dict, optional) – Additional keyword arguments passed to the predict method of the model. Only works with univariate target series.

  • +
  • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

  • Return type
    @@ -1788,6 +1792,17 @@

    CatBoost model +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +

    +
    property uses_future_covariates: bool
    diff --git a/generated_api/darts.models.forecasting.croston.html b/generated_api/darts.models.forecasting.croston.html index 1d7c4b8891..3ca29928e5 100644 --- a/generated_api/darts.models.forecasting.croston.html +++ b/generated_api/darts.models.forecasting.croston.html @@ -948,13 +948,16 @@

    Croston method

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -1001,7 +1004,7 @@

    Croston method

    load(path)

    Loads the model from a given path or file handle.

    -

    predict(n[, future_covariates, num_samples])

    +

    predict(n[, future_covariates, num_samples, ...])

    Forecasts values for n time steps after the end of the training series.

    residuals(series[, past_covariates, ...])

    @@ -1547,7 +1550,7 @@

    Croston method
    -predict(n, future_covariates=None, num_samples=1, **kwargs)
    +predict(n, future_covariates=None, num_samples=1, verbose=False, show_warnings=True, **kwargs)

    Forecasts values for n time steps after the end of the training series.

    If some future covariates were specified during the training, they must also be specified here.

    @@ -1559,6 +1562,8 @@

    Croston methodint) – Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 for deterministic models.

    +
  • verbose (bool) – Optionally, set the prediction verbosity. Not effective for all models.

  • +
  • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

  • Returns
    @@ -1700,6 +1705,17 @@

    Croston method +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +

    +
    property uses_future_covariates: bool
    diff --git a/generated_api/darts.models.forecasting.dlinear.html b/generated_api/darts.models.forecasting.dlinear.html index f4fe89185f..be4b7cee56 100644 --- a/generated_api/darts.models.forecasting.dlinear.html +++ b/generated_api/darts.models.forecasting.dlinear.html @@ -902,7 +902,7 @@

    D-LinearTimeSeries is passed to the fit() method). Default: 1.

  • force_reset – If set to True, any previously-existing model with the same name will be reset (all checkpoints will be discarded). Default: False.

  • -
  • save_checkpoints – Whether or not to automatically save the untrained model and checkpoints from training. +

  • save_checkpoints – Whether to automatically save the untrained model and checkpoints from training. To load the model from checkpoint, call MyModelClass.load_from_checkpoint(), where MyModelClass is the TorchForecastingModel class that was used (such as TFTModel, NBEATSModel, etc.). If set to False, the model can still be manually saved using @@ -931,8 +931,8 @@

    D-Linearlink for more details. Default: None.

  • -
  • pl_trainer_kwargs

    -
    By default TorchForecastingModel creates a PyTorch Lightning Trainer with several useful presets

    that performs the training, validation and prediction processes. These presets include automatic +

  • pl_trainer_kwargs

    By default TorchForecastingModel creates a PyTorch Lightning Trainer with several useful presets +that performs the training, validation and prediction processes. These presets include automatic checkpointing, tensorboard logging, setting the torch device and more. With pl_trainer_kwargs you can add additional kwargs to instantiate the PyTorch Lightning trainer object. Check the PL Trainer documentation for more information about the @@ -940,8 +940,6 @@

    D-Linearpl_trainer_kwargs by specifying keys "accelerator", "devices", and "auto_select_gpus". Some examples for setting the devices inside the pl_trainer_kwargs dict:

    -

  • -
  • -
    -
    show_warnings

    whether to show warnings raised from PyTorch Lightning. Useful to detect potential issues of -your forecasting use case. Default: False.

    -
    -

    References

    1
    @@ -1062,13 +1057,16 @@

    D-Linear

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -2081,7 +2079,8 @@

    D-Linearbool) – If set to True, the model predict the parameters of its Likelihood parameters instead of the target. Only supported for probabilistic models with a likelihood, num_samples = 1 and n<=output_chunk_length. -Default: False

    +Default: False.

    +
  • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

  • Returns
    @@ -2278,6 +2277,17 @@

    D-Linear +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +

    +
    to_cpu()
    diff --git a/generated_api/darts.models.forecasting.ensemble_model.html b/generated_api/darts.models.forecasting.ensemble_model.html index a44886aa4b..7c472e7522 100644 --- a/generated_api/darts.models.forecasting.ensemble_model.html +++ b/generated_api/darts.models.forecasting.ensemble_model.html @@ -904,13 +904,16 @@

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -1688,6 +1691,17 @@
    +
    +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +
    +
    property uses_future_covariates: bool
    diff --git a/generated_api/darts.models.forecasting.exponential_smoothing.html b/generated_api/darts.models.forecasting.exponential_smoothing.html index 71bfbcfeb7..c19eea7bf6 100644 --- a/generated_api/darts.models.forecasting.exponential_smoothing.html +++ b/generated_api/darts.models.forecasting.exponential_smoothing.html @@ -930,13 +930,16 @@

    Exponential Smoothing

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -983,7 +986,7 @@

    Exponential Smoothing

    load(path)

    Loads the model from a given path or file handle.

    -

    predict(n[, num_samples, verbose])

    +

    predict(n[, num_samples, verbose, show_warnings])

    Forecasts values for n time steps after the end of the training series.

    residuals(series[, past_covariates, ...])

    @@ -1523,14 +1526,16 @@

    Exponential Smoothing
    -predict(n, num_samples=1, verbose=False)[source]
    +predict(n, num_samples=1, verbose=False, show_warnings=True)[source]

    Forecasts values for n time steps after the end of the training series.

    Parameters
      -
    • n – Forecast horizon - the number of time steps after the end of the series for which to produce predictions.

    • -
    • num_samples – Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 +

    • n (int) – Forecast horizon - the number of time steps after the end of the series for which to produce predictions.

    • +
    • num_samples (int) – Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 for deterministic models.

    • +
    • verbose (bool) – Optionally, set the prediction verbosity. Not effective for all models.

    • +
    • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

    Returns
    @@ -1672,6 +1677,17 @@

    Exponential Smoothing

    +
    +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +
    +
    property uses_future_covariates: bool
    diff --git a/generated_api/darts.models.forecasting.fft.html b/generated_api/darts.models.forecasting.fft.html index f49031f4d0..1eb1a42eae 100644 --- a/generated_api/darts.models.forecasting.fft.html +++ b/generated_api/darts.models.forecasting.fft.html @@ -933,13 +933,16 @@

    Fast Fourier Transform

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -986,7 +989,7 @@

    Fast Fourier Transform

    load(path)

    Loads the model from a given path or file handle.

    -

    predict(n[, num_samples, verbose])

    +

    predict(n[, num_samples, verbose, show_warnings])

    Forecasts values for n time steps after the end of the training series.

    residuals(series[, past_covariates, ...])

    @@ -1526,7 +1529,7 @@

    Fast Fourier Transform
    -predict(n, num_samples=1, verbose=False)[source]
    +predict(n, num_samples=1, verbose=False, show_warnings=True)[source]

    Forecasts values for n time steps after the end of the training series.

    Parameters
    @@ -1534,6 +1537,8 @@

    Fast Fourier Transform

    n (int) – Forecast horizon - the number of time steps after the end of the series for which to produce predictions.

  • num_samples (int) – Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 for deterministic models.

  • +
  • verbose (bool) – Optionally, set the prediction verbosity. Not effective for all models.

  • +
  • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

  • Returns
    @@ -1675,6 +1680,17 @@

    Fast Fourier Transform

    +
    +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +
    +
    property uses_future_covariates: bool
    diff --git a/generated_api/darts.models.forecasting.kalman_forecaster.html b/generated_api/darts.models.forecasting.kalman_forecaster.html index 43b32f2a24..87f451d71e 100644 --- a/generated_api/darts.models.forecasting.kalman_forecaster.html +++ b/generated_api/darts.models.forecasting.kalman_forecaster.html @@ -949,13 +949,16 @@

    Kalman Filter Forecaster

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -1548,7 +1551,7 @@

    Kalman Filter Forecaster
    -predict(n, series=None, future_covariates=None, num_samples=1, **kwargs)[source]
    +predict(n, series=None, future_covariates=None, num_samples=1, verbose=False, show_warnings=True, **kwargs)[source]

    If the series parameter is not set, forecasts values for n time steps after the end of the training series. If some future covariates were specified during the training, they must also be specified here.

    If the series parameter is set, forecasts values for n time steps after the end of the new target @@ -1567,6 +1570,8 @@

    Kalman Filter Forecasterint) – Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 for deterministic models.

    +
  • verbose (bool) – Optionally, set the prediction verbosity. Not effective for all models.

  • +
  • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

  • Returns
    @@ -1708,6 +1713,17 @@

    Kalman Filter Forecaster +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +

    +
    property uses_future_covariates: bool
    diff --git a/generated_api/darts.models.forecasting.lgbm.html b/generated_api/darts.models.forecasting.lgbm.html index 6600186e0d..ab88e0f344 100644 --- a/generated_api/darts.models.forecasting.lgbm.html +++ b/generated_api/darts.models.forecasting.lgbm.html @@ -995,13 +995,16 @@

    LightGBM Model

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -1678,6 +1681,7 @@

    LightGBM ModelFalse

  • **kwargs (dict, optional) – Additional keyword arguments passed to the predict method of the model. Only works with univariate target series.

  • +
  • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

  • Return type
    @@ -1817,6 +1821,17 @@

    LightGBM Model +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +

    +
    property uses_future_covariates: bool
    diff --git a/generated_api/darts.models.forecasting.linear_regression_model.html b/generated_api/darts.models.forecasting.linear_regression_model.html index 87a852c8f5..a76887141b 100644 --- a/generated_api/darts.models.forecasting.linear_regression_model.html +++ b/generated_api/darts.models.forecasting.linear_regression_model.html @@ -988,13 +988,16 @@

    Linear Regression model

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -1666,6 +1669,7 @@

    Linear Regression modelFalse

  • **kwargs (dict, optional) – Additional keyword arguments passed to the predict method of the model. Only works with univariate target series.

  • +
  • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

  • Return type
    @@ -1805,6 +1809,17 @@

    Linear Regression model

    +
    +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +
    +
    property uses_future_covariates: bool
    diff --git a/generated_api/darts.models.forecasting.nbeats.html b/generated_api/darts.models.forecasting.nbeats.html index d075355ea3..463ba8c6c4 100644 --- a/generated_api/darts.models.forecasting.nbeats.html +++ b/generated_api/darts.models.forecasting.nbeats.html @@ -910,7 +910,7 @@

    N-BEATSTimeSeries is passed to the fit() method). Default: 1.

  • force_reset – If set to True, any previously-existing model with the same name will be reset (all checkpoints will be discarded). Default: False.

  • -
  • save_checkpoints – Whether or not to automatically save the untrained model and checkpoints from training. +

  • save_checkpoints – Whether to automatically save the untrained model and checkpoints from training. To load the model from checkpoint, call MyModelClass.load_from_checkpoint(), where MyModelClass is the TorchForecastingModel class that was used (such as TFTModel, NBEATSModel, etc.). If set to False, the model can still be manually saved using @@ -939,8 +939,8 @@

    N-BEATSlink for more details. Default: None.

  • -
  • pl_trainer_kwargs

    -
    By default TorchForecastingModel creates a PyTorch Lightning Trainer with several useful presets

    that performs the training, validation and prediction processes. These presets include automatic +

  • pl_trainer_kwargs

    By default TorchForecastingModel creates a PyTorch Lightning Trainer with several useful presets +that performs the training, validation and prediction processes. These presets include automatic checkpointing, tensorboard logging, setting the torch device and more. With pl_trainer_kwargs you can add additional kwargs to instantiate the PyTorch Lightning trainer object. Check the PL Trainer documentation for more information about the @@ -948,8 +948,6 @@

    N-BEATSpl_trainer_kwargs by specifying keys "accelerator", "devices", and "auto_select_gpus". Some examples for setting the devices inside the pl_trainer_kwargs dict:

    -

  • -
  • -
    -
    show_warnings

    whether to show warnings raised from PyTorch Lightning. Useful to detect potential issues of -your forecasting use case. Default: False.

    -
    -

    References

    1
    @@ -1064,13 +1059,16 @@

    N-BEATS

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -2083,7 +2081,8 @@

    N-BEATSbool) – If set to True, the model predict the parameters of its Likelihood parameters instead of the target. Only supported for probabilistic models with a likelihood, num_samples = 1 and n<=output_chunk_length. -Default: False

    +Default: False.

    +
  • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

  • Returns
    @@ -2274,6 +2273,17 @@

    N-BEATS +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +

    +
    to_cpu()
    diff --git a/generated_api/darts.models.forecasting.nhits.html b/generated_api/darts.models.forecasting.nhits.html index 93211ae6d8..bd89e5a43d 100644 --- a/generated_api/darts.models.forecasting.nhits.html +++ b/generated_api/darts.models.forecasting.nhits.html @@ -918,7 +918,7 @@

    N-HiTSTimeSeries is passed to the fit() method). Default: 1.

  • force_reset – If set to True, any previously-existing model with the same name will be reset (all checkpoints will be discarded). Default: False.

  • -
  • save_checkpoints – Whether or not to automatically save the untrained model and checkpoints from training. +

  • save_checkpoints – Whether to automatically save the untrained model and checkpoints from training. To load the model from checkpoint, call MyModelClass.load_from_checkpoint(), where MyModelClass is the TorchForecastingModel class that was used (such as TFTModel, NBEATSModel, etc.). If set to False, the model can still be manually saved using @@ -947,8 +947,8 @@

    N-HiTSlink for more details. Default: None.

  • -
  • pl_trainer_kwargs

    -
    By default TorchForecastingModel creates a PyTorch Lightning Trainer with several useful presets

    that performs the training, validation and prediction processes. These presets include automatic +

  • pl_trainer_kwargs

    By default TorchForecastingModel creates a PyTorch Lightning Trainer with several useful presets +that performs the training, validation and prediction processes. These presets include automatic checkpointing, tensorboard logging, setting the torch device and more. With pl_trainer_kwargs you can add additional kwargs to instantiate the PyTorch Lightning trainer object. Check the PL Trainer documentation for more information about the @@ -956,8 +956,6 @@

    N-HiTSpl_trainer_kwargs by specifying keys "accelerator", "devices", and "auto_select_gpus". Some examples for setting the devices inside the pl_trainer_kwargs dict:

    -

  • -
  • -
    -
    show_warnings

    whether to show warnings raised from PyTorch Lightning. Useful to detect potential issues of -your forecasting use case. Default: False.

    -
    -

    References

    1
    @@ -1067,13 +1062,16 @@

    N-HiTS

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -2086,7 +2084,8 @@

    N-HiTSbool) – If set to True, the model predict the parameters of its Likelihood parameters instead of the target. Only supported for probabilistic models with a likelihood, num_samples = 1 and n<=output_chunk_length. -Default: False

    +Default: False.

    +
  • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

  • Returns
    @@ -2277,6 +2276,17 @@

    N-HiTS +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +

    +
    to_cpu()
    diff --git a/generated_api/darts.models.forecasting.nlinear.html b/generated_api/darts.models.forecasting.nlinear.html index 79614d2427..86b2307a6b 100644 --- a/generated_api/darts.models.forecasting.nlinear.html +++ b/generated_api/darts.models.forecasting.nlinear.html @@ -907,7 +907,7 @@

    N-LinearTimeSeries is passed to the fit() method). Default: 1.

  • force_reset – If set to True, any previously-existing model with the same name will be reset (all checkpoints will be discarded). Default: False.

  • -
  • save_checkpoints – Whether or not to automatically save the untrained model and checkpoints from training. +

  • save_checkpoints – Whether to automatically save the untrained model and checkpoints from training. To load the model from checkpoint, call MyModelClass.load_from_checkpoint(), where MyModelClass is the TorchForecastingModel class that was used (such as TFTModel, NBEATSModel, etc.). If set to False, the model can still be manually saved using @@ -1058,13 +1058,16 @@

    N-Linear

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -2077,7 +2080,8 @@

    N-Linearbool) – If set to True, the model predict the parameters of its Likelihood parameters instead of the target. Only supported for probabilistic models with a likelihood, num_samples = 1 and n<=output_chunk_length. -Default: False

  • +Default: False.

    +
  • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

  • Returns
    @@ -2274,6 +2278,17 @@

    N-Linear +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +

    +
    to_cpu()
    diff --git a/generated_api/darts.models.forecasting.prophet_model.html b/generated_api/darts.models.forecasting.prophet_model.html index 2890015b51..e9f50bf5f4 100644 --- a/generated_api/darts.models.forecasting.prophet_model.html +++ b/generated_api/darts.models.forecasting.prophet_model.html @@ -985,13 +985,16 @@

    Facebook Prophet

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -1041,7 +1044,7 @@

    Facebook Prophet

    load(path)

    Loads the model from a given path or file handle.

    -

    predict(n[, future_covariates, num_samples])

    +

    predict(n[, future_covariates, num_samples, ...])

    Forecasts values for n time steps after the end of the training series.

    predict_raw(n[, future_covariates])

    @@ -1626,7 +1629,7 @@

    Facebook Prophet
    -predict(n, future_covariates=None, num_samples=1, **kwargs)
    +predict(n, future_covariates=None, num_samples=1, verbose=False, show_warnings=True, **kwargs)

    Forecasts values for n time steps after the end of the training series.

    If some future covariates were specified during the training, they must also be specified here.

    @@ -1638,6 +1641,8 @@

    Facebook Prophetint) – Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 for deterministic models.

    +
  • verbose (bool) – Optionally, set the prediction verbosity. Not effective for all models.

  • +
  • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

  • Returns
    @@ -1792,6 +1797,17 @@

    Facebook Prophet +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +

    +
    property uses_future_covariates: bool
    diff --git a/generated_api/darts.models.forecasting.random_forest.html b/generated_api/darts.models.forecasting.random_forest.html index 0878eb86b1..fcff8d2422 100644 --- a/generated_api/darts.models.forecasting.random_forest.html +++ b/generated_api/darts.models.forecasting.random_forest.html @@ -986,13 +986,16 @@

    Random Forest

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -1653,6 +1656,7 @@

    Random ForestFalse

  • **kwargs (dict, optional) – Additional keyword arguments passed to the predict method of the model. Only works with univariate target series.

  • +
  • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

  • Return type
    @@ -1792,6 +1796,17 @@

    Random Forest +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +

    +
    property uses_future_covariates: bool
    diff --git a/generated_api/darts.models.forecasting.regression_ensemble_model.html b/generated_api/darts.models.forecasting.regression_ensemble_model.html index a5420723ef..0318a70ab1 100644 --- a/generated_api/darts.models.forecasting.regression_ensemble_model.html +++ b/generated_api/darts.models.forecasting.regression_ensemble_model.html @@ -956,13 +956,16 @@

    Regression ensemble model

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -1750,6 +1753,17 @@

    Regression ensemble model +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +

    +
    property uses_future_covariates: bool
    diff --git a/generated_api/darts.models.forecasting.regression_model.html b/generated_api/darts.models.forecasting.regression_model.html index 9b8de65d57..ea3cb47087 100644 --- a/generated_api/darts.models.forecasting.regression_model.html +++ b/generated_api/darts.models.forecasting.regression_model.html @@ -994,13 +994,16 @@

    Regression Model

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -1661,6 +1664,7 @@

    Regression ModelFalse

  • **kwargs (dict, optional) – Additional keyword arguments passed to the predict method of the model. Only works with univariate target series.

  • +
  • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

  • Return type
    @@ -1800,6 +1804,17 @@

    Regression Model +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +

    +
    property uses_future_covariates: bool
    @@ -1937,13 +1952,16 @@

    Regression Model

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -2604,6 +2622,7 @@

    Regression ModelFalse

  • **kwargs (dict, optional) – Additional keyword arguments passed to the predict method of the model. Only works with univariate target series.

  • +
  • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

  • Return type
    @@ -2743,6 +2762,17 @@

    Regression Model +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +

    +
    property uses_future_covariates: bool
    diff --git a/generated_api/darts.models.forecasting.rnn_model.html b/generated_api/darts.models.forecasting.rnn_model.html index 0c321e048e..d425e4df14 100644 --- a/generated_api/darts.models.forecasting.rnn_model.html +++ b/generated_api/darts.models.forecasting.rnn_model.html @@ -834,7 +834,7 @@
    -
    +

    Recurrent Neural Networks

    @@ -864,9 +864,8 @@

    Recurrent Neural NetworksParameters

    -
    -
    show_warnings

    whether to show warnings raised from PyTorch Lightning. Useful to detect potential issues of -your forecasting use case. Default: False.

    -
    -

    Examples

    >>> from darts.datasets import WeatherDataset
     >>> from darts.models import RNNModel
    @@ -1027,9 +1021,15 @@ 

    Recurrent Neural Networks

    extreme_lags

    A 6-tuple containing in order: (min target lag, max target lag, min past covariate lag, max past covariate lag, min future covariate lag, max future covariate lag).

    -

    min_train_samples

    +

    first_prediction_index

    +

    Returns the index of the first predicted within the output of self.model.

    + +

    min_train_samples

    The minimum number of samples for training the model.

    +

    min_train_series_length

    +

    Class property defining the minimum required length for the training series; overriding the default value of 3 of ForecastingModel

    +

    output_chunk_length

    Number of time steps predicted at once by the model, not defined for statistical models.

    @@ -1048,13 +1048,16 @@

    Recurrent Neural Networks

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -1113,39 +1116,45 @@

    Recurrent Neural Networks

    historical_forecasts(series[, ...])

    Compute the historical forecasts that would have been obtained by this model on (potentially multiple) series.

    -

    load(path, **kwargs)

    +

    initialize_encoders()

    +

    instantiates the SequentialEncoder object based on self._model_encoder_settings and parameter add_encoders used at model creation

    + +

    load(path, **kwargs)

    Loads a model from a given file path.

    -

    load_from_checkpoint(model_name[, work_dir, ...])

    +

    load_from_checkpoint(model_name[, work_dir, ...])

    Load the model from automatically saved checkpoints under '{work_dir}/darts_logs/{model_name}/checkpoints/'.

    -

    load_weights(path[, load_encoders, skip_checks])

    +

    load_weights(path[, load_encoders, skip_checks])

    Loads the weights from a manually saved model (saved with save()).

    -

    load_weights_from_checkpoint([model_name, ...])

    +

    load_weights_from_checkpoint([model_name, ...])

    Load only the weights from automatically saved checkpoints under '{work_dir}/darts_logs/{model_name}/ checkpoints/'.

    -

    lr_find(series[, past_covariates, ...])

    +

    lr_find(series[, past_covariates, ...])

    A wrapper around PyTorch Lightning's Tuner.lr_find().

    -

    predict(n[, series, past_covariates, ...])

    +

    predict(n[, series, past_covariates, ...])

    Predict the n time step following the end of the training series, or of the specified series.

    -

    predict_from_dataset(n, input_series_dataset)

    +

    predict_from_dataset(n, input_series_dataset)

    This method allows for predicting with a specific darts.utils.data.InferenceDataset instance.

    -

    reset_model()

    +

    reset_model()

    Resets the model object and removes all stored data - model, checkpoints, loggers and training history.

    -

    residuals(series[, past_covariates, ...])

    +

    residuals(series[, past_covariates, ...])

    Compute the residuals produced by this model on a (or sequence of) univariate time series.

    -

    save([path])

    +

    save([path])

    Saves the model under a given path.

    -

    to_cpu()

    +

    to_cpu()

    Updates the PyTorch Lightning Trainer parameters to move the model to CPU the next time :fun:`fit()` or predict() is called.

    +

    untrained_model()

    +

    Returns a new (untrained) model instance create with the same parameters.

    +
    @@ -1268,16 +1277,6 @@

    Recurrent Neural Networks -
    -property epochs_trained: int
    -
    -
    Return type
    -

    int

    -
    -
    -

    -
    property extreme_lags: Tuple[Optional[int], Optional[int], Optional[int], Optional[int], Optional[int], Optional[int]]
    @@ -1328,6 +1327,17 @@

    Recurrent Neural Networks +
    +property first_prediction_index: int
    +

    Returns the index of the first predicted within the output of self.model.

    +
    +
    Return type
    +

    int

    +
    +
    +

    +
    fit(series, past_covariates=None, future_covariates=None, val_series=None, val_past_covariates=None, val_future_covariates=None, trainer=None, verbose=None, epochs=0, max_samples_per_ts=None, num_loader_workers=0)
    @@ -1716,22 +1726,14 @@

    Recurrent Neural Networks -
    -property input_chunk_length: int
    -
    -
    Return type
    -

    int

    -
    -
    -

    - -
    -
    -property likelihood: Optional[darts.utils.likelihood_models.Likelihood]
    -
    +
    +
    +initialize_encoders()
    +

    instantiates the SequentialEncoder object based on self._model_encoder_settings and parameter +add_encoders used at model creation

    +
    Return type
    -

    Optional[Likelihood]

    +

    SequentialEncoder

    @@ -1977,21 +1979,13 @@

    Recurrent Neural Networks -
    -property model_created: bool
    -
    -
    Return type
    -

    bool

    -
    -
    -

    - -
    -
    -property model_params: dict
    -
    +
    +property min_train_series_length: int
    +

    Class property defining the minimum required length for the training series; +overriding the default value of 3 of ForecastingModel

    +
    Return type
    -

    dict

    +

    int

    @@ -2067,7 +2061,8 @@

    Recurrent Neural Networksbool) – If set to True, the model predict the parameters of its Likelihood parameters instead of the target. Only supported for probabilistic models with a likelihood, num_samples = 1 and n<=output_chunk_length. -Default: False

    +Default: False.

    +
  • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

  • Returns
    @@ -2242,11 +2237,6 @@

    Recurrent Neural Networks -
    -supports_past_covariates = False
    -

    -
    property supports_static_covariates: bool
    @@ -2258,6 +2248,17 @@

    Recurrent Neural Networks +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +

    +
    to_cpu()
    @@ -2265,6 +2266,12 @@

    Recurrent Neural Networkspredict() is called.

    +
    +
    +untrained_model()
    +

    Returns a new (untrained) model instance create with the same parameters.

    +
    +
    property uses_future_covariates: bool
    @@ -2300,6 +2307,529 @@

    Recurrent Neural Networks +
    +class darts.models.forecasting.rnn_model.CustomRNNModule(input_size, hidden_dim, num_layers, target_size, nr_params, dropout=0.0, **kwargs)[source]
    +

    Bases: darts.models.forecasting.pl_forecasting_module.PLDualCovariatesModule, abc.ABC

    +

    This class allows to create custom RNN modules that can later be used with Darts’ RNNModel. +It adds the backbone that is required to be used with Darts’ TorchForecastingModel and +RNNModel.

    +

    To create a new module, subclass from CustomRNNModule and:

    +
      +
    • Define the architecture in the module constructor (__init__())

    • +
    • Add the forward() method and define the logic of your module’s forward pass

    • +
    • Use the custom module class when creating a new RNNModel with parameter model.

    • +
    +

    You can use darts.models.forecasting.rnn_model._RNNModule as an example.

    +
    +
    Parameters
    +
      +
    • input_size (int) – The dimensionality of the input time series.

    • +
    • hidden_dim (int) – The number of features in the hidden state h of the RNN module.

    • +
    • num_layers (int) – The number of recurrent layers.

    • +
    • target_size (int) – The dimensionality of the output time series.

    • +
    • nr_params (int) – The number of parameters of the likelihood (or 1 if no likelihood is used).

    • +
    • dropout (float) – The fraction of neurons that are dropped in all-but-last RNN layers.

    • +
    • **kwargs – all parameters required for darts.model.forecasting_models.PLForecastingModule base class.

    • +
    +
    +
    +

    Attributes

    + ++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

    automatic_optimization

    If set to False you are responsible for calling .backward(), .step(), .zero_grad().

    current_epoch

    The current epoch in the Trainer, or 0 if not attached.

    example_input_array

    The example input array is a specification of what the module can consume in the forward() method.

    global_rank

    The index of the current process across all nodes and devices.

    global_step

    Total training batches seen across all epochs.

    hparams

    The collection of hyperparameters saved with save_hyperparameters().

    hparams_initial

    The collection of hyperparameters saved with save_hyperparameters().

    local_rank

    The index of the current process within a single node.

    logger

    Reference to the logger object in the Trainer.

    loggers

    Reference to the list of loggers in the Trainer.

    on_gpu

    Returns True if this model is currently located on a GPU.

    output_chunk_length

    Number of time steps predicted at once by the model.

    + ++++ + + + + + + + + + + + + + + + + + +

    device

    dtype

    epochs_trained

    fabric

    trainer

    +

    Methods

    + ++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

    add_module(name, module)

    Adds a child module to the current module.

    all_gather(data[, group, sync_grads])

    Gather tensors or collections of tensors from multiple processes.

    apply(fn)

    Applies fn recursively to every submodule (as returned by .children()) as well as self.

    backward(loss, *args, **kwargs)

    Called to perform backward on the loss returned in training_step().

    bfloat16()

    Casts all floating point parameters and buffers to bfloat16 datatype.

    buffers([recurse])

    Returns an iterator over module buffers.

    children()

    Returns an iterator over immediate children modules.

    clip_gradients(optimizer[, ...])

    Handles gradient clipping internally.

    compile(*args, **kwargs)

    Compile this Module's forward using torch.compile().

    configure_callbacks()

    Configure model-specific callbacks.

    configure_gradient_clipping(optimizer[, ...])

    Perform gradient clipping for the optimizer parameters.

    configure_model()

    Hook to create modules in a strategy and precision aware context.

    configure_optimizers()

    configures optimizers and learning rate schedulers for model optimization.

    configure_sharded_model()

    Deprecated.

    configure_torch_metrics(torch_metrics)

    process the torch_metrics parameter.

    cpu()

    See torch.nn.Module.cpu().

    cuda([device])

    Moves all model parameters and buffers to the GPU.

    double()

    See torch.nn.Module.double().

    eval()

    Sets the module in evaluation mode.

    extra_repr()

    Set the extra representation of the module

    float()

    See torch.nn.Module.float().

    forward(x_in[, h])

    RNN Module forward.

    freeze()

    Freeze all params for inference.

    get_buffer(target)

    Returns the buffer given by target if it exists, otherwise throws an error.

    get_extra_state()

    Returns any extra state to include in the module's state_dict.

    get_parameter(target)

    Returns the parameter given by target if it exists, otherwise throws an error.

    get_submodule(target)

    Returns the submodule given by target if it exists, otherwise throws an error.

    half()

    See torch.nn.Module.half().

    ipu([device])

    Moves all model parameters and buffers to the IPU.

    load_from_checkpoint([map_location, ...])

    Primary way of loading a model from a checkpoint.

    load_state_dict(state_dict[, strict, assign])

    Copies parameters and buffers from state_dict into this module and its descendants.

    log(name, value[, prog_bar, logger, ...])

    Log a key, value pair.

    log_dict(dictionary[, prog_bar, logger, ...])

    Log a dictionary of values at once.

    lr_scheduler_step(scheduler, metric)

    Override this method to adjust the default way the Trainer calls each scheduler.

    lr_schedulers()

    Returns the learning rate scheduler(s) that are being used during training.

    manual_backward(loss, *args, **kwargs)

    Call this directly from your training_step() when doing optimizations manually.

    modules()

    Returns an iterator over all modules in the network.

    named_buffers([prefix, recurse, ...])

    Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

    named_children()

    Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

    named_modules([memo, prefix, remove_duplicate])

    Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

    named_parameters([prefix, recurse, ...])

    Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

    on_after_backward()

    Called after loss.backward() and before optimizers are stepped.

    on_after_batch_transfer(batch, dataloader_idx)

    Override to alter or apply batch augmentations to your batch after it is transferred to the device.

    on_before_backward(loss)

    Called before loss.backward().

    on_before_batch_transfer(batch, dataloader_idx)

    Override to alter or apply batch augmentations to your batch before it is transferred to the device.

    on_before_optimizer_step(optimizer)

    Called before optimizer.step().

    on_before_zero_grad(optimizer)

    Called after training_step() and before optimizer.zero_grad().

    on_fit_end()

    Called at the very end of fit.

    on_fit_start()

    Called at the very beginning of fit.

    on_load_checkpoint(checkpoint)

    Called by Lightning to restore your model.

    on_predict_batch_end(outputs, batch, batch_idx)

    Called in the predict loop after the batch.

    on_predict_batch_start(batch, batch_idx[, ...])

    Called in the predict loop before anything happens for that batch.

    on_predict_end()

    Called at the end of predicting.

    on_predict_epoch_end()

    Called at the end of predicting.

    on_predict_epoch_start()

    Called at the beginning of predicting.

    on_predict_model_eval()

    Sets the model to eval during the predict loop.

    on_predict_start()

    Called at the beginning of predicting.

    on_save_checkpoint(checkpoint)

    Called by Lightning when saving a checkpoint to give you a chance to store anything else you might want to save.

    on_test_batch_end(outputs, batch, batch_idx)

    Called in the test loop after the batch.

    on_test_batch_start(batch, batch_idx[, ...])

    Called in the test loop before anything happens for that batch.

    on_test_end()

    Called at the end of testing.

    on_test_epoch_end()

    Called in the test loop at the very end of the epoch.

    on_test_epoch_start()

    Called in the test loop at the very beginning of the epoch.

    on_test_model_eval()

    Sets the model to eval during the test loop.

    on_test_model_train()

    Sets the model to train during the test loop.

    on_test_start()

    Called at the beginning of testing.

    on_train_batch_end(outputs, batch, batch_idx)

    Called in the training loop after the batch.

    on_train_batch_start(batch, batch_idx)

    Called in the training loop before anything happens for that batch.

    on_train_end()

    Called at the end of training before logger experiment is closed.

    on_train_epoch_end()

    Called in the training loop at the very end of the epoch.

    on_train_epoch_start()

    Called in the training loop at the very beginning of the epoch.

    on_train_start()

    Called at the beginning of training after sanity check.

    on_validation_batch_end(outputs, batch, ...)

    Called in the validation loop after the batch.

    on_validation_batch_start(batch, batch_idx)

    Called in the validation loop before anything happens for that batch.

    on_validation_end()

    Called at the end of validation.

    on_validation_epoch_end()

    Called in the validation loop at the very end of the epoch.

    on_validation_epoch_start()

    Called in the validation loop at the very beginning of the epoch.

    on_validation_model_eval()

    Sets the model to eval during the val loop.

    on_validation_model_train()

    Sets the model to train during the val loop.

    on_validation_model_zero_grad()

    Called by the training loop to release gradients before entering the validation loop.

    on_validation_start()

    Called at the beginning of validation.

    optimizer_step(epoch, batch_idx, optimizer)

    Override this method to adjust the default way the Trainer calls the optimizer.

    optimizer_zero_grad(epoch, batch_idx, optimizer)

    Override this method to change the default behaviour of optimizer.zero_grad().

    optimizers([use_pl_optimizer])

    Returns the optimizer(s) that are being used during training.

    parameters([recurse])

    Returns an iterator over module parameters.

    predict_dataloader()

    An iterable or collection of iterables specifying prediction samples.

    predict_step(batch, batch_idx[, dataloader_idx])

    performs the prediction step

    prepare_data()

    Use this to download and prepare data.

    print(*args, **kwargs)

    Prints only from process 0.

    register_backward_hook(hook)

    Registers a backward hook on the module.

    register_buffer(name, tensor[, persistent])

    Adds a buffer to the module.

    register_forward_hook(hook, *[, prepend, ...])

    Registers a forward hook on the module.

    register_forward_pre_hook(hook, *[, ...])

    Registers a forward pre-hook on the module.

    register_full_backward_hook(hook[, prepend])

    Registers a backward hook on the module.

    register_full_backward_pre_hook(hook[, prepend])

    Registers a backward pre-hook on the module.

    register_load_state_dict_post_hook(hook)

    Registers a post hook to be run after module's load_state_dict is called.

    register_module(name, module)

    Alias for add_module().

    register_parameter(name, param)

    Adds a parameter to the module.

    register_state_dict_pre_hook(hook)

    These hooks will be called with arguments: self, prefix, and keep_vars before calling state_dict on self.

    requires_grad_([requires_grad])

    Change if autograd should record operations on parameters in this module.

    save_hyperparameters(*args[, ignore, frame, ...])

    Save arguments to hparams attribute.

    set_extra_state(state)

    This function is called from load_state_dict() to handle any extra state found within the state_dict.

    set_predict_parameters(n, num_samples, ...)

    to be set from TorchForecastingModel before calling trainer.predict() and reset at self.on_predict_end()

    setup(stage)

    Called at the beginning of fit (train + validate), validate, test, or predict.

    share_memory()

    See torch.Tensor.share_memory_()

    state_dict(*args[, destination, prefix, ...])

    Returns a dictionary containing references to the whole state of the module.

    teardown(stage)

    Called at the end of fit (train + validate), validate, test, or predict.

    test_dataloader()

    An iterable or collection of iterables specifying test samples.

    test_step(*args, **kwargs)

    Operates on a single batch of data from the test set.

    to(*args, **kwargs)

    See torch.nn.Module.to().

    to_dtype(dtype)

    Cast module precision (float32 by default) to another precision.

    to_empty(*, device[, recurse])

    Moves the parameters and buffers to the specified device without copying storage.

    to_onnx(file_path[, input_sample])

    Saves the model in ONNX format.

    to_torchscript([file_path, method, ...])

    By default compiles the whole model to a ScriptModule.

    toggle_optimizer(optimizer)

    Makes sure only the gradients of the current optimizer's parameters are calculated in the training step to prevent dangling gradients in multiple-optimizer setup.

    train([mode])

    Sets the module in training mode.

    train_dataloader()

    An iterable or collection of iterables specifying training samples.

    training_step(train_batch, batch_idx)

    performs the training step

    transfer_batch_to_device(batch, device, ...)

    Override this hook if your DataLoader returns tensors wrapped in a custom data structure.

    type(dst_type)

    See torch.nn.Module.type().

    unfreeze()

    Unfreeze all parameters for training.

    untoggle_optimizer(optimizer)

    Resets the state of required gradients that were toggled with toggle_optimizer().

    val_dataloader()

    An iterable or collection of iterables specifying validation samples.

    validation_step(val_batch, batch_idx)

    performs the validation step

    xpu([device])

    Moves all model parameters and buffers to the XPU.

    zero_grad([set_to_none])

    Resets gradients of all model parameters.

    + ++++ + + + + + + + + +

    __call__

    set_mc_dropout

    +
    +
    +abstract forward(x_in, h=None)[source]
    +

    RNN Module forward.

    +
    +
    Parameters
    +
      +
    • x_in (Tuple) – Tuple of Tensors containing the features of the input sequence. The tuple has elements (past target, +historic future covariates, future covariates, static covariates). The shape of the past target is +(batch_size, input_length, input_size).

    • +
    • h (Optional[Tensor]) – Optionally, the hidden state.

    • +
    +
    +
    Returns
    +

    Tuple of Tensors with elements (RNN output, hidden state). The RNN output Tensor has shape +(batch_size, output_chunk_length, target_size, nr_params). It contains the outputs at every +time step of the input sequence. During training the whole tensor is used as output, whereas during +prediction we only use y[:, -1, :]. However, this module always returns the whole Tensor.

    +
    +
    Return type
    +

    Tuple[torch.Tensor, torch.Tensor]

    +
    +
    +
    + +

    +

    diff --git a/generated_api/darts.models.forecasting.sf_auto_arima.html b/generated_api/darts.models.forecasting.sf_auto_arima.html index dec1be7568..abb9157d15 100644 --- a/generated_api/darts.models.forecasting.sf_auto_arima.html +++ b/generated_api/darts.models.forecasting.sf_auto_arima.html @@ -931,13 +931,16 @@

    StatsForecastAutoARIMA

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -984,7 +987,7 @@

    StatsForecastAutoARIMA

    load(path)

    Loads the model from a given path or file handle.

    -

    predict(n[, future_covariates, num_samples])

    +

    predict(n[, future_covariates, num_samples, ...])

    Forecasts values for n time steps after the end of the training series.

    residuals(series[, past_covariates, ...])

    @@ -1530,7 +1533,7 @@

    StatsForecastAutoARIMA
    -predict(n, future_covariates=None, num_samples=1, **kwargs)
    +predict(n, future_covariates=None, num_samples=1, verbose=False, show_warnings=True, **kwargs)

    Forecasts values for n time steps after the end of the training series.

    If some future covariates were specified during the training, they must also be specified here.

    @@ -1542,6 +1545,8 @@

    StatsForecastAutoARIMAn time steps/indices after the end of the training target series.

  • num_samples (int) – Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 for deterministic models.

  • +
  • verbose (bool) – Optionally, set the prediction verbosity. Not effective for all models.

  • +
  • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

  • Returns
    @@ -1683,6 +1688,17 @@

    StatsForecastAutoARIMA

    +
    +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +
    +
    property uses_future_covariates: bool
    diff --git a/generated_api/darts.models.forecasting.sf_auto_ces.html b/generated_api/darts.models.forecasting.sf_auto_ces.html index 9e6c5a975d..33e71d0e08 100644 --- a/generated_api/darts.models.forecasting.sf_auto_ces.html +++ b/generated_api/darts.models.forecasting.sf_auto_ces.html @@ -905,13 +905,16 @@

    StatsForecastAutoCES

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -958,7 +961,7 @@

    StatsForecastAutoCES

    load(path)

    Loads the model from a given path or file handle.

    -

    predict(n[, num_samples, verbose])

    +

    predict(n[, num_samples, verbose, show_warnings])

    Forecasts values for n time steps after the end of the training series.

    residuals(series[, past_covariates, ...])

    @@ -1498,7 +1501,7 @@

    StatsForecastAutoCES
    -predict(n, num_samples=1, verbose=False)[source]
    +predict(n, num_samples=1, verbose=False, show_warnings=True)[source]

    Forecasts values for n time steps after the end of the training series.

    Parameters
    @@ -1506,6 +1509,8 @@

    StatsForecastAutoCES

    n (int) – Forecast horizon - the number of time steps after the end of the series for which to produce predictions.

  • num_samples (int) – Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 for deterministic models.

  • +
  • verbose (bool) – Optionally, set the prediction verbosity. Not effective for all models.

  • +
  • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

  • Returns
    @@ -1647,6 +1652,17 @@

    StatsForecastAutoCES

    +
    +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +
    +
    property uses_future_covariates: bool
    diff --git a/generated_api/darts.models.forecasting.sf_auto_ets.html b/generated_api/darts.models.forecasting.sf_auto_ets.html index 3bec7b521b..a3d80aa229 100644 --- a/generated_api/darts.models.forecasting.sf_auto_ets.html +++ b/generated_api/darts.models.forecasting.sf_auto_ets.html @@ -934,13 +934,16 @@

    StatsForecastAutoETS

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -987,7 +990,7 @@

    StatsForecastAutoETS

    load(path)

    Loads the model from a given path or file handle.

    -

    predict(n[, future_covariates, num_samples])

    +

    predict(n[, future_covariates, num_samples, ...])

    Forecasts values for n time steps after the end of the training series.

    residuals(series[, past_covariates, ...])

    @@ -1533,7 +1536,7 @@

    StatsForecastAutoETS
    -predict(n, future_covariates=None, num_samples=1, **kwargs)
    +predict(n, future_covariates=None, num_samples=1, verbose=False, show_warnings=True, **kwargs)

    Forecasts values for n time steps after the end of the training series.

    If some future covariates were specified during the training, they must also be specified here.

    @@ -1545,6 +1548,8 @@

    StatsForecastAutoETSn time steps/indices after the end of the training target series.

  • num_samples (int) – Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 for deterministic models.

  • +
  • verbose (bool) – Optionally, set the prediction verbosity. Not effective for all models.

  • +
  • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

  • Returns
    @@ -1686,6 +1691,17 @@

    StatsForecastAutoETS

    +
    +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +
    +
    property uses_future_covariates: bool
    diff --git a/generated_api/darts.models.forecasting.sf_auto_theta.html b/generated_api/darts.models.forecasting.sf_auto_theta.html index ccc816aa94..b4749ce41d 100644 --- a/generated_api/darts.models.forecasting.sf_auto_theta.html +++ b/generated_api/darts.models.forecasting.sf_auto_theta.html @@ -907,13 +907,16 @@

    StatsForecastAutoTheta

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -960,7 +963,7 @@

    StatsForecastAutoTheta

    load(path)

    Loads the model from a given path or file handle.

    -

    predict(n[, num_samples, verbose])

    +

    predict(n[, num_samples, verbose, show_warnings])

    Forecasts values for n time steps after the end of the training series.

    residuals(series[, past_covariates, ...])

    @@ -1500,7 +1503,7 @@

    StatsForecastAutoTheta
    -predict(n, num_samples=1, verbose=False)[source]
    +predict(n, num_samples=1, verbose=False, show_warnings=True)[source]

    Forecasts values for n time steps after the end of the training series.

    Parameters
    @@ -1508,6 +1511,8 @@

    StatsForecastAutoTheta

    n (int) – Forecast horizon - the number of time steps after the end of the series for which to produce predictions.

  • num_samples (int) – Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 for deterministic models.

  • +
  • verbose (bool) – Optionally, set the prediction verbosity. Not effective for all models.

  • +
  • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

  • Returns
    @@ -1649,6 +1654,17 @@

    StatsForecastAutoTheta

    +
    +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +
    +
    property uses_future_covariates: bool
    diff --git a/generated_api/darts.models.forecasting.tbats_model.html b/generated_api/darts.models.forecasting.tbats_model.html index 49568c3b8b..082de070e7 100644 --- a/generated_api/darts.models.forecasting.tbats_model.html +++ b/generated_api/darts.models.forecasting.tbats_model.html @@ -946,13 +946,16 @@

    BATS and TBATS

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -999,7 +1002,7 @@

    BATS and TBATS

    load(path)

    Loads the model from a given path or file handle.

    -

    predict(n[, num_samples, verbose])

    +

    predict(n[, num_samples, verbose, show_warnings])

    Forecasts values for n time steps after the end of the training series.

    residuals(series[, past_covariates, ...])

    @@ -1539,14 +1542,16 @@

    BATS and TBATS
    -predict(n, num_samples=1, verbose=False)
    +predict(n, num_samples=1, verbose=False, show_warnings=True)

    Forecasts values for n time steps after the end of the training series.

    Parameters
      -
    • n – Forecast horizon - the number of time steps after the end of the series for which to produce predictions.

    • -
    • num_samples – Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 +

    • n (int) – Forecast horizon - the number of time steps after the end of the series for which to produce predictions.

    • +
    • num_samples (int) – Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 for deterministic models.

    • +
    • verbose (bool) – Optionally, set the prediction verbosity. Not effective for all models.

    • +
    • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

    Returns
    @@ -1688,6 +1693,17 @@

    BATS and TBATS +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +

    +
    property uses_future_covariates: bool
    @@ -1817,13 +1833,16 @@

    BATS and TBATS

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -1870,7 +1889,7 @@

    BATS and TBATS

    load(path)

    Loads the model from a given path or file handle.

    -

    predict(n[, num_samples, verbose])

    +

    predict(n[, num_samples, verbose, show_warnings])

    Forecasts values for n time steps after the end of the training series.

    residuals(series[, past_covariates, ...])

    @@ -2410,14 +2429,16 @@

    BATS and TBATS
    -predict(n, num_samples=1, verbose=False)
    +predict(n, num_samples=1, verbose=False, show_warnings=True)

    Forecasts values for n time steps after the end of the training series.

    Parameters
      -
    • n – Forecast horizon - the number of time steps after the end of the series for which to produce predictions.

    • -
    • num_samples – Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 +

    • n (int) – Forecast horizon - the number of time steps after the end of the series for which to produce predictions.

    • +
    • num_samples (int) – Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 for deterministic models.

    • +
    • verbose (bool) – Optionally, set the prediction verbosity. Not effective for all models.

    • +
    • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

    Returns
    @@ -2559,6 +2580,17 @@

    BATS and TBATS +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +

    +
    property uses_future_covariates: bool
    diff --git a/generated_api/darts.models.forecasting.tcn_model.html b/generated_api/darts.models.forecasting.tcn_model.html index 3b3c81f70c..e735a0f9db 100644 --- a/generated_api/darts.models.forecasting.tcn_model.html +++ b/generated_api/darts.models.forecasting.tcn_model.html @@ -894,7 +894,7 @@

    Temporal Convolutional NetworkTimeSeries is passed to the fit() method). Default: 1.

  • force_reset – If set to True, any previously-existing model with the same name will be reset (all checkpoints will be discarded). Default: False.

  • -
  • save_checkpoints – Whether or not to automatically save the untrained model and checkpoints from training. +

  • save_checkpoints – Whether to automatically save the untrained model and checkpoints from training. To load the model from checkpoint, call MyModelClass.load_from_checkpoint(), where MyModelClass is the TorchForecastingModel class that was used (such as TFTModel, NBEATSModel, etc.). If set to False, the model can still be manually saved using @@ -923,8 +923,8 @@

    Temporal Convolutional Networklink for more details. Default: None.

  • -
  • pl_trainer_kwargs

    -
    By default TorchForecastingModel creates a PyTorch Lightning Trainer with several useful presets

    that performs the training, validation and prediction processes. These presets include automatic +

  • pl_trainer_kwargs

    By default TorchForecastingModel creates a PyTorch Lightning Trainer with several useful presets +that performs the training, validation and prediction processes. These presets include automatic checkpointing, tensorboard logging, setting the torch device and more. With pl_trainer_kwargs you can add additional kwargs to instantiate the PyTorch Lightning trainer object. Check the PL Trainer documentation for more information about the @@ -933,8 +933,6 @@

    Temporal Convolutional Network"devices", and "auto_select_gpus". Some examples for setting the devices inside the pl_trainer_kwargs dict:rgs`` dict:

    -

  • -
  • -
    -
    show_warnings

    whether to show warnings raised from PyTorch Lightning. Useful to detect potential issues of -your forecasting use case. Default: False.

    -
    -

    References

    1
    @@ -1047,13 +1042,16 @@

    Temporal Convolutional Network

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -2066,7 +2064,8 @@

    Temporal Convolutional Networkbool) – If set to True, the model predict the parameters of its Likelihood parameters instead of the target. Only supported for probabilistic models with a likelihood, num_samples = 1 and n<=output_chunk_length. -Default: False

    +Default: False.

    +
  • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

  • Returns
    @@ -2257,6 +2256,17 @@

    Temporal Convolutional Network +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +

    +
    to_cpu()
    diff --git a/generated_api/darts.models.forecasting.tft_model.html b/generated_api/darts.models.forecasting.tft_model.html index d2b794abe2..c5c685936d 100644 --- a/generated_api/darts.models.forecasting.tft_model.html +++ b/generated_api/darts.models.forecasting.tft_model.html @@ -929,7 +929,7 @@

    Temporal Fusion Transformer (TFT)TimeSeries is passed to the fit() method). Default: 1.

  • force_reset – If set to True, any previously-existing model with the same name will be reset (all checkpoints will be discarded). Default: False.

  • -
  • save_checkpoints – Whether or not to automatically save the untrained model and checkpoints from training. +

  • save_checkpoints – Whether to automatically save the untrained model and checkpoints from training. To load the model from checkpoint, call MyModelClass.load_from_checkpoint(), where MyModelClass is the TorchForecastingModel class that was used (such as TFTModel, NBEATSModel, etc.). If set to False, the model can still be manually saved using @@ -958,8 +958,8 @@

    Temporal Fusion Transformer (TFT)link for more details. Default: None.

  • -
  • pl_trainer_kwargs

    -
    By default TorchForecastingModel creates a PyTorch Lightning Trainer with several useful presets

    that performs the training, validation and prediction processes. These presets include automatic +

  • pl_trainer_kwargs

    By default TorchForecastingModel creates a PyTorch Lightning Trainer with several useful presets +that performs the training, validation and prediction processes. These presets include automatic checkpointing, tensorboard logging, setting the torch device and more. With pl_trainer_kwargs you can add additional kwargs to instantiate the PyTorch Lightning trainer object. Check the PL Trainer documentation for more information about the @@ -967,8 +967,6 @@

    Temporal Fusion Transformer (TFT)pl_trainer_kwargs by specifying keys "accelerator", "devices", and "auto_select_gpus". Some examples for setting the devices inside the pl_trainer_kwargs dict:

    -

  • -
  • -
    -
    show_warnings

    whether to show warnings raised from PyTorch Lightning. Useful to detect potential issues of -your forecasting use case. Default: False.

    -
    -

    References

    1
    @@ -1095,13 +1090,16 @@

    Temporal Fusion Transformer (TFT)

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -1175,7 +1173,7 @@

    Temporal Fusion Transformer (TFT)

    lr_find(series[, past_covariates, ...])

    A wrapper around PyTorch Lightning's Tuner.lr_find().

    -

    predict(n, *args, **kwargs)

    +

    predict(n[, series, past_covariates, ...])

    Predict the n time step following the end of the training series, or of the specified series.

    predict_from_dataset(n, input_series_dataset)

    @@ -2056,7 +2054,7 @@

    Temporal Fusion Transformer (TFT)
    -predict(n, *args, **kwargs)[source]
    +predict(n, series=None, past_covariates=None, future_covariates=None, trainer=None, batch_size=None, verbose=None, n_jobs=1, roll_size=None, num_samples=1, num_loader_workers=0, mc_dropout=False, predict_likelihood_parameters=False, show_warnings=True)

    Predict the n time step following the end of the training series, or of the specified series.

    Prediction is performed with a PyTorch Lightning Trainer. It uses a default Trainer object from presets and pl_trainer_kwargs used at model creation. You can also use a custom Trainer with optional parameter @@ -2086,35 +2084,36 @@

    Temporal Fusion Transformer (TFT)
    Parameters
      -
    • n – The number of time steps after the end of the training time series for which to produce predictions

    • -
    • series – Optionally, a series or sequence of series, representing the history of the target series whose +

    • n (int) – The number of time steps after the end of the training time series for which to produce predictions

    • +
    • series (Union[TimeSeries, Sequence[TimeSeries], None]) – Optionally, a series or sequence of series, representing the history of the target series whose future is to be predicted. If specified, the method returns the forecasts of these series. Otherwise, the method returns the forecast of the (single) training series.

    • -
    • past_covariates – Optionally, the past-observed covariates series needed as inputs for the model. +

    • past_covariates (Union[TimeSeries, Sequence[TimeSeries], None]) – Optionally, the past-observed covariates series needed as inputs for the model. They must match the covariates used for training in terms of dimension.

    • -
    • future_covariates – Optionally, the future-known covariates series needed as inputs for the model. +

    • future_covariates (Union[TimeSeries, Sequence[TimeSeries], None]) – Optionally, the future-known covariates series needed as inputs for the model. They must match the covariates used for training in terms of dimension.

    • -
    • trainer – Optionally, a custom PyTorch-Lightning Trainer object to perform prediction. Using a custom trainer +

    • trainer (Optional[Trainer]) – Optionally, a custom PyTorch-Lightning Trainer object to perform prediction. Using a custom trainer will override Darts’ default trainer.

    • -
    • batch_size – Size of batches during prediction. Defaults to the models’ training batch_size value.

    • -
    • verbose – Optionally, whether to print the progress. Ignored if there is a ProgressBar callback in +

    • batch_size (Optional[int]) – Size of batches during prediction. Defaults to the models’ training batch_size value.

    • +
    • verbose (Optional[bool]) – Optionally, whether to print the progress. Ignored if there is a ProgressBar callback in pl_trainer_kwargs.

    • -
    • n_jobs – The number of jobs to run in parallel. -1 means using all processors. Defaults to 1.

    • -
    • roll_size – For self-consuming predictions, i.e. n > output_chunk_length, determines how many +

    • n_jobs (int) – The number of jobs to run in parallel. -1 means using all processors. Defaults to 1.

    • +
    • roll_size (Optional[int]) – For self-consuming predictions, i.e. n > output_chunk_length, determines how many outputs of the model are fed back into it at every iteration of feeding the predicted target (and optionally future covariates) back into the model. If this parameter is not provided, it will be set output_chunk_length by default.

    • -
    • num_samples – Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 +

    • num_samples (int) – Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 for deterministic models.

    • -
    • num_loader_workers – Optionally, an integer specifying the num_workers to use in PyTorch DataLoader instances, +

    • num_loader_workers (int) – Optionally, an integer specifying the num_workers to use in PyTorch DataLoader instances, for the inference/prediction dataset loaders (if any). A larger number of workers can sometimes increase performance, but can also incur extra overheads and increase memory usage, as more batches are loaded in parallel.

    • -
    • mc_dropout – Optionally, enable monte carlo dropout for predictions using neural network based models. +

    • mc_dropout (bool) – Optionally, enable monte carlo dropout for predictions using neural network based models. This allows bayesian approximation by specifying an implicit prior over learned models.

    • -
    • predict_likelihood_parameters – If set to True, the model predict the parameters of its Likelihood parameters instead of the target. Only +

    • predict_likelihood_parameters (bool) – If set to True, the model predict the parameters of its Likelihood parameters instead of the target. Only supported for probabilistic models with a likelihood, num_samples = 1 and n<=output_chunk_length. -Default: False

    • +Default: False.

      +
    • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

    Returns
    @@ -2311,6 +2310,17 @@

    Temporal Fusion Transformer (TFT) +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +

    +
    to_cpu()
    diff --git a/generated_api/darts.models.forecasting.theta.html b/generated_api/darts.models.forecasting.theta.html index 87f1bbeed9..ce464a9c69 100644 --- a/generated_api/darts.models.forecasting.theta.html +++ b/generated_api/darts.models.forecasting.theta.html @@ -923,13 +923,16 @@

    Theta Method

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -976,7 +979,7 @@

    Theta Method

    load(path)

    Loads the model from a given path or file handle.

    -

    predict(n[, num_samples, verbose])

    +

    predict(n[, num_samples, verbose, show_warnings])

    Forecasts values for n time steps after the end of the training series.

    residuals(series[, past_covariates, ...])

    @@ -1519,7 +1522,7 @@

    Theta Method
    -predict(n, num_samples=1, verbose=False)[source]
    +predict(n, num_samples=1, verbose=False, show_warnings=True)[source]

    Forecasts values for n time steps after the end of the training series.

    Parameters
    @@ -1527,6 +1530,8 @@

    Theta Methodint) – Forecast horizon - the number of time steps after the end of the series for which to produce predictions.

  • num_samples (int) – Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 for deterministic models.

  • +
  • verbose (bool) – Optionally, set the prediction verbosity. Not effective for all models.

  • +
  • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

  • Returns
    @@ -1695,6 +1700,17 @@

    Theta Method +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +

    +
    property uses_future_covariates: bool
    @@ -1812,13 +1828,16 @@

    Theta Method

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -1865,7 +1884,7 @@

    Theta Method

    load(path)

    Loads the model from a given path or file handle.

    -

    predict(n[, num_samples, verbose])

    +

    predict(n[, num_samples, verbose, show_warnings])

    Forecasts values for n time steps after the end of the training series.

    residuals(series[, past_covariates, ...])

    @@ -2405,7 +2424,7 @@

    Theta Method
    -predict(n, num_samples=1, verbose=False)[source]
    +predict(n, num_samples=1, verbose=False, show_warnings=True)[source]

    Forecasts values for n time steps after the end of the training series.

    Parameters
    @@ -2413,6 +2432,8 @@

    Theta Methodint) – Forecast horizon - the number of time steps after the end of the series for which to produce predictions.

  • num_samples (int) – Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 for deterministic models.

  • +
  • verbose (bool) – Optionally, set the prediction verbosity. Not effective for all models.

  • +
  • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

  • Returns
    @@ -2554,6 +2575,17 @@

    Theta Method +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +

    +
    property uses_future_covariates: bool
    diff --git a/generated_api/darts.models.forecasting.tide_model.html b/generated_api/darts.models.forecasting.tide_model.html index c1a3c98e1a..29b4304682 100644 --- a/generated_api/darts.models.forecasting.tide_model.html +++ b/generated_api/darts.models.forecasting.tide_model.html @@ -907,7 +907,7 @@

    Time-series Dense Encoder (TiDE)TimeSeries is passed to the fit() method). Default: 1.

  • force_reset – If set to True, any previously-existing model with the same name will be reset (all checkpoints will be discarded). Default: False.

  • -
  • save_checkpoints – Whether or not to automatically save the untrained model and checkpoints from training. +

  • save_checkpoints – Whether to automatically save the untrained model and checkpoints from training. To load the model from checkpoint, call MyModelClass.load_from_checkpoint(), where MyModelClass is the TorchForecastingModel class that was used (such as TFTModel, NBEATSModel, etc.). If set to False, the model can still be manually saved using @@ -936,8 +936,8 @@

    Time-series Dense Encoder (TiDE)link for more details. Default: None.

  • -
  • pl_trainer_kwargs

    -
    By default TorchForecastingModel creates a PyTorch Lightning Trainer with several useful presets

    that performs the training, validation and prediction processes. These presets include automatic +

  • pl_trainer_kwargs

    By default TorchForecastingModel creates a PyTorch Lightning Trainer with several useful presets +that performs the training, validation and prediction processes. These presets include automatic checkpointing, tensorboard logging, setting the torch device and more. With pl_trainer_kwargs you can add additional kwargs to instantiate the PyTorch Lightning trainer object. Check the PL Trainer documentation for more information about the @@ -945,8 +945,6 @@

    Time-series Dense Encoder (TiDE)pl_trainer_kwargs by specifying keys "accelerator", "devices", and "auto_select_gpus". Some examples for setting the devices inside the pl_trainer_kwargs dict:

    -

  • -
  • -
    -
    show_warnings

    whether to show warnings raised from PyTorch Lightning. Useful to detect potential issues of -your forecasting use case. Default: False.

    -
    -

    References

    1
    @@ -1064,13 +1059,16 @@

    Time-series Dense Encoder (TiDE)

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -1144,7 +1142,7 @@

    Time-series Dense Encoder (TiDE)

    lr_find(series[, past_covariates, ...])

    A wrapper around PyTorch Lightning's Tuner.lr_find().

    -

    predict(n, *args, **kwargs)

    +

    predict(n[, series, past_covariates, ...])

    Predict the n time step following the end of the training series, or of the specified series.

    predict_from_dataset(n, input_series_dataset)

    @@ -2025,7 +2023,7 @@

    Time-series Dense Encoder (TiDE)
    -predict(n, *args, **kwargs)[source]
    +predict(n, series=None, past_covariates=None, future_covariates=None, trainer=None, batch_size=None, verbose=None, n_jobs=1, roll_size=None, num_samples=1, num_loader_workers=0, mc_dropout=False, predict_likelihood_parameters=False, show_warnings=True)

    Predict the n time step following the end of the training series, or of the specified series.

    Prediction is performed with a PyTorch Lightning Trainer. It uses a default Trainer object from presets and pl_trainer_kwargs used at model creation. You can also use a custom Trainer with optional parameter @@ -2055,35 +2053,36 @@

    Time-series Dense Encoder (TiDE)
    Parameters
      -
    • n – The number of time steps after the end of the training time series for which to produce predictions

    • -
    • series – Optionally, a series or sequence of series, representing the history of the target series whose +

    • n (int) – The number of time steps after the end of the training time series for which to produce predictions

    • +
    • series (Union[TimeSeries, Sequence[TimeSeries], None]) – Optionally, a series or sequence of series, representing the history of the target series whose future is to be predicted. If specified, the method returns the forecasts of these series. Otherwise, the method returns the forecast of the (single) training series.

    • -
    • past_covariates – Optionally, the past-observed covariates series needed as inputs for the model. +

    • past_covariates (Union[TimeSeries, Sequence[TimeSeries], None]) – Optionally, the past-observed covariates series needed as inputs for the model. They must match the covariates used for training in terms of dimension.

    • -
    • future_covariates – Optionally, the future-known covariates series needed as inputs for the model. +

    • future_covariates (Union[TimeSeries, Sequence[TimeSeries], None]) – Optionally, the future-known covariates series needed as inputs for the model. They must match the covariates used for training in terms of dimension.

    • -
    • trainer – Optionally, a custom PyTorch-Lightning Trainer object to perform prediction. Using a custom trainer +

    • trainer (Optional[Trainer]) – Optionally, a custom PyTorch-Lightning Trainer object to perform prediction. Using a custom trainer will override Darts’ default trainer.

    • -
    • batch_size – Size of batches during prediction. Defaults to the models’ training batch_size value.

    • -
    • verbose – Optionally, whether to print the progress. Ignored if there is a ProgressBar callback in +

    • batch_size (Optional[int]) – Size of batches during prediction. Defaults to the models’ training batch_size value.

    • +
    • verbose (Optional[bool]) – Optionally, whether to print the progress. Ignored if there is a ProgressBar callback in pl_trainer_kwargs.

    • -
    • n_jobs – The number of jobs to run in parallel. -1 means using all processors. Defaults to 1.

    • -
    • roll_size – For self-consuming predictions, i.e. n > output_chunk_length, determines how many +

    • n_jobs (int) – The number of jobs to run in parallel. -1 means using all processors. Defaults to 1.

    • +
    • roll_size (Optional[int]) – For self-consuming predictions, i.e. n > output_chunk_length, determines how many outputs of the model are fed back into it at every iteration of feeding the predicted target (and optionally future covariates) back into the model. If this parameter is not provided, it will be set output_chunk_length by default.

    • -
    • num_samples – Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 +

    • num_samples (int) – Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 for deterministic models.

    • -
    • num_loader_workers – Optionally, an integer specifying the num_workers to use in PyTorch DataLoader instances, +

    • num_loader_workers (int) – Optionally, an integer specifying the num_workers to use in PyTorch DataLoader instances, for the inference/prediction dataset loaders (if any). A larger number of workers can sometimes increase performance, but can also incur extra overheads and increase memory usage, as more batches are loaded in parallel.

    • -
    • mc_dropout – Optionally, enable monte carlo dropout for predictions using neural network based models. +

    • mc_dropout (bool) – Optionally, enable monte carlo dropout for predictions using neural network based models. This allows bayesian approximation by specifying an implicit prior over learned models.

    • -
    • predict_likelihood_parameters – If set to True, the model predict the parameters of its Likelihood parameters instead of the target. Only +

    • predict_likelihood_parameters (bool) – If set to True, the model predict the parameters of its Likelihood parameters instead of the target. Only supported for probabilistic models with a likelihood, num_samples = 1 and n<=output_chunk_length. -Default: False

    • +Default: False.

      +
    • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

    Returns
    @@ -2280,6 +2279,17 @@

    Time-series Dense Encoder (TiDE) +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +

    +
    to_cpu()
    diff --git a/generated_api/darts.models.forecasting.transformer_model.html b/generated_api/darts.models.forecasting.transformer_model.html index d0431f3241..569af52b5d 100644 --- a/generated_api/darts.models.forecasting.transformer_model.html +++ b/generated_api/darts.models.forecasting.transformer_model.html @@ -907,7 +907,7 @@

    Transformer ModelTimeSeries is passed to the fit() method). Default: 1.

  • force_reset – If set to True, any previously-existing model with the same name will be reset (all checkpoints will be discarded). Default: False.

  • -
  • save_checkpoints – Whether or not to automatically save the untrained model and checkpoints from training. +

  • save_checkpoints – Whether to automatically save the untrained model and checkpoints from training. To load the model from checkpoint, call MyModelClass.load_from_checkpoint(), where MyModelClass is the TorchForecastingModel class that was used (such as TFTModel, NBEATSModel, etc.). If set to False, the model can still be manually saved using @@ -936,8 +936,8 @@

    Transformer Modellink for more details. Default: None.

  • -
  • pl_trainer_kwargs

    -
    By default TorchForecastingModel creates a PyTorch Lightning Trainer with several useful presets

    that performs the training, validation and prediction processes. These presets include automatic +

  • pl_trainer_kwargs

    By default TorchForecastingModel creates a PyTorch Lightning Trainer with several useful presets +that performs the training, validation and prediction processes. These presets include automatic checkpointing, tensorboard logging, setting the torch device and more. With pl_trainer_kwargs you can add additional kwargs to instantiate the PyTorch Lightning trainer object. Check the PL Trainer documentation for more information about the @@ -945,8 +945,6 @@

    Transformer Modelpl_trainer_kwargs by specifying keys "accelerator", "devices", and "auto_select_gpus". Some examples for setting the devices inside the pl_trainer_kwargs dict:

    -

  • -
  • -
    -
    show_warnings

    whether to show warnings raised from PyTorch Lightning. Useful to detect potential issues of -your forecasting use case. Default: False.

    -
    -

    References

    1
    @@ -1071,13 +1066,16 @@

    Transformer Model

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -2090,7 +2088,8 @@

    Transformer Modelbool) – If set to True, the model predict the parameters of its Likelihood parameters instead of the target. Only supported for probabilistic models with a likelihood, num_samples = 1 and n<=output_chunk_length. -Default: False

    +Default: False.

    +
  • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

  • Returns
    @@ -2281,6 +2280,17 @@

    Transformer Model +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +

    +
    to_cpu()
    diff --git a/generated_api/darts.models.forecasting.varima.html b/generated_api/darts.models.forecasting.varima.html index dfcf93db4d..73ada0ef7c 100644 --- a/generated_api/darts.models.forecasting.varima.html +++ b/generated_api/darts.models.forecasting.varima.html @@ -942,13 +942,16 @@

    VARIMA

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -1541,7 +1544,7 @@

    VARIMA
    -predict(n, series=None, future_covariates=None, num_samples=1, **kwargs)
    +predict(n, series=None, future_covariates=None, num_samples=1, verbose=False, show_warnings=True, **kwargs)

    If the series parameter is not set, forecasts values for n time steps after the end of the training series. If some future covariates were specified during the training, they must also be specified here.

    If the series parameter is set, forecasts values for n time steps after the end of the new target @@ -1560,6 +1563,8 @@

    VARIMAint) – Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 for deterministic models.

    +
  • verbose (bool) – Optionally, set the prediction verbosity. Not effective for all models.

  • +
  • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

  • Returns
    @@ -1701,6 +1706,17 @@

    VARIMA +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +

    +
    property uses_future_covariates: bool
    diff --git a/generated_api/darts.models.forecasting.xgboost.html b/generated_api/darts.models.forecasting.xgboost.html index f722595532..57040a92f2 100644 --- a/generated_api/darts.models.forecasting.xgboost.html +++ b/generated_api/darts.models.forecasting.xgboost.html @@ -983,13 +983,16 @@

    XGBoost Model

    supports_static_covariates

    Whether model supports static covariates

    -

    uses_future_covariates

    +

    supports_transferrable_series_prediction

    +

    Whether the model supports prediction for any input series.

    + +

    uses_future_covariates

    Whether the model uses future covariates, once fitted.

    -

    uses_past_covariates

    +

    uses_past_covariates

    Whether the model uses past covariates, once fitted.

    -

    uses_static_covariates

    +

    uses_static_covariates

    Whether the model uses static covariates, once fitted.

    @@ -1662,6 +1665,7 @@

    XGBoost ModelFalse

  • **kwargs (dict, optional) – Additional keyword arguments passed to the predict method of the model. Only works with univariate target series.

  • +
  • show_warnings (bool) – Optionally, control whether warnings are shown. Not effective for all models.

  • Return type
    @@ -1801,6 +1805,17 @@

    XGBoost Model +
    +property supports_transferrable_series_prediction: bool
    +

    Whether the model supports prediction for any input series.

    +
    +
    Return type
    +

    bool

    +
    +
    +

    +
    property uses_future_covariates: bool
    diff --git a/generated_api/darts.utils.data.shifted_dataset.html b/generated_api/darts.utils.data.shifted_dataset.html index 48c948f6cf..1d19eefb4d 100644 --- a/generated_api/darts.utils.data.shifted_dataset.html +++ b/generated_api/darts.utils.data.shifted_dataset.html @@ -934,7 +934,7 @@

    Shifted Training Datasetint) – The length of the emitted past series.

  • output_chunk_length (int) – The length of the emitted future series.

  • shift (int) – The number of time steps by which to shift the output chunks relative to the input chunks.

  • -
  • shift_covariates (bool) – Whether or not to shift the covariates forward the same way as the target. +

  • shift_covariates (bool) – Whether to shift the covariates forward the same way as the target. FutureCovariatesModel’s require this set to True, while PastCovariatesModel’s require this set to False.

  • max_samples_per_ts (Optional[int]) – This is an upper bound on the number of (input, output, input_covariates) tuples that can be produced per time series. It can be used in order to have an upper bound on the total size of the dataset and diff --git a/genindex.html b/genindex.html index 9ab44306e8..fe81babb6a 100644 --- a/genindex.html +++ b/genindex.html @@ -1435,9 +1435,13 @@

    C

  • (darts.models.forecasting.pl_forecasting_module.PLSplitCovariatesModule property)
  • +
  • CustomBlockRNNModule (class in darts.models.forecasting.block_rnn_model) +
  • CustomFeedForwardDecoderLayer (class in darts.models.components.transformer)
  • CustomFeedForwardEncoderLayer (class in darts.models.components.transformer) +
  • +
  • CustomRNNModule (class in darts.models.forecasting.rnn_model)
  • CyclicTemporalEncoder (class in darts.dataprocessing.encoders.encoders)
  • @@ -1984,13 +1988,6 @@

    D

    -
  • - darts.models.forecasting.block_rnn_model - -
  • @@ -2119,13 +2116,6 @@

    D

  • -
  • - darts.models.forecasting.rnn_model - -
  • @@ -2777,11 +2767,9 @@

    E

  • EnsembleSklearnAggregator (class in darts.ad.aggregators.ensemble_sklearn_aggregator)
  • -
  • epochs_trained (darts.models.forecasting.block_rnn_model.BlockRNNModel property) +
  • epochs_trained (darts.models.forecasting.dlinear.DLinearModel property)
  • +
  • untrained_model() (darts.models.forecasting.block_rnn_model.BlockRNNModel method) + +
  • uri (darts.datasets.dataset_loaders.DatasetLoaderMetadata attribute) diff --git a/index.html b/index.html index a5a129f2f4..30454a112c 100644 --- a/index.html +++ b/index.html @@ -258,7 +258,7 @@

    Time Series Made Easy in PythonPyPI version Conda Version Supported versions -Docker Image Version (latest by date) +Docker Image Version (latest by date) GitHub Release Date GitHub Workflow Status Downloads @@ -463,28 +463,28 @@

    Forecasting Models

    NaiveMean

    -

    🟩 🟥

    +

    🟩 🟩

    🟥 🟥 🟥

    🟥 🟥

    🟥

    NaiveSeasonal

    -

    🟩 🟥

    +

    🟩 🟩

    🟥 🟥 🟥

    🟥 🟥

    🟥

    NaiveDrift

    -

    🟩 🟥

    +

    🟩 🟩

    🟥 🟥 🟥

    🟥 🟥

    🟥

    NaiveMovingAverage

    -

    🟩 🟥

    +

    🟩 🟩

    🟥 🟥 🟥

    🟥 🟥

    🟥

    @@ -507,7 +507,7 @@

    Forecasting Models

    AutoARIMA

    @@ -566,7 +566,7 @@

    Forecasting Models

    Prophet (see install notes)

    +

    Prophet

    Prophet repo

    🟩 🟥

    🟥 🟩 🟥

    @@ -622,7 +622,7 @@

    Forecasting Models

    LightGBMModel,

    +

    LightGBMModel

    🟩 🟩

    🟩 🟩 🟩

    diff --git a/objects.inv b/objects.inv index 3616fcef22d21ac28f6202ff75c0f43697d9e395..7c95c69b5a26f25376d2b7b1421ded8ee8e5a756 100644 GIT binary patch literal 98611 zcmV)PK()UkAX9K?X>NERX>N99Zgg*Qc_4OWa&u{KZXhxWBOp+6Z)#;@bUGkpVRCeH z3L_v^WpZ%ZEX>4U6X>%ZB zZ*6dLWpi_7WFU2OX>MmAdTeQ8E(&XH zQdY@YsnRG}T|0Y2Lz2NHMj*ffKxJlK?Q84{d=IuyvJrs;0U`p22#;{bTy(XP0K$I= z#L532fNz5|&lbm*H-}_i$@l-G|1U@9UQ~IY{l`beSU~u6=y8}zs2%@6u$=B z!3%?}_S&o9@iAqOL7t@9m~tAYk1Erqd>dO=*Y&@J*-aE=+2Xa4)rsb=*tZ~B2b;|) z4K^?Go>{(6ww|mXQ??B^xgWc?VV(yM5%XNxU9%XKuAtb3Xch1G!GB6(q-U?RjPdx@ zAnu<+%!_GN`J^GWb@j+mwSCQXyfuI13iC#GEgv`-hUw#;0>I*o9e68SXI~>0q_M^0 z?H)zRDamEg|P9d^Qk}?7q`{Zd|Totm+H4ne#O_1fr-J^B= z=nm4p>h}DnT_;h%SW{Sc6(>+;9mWZYX}56$W7~O#sJ1L;o3R>OeX_n|oKG<<+04e( zyYgQnI+@niXd~rMV;%>9vB@3Q+-9Xqc&W`xV_s^tV-&G=$Bufi7T4~o`S(*0=OOpR zwvF~PzUy}`A2S4WFZz%27o$e3VK6ps)TqHBEE+jD%j8Dyf?!SJvFyXg{W{;Lj8F5C zjK&3do`w&noT2bUe6isRr?z7_Sah!+Gg>IFT2((8jTbr$3;RYxh6@ghQDYR2TxpM6 zAC{-;A8~cUHr(x4%Hj=M7e7rYy>qdFy{mWiFZVUTKywyEllDu z&(jfCm~oEeA$SO*kh>-ufx>?{vNV734kLdjR5@*r&llL&0}JBJpv$x_9PTdd)Bk=a z{+irP6gDRsyV~s8=Ic7#t;Jek6GRc)PN`Y|g2{ucE88|r41i_iauC)c@;%!PfB*oa zH7;nI$Q3_bPIG45M@__0#0R(2X8&R^vUe^X9^Jc_+{nK^ef&6ikk^x!SmAEw={Yum&qZ07=EvhPYjARrwFiUqWrOoBRP zSs28|eWZ2y*lyCk=%?~;^Uk7xFt-lfYhd9Zx(_T7P(K2O0`5>#=%U~l1xDI&_v&#y z>f)M@#h<4ANkw348n!cmlG*npP#lnM1WN?khbEyNlQ7E?(^;u~^|&r{an0xAPtz`> zA}}=#+l4^M?7I*s4oDY*B?9e2F znp(B)FUE$!+U$6O`kM*P+m_Oj?JRF=-gu%1HH`SEr%v|(<}mNp*NCFFK6%~;F^E~; z=CePnWj}RbB90l9jxl&ZNn9otJ+@*OLe&K8jc*t^pO1CMP+FIc#am<30r+ftS_Y3z z@rk!G{{J}(O=1n*tB1WC#Wla3f12C@bO^?_ZI`I(B&gXjZfVrX?WY@j zhF`uAfS}Yke);XwyX)08I>!o~;I}UyR`0Lhetb`ZQMIUOfcG`WJPCczDTK_7og(t75ZH z5@cuKY7>RnwU8W+DL)sRBK|LYg3}|nh>dYXp1d|?Uq_!!#| zzemLENz_J?Zp)2wczb}fQ@!81c1A@blWa*HIf^N>^2?jI(^E{xDCLcB$R%^*gJ zatk*eMH*}vIzpTs(IfHS0%R57TgaaL65Mm2A8l*$rE!FSP6xriDAhrT@e%w@R)%ky zOnTcy{O{fBx9cc;j1Mf%4H|iEZ;~Nd7lu!>wis^zI?3ji&uc+!Hl!Qg=E43RUr#g0 zf_RN^qp|&sem}|JG068G@9!9yZLhE}w+@=!(v#tgr6J2++ds`849tFSZ}!JYW}kxe zXeL*UuikPTA9$tF*u+y9Zxf@LqPTMWWKo`f^X0eNp3Ft6*#NkZkO&`O5o| zd9}JpqSGN>^FP=#hT(|Ck7k1^jO7f&w0z8_YLv0@Fb?yzY23ir>iGftyw`(ogRv)r zAM)VqDGfXfgry~4<6y&_zhSU4>U$Ktums6I-s>3EuL&RXq#-w&eGucp zPX$7fP8^PUxPXAAdF`M zNuy5R7k{92lG1+pY-91 zCYWsM%_||C%r8J_PNo+iHpos7gakdgz+!>SEe?=q)))ND0z?Nnu>c{#&MO8`FPkXb ztQdb*Y3GgS?Undz632 z4dmg0T~}LNum*Y^2$8W~i$`R**Ye?ZL@gHnpg)9$H13bWqFZkiMt?0K?gXI4!kz=l zurCEIM~^~e9_RriG86O=;&#g(F#OqI7!GMZ7zswX?kLO&J&d@sLJt^`c|rOu$P+@7 zf!0jWBBM10w9rU&zZMahL0?6MJKAfBNY)mi@x28{Vqk9((HPOmXg>Woq{eyb`p*C* zh0aM>3mONAIwz3Vg~njgnJI{BL<4X%=8q3?&K_AxKqyj>keW4Ae557}6(EJ~sp6tC zP4uv#&JaUfglmq@yr4p)FeRwCuxA4b^8no$fbiH)Z`7wb-qRcDDUb1_M|XPTI>ixP zzO+ao4y*$qGPY~+hz#&rKHN^I#lj!zhtQD5`%zeQ>y5(5uO-AC{{JJIOe&hK$TuPAJCP<)JWolZo&4!4MkLsmFGE8Sy(L;kfP? zJjC&zd`x#3lFF<=G@jdwMq#d?py6vc2+a_LwR{~OewU=F=?{=0&IXjV{a!vQa{xV! zUq^*K@^`*i=Y7oY5Fig&T^{_QO3Q>aNcHnjtf_Q;2#%DRQ%b3EQy90qXt*P`f=BMZ zp;t`>7OiGgLLsl%yIe;;50iU>5{lOIlSt&A9=X-hRilbB*R$O*JhCW^CnwUWt{eAl z$NKEg4RaG#gl%i%&0LkwbV?1{*jgKZkJ;F27=PnWnPFMZ!-t4@GwJ#!J3Vhgk7!;y zu2;0Kkb;jm;c|pDW>A(0MRxU;|N4&qX#N%Vv9Q3DSHbZZy)?A7Ly&!)+Mcl3_aP@s zH~SZZ#BpPp!|h*zsm;_&tUAtE&K;NkN*=Pgv_=7f>3ARf;77)Y1b017tm6%Km9s7=HmTC*r3}-VNAl zZSXF_?Q4hk0jnpVJ`#ZCCn`VCA{6}|AeN%IHvu-8q29)SgDwp&cw*npe}lVluxv%X zA9DTuz-!oc<9u0$!Lqcv@?2$i@)w(xXN$%T1AZY12?sk|L6QM1k05b?Ry)v05Q`U3 zCa|#yl8RpI245)v!_k9sFptCHk!bp;Qy;+zkHlm`W(uJ*aZs8rs7w-sMqiR+E|HNo z+y<7ejwr#z(UI5PeRy|$Z#BT5%}=)LU~IRcv5f@U8i(qrHWEzsMig--75QzeN;9mO+1IiAKu} zRXKOXum6xg-qy6{ixDj>Fr|y7i#K+VnbjLD*gWi&7-rV?hYUDod4qoD6GmZ>he>QTEw_s@n2#?Cc$?&Ta`^T5<@|GEH5ID>;mF{pU&p+U zd`jR2{1@AZlQ?dkhR>9N!M6CRILE$)F^UvmHRHH0fmSdcC?QrYt}(&JbH|`CGrem_ zs1=E0P6w+H=fnhC>RlMG=uPn*D#Fuym(^Agbc;r4AWIy}Uxo5WrGw;PJ#*8ceS;=+BPa90G!w5KrMCQo4ANVhlx7erCWZ}KM~ zZ$k$OM+fgscwh!t%z2;$TC8~@g;oEPyr!W>ja)5WmuVW^*bJ-&cy^4}xJF0g2i#}y<8B4)PTgAaK@<$kj zLA**%X_y@VX_W;7alc=!_OGE>n}q@LeGkd^JviS1vi=V6^>=`*zXNprMQkHpkqGmb znjLD8lE>KH&4o7k(iaXSYls+Mj|< z6ngUuSa<7`2t@ib<9|a|>ScjIoF6`Z_{4H3$X01kgd28~vf#igActF^C`$z*zDweK zAHCd#(N`$kZjtb;A7bGlL=3LY_7x7qf6x7dW0Hd{u`kL4qFeTctq}vcpka zbxOgWez!;{)->4d!VMT_t2iLWU+?+Ml0;z)R-K&^p-3NCy83tnhS@3(i19Z*O7GzY z|8{XujDXMjH}I$YTarXz3(;m_Kz!vt)}pkr30zbc4(T$NrP^9d4MDzO~+hdw%;!o^n za5zPISVnRYF{%I{lKErG)}=VV-elj_yO;>fAK~%HZK5-s($Kf{Fn)ahykW=cbAqh? z!>{eDAbrd*Z~p2j%=aQVv|$gy<}27t#h#B*5XQkn7=`)E;EJYwx@H}7agv=0dyDIo zWqg3MGh7y8VgKr;3T?jS4`lnkbv2P(To)8>OzRxc&j?drr>}!C|Sbt8^@Q);> zSBXPlbgJ-v9~?#ECX&%HIMw64pGvTB#tj z(l&ou7ypJY`w%b}g&v)hnx;;Q&0Lh~q)-u#;VYzdb~=i+vLg%Sirk%*#6|P?{S@%& zj87#|l4bD4r{Ax$P2!>fru$@_hQ&KAz$H6rg}l_rL9rRos3DeCBgTArnr^5s4%U-j4k|Bt$~^5|U+bTbAYFSy&lb7ds;f zw%c|22!pW7kJ^dca;W?Sp8CXFbH6p2YU8qA{+w z;RbPhDB1wxqD?5R+co;yvB1DzwG|vho=QDbA(BvFNZDhUafG$lt0{h2?~~*!1s>#y zwFW5~h9Xp37xUx#m}EH>Htc0n4MJcgS+g{s6@g~-`zcIW zwth@`Gs5G@sQ4Y(KHv}Kzz#`@C{a>a@8$`n?KL|bbHpdWn_?Ivn-AkhR7om-IU@GN zXH2j250)l!OmvR$7@dl}6=q?$=H;W~W37wchT^LQK{`D+*0nv^C`4oo0>dgS1_EFh z6N9jA5fB40Z>(rQSO*D(fqKgJ2-mjRt!V%Vyy(2-C)~FA(F_fiDOO!>AXC zX`7H21b}J03&gf@unWSvRiq0Fz|P%-qOegWpcrfdTo4R~(JctmA=AQFb|(V zShtO6!7(5&zHDPza12&KBnS+20I(1iEDYv!2^G9@!eSw!!}36ctsD|jsVB&Q6(|_$ z8VDp*1quQar-DJU3{pWrWF%Y$%kUHk0`{8KC@=+M*f=T$V%{($1!mhg9tA>R7L0;0 z{fy=$+JvDj?Em!sr;opSjR#4K$ibk30V@(zTK69YDh%VqfJ)mK0zhFJJNi>npr{X} zZH%~2Y1;R=TAKA9@hR+LgnLTMn6aJ$!GEBqw2KtwDXb%ecuK<<@twjnR&eKR9nDQU zBOrP4X8@#_P66OQpi|flaV8YhP)>n>5;`bMBL;Dr0GMki#PCfM04sD-FyLCJ5Vg4^ zL7M~##A`GlI7;#*405EV7l%X*5sA@UP~k0Tu%j~<6zHLuiU%()QxIhMt9`tPOlco= z-RV0PQ(46b#FV!EM`0R-hvcvL5sHF2V0P0EvTUutVj!9panI~f*)qVjWpvG3ngjVn)D^vn2l;SG1!YcHlDkOs{_%Rg{Ar)c~74(1#emn&^ zoPrunK?$ZH#!|3CDY%goq(BNz90f6q;ya3hA4I{7p&*4&@FFN^0Tc@H6TI*VTJ!`Z zc!Co)q_7EE)C4nVf*vzL4w)cFOmG4wDDe{Xa0yzp1UXoO9V9g;+!dJ)nXg zPeBf+phiix6s%ARZX^XMkb)CO!3(3@KZU;EU@1%@hf+!itYAuI-hViyw2Tu_ zsf=T|=%sD!ph|^-q7qcbF#;=;Hw zsVrjzT1wkkp_YbuG_S0|faIw+2#^9UC4v8tOKCVnnq5%CE+qqs?qAwQ4861nP?uGR z;g=QxRt%(sKsHYy2-88qn-U2GVss=p`f-N_IT+K=L!*v}1Y|C;5LYE91`VP?4W-&rEm2v+;nxwDq=m5ql0O^RwPKprv=c(h0JRgQtm%;v znNc%}uB&BW-31XbcgQI8?u5fQ7Vm<_FgWiD#W-5;0>~_U?||f)iqK&b;D^Wgl)Mdt zj6$rvAfXv?FWHF2-76|G(f1OFR1CgiA|#uYNJQiD6&)o}uVNw;o3D_FOe+-*l{kIL zLnvBb5fO~pmuPe&_Z8rgT$NFY;#WMhV)-Q%orrz~L@2IbA`y%3H>juyB@HxM5@7?3 zR=mFiBNO#6c|uxi7m7OoN;FE*`W+JUJ?y?AcsUtjAs&#HjM!2-92^$v>>1r0xg+{#6T+=^dM*nLLv%Uu@DerN)%#o z(29zJI#jU`h=f)s$a6r2fgKAiIS2$pD-uG{&=Ltf99nVEh=-Om_yN%hgg`{JL?IFq zZO~A0p&LjvRG9`4ji_h|gdP?xIYJr}B&Bd0c&6cldyiC#aUEWE$Q z;-W*jc$xNK8dr~gAkAxTPFbEDZW-I&7OurRw&53~@)hIhq3jM02nR$!+Yy;nSlbno zVQ||Kjzx&u6_K&X=LiTS-0h0ZT!3^%WE}c-1!T0ga0O!)26seb91M5GV;vHA1ZEf* zcSU0p9(TlK8YFjxV;m}X1Y{L3cgSQX>^KCo5e*$;*@Vy?VHpO}9npl8rd#`EUO^5BQlCiVBvS?e8d(GP@#BVcoy+J=ZFwtdB2c^YZEd= z@0yj`G7=egZ!?b z%tHN+Xr3vl1U6xRIHdP6jo5CJgH~*}MMfmH+h#(K?Y3}8#CF?61oWjA5V6>9n~j3% z)g~ek+ie3OPa|y@?AUILhCpn$%|j@*+X6$6?Y3!X#CBUu__5tK4uRNi3y4T;x5Grm z=kI{gP?$PcG-A6gEcDoJizcKr-BOC}w!kPv1zSLLV!H|~daGPIv0VigkvM9Lj3N`k z*sg|;*usHcY_}heL>NeeNGrBG29j`X(v0n@S*a}}iN$u+Y}8`A7nEdTyDhGas-H(D zw%ev6=r170b}v{6#CF?6=&{`{4uRNi8wxwN+oE}2@v(FtmGhTm5}kVT_1R4^SAJFAtA>q~;ip!70naAm$5_WW%y--7q}q zDQF5B`!sZy|5X0|x%m0ErknI|df}j`jGvh)-Pa&G@T*LpSnKk!UU-{oJ14@F_$ z$gpv}0|Ml(tsjzaqEiRoc)^d%_?at<8T;(j7vITWuZtfIn?es31dnkGnZ#9ocw@?3 zdA?-e88l7|((n+NSdbS^v~zX+<-^_e*ypJ>HrC3O&}ed&jqgjA_BKhJg?t^ANzXFe ztT&1LuuWcw;(RndvXpxYP9cPA%MNTE1&)k0or3_{Is~Mv3 zD~rN?k~AW~)o@wv%=S!lI7N9_)(C?6+p`6H4=c^X3b#g#912#bm?GOVB9M>CMrC3&Y!h?Fjvr;#Mm*kwhZMa+Jo3Tjn)is zE~GVzjYDZ|+|IqUHgD`~+FOQpJ>iJlIHGWT0B$K9j1wmn4iCmXf#V^we0A*3TJwQA zw=gtB+7hVaJB8*U$oRMzv&_W#tuG$$`<^fP6olW{yENS82EOlw<;f<3akkFfcUQ z5u}G}0rNi2*nzi~Nw0%AFpcGawjn4vqHQu({)JjSs9td!#lLslwok%K?m@zKPc>-7 zu&})6HU5zBX%wkf&n5(w2v zmIVHNV`-LzOWY;Fb~)QbG-$B=UTK|xyDK>myj*D)-?=R?FnwA{K*5!jAUGbZG>zrB zO5+IrYGId-o7(1~=AE|bP@U2?3Nc@_4TtR-v}uSeOUXK%l8%UG+_o6dyxbNAhP&GaAmsO|!N@tlYD`>DSj|MuC00|S`!#ATYD;Ol z-f|0*ird_UqSelbIMVkl$dWklywAF_ise4n_9=PJH597TTvPb>muu4`TxB&4wmaIT zqC{yEw%B+b$rs%h4qww9F;z(AI=ReAzY+nKp&y!A8mE>pG3&GSk{y@%NWcpN!uZ zz9`R+KX3sWXk4YHkWVoJK z__)tAYCI(CE9JvzOrl9asci1B3Qx*P?*fK{6XJluY(zOXDCAaHDdQlGT;cdQ7CI&{ zjIpK(&EZx{bVUoGE4o5+qA|LHh0%sw(Gis(9P5z4w0W}L98VO+no}&78Qd(HIRR9# zb-_lmgMtdV)@(N?KFl5(gr|t1sJbc;aluoNdh$OuLH>{=S#!}fG5tfkgz-5bF0Q)? z^0(qoQ;A)LVQk+@V233Em)BwO?8S9h9z*#W76MKvcE|-H#5&?5$(9#BM5!yh%}Tw7Wr5PJVX64&^vEslSRmJJF?Uu;j8>-7H7o^?$_NZ)y{iwFCq5m{G6xAF zFrgC`%R=Ua1+h}^U{Or9J75anor#XUmiMkF^#!E-AOwNOE~j4+bj)3>Xr~F6dEq1 zf;k?Al^Kl9UwCSlFka8RxUQ8-*+AD+VHn%Dk~v{Xz*SFJyy_r+McHeiusnv+C@ch= zOzDsdL@0E`N0H4+(}ZP#k~m?hOtn5(3Lvcq7|L3Bf#m_yVPLT=WEofxD}e$Q#Z<2V zrT~^N9ML&ZGaRwniyMx>TxcDRP(eIMM{Fb=2e-lqEGwj3;ed=_+k+G{rjtD%lbFTg zm(6a$S*@+zj)f%mHvpmSQ;93;UgNNfGm#?SRnl=1Iq}{9@5JhY5Dwb^EU@Ng-q~wI+x0Q z2X`zFOne|Uh$+FmipJeHW)w$oNLlz4Y($m)jQ5 z#I~W~u>`Slq#YrFd)$sV?Ok(6V1_=tBN{ko-v=OwXYLx5G^CZz;0OvzkZ^=&s$4k2 z0g^ae(OGLDj=;b~6Gwa&>WU*GD;dTSlc`?g3I|x&agFIj0dfs(FBQ2abfGD^W(E-; zTtm`!G2F^oj-VlRFPDgv+b5)wW`Yr?+>eAKW;boM_8R z`!Kf(E^nBl*ee+3whcuJbAxa?1P}v=7Z1RK&H2LK2c z>H+{3h=T^efxb?6D+8EwL3;X@6v%A_(qA7-AwR9TPT3=$S2F(e%{RbkikjfaYYHg7 zEBdAW+1SVL1B4^9Qv^IQ!s`c~zyZ_-Po$>WgeN>eB?E&PMsM&@|>U`e?fUf5o*@+71`zBy?Am7w8^W+`tk)G}XRK4`cJgYVis*D;l#}C~9$xO7- z;>z(-XnFppx9_i4_ojMh)96HNRvM;_U2t8}1_mN0x|Mxvt<%Q3p?+y;(mI2ujeR&x z6pR8yF$AH(C$WFSNu)Lq7P2RRS=1$wWkz#L)8qS#w#BX~k{0a%-~>iH z4jY*f#4`3m%2sl;wr(Lj+SxXiA1%!Szv>Nz<3@=Df&RFl0a-Q0uT@k4UxdH zPH6{cp;p=%2GuM9P$)E9Q2lZ=%JDpSl*uxMifN!{DhnE~ZmKW;{P7*1oNwydxU2Cd zs-8V`U|3f-Kfk~E`{!Rid|Iu4{?E_vzpOuBf4RQ9U;q96e;UU3P_aK<-@TtB_lo~P znR~U~iZAQMK{f7E1r4^_=72D9itvLNMeD~P-fPI+>Wb56Oi49r&} zUVuda>M2OKWNY+c7bQXd`fqdrPrF_Dr96^+8_}uxx|zFwVO+$QsE&}EeHd+17SpZE zC_Jto(_kC2I4AtblfyA2Jk4y9co#lOZ-qBbF$85ZV6C3}TC{>Azj6l5#zLTH&Ps+! z=g<(cJ)bbyb~crpC+TLt=8$Q)AzZ&^(up6o(>5Rsm!@J^k{f6UFEzL9TexAA0h7}M z;aPK=zZ^+d-|28%AA@|eH{O8lg%e_4CT) z{TL+=L9|YT_$%R&v82p$b|g%>5278}2fer1yylZoil||+Fe6GD685B_Ht_m`m6Ofd zbXTD#&JF!RGD;o^SKuS{C;a$WEGFna-AChmQGN*1b;idW@$a;rs%bv#1}R;=_7KGU z=Qa5Na&eSyJ&I(2+cotlazRNxKwDtW0gqXA{s;vH@Bh}>~YbIOp9g`ZAzz03in|2qReougK- z-xWg?@z&XfCErfZUmlo6t;+cBykKY31d11pNe8AIwB)N*yt6u!0akpaXda_$gOq#& zkgRj4&shwr4bpi$`FRYd4OF>liaaa*hcCZbGLO-;fjX0Vokfk#V?b@7&g9{f$K->3 zxRtL3&SL=R@Xo1*=To<{7!NwUb7~9oSZsBG$uGG&#Iq2w8`Q)b@l0YEHRcQ+KmE52 z!9J+xg?0v^>`D_9pXL*B4Z`uuvwTUozjH|b)S0YL!jP0z)s#JkS#x*AdY>d;XMjul zJ&~HTd?jcmwOY~gjx`tJQxwgu?Y5ccQ`Z+;(bvZ$%V&a4{1u~`lm0tfHEOdV&~L)O zpTd-7(j{1v#gw7g{R>}R&tNf|&E!=``7P?rdds~Q?$D6NtQOt#c={*0j)C|(4qG4C zAxY_er*8%?b>)n&P?D#ZFkm(dce)G-6ZWO^gfQB={_YG_Kz2ChFO&h3IDV$gCqEFD zZPM^acsNWRAEU;Oe!8Hf<26N)d=8_w{5%uoS6(Gy`58#6-@2+8iO+xK8%5O%Mtshx zzZFLlnDUHxiiv+~=oHUpF#i@ra~LdJ!EC}E{h9EWNl1mQZ_huHNz&0_nn8w+@yvwM zbBu>3l$)aqO))V?my%Xi4h0{nlpG2^D)~4RXoQn-bZIGl2S7nbC=G{#j?ULpx^OfT za40wlecVMsM=te-f{{+%4HX>8q#J#pBr|UG0h7rH(FaLu_iG<1xkMX%u;j9AC}3&0 z-wH4y`88Bz7>c% zB2vkbp&+A_AVZ5sD?3IPGobjI9Q(g38Qp?4lge92dqMvh4 zwMy^PP<^ztH`o$OY@y{N^RY4|A(@mGN;-o1ER>uilUa-)rQJ4(rLpK|r1Uk=5v22Y z^0dAH+KWoNLJ8)rP;$~sS}}x4`?*s}SJ4AVe(ETQNoo*0KqUtXq|azX(* zhoAz@WD`B0RHL3$(@bUQcI`^$*P`olS=fl5`Kq*Y&wY%sFXeq z--k;wk;G`=nbb1r6cRn$l;66cnLMJ0lW67$6*0B65nV>AIU^LLb9fPuUbYA|Bh6G1 zO4bw6B|fzz5eh=$Z#Yp(522#V=zGGX5<@8P5~^HuQbH){$mD}i(osnUp@bur2|~q4 z@5|u|O1hyFiU}Yzlyu+oB$oO?4@h}>Bb@X>K}&YRqm=GJMK_NTn_i*^B_p*g4_(M- zs$bZk6)8UDr<7ghprDZCK?yd8Ob^q*DW!XuMouZ`gPNRV;s-S7>oj020cbp&=xgKtoMRGK+==mC8$O8a%T3G<3YA zl4__SNoCg1Ad*S1q2VKxV?#qoCyb~DB$jPM4@qsOt)7(Dwsk!xt>haTPI4JIdN~QD z;ZSpu$;F|;BbAV&myuXj4mE2?+VduxpQ8tt*cNsj>1GatCY5v@S~~jAnNZ@6K1A9h zI?WUw!>p7wUy8{*G^B*`Jg5ojrS<6JoI&uHUV@K4PGYY_s!?gC`WR#-mzhFKOfl)l zFzoE=m*AJWhLC5l37c9XkX}eS-;vW|(n$%TMWmP)L<>tZImk%d8MIewX+nlUNqx6< zB<_qF0u(PS#nbhiB23V2_NCt3c07^C$$#~*<)$*L`cP3*4;q)Y9nCG$(Bb=yYJo8M1 zaFQuYG_i#pI6_IG zw1{*vLunDoq=(WHQp*vg10|StM1x8^eoZoER1Yfg&kRsY9@S4tepaNMMoNQBd!8hf zP)dh5qv4%kYAG!!x%^UU(r41&iXyeG=PrC^TY`zElw32&Gc}EyP@1V};DoYFslh2G znNpL|$}y#3B$Z-H%Q(*rQ<~eMl3+@MM>xNfnwZk(W;BF^vP)?Q>3q0L4M;P$l!lei z*Tpo1Vd5GOg4QG?}DFL!h)?ofx7ems4s8m|RLJ4KNL@LIX!6 zp_Gn}Ts|o^D5Z2#8bUJJq%?eVl1XU*>E)7AgHlW-r6DEqsQS0FsFus`+T8kkT^}+sLa2CACprk4Y+jlm?Sp`lwz^I@zPtm{gKS zY3L~Bj_O6El{!j|8dCPKsV0uKyull`Y`E-bIIk3>cgb-OL=Cgft#;{s z7jcM~{{CrVIih+Q$$Ym{OGzd}l$MZSf+#I3$^1|wY3a9BV%edFIVpWQdnE0AS^=$3 zW)I@huULYKp|q^@@`aDLiW#B$VQ29C>E(kO#X6Uo zokyL{WMHM33u=ItJ}1>oP~(ATRmU@`-Fb`(bhAK>L7vIdi*636@yPR#xhZCV(!kCo z&_Of*(*P{xC@t0OPiovb1ioqJe(GV3XMjj4^HU!uxx`OBu+;KC=~3yWed=eWob{=n zoc8ojE$7oPCAE}KI%3iRBf1HnhIom;E=M-q(@0!ODO-k+NhW)m1U;kLCY|bOfSvlw zmNXMR4X_f;^Q5DumgY&#Nj1xphITIRhSSUOr01lW;z`SUBJA8yOYo$joWTpOl+rut z2(x)88l;jtX%G|2Y;;mPX$i?>cG413N$jKrB$n4n$4M{mhlZ4PM4Dn!ryf$;p8+72 z(y1Sk`cz0bp_7J~^yEk>os*7mKBGFlWKLR6YPp=$pwE;)-b8AH&S(Au!9-3ftQq8S znuJX#jngD`Y2ZD#@ADaFlX0^%2ra&7>p^347916Eo>yX>D8AaBk=il0>pH>DZ`0 zVLCaPdH^Yp-y}0K4U*E;YYFCKQghNt%%kKZmyM~1l6-)cTrQ>_N?I>IDnUtRVj3c) zmMTccOE3@9AnMHOmfpt+2Y|_MeI}NJsSlCNhck7MWHK=600|~w(xH;fzcdb(d^;tU zeQ6Mr(g&-@!Oo@$(E3pI5H0y?C75_ghe|K+(g;%W4FIe_Q@?;x)}?;NISi^4b1wC= z&SN;Gm~p9>mHxx0mv3nd>P+f&7BxDL0hMB|rG8lQm{c<@jpm(G4bP`;XE7eo&9XFt zcpi%_x;d6c6VF1#rkG(#%{r492F?6R{j7u|uT--uDQRaA%BGoHNsk)SC!~~FsRxr> zVkJE*wY*ANQhI5XdQmB7Rq6#NJ>^r&sWb>lEv1qMm~teDZbGF2T-xupkxi#Gj+Rnl zlmTLr$&{ur&!?_Qr&8)iC;nO_%|uH5s6_K9X`rd4QBq=3&7!1+oyqIl^l~U^F=?hy z(&3)ydNR}!D5)XozlcgHeUb(+n}u*eDtVHcFd>XaCv}nzkWA(z9Uzs&Njg4ad6P7l z^b%~SK}pA$DJD(QgOYwtpIFMIUPj{cAK`>aYGBGUBBgXm8o=2M=Jb*!=`g9~N>Xw@ z6aJbKsjW8m$0($jDoM#TgIr0|xCtdong&iNTap@_V!9+XDXn}-8b(qHleCQU%$TIP z9V#i4GPENGNNPhLFw&uhf7v^CoFn34NDKLr5-jl7^E`>LeW?$=pdp zuq2Zw4MCGh@G}HT>xG6PT5|c5hJeW>P|^U?P%1QVL{cc}=*Z)dLW-j@o8i0SX2CYEohmyyhOG_{mu zGA?Ne38q}qvXacXG?JEnTP2otX_%AJ2dqcZ&Zia7`grvqF8zunn0iUeN-y`)7*zUg zfKv9Q0mxYlt`zex^~26&Sf!YOsULO*&!1inrctbOso8nd=}ZPzig}m@Xz6oO&BQbw zcvf{hquQOvs6aOx(-`ELEWPOFV;YY<51E@{MkWpHTml_5b21IUQjXG6&B~<4okQT8 zW?rTq)_4Yplrl5*ags~T)B{T`HR?69#`pIce|J3p`4O3D}(4-?K9WbJs zqG^bi`0H|HlQfOQrIdDM2$^J>rb*B1ETN0C16xPIBPz!(M0_@tvGVf-n`Fz+&4}=vU!JDJMTsd5w|t06 zi*McIFzmxDPts6)T(3GAu|~uy3(xu?tlyeBZ->JgRf;|1R^JT;;egw03xZR2U%WNUh0hs!G*MgNKN5M=A|jMx+OvGDd9NkVJ&qmgGTdSG?V9 zlY{K{rO!K2eP|UhUVUg^_C@}6TSH8gAQTLS#;x3cKn!pV0FcdI2mpjJR09AB;3NT8 zP#`|I3pjdUd9h9_y)cmh{Sf3yip^!ETmXVV$rpe~d=z@*=5{QQD-7}RWBgIcR9FE- z08&>ViL50SKo~Hc1(3-?YyqUO5<37nOcf7E1Yp_21)3A>!v(0l0OEqmg$m+=6U1G0 z0Y=Y1aVv@dfB`u8H+vgGqd7zUKu-x)?~a}LtEGc?L=F|m-@*2^1xli zIaN~W$AsmxQ(e50!V5EA@vGD5S2Tdivs8!){!>C3${BvZt6Q8`Yg6UIU zsg2bluar=Nl3!?h&B-e-oGj%P+eW$a3Th{Ac||qWzx+}{OJq3oZd5d!djSyIaKN2t zaX7aEBcI@~&(g7VEc$u97f@Z$Klu#XKB&3~Lk=M@n(K;})de6Un%2Q31(a9_#^X{F z1cL;X)4-_gMKdrIC(@W3I%p9Io{}&j_ zLxa@lz^Gg(abR#TdK(xHl&S^>1fZS4vA9#n;2B-(VDQACY8O17V@(Sl7}|S>CnW4; zc~halh#hH7uzY0Oq$Ax3ito2D-`{Y{kHxri(;~!Ia!rBGp4qO{&tP64tQv(4@t!9&9?QmmZR?9M;23Q76;mQWntk z)U=c}JtsBEO;1Wli|c`;FVc;GpNo1o;#Nq?dLy`JqW6us6RM)i2=qDn;-=Yn-d@M4qrZfx~ub3PE{FW0J~RZ?pLE#hY>(w+H8lMl|ehD)Xp@# z_G!lhpk~?u?7}q58$2CI^|qBV!l{fch&S2#hQV1VjSHPCK+S z4yFd$VT5s*he5=hh2l{dCPuZSFqZ4=%@$+DX3sWXk4YHkSQt+%eB9?5vUv)%k@C?h z#%K;udMp@4;dWWcmUb*~@~It%jUWnQ8GA*+-Jw=?ChyiQbY45##>%awS!gX52*-`O z3IqqBmjaPEQ9yy%XgI2lr9L~jJXvqdat2x&KE*{Q+AZ2x3#wZJpui}R03Zn6Cflup z6K{*$;2|)14YpOl_;+C2m)-Ll&u+`Z*ZlYEFCXr%4OBh_jWvdq_U8l$ToH6aX|EGH z!7`NWoUp*DXzuYqYNieQ?<+q43KEzhRu4jniDKARmBONh1TMP z$4Y!~LS!mQxPbu{D%?UkkuTgL+lv}*`CLdHZizu$O1FrVT?e%S=KZ~e_)&9M0f5LJKq$@x4x+aw~a(Up`%4 z5Epf-&06^pgAQWfv0uUdZyZ{7bDK7v~z{?9Rz(75CXh4#1Ao2nb479ue zgk>u)0AT>j3s6*G@&XVLxV!+w1t2c~k$}hxKrFWM0u+WLc>x;Fsk{IU3nwo?lev@^ zpjkoPJ7_qXOL#x>0uZbVc>xlQV*7I;FHA$r_bj)1g+mrFU1BIM>r~3B!ZDN?8Z_1z zAYub3kTb~vloC#O0L8MDA3#~)MF@9zpx(Y4Ou~pDvIHm+v^W6@XDd;F!T<{uuxwy* z1t=D{XaPzGAYFj+fCw0%M7A;pEQ}*D!wsZUNy7~?oUq}B&!xQKh8Wbzbc0CQb?_s2 zfFiq)J>UW9wo4Zh$XLMqArPaWX)^c5<>LjA=0$I>jrLS@>`pRhC2Lrk1{W|adF-VM zO8`Sr!qO_7`~V38;>AM&k$|xh4=jyC$pn@drhTnmcrV}w*&xl=Pfxb9Cu60 zRxY}wZBu95)-15w4Ta;x!G?mfccr07TsX~8Y#?q36by|es9TrU5)RV2g+QUuejpuI zbCi{L-*JWLJg%sDk1KTdafRbQuE;o$D{>y>ij)hvLiHh6M4ZSKk{7w6;YO~|{m2y+ zM{xgzFFu1I^6D?0Avin2esBIQu7hcfrDW0M%w|HdePQatfkl*qen&feC?Okq{KnJcZgY zPY7yh8A{f&q>!rCCS}4BB7v2zW(NQ#tJ!hbsA?dVu@_R7c}VT8TPTZmwvB~FOS8SY zVvy%)_;AXZe;zlwA`l#atO!KnL{$W0gAs&)U}&fWjwMAqIPz5}&OC+Mu#hqB zEJMkdmJ|RoCIo?%jA;h|Cu7=i*vOb5ma!L7wlb!*bqg8O&bG0PX=xUEdn6E!8x<1> z4nV~OB5|T(0BopCeuTI<{WdwJrr#SL{e_{nB|F8| z&?dZ8YX|}$kQ!PxRYncX0qT(u1Tfm4EeS4#o%CpE6-;w9v~Mi48QOyqR7}m=>llWX z;RFmr02}4P(4?KWZfMllO*gg2BF4w82R>z6$Rei3p~V4P4mYZREfs(qV2j{H2e5^L z@uO@hkk_1!U4BC# z^XbkZx^g&f9I6ZF*?sfwy7_e5D0ofuJSJpsiJYf|?LHZNO%5)i2qi&rkJ zjYBC*_8hA zCdjI?$0X^2PYdQ0mxWl^zgnGtF&25%JeDAK%C8$FcsbY&Cx}Mu2+dwNb^~UrCOf0C z_i@~y0qV{k0Aa*m$DpJk?PO~=P+(fN8$2+9+YO$z>g@>2R0?;81EK{x#Iq62-D6R% zJqvl=4H1;)?uZURh<8b5rOvwngOlvt@Y(42PKl^4d~FqfXH*tp05?p=u>nUo;2)xQ z%;_eK;20Vpw&0l1Nx;D|GmLuc7?QRc<~UyA2HGNs;RXmavf&Vsa)$wpffyhPiwC2x zHx*Zo4>XkL|Ks}0hr4Tom_pOuctch(14EPGF#$skdtu$su%U2nXbnz%h5!H&Zf!wO zA*|G4L!(gYuc3KUozl=8kT7Iw-CABTGz=!67}~dxM+_}mdGdxfO+9r}bHH2oY%!cT z+O|;kjjqv>VkR+w6GtrwXFCFjB zRTuovpWd485^LF+p zw*Z6m-fc0k+Y6)@KOKYr|N8e+5a%Ip7*UdCX8C;j4WD@FqjMI?llwJ-;*?KG{^20n zH{0G7<&KjF8V1Ie%pa2IITQA6DUI*}lNFtBurki4YO11f!ixX%zAm<}1};k-DDEoQ zZpDsBCXTMpcRsW>Ffp@FqHr6$WblPY(fV5uotT57k4H9QH@8`_&Y-jWtYwCe3>ez1eayQKg3%tMuoID2;4Q8?( z7Qp+9E}w14+ouq|4`Cc;yn5W2;3Yl;4`JlcM3yI;ec-PAQ#?VEHz@xp%=ckj^fT}l z^!1eHNfyHQt0-``YCRY206XEeEM?(1487k0T3i&o3HSpL3lm3Ee6|mF@ZB`~%AVj0b+SB= zrE;%IY`kKd+)?>);oN49^ydpBj+E%^7=^j3JCJ3&0?&iZR~MzGxf?0kho9WB;c9ry z@~wk1(-3}H?;=W;2Vn$XsL*J(;lV+(a4M6DZ(lf2{duuY^m1OVBegtFj+b$KC)Is) z9m79sGVMD7t*wR;M`M(;V&P}Xr*J!Jd-n8l`D*!TU4MPV0XSd9mVxYb%EY@3TQ^2p zYAt;6%Gnv-3}l+^vbk%YS3bs?Q%+>ecG@?sJ+vatA7V zTlB%cJ$p(UV++4}d;Mj7`^%TR>(!Xei*~lQVZBSTw^7(x;qAn|5&60q!!H}Fid)`R8Qv0Rg&x;ermO4(c4{qV_t^x{R{h_t@B8%FW;<5>*RBtX)zWRt zvP~KuN51m~WAj-4#+z^I!KnL16u*IuxSwN^gK$`)sQGj!&-j8E*nxVdyJ+ab9gX3({@! zZf&WAW$Vo;O~r=Db7%Afa`xF!DbCCDQJW$lZ1Q;-&mu}y%S!gzyQD?G-Ag9oc5mmK z?8F{#tg(!A@CZdS92xl+r}hT@ixZMG{6ji28QZop434#+D!|b0)z8JRZ^e)A&Md=Q z5Qb2c3}L)uymN1u$$fV&9=_-9CGSo_bW`t!`A{97e(M^Vkr=n~Yi9&NeiDU;8*28i zL}J{vcmwpj!E?mw3IGVLCho##wk6OaJ_lJ&0OMZlviHuBvENU8@e%Sl%wUA-UOhZS zDXwXcQTO!;({Eh|G?wIYn8IYa=pUFU?Jj~za?wltp@?^}%$6?~myYNm7Z+S~kK(Ao z{i--d0d#tWe}r<{M6i6>4gC{b^gjOpmz~Z%K^{DuB5v-F`b%YFdt3X;;m&q(zW5er z_wB1ZS(jh`ue_syUD^XcV@NhB6OvwO_xz%4op-=D0@kgcKh%tdAf<#be)I?+wqR%b zAZ5iD^)ei*>xbkNZ#@|oFAi>bp@-y~sO#dT7gwg6PjuphetGSPLFV#`_LROV4^JOa z)hOc_E@yQdii_zL2ckX0;xJrHvN#Z4tWJ4R>3qR(FDw38SK+GseCo&>P=2z!zx1oy zUsu0=c|ZQuB1=Q-&)4@W57vJEaKHNH%ZHn_xBL6_%O@XZVCzqtlWN5KcZy4U8@Td< z{v0Ihl*y36_yx3`5paI~OPOcP4Z19UI`yRYEVTvn+HK_CDH1A-G}pOqnw6`!ERB;> z6ont_L*qtJjbS5;@(b~&{G5+tgbogBzj4<2vu9_&%Qw#C1Y`~vs!a;2q);f8GV-fV zE-Z)Ka<~h*op{Vw->ebxz+-Q08uQ!{Tc%O_V2i|m_iLF)?s+X1U!AUP)Ng;g2~L~+ zi?<$kY0hh(>ljDubsZMp{jLLm+VeUze)?Y5tmob*zBn9 zUfM?Nj+ZFDJL08%)Gl}l36i@!kzD0dV`^C5@*J*fHz3_x&71yH81a@Tl3SOnU8wN&v*3sO0h88Jr&p>?`|X(@gJTqIn73}(vFEi!a-i++2V!ainqQ{Z^-cM1mF4yXX~)Du;f{dUPu>@mp0 zZ|rRtCkLPLd%a<=9kd4nv7h!(`R=YgD5$-*hs#gr?E~=Jhd(D_mL>k8j2(Mkdu-P_ zVn^-5`0k%w0@QBV#qrY{6?Xl0!v8o0F+aq>%|dBlFGpz+-i6$q$3 zQNiPxdn(3*);Vb_r0sVHd|wFI3od+6j3>XQMwZ zAW!c9qCj!V-SzvAWfvOJe;dX2mv^-i-@DGkxc(^IxbJvOupmDFR#wHxik?vR@ff|p z7yGb_k|2NmHwPu3cDo6EZG6Gv3*_tUbQF0;;xKpeBscpo+NLaaK+gx~&_x5;98V4k zJ#7Q{Qn$(J!9^8pPlqEP=Ic}p;LU=43nF-I_ME4|I%UTczHHgO9Tc0S6Vf72C|G<# zuoyYqlwH)d%y;9)K)uRvQ+#%Ma5cm1gJ=g|YUpBEGD|-`!9Y>R4kjl^uP=kT*8M6BlK!+2NQws0sNsTt~%*@uL&hC@;U43yb{hV)gh3OB2}#0gDcf3|6!%3v{Vk zRVJLsR(0XPx>Z%K1L3MJ8hmwLmF!fys*S*}{_CQ_#jCnx(2ic03M*e##e(Zsb-~UA ztjYqgf>jsmLc*#Fht{y_a=}Hcs$?fBRbWKzQYO4m7diu--+l{nQ&UTb4jaf$knjvTGZ0oaUdvkZMl@S2CVtG zKOe$Y$EdUU$*Hu}G2&L+I-7GOZdC>{=gS^P@>X5E%Q+rY;5ruyu5i^w14~@3a=|sO zx^!5Pt19-{$->fs%yoZ&*175u9SU7%8!nWtM(MCp*STPLt*cQs^y2+ov`e+CVFlbf zXp{}DcQuNJ?DLIcK^3oaxzLhVqhwc_*VzQD=+!9Kf$DWG9a#2i6b!9q= zvIK0KaIh+G8*rd~oejW>U*~c|Hv^V4`Ri-~T;4es?MMK-G~jZMb0mRX8gL;~oo%=+ z-L(p)vgB+Kb*zK+7=l+HRK^@CVT0zp+@S|8OkvgCgym8VQ&@2-hc)fF(ZkLbGWV+? zH;P!Je5dn1q$buZ6ZdhTMLM!yW% zzNq)5$cs~Dhu=sSB4cS-SlpfBja1EEPqaB;Y!~v$t$Ty6%(eeqr$PyYwI^O?U1uy} zn|yp;^NXwcpVq~>vfr(9#%Jj47!?}WxZ6<~?N~cS{NO1+p7OExa=xPfJ{srUiGTkh z|6RV`pQPjT-;TAZW_Sx6J2TkZ5}r9X6l{Y$Sf~8Va=i3rT&{mIZzj1pk)deqvyRKx z^1a#1Hc86-S>q3p*XCNR{dkx6YS(k)DNR-l2<4XL!-cjimZaQK2sdNr^793~BWmNc z&7N((^07V0k~rX#!prDc;nG%*k!qokr!3|L@&7qC$k$WxBloX1!6}nQw3d&dT10S?;Xxqf2t$J;LoNh%)}jgXkp-ojib)dxYQEdY2}L^~7c9bSsYAZD~dJ z6Bp&ne{%k`>JsZoLo`Sc0>XhX+=)sC8M$_=URi+TKA~eMNA}`NUFu$V#+~ z`lQi!*+Vi8VUxtXrs5pMI9~uWab#U91t=JgW&SW6<7Lt7Fy69fe|Gmt6mEl;4CSVy zFlIrDVwx`=wtO;q3Zkzl_A`F#t_>&YWT_=y{~Oe{UN$FEJdl}f6vgOO9_(>bT3=B-({$*%mdf3y@(A1E$ zp_!>0!VJtz*cN6`dKk;pO-{Ra=yHfP+lFRf=&)IDi+`?J9Poj6>$K9Q?dviyV6p?w z*o^yyg2`?;V>6R?tr=K4I&EG)?!apIos~VuGnvg!JP30Ww?A2#G~Ja4XVl}}+V0S^ zvF&;tVZ2+<#+Lb>JtM0IJNFFiWWE-%2D|u7taw;Fjo#5`RQ9BOeI^zr?Cvuye$pO4 z6C>ky`Wck|>~e`eb=TjZiBhvJiyEyM>x-5D9jOo(|Ls$Vi~rtu><8@ zUB7$xVfEo3@5i^d35DPN`f>H)^T!W2*Un6Q`sEX3!T0AdHDGmLlC;T9a;EZJK_wS*>i}HA}zXO&Tg&WI< z_ZRjo6B_ZF&GJQ-Z{I}01B({R*NggyIC=5D{HuM%E3w6P$yf6Hf60c)joUq?C{KUK ze_MRVfBf^}bN%b38OFGmvXpzNd&_U0_m2O;JENQ@6y@cccwB+!6Ge%un@{Q@U*g~p zZk8gByySlBk>AB~n?LoIuDj-4abU6H2Nu5-2NvJGTmAOu3#%;7*x`Y%8H)5yea0?N zeP8}v+|A{Kt^VjOu{uZ7ICepnFL%j_xBPU;7qxN5N1H=miJB{J`Ok~n;^)Px`uW0I zwacVxTgzP-@o{tb8TViKQ+c#%oQqp|RM`ghoG;*u!f+Er%am=BcoRlp5oqrL=)3Ia z#<9hh*0D?Dd_kYqzWg#d@>Ui8F>Ji&vY%VW7QZx(T^RowLg&orwcyt+ zZtCkUZYN$ouprNdYpZ?Yr{&xC*QRH6N7_C4UjCwg4mmp<6LH_XbA3yqliU$G zuIh#^U6seV@y2moHP)r=PO^IH0ZI zH2SMn<)OvL^3Y;c9#UE^DtGwyJ0~}5{o=;{^4Hf(IWo0|rS=$f6&_#W2ervj*UMF% z^*}Zr^;NLku_u1>yl~$5x7m_6(4&~|&u9JJH=X7bTfHY81rGC zPeW{3yd%nN>EDgBA|2kwX>uH>Pg|6y8Qo`jNzqS}7^>yHzbv+VIOXp}*XO_6JR%`P zZ2~7F*zIM}jYict1~P&@M#+O%fHh3^Es4k9#7{-R&3h^5=Hf`}PA-?x6K+7|68)2@ zmo@(Os+Gu6tVGK8^-s&jN~FA7dGQUPD>k8OM4ugyxyIk{=T>2@zYO7$?P(*LMb-BB zi9$GD@)ZVOZS#f8ZW#a#2%l?Xx3#hB+SvQbSUF78XV+~sTgbB){A|9+=c}OIBCr`e zQWk8NVvx7Ju`i+^IY5hl$)VZ^NH)IZUzXnj@fMJr42sW2Sn{pPa{qBzt~{{#%i?@s zArF|-i>DhDon5RrRO153-4u52Dm$uyU{RgOTZueTtZ7s|-|}wx(bmA-Tvat*DFVA| zey}y3H|;f?;q%?|uF@Ljo9npq1$MQ-pTPt7N|r$=CD`3A+{h~qVe}RHxpP}@g{^CD zYt^uICv08bJ%8rng%{u*lS$aCvQleib>YgrDp+-cmu|zr5(YmH|B|6~e@W`SImqkPJDu@gHr1DhW zEX(gb6`y+&AFAS|PU3xa-6`{~DDxk(%-f>O@~o=3#hZoVtTDH+*_W-p7WL$On{m5g zoYyO(V_7Q`Z{}uP=~bOCs`D2Y=kxn(oImLq$zSF3ZyYO?263z@W{PfNc&G1r%v>}x zX{Nqqm+kWq9FL{FF#g8UJbZ{)@#7n@d_J;G$lb87VX?+-R7E!N_V3P?KGc@(N=w)M zmWtEl&2_F_TrbLN7vfs6wr*ZKsuGeo6q+}G5Pw<<;P=0cpgD9^m?xMOao z(O+8Y^8V$S<{myP3Tv!B&xaR>=90U+;?mIy?@W$pe61tTkaH{lH80lwBRmQX`j-hM zm*>jGlx#ub8C2(T$3mQ|5JPo0m9bnJIUNfJyPQ>~@!zWpDSuv^j*_ob02jl3&>Y_0EK`@2v%7y~nuEGQFdEb}_JuP3q;e&BfjBRx-^MP~9-F#@5ccUz? zanj=Tn}s+@j-2(w;U`TZ|Nc$6IZ3J%r+gVDPfKxjn4h*{uiiKPTs3qTyzJY-vYU7G z{hLL7!9si*rggzWUNGtIet5IoGWngfo+aGSZSX?goeOF5{_tjTJ~9XvvnM%Xzgg~i zBaB{_@o6KrWh})W*2kA+G{8TxMy;&5eF3M9E z#i@()se|_-b?8z?)2EA>M7ym^5jRrV zdL^WcV~}M`d?#{f>7yWcCG@_}bpcfvQ3!kWuT^ky5T>#9VG2TX>q6t-gXW?n`MM19 zO4gCCxd_PfA*m_$>jya%%*WA%iZd7D(<0|HWq_X#cFj4G4K^6z3s--MjEv0I_6B^RrTH8#=HQm20SE_4@Cfv6% zvd`FM>m8VvdKlXCQ>LDvGSv*#%hzZ+OZm8M5UaLyUl&$UR*i}uSrpA|D(J|qt^I(_ zBX`4FUjJno7rWfYwV;1lev;eZFB(s|IetXJ?Xl&&$Q*hmYQybeMp0U8xM?hD721vt zSY9Opq~djuoNeTG(rJ`Gsfs9nTr__i!xP5bB{_;W^6IyWCgOZhl+gOED=6q-%6B9t z0#xr(D4NZ`F3Xq6##0rKOnf@9WAkpr zx@sa)t2V?^%B+55P*${^MZ=Nw zw^n+D^Iy4nb$qjkUZi}aE3Tfv^XjZ<$*65zbSZZiu>)Rod3k1Z1FvqUT5)*C*)bGL z+-({>>E(fe`?+tIQT(|m|D3{-v!jS?924>SliVM<3)3uLCaHK2DtqB491Iah6)nzM zRA&`iF6CJZdDfyht9e7OmygG3P5bror_aXCy7Q)OQP4P|SHV_B0-wYZrtHRfA|m!- zTxhD3nO|KG7FnFJkY|*mM4s?^6=z6Yb|n0Wo~e0DdHP+A=%3Y-sCTQCwwymi`4)sk zkQ=LHOYYow6*4S70>Kv&Us)P!C!U^~_@J=Xxpkd2d9l1@xp7N&r_Rlv%E)1L@uIkR zWNl={b|#UWMNtpa@Atk{-sPPxio*+WSaB~P%*95*a>rL0r%l2*2frD;q5iupHY}Fc zl^adubJc8{I)}}zxlU|Ym3F|YJ_;h#> z-!Rzm-Wq(hx~+GufE{HRqk(Px%Z;no1)z6;G#IVXdaw?2dY!P+vZPp{Hil#KY;8aOb8Cj6K&Yv%TiV6 zE#x8P9ZY85g)+vvJcy6-%V4<3Cj0w|$?XXi__t-jcU8gn&4SCLi|Xj2dDP%0a@om_ zLCz~C7HcfIE56T@8+j8&!Jpd&m)kh_QQ3RTqhjGE{_JdP8+Q}c7nj6J;cTuLev20; zZSLf!bLownxhYHkO_W}p!Y8%H9hIjn#3_^SDcrucffkql$0>;OP<()cua?hqz+{wS zfBs_{Zf%I<`!dU)L@DQgPG*Uda-gj|VfJo!F;Z#0tSdBtLL1I>1~Y^*(?+T*y59-~m}jUTrc8$WI@ zH-3ym`xa&=zO?(Ja^~t~o(<$bE()!eY>UPbIeykhtii!2wac4OPi~ht1T)ErU)grV zR_9T7@>@|_^A*YBC(X-{uYZu={~0IZ{IFbgHlOx=xdz$c8E2F%SvC>KG+&Me5Jo6mKwV-&h{O zY-P25zlB@gD(d`=OU;*cijQ=+-hfuuRpmn#QK@PJ?v(p}*D9gfIlE~6TyLlyPIFjhL8PCuRM>Z#BC6df{CD~G&0!&bA4F=$o=w_nJNjI=+;#|hbUUsT z&FYPti6rf7EA_E@H)+s%mK<2|`LZysUmcr*aIY*t{91g+tnuq0OwVTrry$ik(uy@k zb8C^+`lIiwh~MSf|1^%K+>o6u zMaC;xsWKPJ^g4N`E2uiKC=V>k1LOF5R*hN|agAwx^ehy6?0s);FBb3Y=T)$Bvh5G& z>*d!G&VOHi!>R`&`Nq<3A$yu^{g>*(>L26m@$Q;0|N2I(T~Ei!Mn9KV-^;7TUyHxK zS;)U8n1B6-w^Z@n_42EB<;q%U7X5EO41n=+KMs^Dkzc=A$n(lUt6Hy%FT8YLk{G&~ z@2|Mo>N_1`i`DsC+ePtLW;Y|t{k8lshbZ^_#qPVZTzNC%yz*^ndETOP-lUuPzP=g8 zj`caFxA1*+3+>WM@b4>dadc4~or3#jS$_KwxFzv|e;O*dxQRE_rywEP(hqN%FGeq0 z-=LS@gZr_vzAQg`u@vF9q;}2h@0=qvzLmBtH))$9$U6GrP4jDN^|$m7)kozHKUP(> zC_mA$5Mjb(Q9GPwwfUnY6h$20NKhH!3=XVuH$T|bR?Eb%N)vZKv}@x>d6UH@y!jWq z8N?;$3c34X+TC`)tS(=%Z+u&!^P$&bbLZ51uAGA9$EKl%BEIZ=_O%$3+EH!@{9>RKf8Wy_8?U`33-<&T#n)P@&upElEQxE^Do@$HN6uf(3$?mfwEui|Z{;u7@-f_m=u z2YI*3$`smX<0B#GkB8_5FYO)wAn#afrtyi8mYE-}s-3>w8xQj4w?Uehjl1(7ua+`* ztoTCUQizap8(m|(e0W(trpf7;ReK%9c)SxidCJw1_<1c)S=WcY`}5?w;UMp)fe6py zb{OQxt3_GxB3OumA-$8QXt?7>=WVyL!!e#0G5n)skLcv*-R^^UiTm2>)?${&A6A zdY*ku-*=Wl;zKYH590gIx<_3yKeMyY5#N?EuI3-QE4#n`<@NF*j03(h>5jMG#ixUK z@AS_GH~B+%aW~QyzqY%+W4FJVVl~(Nc(CF6uKYM$=h+u;0*wAjqMr2EQ3e`|fnPKAlA(CVp!Zvfum85} z$qLxNaPGfUE}?s}3NDs)T8~mcxIT$5`bFX`iIw}42 z4M<{{+(x7`Ju?2EIFDY;Z}HW2(^j*$+?;KFXxVCB(dsPcD;BLQrrv(F{*az|b-K+x zzHb)zb6sHdvwV8>&r@le&!>6`s`W+u-Yrcd=$j9v`Z{Cl6Zpm4-+U6)ml#_gzQ6pG z#HhRLIb*r37ciC7R`&qz8p$3oB-M<#{bnCrez_!g-zGTs!DZP8mt`Ns>dTFY1ypnX z&@S@apc~N)t0rB=r21C)BRD^n#mGoY`9~+rGKQ!Av6;2S0_;npymP9R#;@lDEKSsZ zS@tA>?VoGR8al*1bBWtCRmD=0;h(BDu3=w=HH#*=_ zbin3%$#ee|+2zE~Nn8d0#7jRJ6XTv<)EZF>zwm;8(HG1QFUrHE=+rzs^)8O#=4<1- z-VZFxt$XrkZJFhf>T}`ZNOzm~80<{s;yrihH_L1vMA7nzEgzG@%_+yzMh<5Y-Py#g zs9V*Jd214S=;LeV<;fm0k<)LF5l{-r3USU4AdGD%n}eW6Bhr0|tu^_GimK@iDGU6`L7B z6rbgGv5i zM%2uZYs=M4d)uIEX0%$WRz+ghBq){Faz1A-&O!{W{r9vD9sZTmIDiQd#qg z?iU@u|Lf(J*>Tf8zwTnIYbWJG-E2Bz@SxFGBC%V%4WA9Izq+ojul_N~dL5i8a?*($ ztx@opnZn#?itGNq5Wi1E9hk#M(Dl#aV;JhT%9m_xjEXaYs;A7$gNvO~ei=c2;v>SL zSEv{!ZI)5|(a|D?NiKJ<_pgWsp)NPAS1Y5-P3k6nvkny%A3x(u;Y_^Vo~MjiQokQA zxsL7>pHwSPS%_1*Z$XW|7hB?*YpV4T@4b&;821kRFi#jCPx(NgZxH8$EToFn$-fj4 zw_zAQ6h5*d$9=V5&|;MPs4lJex%lki`R7TT^2h)CzyD7rGFypT-|SEE*JZ@wN9`xD z2669t3$2eXilYm8bWt3g1}{GfRU85sweK{=HGVf9t0ii2zvY=px_nBDys$RBzsNGb zbjnm6T$BeVk*i3Gh-Z7R zE3bLL_{ru$`dGd^)L6CIEN)l&5{pAc*4eXjGI@zxMhD{PWq8-!Anvcq!U_*c{Hop$ zI1E{R$}6y$r2f$=r1jVT_)GoupLK8y|036mSHbp*PhcD^;Erw9`gfY;uLe&#|GSMm z(UycCJnQ;wY{I#&Z~RKU&c6;en-ib>U%Xbsg=ym}omWw*CitzK%BaCLZYpFK<}yW( z*G_X=8lBR4y4U!s5bvF-d#h7B)ldoEs%{tNI29%g8(!zFa{P@ziW?n066vpXQ&F)9 zsUr+ZpOV;QTvA@xt?cAKe*yFCSN9F+X^|G|dd|x?O~f zj9hv%gjdi7l4twL;vEr{wFHE4~# z-e1)jk5(X+)<0H_xN=lQRYB`@_Vxd9_jXNg8%f&sU+IWG**$2*+Pkr_r?M>BigC++ z)tYt8d%}Q7bT?KczyUz1$t%=z)|_5H zrz^fG*2$NoY`b#YM6hqhg4efTqvLzsTZ9wJ5&*bwM`91{TT7=Ml$0^*#Iu%Q41CUQ z48qppgIRA%MrCqYik7n$0qn&|G77VoFp?xoG>-4z^)E$tAVvxb-+J%L)81-S!#s_k8J+I(@th2;$|Cj>YFH=W8v5410cLfHiyCTed?2 z%JMtjug*{q{{6?Cc-lRVG}}dWhl%qWz60Jyt!>Zq0_B8L2;^9M?5cU-`|9+I#j9xN z4`y0o^dr$n$GQvzluNfh$DRJ@j&WpC;3nfW`f0-5eA@&Jw52#G%y~Q%w#idENk<;3 z_evxf$l+Q8VJ#1>Sl2&VqKmEdfoQLQ?m7FmYG1ji(vW93bcRa^OZD`^-SO(lcYT=B zCSC;3sc?iV^H8L{HusY6cpSU+JF@pD^%{LSEl(eMllQt(ds!=iqhGVRF?wFP5n5V^ zk=Jl`uya>(Zv`!g=xaJV#`!BdKtl~B`5Mp9)bC1<5yMmN_dFzD@g2yf^{JOv+=YIy zJ8`T)@Ez}VFoOa){8+`)oBBsv*Ujd}`Co(YiR*ylzr0*^2@F5?t|NXv4&ilFnCW%@ z5SZn0B*?*m<_y29Ax?ebrp4ce7sN3+P2e+rOeFLBtdEZlJMHkF{qcOfz5^3Rfmuj> zCoX0O_-@SG1_tDNpU#A3a69g65gx%x{yWnf6>I3h<)4QrEt74$I?dMiHfc_yxoP_U zx|eSNr!}WLw_XPxUqPPT-IMSe`Z&|Mv;DG_EFRodfRob9Rl(a>m>K12!HRD2>H*ad z1_{5au;QDz%J^Bzqgv^ISLd%rAOT^1&&kvCs(jAl;yK%HG#QRO;SdpKxy`=WKsj`T zK?4o)`05?+eaEFN=5`8xFE`lkI*wHM4RzY5I=zY*+#!N-=M-4VjjcnZZRmXZdk@OY zrn{@Fs^>M;)$ge{(P;fkY;tVn#&g~-rxHa zv~{Vs`L532znoUO!tlP__TnDt!G@&uQ^Q_2d_Pteo4sCF>k|E%{eG_KtBoC0Y>#M* zZ`gKy1KY#NvB1Z~^!YOsVr5he)|@mX%vJBauf>;YoD6bs@0&9KW_$BKbp3n-#KJFH zvlsao7#M%`9@&&~{RsRkkn^QfgSr2^snVO4gu(24m?xc89!!3Hf8%(&hb&2Ku&gL_ zx!*v*1XmMkkVR`>`+;WAkHvt>QkTwZyL`lplj~Kq&0?X(sJEL9dv^PbRLQ^XwEU^s z{S)Z?aoc>+&1s3HG{rrd%t!>&es;}6@OmjS$f-*5$;ihe)qY|Z%L(bsox+EN*Iq47 zC`jgoZu*Bq;EH7h5wiQkx$fIJ?vCiO5~};$5B+s~WSI)UiUveiah$qiJ2^Xr-fkD( zHrJ%@OTI>0+j93MJr4CxEXzbAJ{U+r)W;X$L*C+LO2eI zf(eVpGu}_%$eeYkaNYf5KaTe5 zgy(0BPu}5CuE&5vHsp6?b`ahfk|l=Srmm#4mS{6LBIsRlvE1sb#g8u(|&{e z!jMrd{nXZk`;Qf(aGG0~&Y6UQQHc#;;>d-E&)EN6M(xv2N)Px=S;sxEUIP-zuothH zVR+|ma>*zra{cQyhBw{oe5wKl&zdJ25#SZ?q$C>c?F(Lflc9&4lE`5_{j|>1Ys^|v z1kFh_wh8xBSl^kJ?g4dr0?3|h-n>tCh^^877eT9Qa{9ID10mUjyQm)`Ks~QSDnWaN zx;phkJak2VVf}3kI^^{ZKDCiR7Y=Ed^qv-avlG~25HfY2Z$A%2HZg*9SRZ#9;UArr zT5ajn{e8YZ%s1Ow8zC3J#00S3*!f4-Ua)8W9)42}jN7qSjOeqaA82nQJa3MM1>sM9 zLcbta_wBAGU#AhE+~5{SL18C0h;%--!w^?KQoR^~ciUiKqOI$KGn$=iFD!@y5c{XV zFvhu4Yf(iB+Z(MJ;rq9ZklJDw(n2o#S#U`=6qJIG9 z7=O4>hx9l3U>urbfIxhR0SOP?;Q<-oguw4KBY;DDqz{(e7;t|E8J#v>{V7G{o#~k# z1f5Rnnh?#~ZJh&8fs%ynJrdn(s=EMZKsP3KIR2AX^92n>h@L>|!u&&MvK_z00@>ry zDi^6oR0W_`yGw?2z z7ki!}Rt9@Vkx;ha9 zZT;QzqECLQYn+^g$3FST*qU)IFh{>=%}zl<*{Aj|=njJg!Z{wn&%5`I6Up_<$?6%$ z?o_1I%1BC&7$3$d?4)E0oZAH`H3PpH@;a#ogFlFL9`STM;{nzbMkLv_phmiU-V3az z^}_h!Hv_JG1b>=QAx%$}&mL&ND@kBenkaUQJG#UK#zt>L_+$4%IsSzF+ED{e&9`qk zDS)jd{ekh76rO%D;EW#6Vd;f8fe&3xE%bzm zSx9&6eVW`|ZRfeNk2?+6Dh~hfEcB#gU@uK(*^dhEHdh@~$=7=;Wk2uc=_se>=y4v; zGf|_xzSo^g{?yV&f~DyBfq450|DD!gkl559#cHk=Z8W0GQA}b+Hf~%7ZieJ+%mfuk zNfH!g;R~ex~vRBmFaH&6=GreK4M};w%Uq`N9FT71_IPV^;&=L zuZi$h{vCxM#p$+ao}xYK4B`0@Zjn3VR3t5p*e2kPA)+a%9rsv>6u$;0qi)~$mPMAi1nQE(A33R599ahoX+sr< zXXezGuvc=oKVM({>)C6v>lqraO?7;tA2aal3t>sDHEk}IxTGfz&*E@lL|yFF?ESuO z&OYexhm8fc3$b*IJ5v#x}x z+Ol!7RG-oIlP<2RxW4$SG^z><&z3Uw{6+=7WU}%h(2P#j?n@VK{qqg}@8;cn%Dj<( zs|Uy|RIy-I(r&`#CBTSou7=~*F=_<~)zZ*+K8W_eYC$@uoFbNim?#H0cxb(8MrYl_ zsfMtj+<0a!_WSmQnBRq~vaT+R;S!+EM~Z0URWLj>d!04n*q!0mqkz9fH$?nqcf_4< zZiqXSzwuzmHGY=<&NV%2Kox6_$zkbDy?pjicGN1St3sZtND^25RnAns4jKh$E0=1| zl&_m(2y2Q-$_Z7$kI!$?6%9$E52&fJl3h!i4_xg64JpGZzYEAkO{Q)vqzzR}tJ(!u z;bL0=hZ!pV?=T>ZhqW5mT9+VWTIiX_>c}s?sGm&d$619a)5DEZ?v6#C7(0MHP{oQf zl4Iq@FlI(pib70CWXmKU7KauAU5W1glb@)H%dU zByEL&QXI`XI;XNh!L$tx)(DrnmaIlbGRNns_9^uFSGu88qFW*D;?Rn|Rq)T#NyIk6 zCX25>l#P$+kz+_K53DBD=7n684lF6ZtVi}bjq9@~Z=CIVpN+E5Q+|3z7;hn}od6GO zq-mCW1=7^7{8D;t(D?Wgdr;h%``aVTO9=`tyk#DY7F(6%UUMG~xVi+I6GjVNG=2kt zuOu=QuLYj0Heur0Fog;BXugb=3caV4)|NKw-zmfaAC&n?yu|7&$ZE#`18VrH&lm<( zgBUj$sb@#4qT_3Z2y3A^PNNcit~Q zI@x=_{={M<#MjY8`zBF;giQ)Fv)qfD{8DT1D8iQeVGeuBvB!c|(!3zjEbO!nEiA=K zSS%q?&Oj16l^xAF=;lr~)jhWKH4$HV{OUi2SoZnO8{;*0;Ohtu>eb z}e)mwRG8CW_%_4XF6O0;n-~jlkIh0?L=nXMue=P7fpUP#J z(MeaZKs%N)V4u%Rr_-9M6k+$B^`lu_-%FT_nqYzJlxqy72jJ>!M?E5c6w$6NyuasFAH?5@!i^cI#-%{U+2nHLDs^F!?KHB|aZ-h#Wdcc*CGsqL>TXRs z3?0n`+es{yYGzp-D9BC-_s9e_C35BS$dLn?N9F7uxxXT>gQhu?Go8=*PgsVsa>sjv zxcxK!Yv5|qO?E%Yw;pHU4k(4uy-H=jl#b)phT11CtkW5n;8 z#^h`d*-usOgydOKvK$XN4soFZ8PJ#I{-Zoki?NVlS=GO{<{icAHb_g8!BF!Pw>1oRh4i3)fTNGMy(9U#|r79W_6+9_)zXV@O zkjoD%6}Y1`0fM#_)197o=C>MWV8Ctnp56xgxaQIo3yd7iHQy!2jAx#ZOXx>n`q14? zFHK;UCuBx+Vy0`dJZd*Zvm2B$?u2R7ByCbHZcq$eFG*N0nqMmzuvLh(m5;QS3v4YR zVJjJGDeht~7P6C!w3YC*7msHv9JhDB%!SiG&OvVyB9>cOBb$ys;8)8nBobSSYD>;& zh;O~5X6IL}-RxQu6a9wL-3gApE+~wD zUirGU#I`pG0%z=R|vW!yJ4KA&bHLcM!#&tv}ej;DIHIFM3PevE zo3W1?$0*}H-dYpz#(dFd9)@!zoEkeak&=`nSe&zH=S84LqvCFbr{M^#n&9E7UnfyL zibLQ$hM4WAmxTo^ZsIrMN5~@|eOW)@`@*ikj|~*B!SdF{f{f4U3{nU`@PG*IX{FXz z{P{!5D)|-GElg^TwMDwF3L)d8wZDDcDFA*eYq8P2`F^uyoC5e_zQ>oNbIl~l^`c`u zTLr4>#o!o$Y8O1Ev?Kv3_1A{$TjO*S6?|XP-q3g=+!H^*Pe`~wZmlR2{WKOm0Ct?i4Tq(r5JQ3mSFbP+f1I4eXkCKG(I0?< zRH90g*ZjgsRz&iAS{_uZr&&yGTx!;8-sPmV_<#`v$~Kz36B3550%}PlOtNYcZ;3{< zeihpJ8rtcqecLZNUOuB{u2iSehidyEeYZect3Unu&8Opmr|Hv6B)8SEQFpvqhz&Z}%-nM5sWucnp?o?o4^$mJ5&2ICH z=P$Zjpp1%}=2Xvxtl0}5e@WU~FKS+L>>(w4L2=lsW22c!u;z7b6`0soE&{qlU7Tdo z93Q@<`st|alj)charS`d9!hWCfLG~WO0tk8d;z8Su1_q71Qf&XP;)9FwQk{zV~~F4 zdw_2}4Np}LXvj{6d-O%~ntC3c0Z=VMugLFvHjgMjb*Mm0n+x;046;f?b(sfL(1i0^ zoU%y3^m)7_D3R54gye$ytBAUX2Ar?BPEJdM-LkEqB=Z+wGB6)7k`{EJq^07@sQf=n zkKm{W29QfCut1tSjn=SV zFbfXeh?TWC2WkC>Sw{QWlY+{qwSKYFL`3I+7WSNBMQ;hdEics>g^Ek!0mA_lCnR~J z=qIWMv1J)8f)&$wR}`BP^+YGoS-FAXgNBCYSEz(WD0OAH@QYmtW9X8$LUwy38i}_O zwZgI#>U~ODm1PZ(r1D{mKdi)rqVriTpCeRZTK#sF&2T}Y;Hqg{a8*XFb@*jvpVib_=#&mct4qts{ExiRF$jP2 zj(4SynV?v!W8kefEQ!wnxpfbp!x0Q|xk^sKSas$)&kro>tMej}r4%N1Sx_t5Yfe#6 z)bi{8sFR-Yq?H{#hn2&?de?H6q~)>t04FoFEN>`dY0o;;mC(`@TG!!WqQ{=1!IY&% z^F)tapAZg)6`m%|j~ULZHzimBQSd)AcbgmO-E3@{ZR{8_*5CZDwVbXs`-kSJ3B&PM zioFgj`v>U;AC(m7l*?z?W?s{Ldcz86S?`ZbBO#3mU=p;ki`sKC&TlDhNV1~OR_>^Y zKD$rIcuG+r$tymI4t22n_JY30Skir@JbA8pscGM)&G`35O$im$xM9X&hdi}bRf%L& z8NsYBh9!k=L<_@{hzy614oEO3vF4>^A{vc^vmiiAaHm7_L8ytNMN7mu__VO%Vya-< zwRSxsEghD-%?a3g(-&p~EDf7S<{!;8CBN0K5B%J`G1C*pF7KY9HT`2&FgFF}06W3j zL&l!tgw^D#ZZ`DD=8T2K(2QYt_>1k1ib*1drMX;DL3@4D@^ql7UIcb_5`v-<2OQhF z4awFfuVXw=p?kr=#^8XmRA!@(Dz4iVUSbi#zuJ_@dI8H`PV3cF4dm9=x&kLvzw1>J4 zjcleBR1lJf(aP=En?(#d>a#u8y3fNZ*83%8$eQNe!wT;Exd!01bMwr)wkDNu4r~xm zX{kpqk+?EE|0PxudE5Pl1U$VXQDXJ%f>S>}sdn|koo*sr}eNxv5 zFGi0M-UpoU@M+^ugQ*;K?gJB2Q68*Ue&m4xSKcS8P4Vk*n?%=6z7O{SCzZNQ>_Y7i zp~52Z=7!*Af@J0HM@o7QvPk`O%{)ge7L~NMbm@HM1<2Omrh6XwCY2im7_n2Na150c1*$uO zJ|aVzUAXFrf?CoSyp{$AGSg6j74@@~(T8%jCSA0)Y>EmC&xIe;cT~C#tn1z*W4Lc( z5QX2Co)>4XEJ?H5D`G^98+N%jD~lr{2SJWRlH!cM79~h4Deymy@oke?{vdK?vXl6j z`vAv#a{G)p;J3J!QG{B>QY;OrCHE@pK6Vs-m^!ozatGxJ1l#C#1O$p|AxEZM83 zzp0TidQ=CPy)YR+ykkQbng0pd0tF%XYz+L#fy4(PL;jKocPbLo{>Ylzm0P)D_sP+H z%Drm)F~9Y~y10u$glYcjzGchi=qunq91(Ot=zaWD-a7kH&h>aa#YP1q_GDk*@=*B@ zozx91k7|K$ZN&OZUU~zZgSODn1MTu@bEVDYNenMAfxG!c}GDQfdwm-s7}rN(wAv&bY+C>%oamK%7F?k9G|(U4{IRTE4IXn zP1(4`hpDPa=LcI)g8fq8fx);MXqY~tHJG&_r>rU~c9D^*sUwwIppa_Sr1(Xg-sQN} zz{8F3YRu7t?%Xdv$i-uL?eAL;dR>)>-P$YIn!xq)v6M~qDK?+PtM^uy=l)Rcjj67W z19kRm=PcOC{HFBo_6@1n>(i@a^&988?n}Mb&u-{5(_F*tf9p7^>`Z8;1# z9+DJa=3X1Noii3(&G5ogzsy+=S(X!8@mNTF{5Z{Y7TNX7B2GMFdev z2Y)dI=3LwT35};9Zn4z^p0nV(XJTPpYQj_ytZ3j_U%?VM`k|(0lPUj(=1!_f^`0?N!Pm^3mUp_4#+7%b}fLm%wOP`zR?wZE5x-j-w1uvCPXtr>C8299lVVs=}az zWICNH987s1l&R?iq$#?TJY-)V6s6gy6oAx7BviY)*CEA7bW4dGSBJE|^T(^ELbrdm z^szEW;~5>912*L|Fyf5MrVyrNGE^gUiE&u({pJ!vFeM)@NPPS)=2JkbTgwMi6_<#a zif39gRkE)qPVd-6UM`zl8i^lkyffKN9o+a@QQr=@t6bafen@=cy$o2p^k=9el>lY> z-_{Ra;oQQxz$=pNSW|;7UDM$fdy^6#bVM#e5Se{SM^Jl}GIAf@=_k5zihnc_<;x(%o1hp%`;ZB@F1v_$aNU9L z&*h3A*+sbcv(;%3LyW$^e-!YmkhyIzUyXKw=>6*?*5@oju{WzB?9H3N zTUwQ1Nqi0Y>ivm?)t?8Sj1Y|891161b){(1(=%k(h>Ixd31_mUzE^%*qF6`K{G$!a zIaoS})=X=(d@@sUM5_A91gb^$%=SV$=@78=Nw0{Z%t;k=8d!M)QaPyN3@m{T~ zo-qEt4&n~Y2zP#(!e>|PIOE*zk#PF6{B_E_@`%>62AqW{{|RAVF-+TsLPwUi3aLiG z%ldnAf|l+$tvIna4a@fR0En(Hr}M4x(F(Ku@u1xxsAYv$MWw&NCc-)4VQ1$te$IHJ z71^i|R%iJcy8IiP8@zG5+nIjj^OMOM&_RoapjXD~<=*i?RV@2Z4GD(DJsGir;;5~UXUBBA z&eQFR9=SJUnGpxyT!^`o z6*Jqn1Ad|he=}+iCkfFzqm>w~CuxlqEWEpTW@{pwf0C6xKYKhHJ zon`LtdUDUuL~ikLJ|6NNKJQeqf{?0B5d)NO=p-VVSOyXXrF}G`B{(T~e*AWdA_--o z7gR>DcIz1+_U`LC9o%+wTddc&AInOJ2|E_R>|Gfc>iUJ3gf+D!8?@s7?5#Gf?kioc zcfC{E?AIBsn7F;e>u$9z^ewfaK>?5T!7B~cb6X5n-{FPha780mcc1VnK{aBCMt(&~ zEOxbO5(KFg4z!vQBV+GEAnGhTWu>u24}pNMX$hTXz@wd9Hp$fWwQf_GRstJqheU(H zw&+1tX22sKm_^ED%ILBMM>Q%Dmtr44&oxO0B zb`;veH6hp!#6t{3gP@dsfgJ&OOpqB_WqVrb-S$Tb(0$0uXb`mO&>&N676+R5R=)g% zl7jwLI=JtMyHZGWR+MBinI^yoz-ws1&>4Uy41T7g3Vn|h{TV4B$VSpk1{Sj$abT|6 zdmTS3VSP%!5m%z5>n5Zuw=`TO-lI5T16JpN(yiQ3$LLCHsd;y)1`F50M4~|VV+G}7 z3X{m}aCaIg*yNyv(ux%BW?r)quaVX9r!R-cFc z?E*S9?zC#VA01_kmoZ+_*ii{Fon+*ki@FO*3ABeLS6L--idQ))tnlDNRz{U5M9O-V zy)F3yn&VckAS5Ks(-+@ig5sxa$>}#gAB&O*&r96ev->Epw_t;Q?HibPdM99ejd)AW zDN+2Ot=u}bxHvbJ6$WPXSDx?{w*F(bJSo?fiRr}bBQ}Zd{k9Vra2z@1L@)hg>&Dlw%{e%<=1HFItDiq#tLYU#G58B*p#Q5J z=N&&Jcrgb-79~9QqNSvpt^|BMexoGZ>Pxl58bKDqJoEiET zgl*>o(vI8{lt&L)D&Rx~Olg%|aRM+F8KXvm5$Xm16&k}rP*V)@4b6g;!I(BG_T>bQ z0*aB}ye^L*DxoJ^KL4cM(BG0|Ji_`eTL`A9o6nR=F2=MnD{9K0*=Jr29cM==Ed-%$ zF}ogp*nGDjpcnI02aJO)MzYJNHB|S%p$LJ$oTa8nMmc;6Nf_5}AsZ)Uih|a9Uz3nA ztagM!_H6S@Nu+l61TNnD7WwbVV;!$aJ~6jN4Hv$!nk^S*M;p3b$8nkLrNS2cS4|xG z+7)7NS1+xTor?QI6z_pjk0=@Yw@Es>X0R{e{ zgr=R!YKU~d?J~`atYJBxl$6;|%ZjOXELPBc!m>TLJl^cC5+T}J${Kj3XJcr8JAw@| ztYDhwl;XbzLhuOeVV;}|O|{7v;nVjq(jWif?_HzHL)559Lw}_opHCUEIo(=JQIsxi}BrF&4GR>IU)E zwD_hZUw#&T_KV?lE6JA0jt9ObH%sQpqCZ=0_{|f#>1xjq`g)}0fseIjKOWs1;K?N3 zE~n!vgF!B6VRJS3k53T-hX5Y;_wME@@Br&OJ_k&J%sT zCCDDn;CRz$g|}PX8`Dl>oKXldS7Vpg5vxqmOy|M)HQ|ol4gL?aXK0Qc%M%Y9zGsG`}m<&YB%zOa}*4*x;kPHun9a@ zvBpL}LOi-EW_~HQQ=#lkQR=Y;|0xGCn!J6^<*GXmoJ&#i$SK^{1ea%KSXY9R*ZC@c zin)lDM~gFR;kKD5^0q4lvE2pI6okqAB8D{6DHMkmkf!8$U<4oBAUR+9Y>IpR@wVp_S1#u3jfG}TCU&Hn z#E-^hv7Qgz;uP0IdgR>g+x(Ls@YF}DO-!z?jE3NTTG{F+-veCDmzElyb3}ph7uW*ox%mh-Aav?_UR)cqjR9R6WcNSJ^Un5or_o&p0ET%1{Wy^2w{H@BN)B z>Y4$FJWho@JYYwj544+Pidtq%rgf|Jdsim>%?%5?*&}~sLntxj=t~Efd>MT7{;=t# zdN#<7UtiGBB6J?Vzo-{?`5i|tZQMcGPZPg?O+ld;-Z4NkDgQL^dcOKmS&M7A|NEOR z0)cqfK*$I)mdNwcp1jT`b~WYU2YaMnL%`MBftimZ*uZ6j&u3udRjK?8zfAvSx43fx zxa|x!``RC1j$Hpk(6+|{i~ayRkUp{q3h`p#nc-#JKVR(Q16xNa3yY7{|PXu@0!Dl~?Cf>EXZfNq^_S+%dpy&BNmN=rc~Vu-5O!gtN6V z;ZnA5IddB(_MAZsw_{^lu5g<#Os_ptX>^0RSk=&z!GLCWBEWk-0Q2z#G`mM@Ej$9} zLgdMUrUT6VFrd&zg5I0SsV!ejBXrOE=d`NyzE&gUS;%W8UDH6`n^E}JTcoy=@EJ!v zyL5uDZsfQ7jZEm#LHF_+CjmUK!;s$`V0)g5w9SpL=xLF6gY?zU(Ko6fPJ3nmQ)cIg=4d_aKj0B%->YLI6pi;6K^Fyf4zPGbOtO~ zL;m5MX{ucUnc%;yq^#h5J(p$Dzkc^?%GD zMimbu-1aQB^SF5Nu(=x-FrcgVj6U9`-Mvw!eLRVpF!PY{hB`1I{MpUP^{9Ng8m9z% z7N$Cde5)?+*lx8gLEMXKT#Tf{fu*8LCo-d%^PXJ1+=J5FVps1&oYM5WkL}i014QhF zPN4ZHNSR06TX-iRd>r?j++RuD zy!~bn+p7J(t6D1{W2mc?p4b@|8zxwIVts*u*8;c=@a@t8GLUuT-6QWjAp~GH~;M9c0l&o9~$RSaOB`V|75+z zXT8?|-5c{HO)To+*JYxgV<=ab7kA%(KW3b$RNy&seVe7}uBFS~06E+K8`R@kC673J z1nn8KuFaIw5ePyv6o3=E1ni83YfA}P@w!=au;iDin%c~>Q9UjcnLhXp;TvZ{=PP$D zSS>ELC3$!m$8R^q&u-{AAfv$V_dcR-hWu|{6f<4ctd)7!RUU;^B&o_*%iSMs)o;~f^ z9s6?l^q?TV^~Ip+z4LS%(7*$_SeQ4HIv6QcA+sziR_|BLpoQ^}EY6ZvQ&Eq1Y!LPx=v~P62)nz@TweOEZ}A5AdQM+DRCCT6&is&c6iV@)Kk%F z@ea-dMrgj!k23vMPY|oVPCo&6zFlfxg^d1(o#(OcTV)EMjCi#LQ)a5TemAdXkOB+t zfCvkys?UCXTD7TF4rWfFT>Mr|mCu_UsW>@6m=3riE*}0t*DTRe%um*&gQlM?8(!&( z=Fp{*36BFYhCSugKJGOQZ9F~RpsKo9nLp9Sv*F0O&Xg; zur58g@R5Mvo0l$~$h`$|K5)@4s1_$&h7cPh3#x&~Pb$iKc<$WvsnpxxHQhijbwieA zI6oIq(GJh_7(|uVSL@wBWbU*J8~cN3&KEDU!0R?#UMl#?u(R2f%++IvvSfO7@?`ZA ztu+tidXCG#c_wNe?ACGw#DXe7eJdH)TM$iQxAa4zZx1Rs3}p24seklr`3Si(gXGvB zFM)?nP2SV>N)eRXA;^LrvXHu{X>L*UMEC(X+E1Ad!81NurC zuGm4k>{enI1Fbd&>wiYwRcR7ZeB+9ZWq&AsXyR>> z&7bd&eWb(DXg!xYfNC~nM9KhX;kYe5h|4Q9WdN*~5h>y$)shNV%wZVaJQiU_-E3|X z(x+h6RBnR~+jKHj1ht1UG#Y?@J788Fa>JlvqRjY`V(hIcZAeTq6YoiTG&z+i`E6iD zKM|M~RewfHa<6|&JaKMvQ$$`%f>2ORJ28DSSxY_>O0ge9Q@Nc+MPuf>WIf@sS|aod zsv3PJ%-leViZbQYva)=pgd(A;QsNp-sv`Y&7)K!t1?6v3>hd$I5`q0IvWasvsIoI! z(0lpG(#p`Di&B7XoQU|&PXdnavUVo4kgzFHqCnT3AdhekE)W9@SM__(Gv7y z8pEq87^dL0X6DWCjTOzJc0_uk%n-E|4Vs*E@XYYg+Wn4&4qejoEhC-xD|JekKvQUi zMTRshY(<{cr~&O`T)0fx*ndZ*1YuzjShV=Peo&{10pvVF*tA^g7%+*P0H-!DYJH## zTPY$|E@^C5EoepzPcQHbM(S>P`SAS4qbV0tNdcTHNu7ip8WDvXUuWDsrK8 zHGRq5Jr&&}Bf62=DZe$1#0(Z}vU$v+l@SwjuF}4#GNo39ywEJ7;83oAoOO74**i=) zuT61)DOQr%d1xuzkjE}{=$Q)oc*x%lHiQis^DwInHn$<^C%6dGT%AM%p8<5LPzq?` z+2j()-_G-#8~gMCHuvv}F!hg%@-H_?q4vl4Js{*2Rml(D{(k$Iy7TFG;9u7F+f~Xp zb1m?~XGD$2BZS(glk+w8=@E{^g97!jg*im^0l`+JFTz~N)j5Pj0A7Zq>@@jLi?Zm_ z4VSE_#Ta?Gt26jf2>jn|FfQGkLsWhv$cU8vM!XgAv3HdZkB*C@ox40f*3I?i(*p_f zFty|6mC&@?5dw>p6SQNObzr?J&ITjd062%T#nqO^5cJib)kQa_JXd@(=3d#`J5DWAiQCkLbkBrwurU@b{9CMgMCOAVJSip33b%FtT3 z#h#Zcf@q$gD9}_|&GnZe-$LsVggND`I&;#zG*XLksH$tR3*eRwDMloV(;E4WEqF^e z)IidRsBlO$dCre&E{iCeYn)*kpj=x(6i932lohq4hN}xB2dTBq!Bn0plbU1*0?-<1 zB1Rh)X-sheH`4WV;}poOH{VHQ=bIJUxC(@-v>sGZhO3%JBB<0{Got3_H@bc; zm&s{H8!c4J;Svg@me5^{3aC;^@yg-r#h*7M38+%=XHnlEp1{0>J4=z4ZTa*+l%~27 z#ogyn?c!04@=4E9aoCEMmdZR?LDKXf}*WC}`Els+7o~%Mnt^5mu@ZL@*-Y7sAQo!h1{kPQ&@*&H2ys z3NPad)dLD5x@88MWlE|PT@)%cWGeY2sA}J+l#wbF5n*T`(JCO8C?UXCf})axtki;t zUyG;l^)2uo|S7Jm22-&R9`5yp38Nf zBI)0fYF|}oUx$``q*8q<)O?I!`HC-iS;u(;mvV%Lb6}ct>XhWurR0x<SrH-Yz+u zr#h@x?wZi-0p{ZYR-iFV=36B->S}*lAI1npAA4&}}SMuZv*VMy=RTrP}OM zvmL>*v0kvoA7uTNS7f2^(NL!2*s|*(#^^?|YE46GY<*y^F*-$E5 zm#bMtmNzBQG%c1jf~9D}sA`_0Y6e-;3`@~0QPD7hrzAWicN`_3o=g4Nmzr9aGO;Xn zFfBGSByFfsYO7MpuRvB)p;T6;)K`M8C_|+zTdXb>NmY(gS3XBo4zi{kmZD^(ri>3w z8gNajFil#ek~$-jn!=JYfi89cFLnYZ?eSCU@lmSwLRRLX)a14-a7obOELY_y*Jh8T z%S5fsXi{L2tV&m*N^eqP98+K@*Pyp7)k!GUQfk(iSF0w`E-&&bE@~H&oaT~*HBIPH zO*kcz{DUR=fGjB$S|k=&l>aJ`b1SiRF0r&PVPjk5Vp(KoO47lg)J3OMPlK$EMyZWj zu7(mx8JScSu}BjkvMdafDjcOQEEGjZYDJhVMYxw7=M)-;$=B#}=gQA{M^0bis8 zT_glfQU#<`@~PPK{!QhBLg~Fs^(}(JH>uKR(s*rsB(~oD!PxmP?ogzPWwr2lYNmjvLxDEYr}xBiEF zb=q$L?#!P5aNjZk;C^KC5BCQX0PY`$|8U0|2jH%n^bdCxrN6i<{lk4l8GyTr%0JxI zRROp!s{V(&8US}S_5W~}`-{84+CSVmj{&%w{rHD_^AP}dFX?}{XG{QaS55tY;{K2d zz#T2^AMT+>0Nh25{=+>DfcsL~|KOe>^FO#VE&Rj%rVfBRaKZlt_vDPfxM%zi?r53+ za97O);C{jO4|mj10Pag6|8TF`#R1^%@ISb#IQ@tF6ej@pll%XLd&RlS|KRTSAMV#U zgaYaw|8TFkR6wZQ*yhyIH@`hU3N{l#6> z;vep+769B`^Z()AoDaagQuzOc`(h*jceSYhANT)n;NG4vxvx$1_LhyfgM5vDV-uSU zl&74rHjSv0W%sjAXevG)4*O42&H)V}CGX#B#fvm^ z%S2H$(@y)l!EL+z$Xd{Cj+hve&CmpUY-0$j1A?td-)}@11s{8_nURUUINBqg>FLh2 zMstDz;jX;KOoE~!X9FT((bB3r4n+sU(m{ogL6}0~#2Dn61Cl_|91Js} zkRn*#PE8Og-Zyk6iJ=MJSmh8@pTAO-q58Vrg{1iErA2<5_Y~R6q<$uqbyRdvJ_svyg6e`qwOAq} z7?4~-Qx0{oNJHB#5J*F(yF3?SwU;PG!T7L{0B(~%=`tCrVR24NF0Ey)jjU>S-jWPn z(smI;%azTNN?NMz!4(!j$NPYUykDW>=LG^pF8~-A&Qdky-k^n$`-Bdl@D(d99{lJZ zE<+IhE*B+F5{F0}k}GVHT*F(_EFTUVk3_G?D~qI5#Kn|gNUT%l zl~w3pZnYzX5NXqH<^OXVypovsJ6nTjo{yVfN#RIScWG!+`|TgB@vRUQ)Trtr(CWH2eWZ+h!ILbE zDoxu3r&DIUR?l|}RhF4hbZD9%nAP_qW-|AGwZ#b?nO1|w=NqMdFR_QFmk@=fBh-z_ zJXbo-$Zba!_aS9q{}noKKyOVN(Y6G^-j{wfQc#S{VG_#7-rk;YV5*Gk_H1Qh<^_8+ z#`jAKEHZgw6USF7{e#pc?bn8fI_@Ja<-RIlqPYm2FCU?_EhLHJn%2j_ntnD#YBx^w zdGqkN;x<(_c{Lv9u^pOD{pJnkbXEl8i8(l{_VKAsbs*dxtPkEHpE)4489_vA0m$qp zo-UXV_`L=4LM#Zu!L38@AS)Rb}1@`RVaZw05LjCN_i^c2q^wzi$hb3^66dxTdKrAfv zSYAZOYjeOv1(M6t?mM+_paQ}u)YVIZNDX+nNCr$&K9yh5Eo1sidBe_4tq#Wid&sdr z5cHLEb#Beo-WJAJW`omd>INajWHQ^5r}%g52nf(j+ZM$L^O3w=5d}v;dycNeavrHD7JfS;f7h`0AN8yFAXuf^XI}a$D;B&8av>}nUl9{8 zB1ZAiFX{;*Q{d)J;38_0lO+D8+MtG<87o5(IVB7)TXp|!Ex*2c1^Fl=Q=={gjstB`%Es+e&);$jkbHNJ>4TVz=*tQ;OZUusE^ zKfb6kQ$mdHbV3#$M`jwWo5dxf)15_jq|$zU=~Fhhl|B7fK_Tnn#nmA2V^)rDZVNqIpGl_^R!AaS`;o*h%?Mn4T{cd4WVTBMWOrLOWWr z4(;gU4rNyj4KJ1UW){cHGtGs3!iTEwRu)FA%l#FggR>)meG%6;8zp{DtI1LNE-z1G z!gbf^NWJFKE_J{|DN=8f4XH$CUWB-Y49z223&|w5^~<^1=uEBzQkWzvF-B2~riXIOQ;0Krkdt~S*TCS-i4 zHT?bSsMMB-Cyd)UhLY*&nCpH?%U4? zw8g-TQ^95OpeqqJWJS`qtyyC~ANz)!0J13z;qP_yLvX7YTW}h}*%Mp@L!YL`Xp(K7 zN?+Atw+C-neejziIq{(grk9)bF=KR9tOOM;gxttL?)VqjR0_)1tjkmQOGY*(m4Wh{ zGw%{W@fv(Ass`r8)*6sO^E8vR`TZ)~xL*<=iT?ZzOMRuAUl$TUbC1>*75#FKxK3F- z4lj;u3%kW@V;3CG7NE5`*&s|uZn|5C-*h`5Qm}Su?hm}6fR0xl$646A_@TfY>if*@+DMbq&drA&9d?}zbU~z8997VEw*l*G1kekuGRBGb$cYgbbWtAEnLjQ|Y9Ygala#H?gSbn-*&=KmhHL zjF%RODM>ab2$2(!182<>>)CyF6Q%=Z&47rqg5Zg3WH+ z7Q~5*gKc*8k>v`q%!$ER&Dz%~`4z3j@3Oj!P(;U7LGdkg;to9rtXkh8{4KR$Upks1 zSW!0m3WoZCLHn2KL2O+nKH~I8LD?(to1v4I>y1ldV|8!&}BI(y#0r4_XIPG}iP46CM~2tMjUn6Y|zOlSeT1JiOB|C$T`| za5Ll5R_PjPfsyY~{7jPyXvsRoE)2*VrIC4s-;_{AWHeag&%vM;3~{tFdS09(ZOo=% z3^j0#U|zyuc;OU(3w=q<{H zo)>!c2Su^M41h&Js0&U-wK#ETSp1$J&^rU1(UnU18x=*WWCqg|Os$67K{Tj;H9>Tc zDC4_W-IOU5Skb7hG#6x3D%=lAX&4b|!Yh1);B$iAD)MAe9^9j!6UxL^EQYdCSANY{ z$0c|2eR~l|A%|Rue|7o`BdPV25l99@hkuX&Ae@g@kFf1~18i}&6Q}hxu{@J?83ED^ zcR59?M|k#oel|b0krnbR4khufi83#4IY{0~xG@5uQ0XDR=caLsnj?iJq#-h#)1#Ig z8?8u00)2SG9?yyD>l%NgRqm&JPBudUVnfcvtVUG2BDVtrvL>Go^x^q{z{3I@^XrKy z#p|emau^~=T}A)D6-+~KS9O4?dwX=agEM8qIY4CT`V{cTmdP?E|GYfZ#nTu+SlSDt zunV{gUotnuiJ+>hGF04RPwr{N6!9s+Q}OkV&i+8#VnmJ>gO6o9Ax$YL>4U(w+3_4KBuTLZ*6I&3h_z*W zDuExog^8V1pr!OK@_y1(bpwZBAp&i&aKKr6@Udx2G7$aEXc}`-(XBwzGvvaQ_?m5{ zaI5Qg4WV3}qggODC5Q;E)ev9q`d;WV%3hHNCs;wpKlN}jVlfn*tI{C(aJ+iCLg6Z5 z-ugl{_s38H33I!V=g4TjmsUAgsgcC;N|&j~Dk(g}`u%q>1#P1czC4>+P^AT-=$p3W z5c5HQSoFzwYZ~NOLH~K&74(E2qmmyiK=z&`=!B@vL&}YMAO?DJodXqEMEd*^Ir7Q= z1-k?<@BF`L4p5k>hYr7yqidP*vwx(tJnUfy(FnpRnIQV!p8L7q?|so)e?fqB%&US| z7D6YlX;6UZc71S5@LJCg;y=2%Z1jBlHP`68adkQpFh3_IdrE~C*(m-SyS)(K(Xl~; zON(%PX_W%RT0exKye5cJeWl^{{5?R86(n;7iIUW%`j3E!jxbR!`igX*LG5C;;HnU( zx(5s-Lg;S_A`E9oL8ez(zk4i0+#Ug6^;g88NR;+hLzVw02FU|T)nhJ4Vi#q1SO zZVW{cgjll^Lv&`SSY0u|O}c&F1IIU1*lK!lbwS>hpb_{ee_r8&n)p1y^DuP(MtL*R z%uHf4OL=1rfrwwUAH+m<1|1Xcbn0y0u zY2-jt5XYvf(^IA_cht$)0(v+}#JVP^N)ki6n5h^*pDl%*ne{+$YBb{}5> zhEB2F{#PFC)N0~NU`cf@)U*g%HXp15S~e_`Xm6{mTQJ~C){WlzF7||D8+$sJZQEXo zs%}9J7yl-g6uvF-t~=eLm!-RRHqcB?5vAEf?I9M9ieQzhXjrWcb}AOS2sTDq5~cEB z$1)VG?FpxXvRB2rmu1h_rq_|EU`QEw4+tdi9$|^N@-T9MFzFsSAi=>S(>db`-ghhG zN_&{{hIKm7EHvO>pqY?NObxJMph!Y!+0s8m3s-=xW2BUI)0Xnkr(@m5M$Tj3PD7p} zvmzci^@rygu#{88Z1!{7faC0!*|6Z%nTJZh(#|CU-n2L;T(uf#CIGP+cqk+mV`gYN zL~gKLE6M6=H4c0cp#jjQl2T~xjLGg<)34w`?Af=kksFaAr88V;W!(|{-O6lc>whDO*a z36X?C7qo1YZ&GOZC5gmZ>p<7wJdp!ZxJM;afnJ#v;P@{NRDr$>^!uMLZwF-5w&A4J zwj)f{^8A3Eh1E|Eu&L5$j~Qu%wEgR7gi)yY+X5A=B5u0TRED#CXY_^Af7BdTT1Iv(l9J z{_bC$({nvvmB6HT*5@+;(#y#qyL@#%U|EzA2Xhf2X^CKSvnv?MbM-BP(~ZL4**z>9SB#?fl4`yFxTr}xV$3*IPkz)1wo)r^75(g`v`A$et8ETDph|5_RE)}s-t6JKl-O3 zv`{2o0XB6|-wkwHyK_!`jehm3)6BS8cB(0vaJDeD2iCGrc`$Z1pI zj`|HIlmKVgAed-V!b=iiS=W@p3UYhHuU%bgM-S%?Dw!IL)c32_l77gsAHX%G3Rrc* zE&PcU_qRmvbt{9%%2bZCPEiqT@B_td`e9d`(U4r6^X<3InjAm!tHvL9061q?3iS;6 z)wRR@8Gh|C@a*e-J~^sGRrpBzL@`A_pIQ3Q&I7<#$@O-uZ!%3fg6W4cv?UyP;5y07 z)EE2<)_*jb%t9(9@9G=3Ti6LLcgnbo=q0tUOmtQ=WE%FgTvTu@O#1EiNG|p$9$Udp z!OJ%wAy&$|MBM^j+M|Ac70bwT=}~tGR;5E<5k|3GZe89y8fu zWoYhS#a}3#Ruvl4GKG3xe{o{F)%VX2t?51|aA;K6)#I1(kXQ7s^TuKKT!W2(c!U5U zA7{z*m3t(g8F^pG`!P2x_JszIf+Q5}I|?AI@DTi&Oc`74=sQp858wdGTzwO9wkD+cVm!vW)g|% z%j^JV@y_W;bHzpv5n6u$ZtiH+Xc%y zbx<=`((yU@2z*Gw;&kwQgIjwroUMhE#24p9lrGq_Y#&JwN9^PS_bG*bYr#f#YJdRK ze1HoI62BR%OoRDxv4)AtsB!|QA_+mmbsN+_!*Fc^+}w`Nei;N|&VFt(Dg*&-vS|CO2*=uo;4W%m>w>eIP#y1reuSDTloemF~m#@ zJ*nYs8GQmdv4|V9j)WUX7`@K}^H!-lJ*%m%1${&@aba_vwnVppBz@;M;wMTjdQ#&E zDtbpXVsmqBdQwh&So&KRV&Ca!I#TxAW4Z)#W)Zh~E%Qv|5jp`Pjbb7PEjO3~Wi5%i zy1S7yIzZ_=s@5BuF%i_T<#tcFtYu#5X#Szw>}cQ0s{xIKSaPwSI8JIJMs6(a95OZ? zAaDkjj#LBXCGwe;baC1V!#5O9{N9n4Hf=ylC_2~gmYOvQk`Oi3C==uQ4|fvC@99Lu z3u}&=(;*q&D$8y?`C7cd2kQ5!5uoM=q<}nLFqLLmTl8mU$VbePU0yDvE)Uup{#dTlpSu#Fh+o!sM=GFqBtlG-pY9h-SStQL3Hj90I9FyO z`(Iiz`Ne7Xj8wUO5{%SK`e>1<&c}PV*Z|0b>Ud^nek?2#GQU9y-TC);25li!nZL7c z7YtD1T2lI`lM5~U(Xec>`gu9Aj{Lh&0l}Oi3-Ga?NUm6aMYeIk#voOpOQk->-_6Yn zvmgl1&qrS+DTcqHJ{7VUT*wFb(~;Vh7Pqan@#dyQC@7Cwv~*$NSyTB*a@p_uj6#?D zLhuBgCBA+%W0AnpQ&Uks_QlzoqB<4c%KZ1Rh+V1#d5fN1kfb7)8a4a3ttUvmXYED57Pb>i$ITMuK0@s6_qu4B7PQq0!n@ zb5AZ2l;Uf<)ac(-7398>-}GeUD&yvX!KvO=x>ah9?sue~EGzJDt+>D*2@|7O%IDV- znGKrLPE1c?jRb{F_JY?FRb2apjRTI;tP&*&tLQ&Ff*YU_P{%o#oSzE6=L~-!FMD-` zJhxksk;WJm99s;6ys&K($Hil7vdA4qEQ}r+83zlh=yI}}4Gz;VF)2!=ShsUb7I55m zBSSAEDtT<04SygfA(*xl2U(t!$ZYI8DwmdsOjepz&73PBrLCcaI#3=r$_xTBX<@Gs zK|D9&fGvX?cd^rm2}zL+!jj5Di+0eflAIW|mP!N>Oo}Zp_+v47)^siR-;J5V4Y#7= zSgAcrZ_y&H<#9J#qSdZgf0A>6;u37w!L1<&*iV6cc;7W}!akf9`s`&& z{gC03jB`UGdVm`)QX`E&0Z&hTROACcY1R*WjzLC%=f&CiObP$ij*LUcd=JbHfdsD3 zRq-u1O#ryH_E%CMu3#C0M?5pA(5Mt>l_20Z&K*pVN&qo ze5pBt&xq$#!;LY(iq`-%^l#%x8MuS+V9IDv!@qFRAi@1%JPrl>Yllz1Uou`En%`i5 zK}KFkd-MdpZhFd40g(N0`dHWstuYEhu`Ub0}C(Z3@=L~-nGck6m@c8j^W))8Yv==FA$_e@ldo0$eiW%z+i zz?`E^%;1R-dbTVYscoMorY?!_a<@hzwwCQKv4MjlK#(xn?7G`7H7om;AMMghr^fbU ztq8P{4Bxm+#QHwftZjjux`Ia-4JHJU>Dat`f4s*?1b%WzxU_87R0iSUF3dP)%vLHCwCb05RX}6h(J{`ieWO|}xgX~B6>ZROYLZ!pAn=s%y zQf9u-c$8Bi`h)x`jOGV1hj+Z{uCsblI$7U#yKqHmgu5nAcMo>E{2!csxp@fl2NZ6j zEg>JxX#a3$Y zyh;?a8mkA@#@-4Gnc$)b1Wo(FiH+g%KpsiR&S%#vw{x z+d?L~p876!Tqe|%auQsAAV6K7kEFDTLX7;RiG<-DMVPewtAoEZB-b&(xXSM`mi<*{ zA(UM$+32^MvC1%WGMPPCa55#){Jfo38xtr7qu<|ofz>u_&=d}$d1Je3q=oa3KhWoubc!FoOv^wA35wON!52W8v}Y?i}$J-!3;q_T}#_Icmnv zi^Q9TQZB9@Nf4ojfE#aK@IBuWTs1qP2@cy7=sC>D5X01HhQ!7SlqSctvk6?&@CcMt z;_%cI@c}JD(J>8r-kD8-0BNhg7zDk`npI@d?)s5`MZDnil0;ybOlARWw0@!B6Cx5Z9Jyk5-zYQxJduERhp*ib4r;7dIMUOcaGC8$%GdsUkpB0eU3 z*moEgbYaF2gPi3*DQ?RL>OG_4hkY4C$`~*5rVXZ~5a$t^`3b@#VD?r&Ofwjgc|kyk z=__7 z8d(O7kc&_XoV0ju+xNL}Qg$T}vbX6oTnKzk{k{e<0xrilsJA}WYM+z)>@LlrOo5ir zU0J%=k1B31-_G|RcP6Rlg+~k>6YM04zH|{H3=t4Fvl_1PY8+g&kZ)62zi? zYH@0y{4}0M)}EDnK;8d48+4%1C=H77jEXNRJ6Rxz89RgVs1Ow7`(ur{HsJTm=$N)I zmXRESA1-Sx6e00MECowo1R0?y1QGejBH~Z>VrqZ|EGN1Tz6K{;FqqfB#&+03{fxB@ zRIt1FM6y2L?#XRXRRQ1CXT>zu>WyJ_VOYL@4GiDXme;B!(TH$p`7z}ScRwqxHc*xB zS~qil=DFbE+EUAm^qX0aV)9YJmb*KXWR2#Gwi+m^fvLOAYQp-0v{d;#piZav&p6{R z1%!g*!pqfs2N#uqCU?{vh1F&Kp4*@FL&g_U3gtl+SwLJ8gM3SK94os%zAwL(==9Ey zo=AWpCZbu}0+90qKB_TMP((tm1XOcWA*Tt=H(*kg!Y)l-J%=?ew{EKt48-RPsKP zR)!j&AQ5jCTIhz@dNl49UkUQetX1_0ZSiNl6pI9uJkl8)LTq{m)Hf7ec>ff>GPzqz zC_MY+FQld>2=cWlR*7hPg?u!=H>LOx{%61KRwTqBN;IO+>U&G9E&mtPB?nK5jgio7 z{s(n+d_btX-~&S4+cks9C?3rokB^`8jI4yaQ7p6Y{_t=_|yGlfp2np^N_>>P0W;*P&V054*~)ug+>AuNqj~!*jS_! zL%H0TzW{(HIVJ&LOg}xpr+eU$7XzQi?Xg}&@waie`d%za;`shp|L}R?y=cf#Q0}Bi zQC%j!J@|T%o-1k2081)E#MlrF5CA(}l&}sHC!PibX#RGVx^KMlp7r?*8TkMLRjCB8 z$bptGRxaAM`riI-Un<-nCW84dEFqb&hAKy1T0eN&BH&*P&p*;lgOP73-s`4jIq4Ek zHcI}PXgq6og72xI`L!5K*MO#^8e%5a z$#4A79*1##m~XGi>)t=DJ;H^>;w7WA3IyEF+xd$b`pTKWMfmV_Aru-xu$q0-R)5%P z=PYj+fMFuDg%$f2zc9cS_;*<6=RBDBxK%?au&8UnZbDZ`9E(uS<+b=fP7ng$>A@e?}sb$~2{Kef}YP*r+O1fq|LfSe!UM&taT`Bux6!2JpDw)OATDmn8Hh z%3=%xYBP~w7n#AbQkk(a+T`)cgeG7-yvj|~PvD+Y7>Q^q)0A1k#X%C9Mu1fbH3gM; zf(%2Z9`^{wHMNha@`MEM#?i>AwczAKRh064^KPY=hw3m?k{d|#C|?d~W(KMTj;Zm_ z3vM*H_Nqi_Bt|O~&aT{R-U6`0Xw1s3{!#khnw8Ba6FWgJG3x_QvihfF^=Ib=a&oCi zibbUKaZ;y7_A2|x;AJ_c&4x+HNo(Au*Drcjz;5ccRBQ|K@J=AjOf{gT%>pch?zOw0_wkVDPu`NW>8;11ON`V^fCK6 zjH{j1pYsNW!1*{21n!*IbPGl;K5nqetA&q2rzz{GETx#qwSNCKJQa z1j%S2l0I5zEg(QND~a4ZokpZkkuJd4d%zD81m>{k)))YC z_+Dx{!c2&BY%M#k{9&@{>nj9^65kTyR}Z1SE->~2xj;gEq4nILM@C=1MLoN|&QvAD zn>{2xLR)p`VN4u4xojJHxZc%q_j;4axD6z~mppvlSQkA$mgAnBDMLw- zlFjemOi!`hAY1iNx|F+|1++urZFD;L_}RN4b7&%)fp9=*@wzoYAo_&kr{RO3i2hky zCI(d~n3Xbb4F@GEDTWC3)kB0+kceYqM%I{0@EEcqAhh%b$_hF^<%d2#2VSKzI-;i+qGLG^jaFnNApL zgnK;%>G#~8wZC{*7QdlZ#m`UkjS}}(##wv(3051BA*d{7 zI$;zx*BH`%?1CEB=G$-fz6xalj9E2UBg?*=Ha@Vw;eriD^c|n<1Wf1d)`mi|_>2yI zM8mMQOlk?m;>w$1fb$E0VW>-mmcS;<;0<6WpZnN8UbVJzQnZzhJ17P!^VO6>KuJhn z2&3K(Z)UK;jRjg~;EO{yo?lQQC#yS8-KfCw4=UE*$BXgIc&Z*=srYsG*8ml!Q2lZc z8k7O-6)F6V9f$*%cO`g0e(^IAw!6s<9ab<|0=~;($VI%B82GMi-_5p^ZoeSdJ_Ya~ zfdNrTu6`oTaq7%Q*a-h*%FuxAI5O0ppC0(+1%@Cit@WT2EuNP7U{X^c2uFt_DXsjdvVd>ufjdh2`W_wVp$nmzqPJam5b;^ z!xEQik<<18=8>62Fvw`-kcL|cK2c~5=+IvHO#(0&b)7w$#oa6=G17tH309M={v*?n zBbq7jqw8cy-o{D~0xsq{Wc3W(W*96HrVgJ(J+ee&^FhbdKce z$ZKMj`}kQvB;>&UeiLR)qe;P7H<7QfO2-+ZcRQVsF4V)w5C^Ba-0BP zDrPLL53KOMym;Ht$-N0H^D8YPJwD_t-{?thaXOGy9Sdp8+35VZ^Tm2`IZl1xcWdC~ zz#Mv+9yiQe*}M7IJy)C*MtFFs_`+m_o(|(W0fm8DjtE|ihGX)jt3_Xr_%}jlaS@_8 z5GF%4js3~@R5|PPvCT`QZ-@Wpu)$3Pol7DoBcCZomk5~uk{pd6 z3^qBy$~MJMUwR&Cq%7H};jG`%u7SNbC$5*gL4!g?U&&~{cWnQtn~HBhFLBrgQ56VW zX==WpQXZb;MvP=jEG+n3PIm~DrsSMxZ+(>wl2=_%g~^!abQ`s=(FY-8=UePCU?U?2 zuE7wGg=E9Rwx$9PRRDQt01O@}O6uy6okCj>K9SUR4P*bb-+H8-UqV*aweGV`nPn1d<;lZ zl0haB6xcNCR>nX=YOzf18NtERpGDghgi!PX?vU7IjmBWrRKXb}O9|skJRxX=#9|5@ z9I(nVAn_=>Soz<4Wxi)E%OfMmwvVfwz6&OreN``Kg&Vwqpv5&G@oNf%;h8vvrv2Ph z76?qgU;|H&yrlCpNZDZfBnRg_@lBY|L6h?EGFmqo`b^g!?9kyXeE!{wI6Kl;5uWrCkGq!k z%wd6(g3P*(_G8MqxZvczo5#k#BjkGG+ty$P?m}nj`_TuRxp6^3I21{RmNAYPAC7<) zZ(!j^0w-+X(=X$K&XB|UU{R0@cw%2=GWK0P;X4qtus8W*r0zGnm=YD>kZ)RP^yF4l zA&(oh?>DI;9+xVw?D_-W>j9wAua4t8Z$NN+)gX~}Y%VosaqMVnsFKJpedXj7Dx)5r zDC2})Gr)QW8fM^jsr`UfCp>L6y-Hb zP6_V?#TDEq^wNBKRa0*^i6_p~QyBFcF?dSJA+Xs>Pa87}oowni(ntE|=grA+f^A{xZ;GDu&KY3%}vv9Iq+3!H3DQe*w zdn3y`Wp};NXeiRB%}wD^uXjUkYH5F)ufb7c^vMP9htEs@nk_4I4*V4t3n=qh%a)sZ zbEI8vJcv^CnjJv&68_r62v%)R+a8RnEApC58C2?M%^r~X41WU)hm8&&<07H$MR4(y z3WvNqPB-KTZkGBQA;Dri8fR(o6g!hlOGk`~7ur~+sXR`W zFziJAx?sW$JeEEL5ABq|%$_c%nyeOb?)k+$J&w?Y5Ci&K#N<0yoAmCY4>JzFYJ7cV%*e|0H#$8<*}WyCw;CTe0h zvwb(IUii~KLv$bM(>n2EhDVo+=ME_*#$FdIXp?KG+!X4)wNsuF@s(4LjH-^A!3}0m z4odMaTD)@j;mNb-xlV@4-xpNe4tI~+(^Zb&ue*|d{5KF(#Ih{nbLRDLx78TKy!Xolqv%o`?KmBq)^nfza)erKHh zly`5C+-YF-cx1m}3M|cXGj8)XbWXTF!mCIpx;r+ynFnxHUQnOzS1nuy^v&pxLiIVm zE&e&Vyy~oLz%P~#35d~Ww0i1y=ux06%vDxF2;NK0Ps!k)y9XdpSThO@I40We0E^$a z2Tww&a$uD+k1b7A=x85|th_y199bzi^W+JUe*__oY1cHn(kYi;$S=O<)#$I~uqSyEF@_042`prHMQkjOdtyeuPvWe00Oe3|u z{~|~_J^Xh>ci1iLBgqn{Z(fH7!04<>h0S-_xn^T-)wKcaCe#VP6yyuC%`S-xoXNl3Bw$?4uON5btQ4GT^

    K08N^f4RX5TYyqXJUXC)_ z40N1<8(xv6C=oU_q*@$C29lQ;5u-26z(-%?q7D@2SSbX1yFld_0Ec@}XrQ_xO%Vmn zWm#=Nj13h7E=!T1x|6iLbs;!Nvrd-b`~VWK4uFP}j6GNt#i?_G)<((^X&TkOM9VS$ zNQ6z$do2B;$iGsso2m(wVK|`Qi#d`iOyZZ1AyR9qDWi=!$}4JoF+gZb?=g~td`$$! zJS!9@aQ=*qyB1aEFr8;(G>&EI^;QF_^6Lif`t8<9-5Aee{)LX?E`-V*2g>s?j4G-H zmd=9+-{0}w4=1w7(mRA02}E6dARew|e=!JX#k@WM**9Rw+&6`2*K;L9T=`4ZUi;I18piqg+d2y9QZIT)p<;F@ z^${si_>yaV9n2}pU{nG+$W42*1|&NrCfnT7@tuNUH@KWdZfb^bL<4rw@b)$ zY&>%2ORr~zZ|c>5JX+Hb z#2@EDf(-O@=l&mxu9X@4Y>CLw)km|yVJPN2{AF2*L1r8R3@Bv~S9Ms>_;KNOValC^ zn7ja$5__2jCc}v-AgsvcD6~)*7o>bpNI@&ar!N1ukSg<6sWNL?0yII7g^urlbFV)` z)^7Tt&zB-~L@tEeUr@QA2Bqj5(V!B2WI|$w35bq?zLG@QNm895Q!{LCViUrOo&>M# z#NYRjQP`8H>>m#Y8v6r5dcT<^C&pTw((*Cp)pxyH;P^Poeh9HwKaZbSP(ISwvdMl|b%O9ri`kB>nk6s)=zCy2N z#up%ag{eQ~Fywc=jQB_vB$a@A@*e4h@Bc4cqcCM=*3h{bxmn0xY8;Hj?HT!*LPv1&xjsniRZ-9PXMO!4wMmCQOWQ$;vMoDzK3!WF{z^kTH*qYGvgcSyvW7JlR8O7;fo)F~>vxbmTuVc@9d(AXTx_zsNg|91 zbTn~@O{Jttu0;JvhVE4tGASwlQYv{x&yZVIqy{xnpUj7ZW{vz^yLO^yV7D$-Ro}`! z(Bqf~(T`Fd{s@z2@PWdzWd!X6XkJ42jKv9}m5(5}6loK3jG~O;37Xymm$VFQhcwG^ zfzTLs4aM|AM4Fd0;o3yG&ZvREB7Gy0Q9r5@gSt);k?k zR>^}o>?6tk37Ys7wiP<`4M#qi3nNpt3Bt!a=pyH&uJ-^1M-_r-83;?#*yYqn{tp1R zKuEtTDU%dzxdciIU>cqZ1sstSN-8>XIh5p}l#(bZ2+3qo zQt;79qoe?&mq$qsN->d=f|STdzY034sgzW>lyWJ_87U=GQV>$frli25lTJwiNG4t= z=cAQSNzF)XORgG})K+&jCaIiC3QTHAm3lGhWL1)5Qc0_%pre#msTYw}VkJ3hMA^co znp&xcme!Vb73gXLgC&vdN=i8LFPTn$r9MK^13AeIOT(yyJ-P&QEGa9U1IlE5$ra1GMxxsb*r* z2cA?NPpEdMF)Gl_#-xKhk);>id`$Yt({OWB%*dpGol2mCW=^I7Sjtgas#%%jxKjvx z)6C1%!x~Qjky2)+K2CC}nR;NU7QDDreR8I37S;Iqyt8D zQ#1|n68~I|Y?3BTTuNzIhLB07X&MDRq1q;$sA+(m`p1?uQ#B2+63x}5qNbLtNzO?% zTa$uzD&L0F%h#mlq?xcu$$KJf+)zu|q@bL@2d=*q_mF#AeO+XACmf1NH~R)f|&H=NGXYv zif}rkI=wVbN=|BdoaCU-ln-wrv_U6ImTdN0g;|z}X16)TE0K}IJ`bC8cVXT*7`$-q z{#9FXQ$V4x5HZ)+d-bLG%OrDESN(XsB8yKJ23Zobo@Hoipn&jD2DfPa5v-Cpi`eLw z2`6NR?Zc3*#u zq#8fc;K?6E8nOxb6zn~ARUSw6sQq+2ChUpj=9G&pOe9t$HI-~HWi|7dXVt@H6v-3I zS|b5ec>~r<)uiMd@yKqY*49X^$xm5GtWOFeLhnuRczS1P5U-Pi=u@RVInuIk3DCFf z+mC$}f8Ev)Bh7mWgQ0SeX^n`1ZeJs^!HsN07(+`NkpR!!wgrV^-`aqq2bLFWpwhzO z*~Je*o}|9HKwbev5G>aKA`%;gwoKh748#h9A1v&DR5Ep1AR-`nE-;C}?h8a1G#>^c z6Tp#yNC9#rAaa;`6EG2wT?#hPtoRjdfWn;%HmGcP7;JE&n5#Cx=-DTj4hL*3YOfK~ z^)MPM+_F2f;smNJJUs40^9=?{VIy1;N)cb{D<8@WcNOPYPenf_E+5R9;gl5L-{BO$ zx{ZECBRFrI@|ya0oI)bHfc$aeIAi?qPmvww({aj*=Js()ZR~_`N{QvCaSIK1Oye6nbyH21(t&ijmM@N4Gj|21%*ZhcQm1)SaB!Wp~H5( z;8PMN#N2FT0}#tYg+^q-4~52txDUw&9o!d&#)9wh!b8LKYoSru@Lr+8;rOV~aIid4 zXg~=5COj5xfwe9-X>t%}^Jk$C1VkSpA_$J_ z3<-z?49vd;Q;z1bf?-54k_`{TI2$&8)SJ4r;A)GpYPAbj-;Rl4+Hwqxr!d;?yfne4 zdJ46Xve7d3(HyXRmOu*Og77YzAL7psEW=YS0icy`B2q-x2 zMFbEJ?IPPOgA;2BOyMCg@fNlO=z9#?k3F!0XSe0$Yxeu~*N=DC20lay4HyIDS+oL# z?r*e033mZn!7_9VT4BNS)!D~Gahlo1B#a31_E|x~@&Q_bGxdpCfkASO*kJ>^E39Cl zIWerz0bCnactEzk6(Um)fE^fQzkppxE8YUT$Z#KmT|OJ01-ry3CZ%0O%BBORhrk{n z-It8%O)v#q6$(xL2`m0##aM3wf2dO>Hy<7Vo`jkM1c2g0Kti$RJwW2a^BW)m0X+st z6!^XZ8(^p=I5r?jI26wS5)8Ia00|4~4M4&`_5)y1p?Lt1fY5D!BrXK2ABhCT-bZ4A zTKZTRmTY`%Jge3{HY}c9k4< zoj=s6jt>in#a?rO08lJ;Bou2FI}#tB#f}67wAhg-@GW*5V5mkhHXunj6pI}R2HRps z!h%}tNEpZ#I~En1#f}7oZm}bAAz184Bq$a;5)0H~$HK5=v18*|wb-#?@ho<1GMg4V zHY=)mhYd$_32(z<$3&y}N^Mx|PLk^w*7J0&^!RBSm=HL zR5}E204fiPPXLt&>KVX=vE(1H18LPuU@B*~UN)fE5hX46=8Dx=k%xs9Izj z77NFUwTcA?w@a}|Y*?UJY$#?377UFgD5m|0fkNRGVcLY|C=2K2*}|iJwxDL9ExcQ3 z3qK~>f{cx}AZMg4NLgtMuV&hUh@H0ZWT-7@SZWLJrrLsvt+w!ItSx+6YYR{2+Jcz9 zwjgb=E$CQm3(6+jf|Sj+AZD~J2w80lGG^Ptx81e^H49udW>A6eWO=l;9UJ5nLc zPK2q(Hxpqz7`gwT2yjCc24HHZg0+HE)&LO@EoDRy9McpDhy)DGOok~(vyx#LSh@dz z7|`5*Q1zy+0=Qa?YM7KQdG0@;W-P}MkOH3j4}}2axq<=UIj&$F5Wf|Q zX5R}bVD3M-c7X2=rrX$c2UOeZxiiSshQ(vYbB6?n;J8B~vEsKwV#9F=A;Hk_5}4=y z11d)K79yZfXd9@$!Z9eD9N;Oe9vM4Y)Me&Ux zU_d;Dc3^B+3B&k zV(Kic1&nhTo*&z?c{V&ehHGw&FEciVaFop{F2>i_0GNIX(?eEA9e$N4M7lmkcOH~osWj<5M6#41UT+BD2ZPRn0L=mE1Fx+P`|M!%TOPd z&%#ta+*M$x8P7*x2mo;o7^;LB#D+?ZEn!oA;XY(z)+3v;0iFj_<=FN&l*5kU4W&Y` zxSF>jvWQ1@Vw?kHEtmcUf%|)IXjBMje+IbxFTU#`7x>-8dQFbDH?{9eB`^b?qX~=xaXVotC$Rj2ZsErO0Qlp;>W#f~aLw4hIy@pfo;y4~ z1V0`gj1{jQ9v+T|36F=22LiCWAFLbI_lQG7q@AGpB}dUD%%oj5egSwY<)TKoEz=;* z*bfIb?3zsvRVJcdH#v6d$Z5G`M5d4w$L8)*21mhOmQ% z=+|`sh~r$f3`!aj<`%XCh2|@^gNNoowu1-uDqF%bbv4_=LGiU(#Dh4c?PF1{J%Ib# z4iT15+Y%juquVAK$op*v49_KQhY#W>w@O5H;S2SsTcZNF+3heH``#_#pdZ6+nbVG& z-ZC_T@7^+@6^FiMW*qOWWk}lIFhD%O4iIXPz#<~$wuc%{FhJxQ4@L**6i@2=?92QA zasBn<-L-*xzNt@N5y<^+s1n`1ZpZ=mQ5z~Y^g$bH!*k?f0HF9lp&(u%K#o>JrC5$s zL-nREKSOm$J{D8$U{8giVl+>Lp?-j;!B8W}C^pn-YV?|_L*8Wu#js+tLZRR`DU`s5 z%?V{fS=U1${4Vh@O)v<8&sTwILTMvBZy%GSv?@j#PUWNemQ(e>|NQx#>E5Q6&QZ!h z1{6Rox)B9nfg4f)<%Y%-KqH<(g$03P&tSm#2g!@YK)DuX{gRDWY(93)0W$Icim?nm z00J8YwoLpc48*h>vo)goQNh&W1gJ!^Iw1sL%M+kHJ{`^$fqV66#xH;YU;qQOf{b8* zUQFjo8rYS_euWoz*}^X)@x{}#T3LXmunwxs0 zO4zs*W?>qI!#q02y*(6K74**S6h%0$;INDRQ3$n9;C5mKWK;uew z5fhWHb}yFXr$M~6TY`)YXUoD6&8)l!6CccIJz;=vFWP*!5o@2^zkG<|C}Y)QM+KAk z7(7OMiz>1_S?vOQ@=x&y&$og6rzqb=anaAvThO;tnkQL=->>$8wN>j`v<2*h)v|C4 z$9c3pB`4N?_R$Kz5QpGsLFO~Q%rJ;82wg`u#76isW4kV`F#-JXvWs<0c(ft?xVC6) zFyWRK?Z3=Z#NB# zp~Z&aRlr^VUzk{$;jo%@;_fFvE+%) zj{7LLRRST~7I+@4zS)qP=5}1sF6`uv4qL-xmai?yOe6edy^SbY9z=V5q1;Eajt&-@ zg;h5hKh42{*Pn^C;xA`%EqTlH8q79%v1esq_n}&(-ZsO& z{e{IfX4dTaH+H(R>ihMiUM+6#zNE>P8Bp1~q7U}%*^}zf6@K;Z`s?!c^VhrUh0f+h zn67nH?~?3o6fiBUo!D0*zUm5DWvw#Hn#u@Zz&{@f)8%T%9sFy{N~5^(319yE`rtxe z7O?-mI8(>Jkaed_e1+vo8ykG1wb;VsL?vsWMbFkbpB1dD=->8LiSvZ{Y{`uk4c`h( z8+%p4H?ibbpMrF4Uti&`aIdiX{w7`Wpo25DOkuLzrh$WkhR>_;SnVLRtE%|md+kP% za2nZHC3@b7!@I!>tC{XG$X7cz)!A0*sAA9G!aFRXND1RZrQ=F>whpsZ8XYyi`NGk8EPrFoH+7)Y{vwJMV8zRG zOtQ#HO{U?7{d2cW_4ZUlmGKlT4M%LWe&*xs>YK)X5}4}N`rBnwWhFk@_RlzTuoa5F zg)i2tEf0fqojlog{)jcG%jO^yIvuw1gmt&Jt0c^pt5cft4Uy;0=m_L&vw5XBFVD3$ zMPTS;^RhpUUaDGDveVurG`j6xB1^MNwqc37~+GSb2;1Bx&@A zFl4fD-AX^Ft3f8fQ18_*#jo%9kMGYc!&?xBP^1h|ya`$7UWF#*?mRqP=I$f!Pr?4C z-VO7yx<0<>3K~s}TXEVM0g#`$@MuL%{}s=gy5wJgo;P@EtgaA%yw${A^c=1Uw1_W3 zmJ`5u;JfUdb7bM~C${*A*c@gsLUo@W9-<`Aw8yB2`iAjER{`mgTn7@7&mYRx z$NRfR@KyBl(caz=gexJ6w+;dL7VK;nq+xNQUgk&Z@-aEZYe&lYhl6V-^pJe#bzOY) zVoP=NjgFkqFQ3&IWGtRDy`TE~2- zbbesCmlgl4t8h^spQ>2^>5=9A(ywlRUHtm>gZ`&QKt;Rp(|$!WijKGm1>Mo@)fBaPyO_)~t)$D!c|N7diB>wN6l z+3s?UGdjC5z`avocabv$ODJHv8l{)M{KF~+6P-C z?z>-0z2~0SVsX{!+DhH_x0~R!+PygIahK|x_PLI7kG-zL;=12;0KE3R4vm|>*H!Dd z_wf^lV}9bW`=w~FZnyoim&9i$?FDn*V|!`*cHdq!M}4`U!EMKWA2BOxcwoKnqhyX1%Gq5($1-dU%V>U7#Ia7j}4Db;Pb>$9*wOigQTab;hnnx4luK-)DD};5hG( z5(d8=QUc_tN6Iui?vkg&W9ZIeyj175GhQn9*%L2WoOi=Z0Ka|klEzU7?5K6y`+f=b zoBJd^IP}@bR66a2QUH%VQOe`GH%cMA_DCs_n_ekb?Y3ur3Xc0=6*}vd9eqywWLLY# z4%vlq-5a|EUb|u!$4x(!=ylu)o%KFX-Ht|o^Vrd-^f2dL%U_>LwvJbv5{+(qnMA+O z?k2%;-tQy~emkH9$Wc#}X?EKs@5617N8iJDQJfrH#_!dNop#V343GV^hst$#?LqO{ zYkRodblyGyw|)3a5@lK9F3Q-^=d{OmwR`NST^QH>vrFK$TXu2W^hSwZx1I1mPC?8r zg4&p+vpMekh@F-4P`SUVEa1$4yt1DR$cze+#3>)85@$wxiE!PwZ;< z*b%!huKQt^z-u?`;<)LB61`SCA#3QN_Td8J=Kd1}id*ikKYS{?kVgM)i0zkmwczJn z=TTfA3a59D#|RDl__wkuG%I?9?Bj9&f-m-QvrmHj_1`Q=K5aH5`kKCAeggS2I~{qR zkvPh&yvfxr+ON|vwm{DY=g39_SshOngr3#`zSMPcdbCjm>(k-LhWR=b1A4OvzXyAK z?C?2HgJl{XQ+(N?ds`5jq$AQIj}Xj{5G+OxJF<(q7Wr=MD5zH%cEo3=M_V(@F4%AI zrA9V}CA0M7BNP;MY+>@^tFZOb+T2)(w>Ntg@-5fS_=UQ@2Ai_ea2sXKH1$iig#Knz zkEMaKR!|P}w#!keVMd#ERm?te_I}#R9F*>2T;%BnbK5#?O-Ho?i!*AiqgiJbU(@fW zC=IjaHf65~Uw&qLeIw3xULL|jl3FlDZO-R;VngOKJREZiH6c#JwInu*w^mG}ygV-# z7x~%7>hX^-O++6=6dfExT&Gnj(5Ba_QenkyRSQSZ8)+j`N*EEN^E3hjI!s;sx;ucYbwdMyjgAe7AG`Y{;alqD^90Mg;n9! zU0Pj5wuVjHPA#P#3l4>@E}L$x0c|eI=fbhoQEF{|vg+FED6#9?I;*qf+^Q60)|Wk& z+*`GHn{zy>gX=65-NRLjMs{(v#*VJ zYDmX*b)5y{`??yku@~=W(KfwZ4K3)_K|?mSzpEh{v(GogqI$f}anz%a#P9R`E`~X*%`2`xxdaT z(A_&{(Uu%wmkMmoah6z3vGM1MIN_ucV-e-{5PKkrXcJ^yb<+gLTM1?tWWa9!LoXNrP# zkO#|@-C2&8&XkMwPv%S|Q^zwDEnU`e`B}a*ec38WLwDNPOJudVQPcH6!J8T znIQH*%L>_gD&8{tY89L^p+ro3nGIFPeUdMO)yA6aU6ke4gdc5^v+fbCPr*K8uRPel zWRaB@kTQ$#d$`=B$zeHi89H8z<#tl;uwZr<_eJ#X(lQWz;umm$HXM4`G$Wtfu1Ji*mLA4*8X3?J4kr zu`Tn5`B7eqUPkdce0HaIm+Yf;@RE5c^gfEiAoZe}EgsfvGI@p=oqn8%Rv0d4O=D} zMunUW6c}&bGSM|IyltXk)J8571=^l!6XE)sx(uX`+S+9z-)MuEfua%HyiBBz-Rxzc zW6YK>6Y--qeisz?^-j^bhO&MT$BK``wpbf z@=ONViHD(XN@e*gaC;^RL)=(o2K!tZ|lwD|bt)5n`@Ybx$P z-(w1XIESebtNTK#jY_{%VXf*f6(PTX1&`n(R(&n+>cjv1!cgxQAFn^z;Jy0v@&3d0 zS47d=!>|lCxp3Z(iC^kTehfE!=M}PO;Rs{%*FGG(r({rc8s>Z-?vaTt@*^FRc*!RG zV86#xl7+v&!3HnnF|ofR%G^gQ;LH0<_$(3{v6{{DS(dNg?t{m0Kbyav)mQk<9MapJ!j{UoX{!A+u8EVlQ>C{N{b{*&nPk zig`jJFJHxa0?#*ciHne6iIZy%MW?6pdpOWchrPoLI|G=WJ0M zXKb`N^hs1aam#+5-4;L37S+!e+Nxb9Roj|xqCFcohu?AkgFly7tHwFI6<4KgV8{3Z zwkV8N!G4~Gt0Z1U`=|)C_W<-g_Dkd1>}%`VrE<2QPitF#o*Y@LivAc@-t*Wmt!uN- zjcXUmzXkgPt3ll=m)-t%@mpW@iY>qFucE&cBdQopguxW9%a%Q7tNHmV`5vUKp88v` zp~SoLv7&!Ih{yhkHIVwbvQN#}bF-WJxr^e&^T#mAv*Frm-*`WN_u+c+Agv+Rcupx> zjpXwdNe1Tw(uLTi3X`hhxIa%{tfjWPcJnBK4|n=+Q-aohffzS5;#zZF3UUQxAZAFx=$B4Mk5t z4RtH-IuEF<+x@V(UHn?w64m^@v4)$U z*bV2Ogsddrv3g^DY#s3)q+Dcb7yQ*VD$MnaNt;6qi4 z^E_@2TG^d^Ez7%^xGRd;Fwdr;a9(^P8bayc>uC`NZ{s#G4%D~J%G->}Sw2$q(h@&#B!W#5umzYsqcf}3S2 z=jP%{t0b4p=n(~wnMD6&YGvscuUd)B`AVd0U;i|3tVGJviid9yO|cPG!~5)jn@hjI zUs}Rie;L9h>(h!ii>mFh8@c0n&Q=&~wapeTn|XjVAbhEn-PX#kYh@oQW#uqY-(9!S zY$ooWvAfwKpRIy6vj8%9q+zh0^Fbb3u&-Q@7@+yT#87PnBpToRFZ1sK{|ZP<2F0-v zK)yvO_aB#X#f8~lX6FktalxFPzulnd?0m%`8y8SYQ|P&?^vDK+S#=|8CE`ZDrjhl0 zU}@Ra*1+9dRW&{-LMt`9*c#89`WnXYx%8~7w1)ZSI_~@ctQOcicw|<|Jcxt~cC(3A z;)z4F|AzhEnXY$S*EQ3%Xz04*x-Lu4-Z{T{#%`XKH;WqKH>14&%K!VrW4MdhoqR0I zR$&}we?}|ummVE;Nh?=#d6O6>%bQ>&L|#}eT5=n+a$ORPCDl_9<^T78|NrxK!tTg- zQ8qt>0W*PiL0&YJzkE9ee0_sxs>fKHoa~)2wytY+X1|Wag5(M8c8F?|Pp9!0Y^!g`3m<&zIe7bb)l`@;hhc zoil#tti1EG7VKS^{W!n9 zUCi4%u;iOyx^BPO5A4}L4{3h&7-Y=Y+VqE&r6jN3iAVYG#iQcy8T)&7xC~@URf{um zQogw5UH2Rqj>J(p?5%MteBLt4zc<_(`k*&WMdvX~Q&IEjW^B5Cdd8kUhgSG-a(;TS z669N*x{l-d5A5MTk0~{8DD$$R%z)U#V$WR@^!}-#SOJnJB0t*o2~ z8XnORK<^bI#P74>_lC1|5J|V&$XG^o8>#mG4X0yRs+KZuwUnyyj%Y}KYi%>tYr21% zFJ#XYO}KAkWS_Fj);lmS^)R&Or%XOUWwIHnm#@)u=Hhij5UaNIPz$Rlt477H%!+0< z7F2UJ~%H8mm*MFJE#V&Wf7W6Okd$A4vqVbfQ<23}g$CmRVbLgGO6}N{OiL};m z(^%3(Q8wf`R-pVtDx>;!CVrK8ga2(_eG#bFEdFg? zelvK{E~+mHJMCMgU~HpMD2B8OHQMmkls!P@uk9}^_3LF+V^BeuwT9P!owq+^(`pm! zslUsgD%`xar-vK=m6=z^H;d>+%0{~4=@C4y&K@lhwXH>$?(QOXz(kjiXGR5hbvssz z#S&-7h%a&1Y4D_W4-Ay&p)I5Mb5{O2h9wV=JhE|2_~%bzf8-`gvwWVU{5z=Zh23y4 zMAQ<^@0wM26p_vl9W!x9IZEUSt5<%9@XKn#YxGRTSIXl{rO`jDH&O3aD|K0a ziQ+2=fgmrL0r%j?bM=y+8QGY3m z4U6S-3${YGe$T#!yY=>fh^KTc=7K=lT(;xIG_!nwy0Uc$DXx?J( zjW*&-qkJChqitM#B4!TDze>B%@V?e?eb#WkO>9Ww8waY}X6M^Rmv7AvCOGi%m}`zt zhev*f!G`tL;2Wq|?^}ZJYr$WH;QFd4NpY2zOI#gah$z?!=Nns5tdpnt4_WXn37Ike z82lMjhDz>lrQ8QD_ok3rU7QscXU&V_OCY=Dhjso0{J;<87r}6zP4@RwD7Gg6@NY}Oca`9Wrr`4GthzdDUNtC0E;`vU z$XUh2e2pb`#rIiqnuRC?e`yOYw{ftmqW6|p`NEC=+1b{nSBUDwCB9NPt1E`z;=@Tu zNq#;{ZxrUHl>Qr+UfsebwML1`TW0*0(PfI(uOZO<@&7mlaUSslIM{0WJO_+MDfZ`Y z(`XGL65q?rf96uo{~XN{C*?p5LAg)LQF(Tsltb`nkZM-e@HA^NIyhfM&a!H`X3l?NM)|hZbtR@#FSlvsOud zE2K3)kt}{vd<^;eM{)j-o)hQC`J%J=wCBvAAvL3R3(1rl?iP~64DS|_A`I^qlB*N@ z%fsqB+A$h$+D{gLvdR6@Gp?hzu!eayO#Y1lPY71WC|N6#A9GWD!L0mZS%Vp*wO!uA zEN_WApK+-;S*JLpyY&UMysj!6vWQAm8*s;z`+ZA7wR3jX`nldvJIE70ANLGhgvIig zF&rP-PqzOY)N4}mx~$rz>seIF6!68A;N9 zw(>q!-zE)e&yqt}9A6g2^`~QF5FVrg_^-t|W{qD5VS0`o9D`KvNGsMD&81s)aA=2idjqND$tn*k5`|N3M$M&-|-@G`0LR z@0_yOzwVSh(AW{!Jd%-rc+*(vc29A7&jZFx& zNWO>Z_b7ZCt^ITLVD%3@eXP6Y^S{33YuD3pw9+r-(+}cl{@3iUZ)f7K5$a#RWi6GT zyI!7ZSFWtN&!Ye9hXF7q_tSt}f&BXIOx#xvTGe`;pYYQCNMfikZ?2fy>YNU~#p-<4 zb|L=CtT00EujRoUT<-bA?z>X1C=9=^{90PvH|yLtsxWWr!i3?mzQ?o(Z>l1+rIp}s zDsX;vR$U!~`*vQQ{fOL>nBbp>1Q&&PTO9?7(UyLE+x#$k-a3O`oCo()rF~u=dokzX zwxl-A;3a1WjkD6`0fktTs5!YV#*S z$VD9A3Q!T@3=UzVG(W;>tEJ*ssfxQF+qLnNC}i;nYyQP<2L8yoLhgPXSK98$>f#go z#@Py;gIqz=sqvj(v&#N?-pS0+Zw|^H5awV{ zK8GGPuU=oVk$+R38K9R@LJh&Cy;nB*KV1_wpac&Q}KxWfS{hz{wPW-txWFwY#b7DK0HM2@KToe zM^R#>n#K_!Ej2%0RXcsV1rPG(*&xlw^h*BI)m-F`b(C9^v_ z3mty8jBz#p*j?HE^)IjIk5L@3l}UHJ{UJUb_;;s&HYnte-Nl`zF7|A9eaD`i70*fr z`1)DhiukEp5i54XHc3T-H;kA3Q@8y6D%d04VmBT!eeLkV6sx)B;lYOMyYg_j&bu$Z z1kgSuQBC@*mV(A&;MYvPWGKEd=sipE_21?_SpoYO&i#*yC3H_#!P&e{>rwg-u21|# zzdip-V!@9I%MO(@cO>wufPcpki_Ld$Tb+bQ1Cm%Ix8dnbk0JX{obO-Ei}>ogsjJyr zZqB+swsbY0XmytJ6SLM6V~by{KZIpo-3}?^ho-<^YJt_y;_cNxkELzCpXwv1)`|GN zTbeZJn=hq0ow0QUelhnq-$Zp1W9#7i%cCT;O4oD8d|oeLDpy z3A5<%)IT<}wgAAsHsqaCtu%f;Ctzu!{>!{432gsd)Bk8O*YF$W^&MF&jjZs!eb}>? z%a$R0&l<1JW|tqySwzCcH@c$xaEDZX;%J>R6ajIb(58_3sgPQXPvRO+Un8!~ifi3L z$pC)nOa%jSe)NG9TawmVk69ytu7Rl$O4ot8%<~2y5~tIDX^47XY}BfM7|XW1=m)KP zg!4K)_X80=Z!VDlCAsW?^Us%x8y#@YJ79CY~j3)B(8#g{G*>N^g3WtLZ}_XPX|%2{|+eogBchf?R3Dn_*p~z zOo*R7g|lr^SZjs&*;)LI$BfvR*$fSy#m}1J$G(N4b+QYmH~`dHv84W7h$$A%#UD+c ze=YJa>wOsVuXCP<`SQz zl-HywItLUM2li+4Kd~{cOck3MK@`XLUkECGoBe5a{%s6elH}a3Jc=*X8e?$vlp*M# z*w!7*(Yd-~L?O=OzZva$+1gmaj?f?0ZDU|dY(K`iiB;zhLmHjfVi2z9XE-yePoTRQEzkgGu~gM%2uZ3*~C2y=~Anv)URmHot(uslzY*GTUF*h|9AO z&W<+5d>ItmE&*(exk%f-V=~K-&7k|IzZeS*!Haeh`13vW3U5RdHN?-BBZt*&L zHq`#=x_Z9)$0+S}aHhyf$8)sqgKcICbE6Q~{e8xNABj3JhilOF&*C}^bz5aiwou25 zqe0ap^YY?sBXz%Mke}FyaOibZ43jox6n}Jl5yK>xyVv_yM1xS5o7St9(d8y}lfGGp zii*R}*ity-pSR~}7y_w33`?$~JH?S|c5c#BCUc4TamV$Z=oo7X*xQpXAbtpNnG;&p(gi6hHpo|NVb5 zp4o~QeYHEq-{$);-YSp48pOTp6a4gr4qhAzRa`)2c?BhPo3FZ0fnV496&2^JeZ?j)h88fx zHf#Mm&GJ`+H=Y08Mjok4zz^PaeO5N&UfTt~;-B*`gVpN9CjS?w)o`KO_(|(kRC*KK zR!*hV;2Ap=vWaq$qQ_~cxh<8B={((MTvdqk&eSdH*iJPh!CBR9qTEk~am9wuIjbCZ zBaoz^+9Q$rSvwUK^N_lSLFqn;O~xhZV-9P^`RF7q@Yn%LLx{^dbk`H*1=sG3y^rhF zSj;Y-A5AlZQny8j$jJ5m``Os`-ywM=zG??_`Yza|NE}X```DkzMbWwOI$jTsUOi7Z zs}Sh0g;70PgO>L5?yAmsv_h%0{;^8qNv(>ig4WCIo7lVp9kcr6HTQIdvuqW8i}K=B zj#)6SXADrk8vRgpt-J&nP=+dCJX=*`55=XSVaG@mv04X?S`OcV&e(<^nA-a>u{T}5 z6{T5fERNb6FrA!SzJ=Z?3?vfeZB*Ci&8cW^bL=0~h%!4SDRdTZOAzz+=dWYe^Bs&= z8n-1Wp#HnqIx0V>LsP2yem4~XoDSjDqBG0sKJBQ=Ovgur%IY2VhMzO6pd_8+cAd7s z@%`Uq;3<3@adHUw2@~fFx(Z(f#j_3a%m_j%XcSm+?@|POuj-7&%iy42F=`PPNun#T zatDGD(kq?&>OabRBs(e03ZtdHE^t}iVgrWplg=y3WE{6uZOS1XB*%S~YFi@KDza^B z7(DI1(y|p#TH?3b3I^cw9;$AaJS~e~I$vr0KknYGxosrL-~K9!(9Q0J9NWDc8++?^ z+tZF|dHQX6wqxEK21G&<)+E3IKwIul|Hp|W02YACLuDrCVx}z#`Kzoai9;1KlkyCQ z&Tt7~sh)mucf5P@-5;j3i8sM>Djea?JQQi~&AsG19>;F|j_mzNy+>b8%hQM6c*3g5?KMzq_ zCfj&*nyv3+(ws)~(DeUxzrF!n)|~F#dL4ND4f5*lo`m1f$C=Ju?U$`&@!;+PoRntn z3f{)T%qVvYR&9>f%9U>Ta zPJyL7*g8bohR&x?9v~KOk8b^rJpBs!DVvyy=jf;T&OPAz*okApJ>@dfnt9L#n9H-H zJneELTzue#tKfm2etpM$Iy!^_*BajooZ}il*D&Vt%6`$YW@aFVssGT;8^LDM<8&98B;+Y!i=(u_-pYs8&29Y4UGqEi__qs(v_ByrUi!K;)L-xGpQi5B)5nIL^qcid zy#BIEo>uif-a6WD(Cni)ADSgKgF5}&M1@G*Fpk=<{9R>sDUbk#s<$S z=i)VyJPtM$C8YWZ11{^(QV62m0_Tor2{KXxuAb8Ewt9pc@!QpYE9NlN0iUr-J8bw~HuGDg%Mj zGs<7;-%|XzT|TP$0sky=;kd_;&9oMtJZ21JNH9NJ&^ckAB+zm~jLFXm3|Rf13?K?Z z@ObY13F(>3ueNE*zeqI{BXB$lBn$6^LJ#y+aU1Rwr$(i#I`xH zZA>z;ZQIVonu%@Owv+9dcfY&)p8XH@>~DSgJbkIhR6;7^d-nF*7gtwY_F4=^=NBHh7p=(M+GE6yUOdmu zAN&)UI=Or8gf|KhG1MOL>vE1e^@e?t32=9)z?huldq7gkN!%||0q~7mCP1pGV<}IQQ;^t>Yo(UP^-HaXmrL$ZPb8sqw+J0m2?fKFYrv%8b043rk56p& zcD^xZeuGpZJE3MAAbM7<0B^$_s~xv0nJRld#lmtv13bAP0Z+a{c0r)_@RgSSOQ@Z zQQ2G2bIgqZ(<&j$-INUEdIK{b1&;9IFoOKhk@SHT?oY^$KzPWWw*r`E=)j=InCM;5 z<|Y%1VbH^rJ09k4H`0Dh{a21{U2A2xt#ilg#oLzOpJ;DhZ=nx+u%deZyB}HEJvV#| z^JF6zVs)rb)?~Z(xNu0_zEC(5B6~=LwAgq>W3-4l2bHuESVXgT3>lNRcQvI(ObpjL(1#MrKIUb88L~qX z>lvT{A(qw5{V%1uPR`zb&|Dkj22$`512L@x;bvJw&??2puobmId7gav6d z;9e^#46=F1M8mfnvz3SSTH*bEDmqnJdv_hcN^#|cO!aK*5=bsG+i&lw#6^GZ1swHz z8A{iaujI@hSR^dO6nX=$5Xt#6ls*G2r)%|S$l4i>4mlyEw=v&4=W{B|?~$0e?`fRM zl%i#VFDi&tk+(izY6>VmZ~VH$l1vj8*9ys+o6jqke!l^<@Xrs_)ZU9B3yN=VyGVyC zVS-=serSt8u!=X1I1h%ABMQpADtNyoe{X)B;CX6}`bUGR2QJ0%p_>Yu`sn z&gTzmTTti341AQl0`sMHGfEHP+mzp=!Ai*8@N+X5?;8+iq2U$Y3k12n&-sBU+lC)> zRM8gv$GC(sZFtBsIEVeS{I5LY-FThPoOQ1>!qyfB(K;o%(+=TBrO^;xY{6)mdY(`< z$+ha9F)=$OG4;)Q+0mF2YLOoU;H}mw}#&P-E&}c*nYhUNn9W`J4=bt)@z3J zI{~rrd#CDy!5RLj=~-^=2Ej&E^OyeD-68du0`;8WkQtxC5!>>`u|^E!>=0S>?bWox z@`~_05)^LA2!|2vv-$GLD*;q)GUL=lPP3NPK}+PbIPT~ecDS)}Y>|W2 zH)np9dk{Vr6tlaMc3Z(x0Y*>}X0N-)rC9%$`_CiXh09j%Z-H@6>EL@{;4x5}ydd%(Xn z)3lWQwuUl>wIQKe8hQx|MNl$EB%6b{lCLQCWcP4spDO@Z1$OJ}@hKFyA&9A;YKnAXp|_*8=j-#4 z5YPxCLq@Fof-AiS!n6SB@DF82Y(bdyzF=PvOJ2uL<& zfeWFuyH-EH>A)097aY+=vl&oi>k?_fnvAiz8=cM6|Lo67;xyoV?plg|Upy;m@382v z2>qrrT1bxXh0xUx%l#A~-f{Mjd5^ z%Ws{NdhzU`;;3EBP=zv4k@QXNPdQ8VDriJKQ=?0@XY$wmC4@EAIQ5vC@W+KaUHPao z#)7l10Qrr&^U~Qq$cQ$EPD5l4dOZ6;A$^Eaa{VEM(ck0~s3E70Hd!H3{ec-z5Hzv1 zXoe-T*0RYcCA;-O6To(Lo}7U`+Fd#9;F|S`u>aRj<%!X6rTdXbd)CS#ED03zMP63M zR{wIeMwZdq`Co~C*1^xC+j?#Sf)1^^g3uDiGD`WxK1!$Pngq0%uJK%_A`9=PRZ!sL z{qb%MFvI9rVb!b$6WEKr*bihGeKJygVwSq+eeMimW7yFSU8dK6m46$;8Fd;htgSyh zTXOU1EN80LWCyLmCa|TBwj!+T_P+oOwlpZMKFI=ETOlNxiR1V7j)`p0zms8wc)@4h zYG^2Pbe3k9%AjYy3raPz71Ayay$HFYXO=;-wh1;_WA&kIbVQ#LQ*yC?Iq51d_^q^m zL*->NyvKQTi!*ucWZU~>m~)o;(=*Iu15y3x-;6Hz`axI!^hf!%Mf2lJ;z4a~=I@BG zE+in{L5y7J-RQmrDD%9wY8 znx(FN?z(oB?VFcAmhgsSNin}rXaXO?O@6~Er}%JfA)}?bbz2m5Rx7Nr|1fk#DA?ow zHdlLPZ*d5-Pf+-fx-a#sQWtc)wDs!q^=6=>=i@OJ7a_imF48xN);Dxql$GsX#`KSR zgGUjre3UutG1m?odP(z~ShJ|pDzvCHJ8`k3WH}RA$V7G|_kf!_#YET0!q-@Q<>9OU z1ZLUiJAbs>$m^kVL!|v@*sX6@!CPyt;MdKSqM)5QV%g_6Cl@W>6QIWzHUsRI$T^nn z!3v>He)v6K)3$OBLZkeb7Lz^%M6NqI|`Fr;O&nppmu9(?m zm-EmcBo`neQpG|=0VAcrl%27onC0A@e?Q87XG`JMXa6S%pTOgg_9XM&L$%6Ch(SDy z((&d8THKz4VdOTHUy}GWDOO)BFtShOBFyl(D_Ec%TN$v==Y`X8O;w7h`_}5gG`{Zz zOYvyit2D=#uyX@O*=H!$GvsNnpeiU}nSkeSfLH3EUtw6!g5{uJ=Iq!0BoLpBr@dcl z@b3njpeC)DZ7mqf3M1R4d#z*}rXCL2o?};cgq;3tf|y}D_Ng&iM;C%+ehdirmrrgO zoZXN=vo10%8j&*{S+VxFr&$dSlwR>7Cwp*F>`;<^^Q;lLom9LM`y~%BW1*Xo1DoNN zP60M>4Uy)go0N@_$p0=2-|fhAmOnVmdY$5iXFfW*o!U;U9=hhD7`#tld372t+*WyCj^6Xs?JbX} zLJ@fU1A>R^u__`H9E(XBL@yGAq(|uE0w2MQLPX-i`gM#4Xc0v5biVR-9U6#ka0)nK zc40x4h)BE+s!t~tvJEmy@HIP_#|@PK!g9Er?-Bo*-Y|5jF{*qQC7vm9+;#;e~o4#5CTV(KT$TO<#qW@4jZC` z^l5x0Gw(~Kbc~7#`Q;4m9fZ`$Y(5$s=P?+FP2uC$vYgNCkrlpOB z5l3ZkONA;&h2om3a;7Sej%ph`P5lM+%>?!JV$$HBq~(^RrxMj+dg^+3>Z=Q?+3%_^ z7d0R8JEoVG!nAC=F4?xbom`(L4_N5T73zc4^GVU2_WsUyDi4{N?rUXK#s%)J0Ru}b zOH>LKff0u-3-Fl-QLMpjcbEHrrEH)-puEc#s0BuqERv$pQI}J(~-Rbh}tk>S{yBLXf;W)>r2QVrn?^T zoEv&-l_|D%xio>f#c%c^Z~N_QXJ5Hh>h{+WN@5Ir@2hv9b5tB|a87~*iNkB_Z=kGf z6AiRMgAYsGvu-jU3m>6Q8ayl-W^dH$rJHVD>^7Ds%eHmn`Pm>_b7BrMF~oFQP_%ju^+@3((Qen2`t|y=0Pd396k+y}fl?Tnw7YlJ8V z3&W+U*Q)k1OLKaRmyz9Uo(8s)o2d?cvmgPylS6Q7S)4#f1-<)`#XbYoEBlDCTwLG2 z_{j8!<|+NLMc{(&Id^=Xx_6}X&W$?cpc&w@PQ!TOkSO+9)wAE_x`($5XxnjS!xCs& z&wZw`h~@_{8T!asEiffFa!MeQocObq0#>5WwgLu$azt>lMo6MV9jvImuIWT{2LgtRtbLGpeW{R`kY6Hv;pAx(AO)dk=RX*q=6JXK#=zCr|5~r8@4|pQz`&c|UJLz?{9pn!n^uB?H+Ley;B3Q4~&AT97t3bi&5v zz+kAyh9o~2gaxa$HF$9)BQ@Zs5>9y}gtn zW3{7n#>fOMBa6#U}L1f=RreZsX;&C)i_e~R+X>^!qmmMiMaiAc0Yq`~ zWKtJ_(1+PN8fw2b0#Ui7zP}phNO)b-4-1-p4ex@qeNg|D>o{eys?NjA;2(O=p0KB^ zOPU}IJHXYTU4u~$9Bi6-azYfy|TB8U}r80Ard7;*TE(4c7<2r2sv z7vuDeMY7OwciFI*E*u!(&^58O=vdhMZ)Ro#Y)tir7eIz&WPdbXvVzvXOl19pkcF+} zPif&ClaBCMz;N6D$$3Y!DtX~+M;*zD8f`}rprcuH!~W|gX)dq2gN3xEHGOV6pu7u; zl(QvWBVO35s9Y{OXm$3xyeMW#G`V)bcMc(~1FB`sfe;H5&;>Pw;L}716Hr_QZnISg z^}zFLYoP*;XKQ*?t;|IaSR7-!*F*(PHrl^_w7f75^P3@+_<(2_!| z4Sb+9ugeUa@LX9#>}iFXntXpv z!-(_i6wSA(UzDL@rlOHNyoD!nFm&#@_h2U^AB47xazAo~G$;Cqjm?lo5Yb?_R{)xk zmU?%=<24%$#OpF!V@AU2$~n?!^kHERG^f^WW)tdQ5fcGfJSPM_4LrSQGh4>9k6jq7 zWB&GUCR;k&O+gGaCoIc)ZB}))Uzhd01}Tdrm&c3U&Jk1NNOZb1oDx-$825ad*oc%=>LXamLW>3Uh+hTFX{?AHGqJatSdu` zgILS!Mmt(IZ5dF4mr^kA{;Zh^^A{U z6=TozBstEvCA;~R75X#l>g7eu=CF&HS)$K^>}2V5FuFKg7a@`zPNqbbptYVT!Hus@ zoC&I*5cYZ~@S54MeK^-t2-9l3tM=EyhwjJaVe1^DFJwoxzpMKvzST7>aun-F=_N;I zn?PQVu~^?t9RJy~%nP3i5!*i$9c#>yH|h5CuC#`Q zfSsiQoIY($c@?z@h;mImt*i*OJVkWcyBVG$jgE#42mW^?Hxo}^_on(O;AYPObqV(_ zgUyA|&FZu0s(|IvA+%LZ8ICVx8?R=!2f^Tul`|f1v*lJB*No`V+=itN_mwkvTl4e% zW!s0Tj?*o7AKplF^X%Pq)N6sZ55%qg&e)pox(Zkxon%Q!nQ0!%$Jry|$Vw$?n8!9y zlm-=3Ym%VG-bAJOLHyqpbRu^PdkV}&k6%^^3Wy>Sj7-vnrrcYf`z4c**Ekph(QK~V z`c<=Vrb=j$aSbV5N7XU#_JZPr5ZWQKS}=Z_Z~o8N$ctX5!R+F2Z*y;D*q%9 z$l7!WlVok~OBhrP)r+e(1`&V%tPPD~(jt8_8nipl;>X*i@boIU+GnS+?KgU;Eg_W3 zW|CTk<@Itq^R)Qzmu?8@WFpgj9@Q9WUO_r08@9{4t9WQ33c1r-v{Pv*(D@a z=3SiG>*n{u!Zo~`n$j0$Sc_y*EmJ%3rbGE}Y{0D%=QitzkDh*KtoJU=F|Kzbik>|! zIN`EZzT|7fKE1Der;kven%qx<%j&(`^Y<*MhjwcXy`j1-*h@4k{mBhZ!F92dk|U2d znS{vJ&u_WET6%Ue@q5E>_U*4rwAVp8cZ`F=eT~3pRR$(I*LRI$w0K@3%V$b@5Vk?i ze{~32*Zz#R7R-UAu<+gx6-TEV`^iPA_4Q#(h|LdJ0)UvKz1J){Hx9?h-lai)W7thnE#j8nYYc|moDlZL38>U{ILZy7IBKVq{wmdW>7Gm zj8g{|8&6LRBPpyBlZ^r=m{=WUCbbT?&3Y|b-LWDg(&7055{pf{Vfo8tYn1H%a@|Fv zA#`7hX4cP!CXW_%sy3hw8ao+b!>BWGHkM-%qfvE)%*WpZ-tii3ZO$&o1J1V>jqa9Y z(!-;oU>wLs!XinuA-CXE zGp(_aIFj0&PXDaK9XsnNG-^qVTg@^$`*d3RJYcxy2=-Q?aL)+5Yt?3Azh;5eb4`9TH@Q%jQ7$-YSrvP*Tv>$^eIrxGjyuU`0(Kn`sKX z2fTv*13DuDbj{CfSh4q!sxKo21jSf}#n57UEe_08XQw@;1Jt(mzz_60UsAVly|cFrD_{b)^Z!`+o#)z_0GQKPgVkkjCxe^mq4G z@gCG#P)Xi6EpC4v7Zk~}joS2#bQdo^iVB*)<=@c-a^QKkXMYWePUqpM!;6@}w zmr_u2&#TNOCD8Ae+X^mRBf{>9lPo81J1jSF- zQZlZ8J{BbrpO(1&%I>AY-GB}HvukMH;hli%HRLTdqf8Y=U%7E?adv7ZCko8`r8xE> zWPM|_I4<9oiRHxVBQcKQ{dOeO*IhHWh2<_WaK71wO0x9GCA6+uRkLd+ze)L|WClGZ zQ#<}?_w4T1=KLe1=1GC$t4}aryXloM@y8cxf8SR*-aBFNkNF$~In>bHvzC%Bh7$16 z__dNytFKmP(^k2 z1u5cU=?NM{Xu*E4QLwm{Lb@{GBs9}jhJUot2=A7#6_Jd)Ck=&#(a3#yb48|{2R>&3 zXCq68ydh{7-oB%Nvym}%ZuHEr@6ScmbX?uVOwjla<-8{J5mUW#!2Yb$zn~p#a1uRU z>|i^_i=?o}*j0{s`3PJkEgyiTFhSnRFqg#oty}YMT>ZL%+Q) zBe#)Pm{Q?WsHby{?RMz8chT`n0cU%)VDynen6ssB2^nrc*Cfkx)9)A(=Ncr$B&!mZ zeNQ0XsV*N^j*nDNr}vAUV91nUpyu%=@*q3SDY(m^5;?T3fBDmzzPgSP1ki$hg}xry z``-nA%`*tMC90g4&#BepqWW9rI|fJT_%~i@)>TMG_OWfegpQOiKb`zs4pY0f5?m5} z_k7JRrfoJ=zGmJ9f_qx21|BtR^0U)8CRxDi#GuuxKb-2&5|uL?!UC&WXpZg^aD0}!Vil&tHGR_~zj zFoyyEZcgj+Ew|*0go3q9fGsv*q#^N21d0Z4B9oM@!LB{5`)+4)VrjKNHTQJGcH6i| zfv)tH5k$#|`cwp9HS&FyB2;-9HWj1gq?UOo_07RWwV(~4E(xAyJAT}hgD3-FwM}=qx=_u7 z$0MSZG`jOY=#8?zrvbL04l&OisJtGE(G_dd2Ih+3WHb)J0%fD7#W9+#Me*>kPj=5`mQCW$RN%m~AccDQ~S^ zyfJC|EC{yV2a6m95xL?kK0H>L+I}rHJ75l_8hKJu8bp8YJobad^QC*?81d(oa?9E9 zz#G`(b20es4l&u4I0B07%#9Z7n8g~ht@y4QF4sr+o_tCJdmZ@AZay_M5AbYazb#6! znfeAqBtGt?{G&51FZ`w_-j-Ne5MZMn8oD{ifg^PLJ=b)~v!eIz$=TgH>zZ7D_0coT z9L+Al*y~Ha{;#blCS(r8L?YG$sFKjD$+p+kc#27anFAoFL0VZ4zCz((1N_hN-(52q zBAZ{NGYS~fzW(b`j4?uOdMS*8Ofw(vF9)I2ZCyPxS*F5kcYoyEe1Im82w!?Xxj-Mk zp)3=o_kFg3J$_?Z#^0iJ~s za31p-?yJ`$_7GIrva_>B{i%;FXVlFX{M#AhIJNuNiUJ;F?y$4!d}u9e3F5OsL4n)p z##V{I0VX8V^LXHAKO?2blhQSH=itJW58<1E)vxra_vb5@Q0}6+^F*t2K7>KB6>$4#RNA8fGuWtpp zbZu{+ZOjIE!0z6u#Rp@LZwxDbJ4QZRFq;}dsCkUB+YXtaFU98afTdF7zsDE3B0O^( zwog9!yn7_*BMkqp?@TmCmS?{J<`ORHO@_zy^<&3X%4@R`jmZ4A%!B%&05zR z>dj^>yjqJo;duWwlhMof49GjeAgF&<0As9B8~)W}b04vJ`?Ze%tbAZMSI~eh#y)1w zuU{RAqT?j7IXMaJsL$#)Ft6LSsv25`hO|}{a=Sl8*X$<$KHL7=NrKLDCD3-?MiWGW8#8a!sgGK}pevtsJKrhv zbtHFoI@D@EQ2;#b7W!#{4JEj=ZRJ|qH@XEfmw@Tk5z7-xVo{RqRPa%dtn&QkYuDA1 znNFn!Vlfp~^+gq@ozUm=I^BymEl!bgHJF!X>=at-N}UPVd>^+p5B@RJBYVLXBEc#< zAyuh81|Fhs$CSwo*C>3B7AkUJ#BfxizuC16lCaI>m6kw6Bcx8>Q0fZ z*x_v^sjNZg_YHKcA6QL02A9vd3LBu?oVU#OXn0o$K0`P!u{d5;f!F(;2~x^iwG8R0 z7HRX9rG>nXes@U+YE(IQ?Y| zL#F|NQk9k@P&Hq>r5mfBiHbGtoC|fc{K4@ZsL(LH5k22Y+CJ+ciPaHe8iWqLB!7F5 zA~CCNkO{o8>d%FZ6AkwT^Op8z!Ye#EF^@^%T*tOc;{_G!8v3S$m-SX9$jUVOQ zp<9daE!%BG_&1F-XC=#M?jFnhy?LnE>J6yW>_-jRwH?W-r1aa=Z`IY%SPe;SBBkkQ#tlFqA>_FDC@&aXa14=7|4IeN+t?I4* z{7D}{_VQW%uJkhCPb2Glk2PeFnL3QwGtcWY`_s>0{Bl;t$PO>0X{5kf52?|JOZ7rc(HT@2N2e(j^$M=hlcA%P1` zAUW{sijIc=I!2QLG#8%Hv?9=oAYqiQogPDdg_QB<5%I{L@k5rz5&?T1C?(*|@-+-< ztvu{$<($abg5?d08sW2E=a^Hq?pGk7;7QnK)!v?p(T;6%WuAW|lI6yh1wVM@C=ij& zS=cEZrN+uIIGQX?t#d7P3$S%Fpn?iq=|I10zu#eWYGOYRPz0QCuZ61252&X?T6pSO zbXNa6eh5>Q+J|Gb6n6(|EO!S}TvHk7K`8lmfFdpf?Wr}(Snwe1+Ey~`1B%t7mB{E09*9&=X%0?gw z2uHzL5Hs2=N<$%vigTbR+H<$0HluNf+~TD#DNn92lv!l=WJlsb`qha}M0FEg#b6=H=M4-I>=A@kP@ei>K{2A$OQ?e=d2}{q)mpQvs!?8ZL9;s2}OV32u zYe}=L)4E6h%fnbOs{hMw->nb+$qoJ^FWXtSg;=sxR!@%t3^scVeCxa23RIIth1SG8G1VSO+7_Zp{#YwOI zZ9_87np?^=2p|THAbV-!XeDUNl~=CV!qW6LixO`9+7V0Iah9rxUjb87{ER7Sn@m@5 zZF089(UL}3rkkxco2HD!-jGCCypp3Oo2r0m z(THkD%617=1@WvQNwnCtop{s`AHb_>1os>3&qe2UTk-(vf_~wI--Y^@tMVDjXFR1u zk&5QDKx(_EZ0Nm83L-6>0|TO5@VrQDw$zrR7xgT@%(e(WgnxR2&LFAGLaKEFs^xrW`uH>&con+15rFMVYvC4X;Kb)cU{XS8)I$0rMGmY) z(4|F;(DPZq^Kl;XdYu&WtrWA36&>iyG^xwJlT$SyskR}g7Q&%vg43viRcL@l&;X-X z1F2C1g)I6@C;QW=`S(W(9#{!JNDC?@=N5$Ij=JVPHz>SRC@d5x*i4kVjFejarfk_( zY2Q>STu0TspjJIES3HBJeMl<5S7o>#T=E=E^`uer?2qI-u;Npb;j2f_nFY^jf5<+* zmA^TaU)Ytmu`PA6EOj%Z%&$|)uTiP3LRDL!)}FU4EJ@UzEmxl@*PRZpJxXFcVpE!s zqCcFkIABv59Z?!7*BZ7gi%BevQfZBt(?q5;fG_ofF71MmUj&gyeaIX=$b3GPd)bxy zSd~*gDUm)XDejjmX_q@_klUz`bD1gem?&`?q3AYN={8hp)JN5-q1LS~*Qg4wSU{s+ zP_3RH#ITZHvK&pd460xgk6>%IVnZg+2tv=G0neCzl`X%Otv;0%b1X5mEs?OKsAEwn zV^YayKvhqnR!J^bPYN#|L8BW)7>3i2Emw~TFaMK7_h-KBH&}`>jG8eGx^e#* z)4?c{YXwuEc$zVLT042#F^udDh-~qzjK@o{?nANs4SCz6a@Ddi4(lR3=GSNIThUvwM$;I;V z@S=f_r z$&>RUq~n96H@u`>xQjj5i{+Wg+ftOPl9U@0P_!heb-$HsON3V!Brz1sSLKVPD8gtc z(qJm?o>3l*Q7%+aGXG9YXilV%rYuiR)DB5(cTGHQkh-amf)!63%#bQhkfKFTgac2E zcmQl$N3K;tt`q$xF{i=DsieVQ2{Z;tp;Kz#V@7AMW_30NkaA|KV;m48YxM_#fQknE<$} zGXLQ|It;*lRq`M1>qP+EJB$9s(2M|Lct-vg?j{%ia7RxB;BHOvU$|%5ltPwgo&UwX zJm(yMdv51H+(lOaxJTUn!(Dn5fV=kSKis`W0k}tu{=>au6o7mC=s(<7M*+B>0%HE+ zJ_5kqfa)LaWJ7;(kNSsuSqmQkcl(onxI3=^a6bin!GFj7vjKoR$lO2N6{`TaOWORy z9itI|JI>sHa8Eq>pSaVo{=*#x5r8`e(f^5i`3eB{O78#QUVrir_hxPY?sm@qa90`z z;4U}(4|kYJ0PgTd|G}NS^dIgESpeL<|oY`|BhC_mHE1xYJAlaCgo5 zzi_`<0pNb;`QLFrodV$gs_-A&(U1S(o}Bj=cj14yp9uqS*9iWHyL!l9+%f+Pcig|Y z^ZehqXaB{$`2XYn{|4?!v?FxgCOF)c&<^lbF$_Jdq!NIL4Pwt&}Msj;Yknjz{@^nCpNb^8au&BC> z^2DNoW4iIciE}|?y1UKYGhUrz4_{AH-SEkyXzqI&QHV&kPd8?g=gl|T6aNtFT)*QI zm+S)^A1q3G#+*~ZV&y0#9g8?yW4`Mp$UwQn_IH3K+17mt+<2#>Rz&_R73hT=mL}9` z1DY_oF5K$GTn}E8IZ;39jHV++FS86{@QiOu_6L!*8@m9yxH!@@)681f|qsBAR5U;l8YVvv|}$B;#zB#N5!R%8bMp zC34gx*~v&HWlfd=G~}*pqaZ3Yl=uqx`ieZIc|R2MIm}={s@Tk=#IZ`hTb_W!m^z*` z#89Zh=BkQ>m*=L?8N!;Cm@o{AsMvFB&1$bDlsT!iR?{*4*0Z;nIVt)@$Gy=%#|-9j zQXU$Iq)~i3hYI8YTrsB_te*ezvzDlHhZb$~nmW0Fz#NW2!WC=OLD`2i&3{J<$nVX<#08E~-Y^7xv*LcuK(8BXfmE1fI zhACtFF`mq|dsouN%uuB0sdXk~TDENV^F*f~R#_=XMp9$1q&?}^p?S?9vH|pXv|~Qo z@|ZR>iCuFayuJ{fxA5?ZCa|vb6bsuD zW;O-GpT}!*z(ob1sfyPVaIWQ#Yh&7wB)_OZS*3dz;DO-fs(x;UdAhj-gjpmsJ72!J z`U6>57#BD5K#43Cf`Z6Ogxf#(&v3jn;xu`LKVlG^GwSZf&+J&ACdzz{Tls6h;CL}5 zg1bHUhFPMvHoP3I!GjeQz@@HIk)avaP7*`WleSU24&}!)suPnwG|e=!5kW(2^^ihq z&!_^)<^b1Sl9Q<&7}jxcK%*mil%iJDIjN3!?p|L+fG8{dv_6@@%liSNDw)or;+(A5 zNxY$couJK}$6;(#dbyAePEsJ=a@+&KC|igBYml^Xpp_{#S-H-%7!9LAxeVT=ZRFKu z{w7t?*y;qH|F(c9X|gy4IgU$z$zj6#(g5eXk$LMh@bHvwIB5$v z66fHGoiIU5#B*G9un1Dt8Qnf$j@)#FYm7DOg{8>3E_Y=NJNby4b9Y;raVKP8Gw}`c^JFFe^7wT^z9{OYjm8PaW$+Rv^77U0Y0wDm_%3 z|C2@?R;HX3;XLTnrZ!?$Ot6F$)-Fp(1!_W9{St8x?7Zy~Fkry>%WwdFQl1o%#qIXW`9t@-N@1VqNS z?J`ohP5A;U{CtCUDh%Xu(;PesuBz7`rCuNzY^b6-kY)jb{1O2mwqt(UX zYqC=r2=L|R6N;j!mGubf_*g#$)EUTqrw=#9om^U+q)!@K+vEjE zWOzMyOlMOpE2@ja_+2&P&+MEiH8gN#HH3F%I14~}ON~||+c}i_Xv7)W5?lnb+orgU zqI03LK8mrGbu+34R%(V{i3e(X)7(-F%c$;4i!b__+ zz=M?Z-N+6azGU^}`5Q{w`&)c9guub40U)NuKvV_ZE#fS0Z$EG>wlN)oaY9~yC|wlS zR+Cyw#}O&zQMy_ZT=CGliUs9c&!v!{OIJhWc|t199STE0>+_}Nr2%wOJ%2p&KWBK`134EAOM6Zd zwmI}rlI1XI`D1vXk`^WGputO4ZKZgS(gesvRlwai+R}zE+eXfo zo?#)#`X}g;hn3Pau)#~}9*sy9`#vF!#*sJLl!0mHb%<_kWykL7PTn46kFp#a)SKSu z&$tIqpGTz?#K0dN5a|xg)?f-1*4l>zPM(4-98+at@GIKIHDg( zq=rVM!Bd=MV&?Xdv$-T%aGq7)?C_2d?OJCz=L9&d`Y{uK7J+ zK)X)OrMq@niuKi4itoLRT;_(Fd$DjMQP$Dhs~Il|x4Rg%alvIN+6|f-zqR(XF=_0S ztpV)~18o8q+Lr^%_drT~16l$zF|86&b8G!kc101`x5r>A`3V!QYP` z?+9^BI8a*vE!bwxC;@K&9AjH4%D|m7k_~@^h?)EM$%2L>xhC@dWCz0f~esO z{Ox2ByclHAG-Q8q9_0KuERZxURB14Q3avR$K5np#Fk)HABRD9@G6MuE363c|Gx_ZN zfd$|(Hpq}d`oXFs25VegsiH|FJ9xD!4lmKDzU@rWaq4uSY6E-j5GW1XUqvOb8;YS} zu>XUww~VTz3ED+*C%}f_?(XjH?i$?PJ-EBOy95XlNFcbo1b6q~F1f?|edn%qew}}N z_Vi45byYu4RZER>KPK9kPxv(6>mN3^sLMHZEjGKYIdj(h#VQSw>JjUEn}Tpxi}n9V(Unh-?AM(}0DfLw8Is5uE6rv~+p zJ-IVE*ai7at2$)Gid?Z0*qXe_hyGjg`q9AJ3dEGHI>8vCqwnE9zP)jqC8@5%W?XKQ*L<g$BX4a7(aF;?V4jlVDCi>!)rYx}@KBS!{M zkzl&Jim>>Wcl#iHk24|`uJw-)9faHPk90+aOk%y$?Q3O1)13ixvUNNMBZ#3ch8bpa zXF6LDJmv4wQx1o zGMO@TL{L1aAb>5`=YUj|(A+ITFXRg-A|okf{4UCf`LTGJd&)4DP1;$*!1z{k;44dF zF_!CTFy?>ODLBzc{1{eLBx#$xa}5T1(T^iV<8d@uL>hEXeO!gIwijt;Ugt~2Ct9wUCt$v)pYhHH&CBV1u}}a zGAP_Y*2idqeH+Kf*t(akq7qJDfX;U~EH&XgRn@F!J=AhIWHxlDtQ1bu^@>A0$iOd7 z1H-tQa~sD+m}~oI;>>OpP$n=KC__>zJui-)PXcm5&zIp5nEa*S1tWZ^;KgW$;f-t6 z%hoSq*ULsyE~O1LED*K`eyS{DDChfS3gy-&X zR8%6a3G-e+qx3r{s5yh6!A?>fH?&ckFGd zwWWr7cHg;avy#~Px`NqjTnRq~#a>Ry-+6KnY;rGeY}X5k(<2;+#JTN^ZsyPniQg|= zD*t=I=%c%>z}i|`J@gg4FvXD*x#mNM;$ptRCjjXt^z8tZ6cuxAXQBNmF~}UBre0!W zN1(&OyUBPxPtQ$FBy7-EKr=Zj61{9c-uSa|kILezJe1H@m7rjlDmhHe6j3Kr z8=T+R5nv5ezo|{21R2SGlXSkx_?y7h)e@jTJbQh8g=yvT>i=NtR(nW^aCbah)^}~p zc~6W+=C`>t(BV{W+>BjF^v|PJD4%BS44X><;v(t_RTR}IQuX4i=B}T+uXacjELedC z_bp!;qdPSt1c#b!ll5wTa;|d){PJFXk2+ap7%qIXe~@E;J09uju$FNnK43E6fH>jb z)b9V~L=bwCNYWbc^Yp!U%%(JscioA~-_@r8Q=Mxfy84pn>i%}l;Ki~OF@u-6pppNJ z)SYk6A(u-287X!g;%WHk>ZZ^}R~U-#>T3+Q7geyk@ir_z-@2YWXk<*!Y1+=KqI(hV?t09aMiZVP0SWqRR1y3S(!_i3H8W(|-d}D(B4phB z=1%HXF5TB=YW*smUz5Py2tRrGQG+qbs91P6#{a0V~sFea*RQMSZ$eLh0{AvGPxo&|e;&#jiNZ(L4 zE-}Z!xWJ5&^EaHLcb6M;Z%g@Ra@S_vE%FEJ;ea>$(sq%Bp}3)GQWO`YHxZ8AuZTCn zns_|{f>AL-x%z9%aHu1|xM%#z* z#+nss^*(a}L=zuFxu(*B` z&YJqjIVjx`=xfpmVnw>DAC(!${F1AbHOy@6Q=kX|<=y_*oGCQ^bv93O;^OmbaupKY z53U<>vxbM;d<0f7nfeQv>2$+`DeaMNlFnVK?JMtHAzP{txB@ug;-*AQW^>a1P#(QN zNrV(WFmzBkE_qpC1dCu#ASvB=LB3}<cxfcz$dT)o{`9ySkeY5MbX<|tuYuqqIIVeWIIJA6uL=d4cumt-XiQ6V0Ixb5qd!V=qj;4+t5yY&V99AC;Cny^a z4Zmy>J&>CQhpQV74IeKRJkXH`N9^_$I%>kt2Y3$>+Qu0IE|s_ow6b)%b>tcXVeio& zgydR!e-{gA6q~MogaBlnNbqY~uLhGjTI%Y?Bc6@s>xTQU%LvIyW!771FqCBw)a1RX zEG5DH=-JBPs7bq(U(@?$X*wwO;BdK{ibgQNlDhGCnx1cD-fhqvM`XyDswxV za@$Hn426|ZQ@(}9Z@)%G5eS<2_-Uk|Sxj%CqZ1eNt}(D$9)26wrC>1&g~%snr63+v z^hI=q3u<=!NlziG$(v-x?XN64QdUJxGY^%ry>=BviOAb1oCZ>oL}G@go&yy_rJ<{a zV^BxY#K;zFe+FrUgB8NlDcY)-(ZbXBS@)sqP@YNj$WZ-2Iz*Cn0`}cdn3HasLj~nO z?$A~CttgX@Ls8d-V&`@!syBnoD6xw`=KRfWTPrfTS;GCP!Xc`Q@KHN8_wceyi+{hm z@TMaFJ~EYVyZVe_{;eR8tzT5W{|YVT(DuMaM0Q#yJ(;4xMTTk^0rXhv%J^3)B$$ER zsghE2tzDonD@IvuG{3D28{eKLNQMXSAVy)U1EKiB_#=UR&)8(}jI<-49{Q4;EkJIi zY`FhDEbf#kt=DGg6ec5uQCYMW>YHdPqAoFGOF_J*{s93V*+H8gkR`R`Ge;el7gLy52bLiN z5z!%v&;C4Yz@S?3ImD?)!^}lc@abnpC(kMbV2|e|!m`wpA*$1{nGA!ak+RSL zrpjk+A{>+|@V%5gT7#^>1Pm-!d%F=+qCCZhC6kl%u-BdmL6INPl-W|7cQCAqo(2yd zR}2m*3pYQQx0Yewp-tpFg>&JadvS64!nQ@|*oF4OY>+MWZeLs^-5q2}9Xe>@VZcH5 zC}Zf$e9A*|6mMynKLOHcKJ|CQJ(MV09v@rcSI6G*E1T)hSO-dqN zvUn5z#t9$YhPYpp;(Tx0#0fYcK}qIKi6Z#!6fJW#FH7(3#0w;U6Q#_Rxt=D%G9@37 z5OUu$?g2K_elD!`MnuVHWI2rr;e^RTZy?l9vrB{>x`fiB(O$uGMrn#~sFW^BoqX`Z zMv84r7A?u%x?(9Th>zeA;ubIErropSj~yDsm1R+tne}SJ zCvc>dkmaS@HD+cWl|_n+VvmLWFxmcX+|hO~Fg`4K9eyO;C`^=_{LA6Ux#kp|E3i9; z)CMmk48wRqdfvWr^7#2dTkP;=coYVjw&xKL3Su4eaU?{G6F4!2mN_+ z24DYl%Hf@#2z}#RCC7wC;E}lq$tkEI$|-m}`0MWmx&5F7BvthL*^@<+NJ?3ENpd4& za@DvPIGn%GJN!9gCphg-A<;$Co!m?(PbAk#x76Q;%1R@OLy)uR-5A~V!ZcX)B)iET zcY%AeS+%(RU8-gKJSA-nl`uM7#3ze{kKf(q^B2b;VXdJa0_qRaJ|e)%S^Wr4Md|T z%VNVb_Dy8s3IbuI{F0E#dc%TqB=kNzjZ<*vaqJohg%=?*IO-#*$0bQ0|A$I)RSzY6TqW9?F&s?`5~Z~%WNMoC2~Zwd z`zg}6&^@H%J`jnn9~7pn)@Oe{ic~uVVOtgS!;=F>%aP=vNdhn zhQz+o-GzhEDrW}aI$?l&#O9O>H+TB}&Emt-ZbHZ0wZJ3yX4tP99y({~=3+WdT|x@2 zF9+AJZKvNJ6N{_AHAG);jc|zgmA=si14OA~G8XiRI*AF%pfd_-O0T(X3df)!5=oPC zK$8q7j;~B9f~pZ4sPlZbr=ZNV8h6a7QR34kL>0QO?>uwEBi`SJ!dZCl?)B@AZ9%?YaWAv4ttvAU<&U9 zENUV*@|=pW+{C4M=}Fq=DFewAtH9Z06y^%M)TC47F#5i1#z7x~YB=tA9p8SJ43Q_3Lho0x zm5W@XMNo>6_NPj({z~t@ChAd@js0dIR9KY&#}Y8>U6xw*m^w7sIpJ;>&{mbNWe7G= z<0H7{@vqaCVwf@R4x3+}zw(7?{b8UazUfMU`N%IyCMq-Pg`8MXJ5-`4-!QT`WQ^h# z3w|sypEff1APbY*^fM+R?J;^kZOD?wI;*_d}K_A z6%^wlmAS5;&`GG_7MiL70 zg^Aarihx&K7&@Uw+?}PMnc0{qBJ!^q1s7||@$Qlpi+C{eNMs9U;vNjhM6oBMwPgZ7 ztS1~P)7a9N7FUI!q^k)RRv=|F99#rO^uu2pf@W#5rZp5yp!{N!vLVE8{YOP07}rjQ z4Z7EpU&MWI5fqUfBPeX#PIR_33Kcn>359a@>R-H(BRq{y>P2(8s@^NYsf3!bETy3B z)US%4Bdbmr!wDAQ_m5b0iJG7keq zHDfk{@{X(yMK{F$w`W?o!VW8cq197N53cduu3$z#Sbvdk+Ee&IGe!jMqb3oWJgET)e=0Gs&s%q%1y&0Vg*uUCN;?<0rq+-&AM8(n=(k+G764U8T`fC5P$p&yOl8 z6F4|N`}w|d!%h9=r8gwG6Uv5-sj!2Y;S)os*=cd8YLpWx>iCh|#8a8X)!5)ox631X zg^F^o7NuuNuzx?0%f2Erfyyoeo1S6{JMV04$W8FUb4EQMM+t_2NLW~uKwb)*fx|yG zsalIOt2LBgu8y2du(U9jtumS4NR}3t=+D47JCUuoSF<0fpdaC}#Mk?4xEUQOzuSY9 zL`;RxnO6stEXm@fv?S1|8J+ zewjFNH^M=P_wjuPqo^2OU8#|iFaE5moX=}oheqUVb%G`;AJzQL7M@-Np1!PqY2^+w zdoUFBhU)Ft)GRkc%E^ZAS!1nVRX~jW_OYfdu1}}XzvF}LN2*^rt->iAj!Io-`Lut^ z2(!>L@nDegoT6y-MQC33+r!^(dlqg7ExKbe6Q~_ey#~V;d}Fbr2B=lZPagTR z1_?$xY9nt~as#p;lCp&`?Lx67$#Fk8{rRlfYV0KHza&}GP#?6lO@fSpH@Zu+wueopNU3B zyzfwm1UKmkx&?`J6)PV4`DfXNq^_0H_~K>*?ki)ZQB1!|?u|alOGgd}TVfoPYqqU%C+Vz`f+-Q)48O0bkL8 z;=a)0kV^-jk#@8-*??hMy@oXLvpq$DeTMMZU_`}OPJzFlbe*I{{d9~D_nhs#@d;_a z>iOw!mA|Ej7U5>r%mIIqjK6^Ad#e&z(O6&3zxwE!j2bHjvf3F}+}?F{22)-WF;HO9MDag>w~hN`kRnzw@r#zBh}Twa5X z>LMr+2=_?w1uP5$$25ftqA+jb`m#w2Y9x~e6v)6{2E|}a0l~kFSwsddJwYs|7a99j z2^Ae#Wi<_Q5S@M)9tR(xo;CLsK?`I%Yk>y*6#?EfYOvF%TrwqaiFAH%Iq+@>P%g7g z_HdPqDv6b^xf(c7ldHKIv@o*ldhan!a7AeVbl~qys)PC>xU_UzOt2a$Ra|iiGzQ-9 z3}Ew5NZd-`3h5m>ZX|GIv**%{n8j$M=1gXG(?9)VL$o9Dc!ZeE5??{^-=i@vVWlOJ za8T_QNH?)Dg9nppKeNhiWEnuIAUZR@*nCb&kV)2vg)vpM43rj55t>O}L1Xq&2sY0q zg>G5S`Ta>`PIo4`AFjFUx35j(=-=Kw4~2LUMe9{Tp}*7K9&yeox(~M3ud46+6)!oI z|4{g!&tK72b$>rg-FRkKAd(Rr&dBe=IN43p%(1R3yFN%;!@{Kn!_2|Q zB;{&^?;d1u|1iQ%N8-dnf;Hn@AM^KHI%czQ+Kv=XY3`ta`gvvc$b1P&ejQjA>XmIY z(yx+hy!;o>gGr<&2S`OcN{=PMy$=~9YZTZ_&O*+Tz~7+L)F8j~!`Io(XtgyT!Z=D} zihe5XQVpL&kIA|j-CxuFlhS86d8C})aB}vXGEQUEbTFkIoKLXCt>Z(y%+xl&u#=Ot zB$tAXwONmiJ->R>jaaZVZ?Mx7)sb`KlPl-v6!>fFr~cuLRk|7-SZT9WFgW3X-riKobwMN`D%Yy6kfZ4kjLYWZg;8XNDeR*2`)pkJ@_`ascKn2j?`$XKS3r zmk$Ba&pxGY)fv|cmAjfWP9W7gB#o3)m0aqaT7UicQ&;Kpe9H3AF|5fh_}`2<rwF(4-xN;+30i^`8$gkLe!Q6KqagRm4#ptiz@~2OKNI0GG|;lVc8R4l zgDUdjR|sO*f_{TyL)rXPARe!3f+?`_9m(Zdm3dw zoM?z3hy%9d76oX8JZu`Y%qMo)hIEQc`KL?>l|VDc*-(Xnh+G(2G~BLImFDuYKqs>T zgwTFIt+YZL8hSgKdWi2qWy2q+9+hfKhnlrNt{Vn2Hv zXWk2WH4AWI4L$!EHz`8hzFz8{E7w3JKD=szXL3IUJW>8ol_Ybt(`mM-W?{X}M)d*Bj}+d=A8kuyYFVbX2>H zO*LZn7IO0ur(RZ9BqcVKiPP6vwNy1nAQ`n2o6lJMAT%1A;PPZY*`ZF;!v~@#aOc# z1guEHMQp%S&Vg48TiJN)|0#Q%z2Jb|B|V3lMn&L)GfIzUIj9vC6VXyJ@*dZcl*fju z=+>JJv4OW7m(q(;3tAvbO^^_vcWDGNO~1-Y+%MDA23jh z%6*|j%ENu-jF!qgC%Q(!;(51Hk26A(YuB|sf39?qXF5A#eX@QpXee;LcCs#1YWXK8 zvrX;3kHO>Q_G z4^|a9G&D6Dr!wS=|0LiZzW7P{Q|AR)}Dni{3^n;{a;7G-^cx3aFj_aAJ{Lh=*y-NM|;r#WoFFC%kv zlE&VJH{~ki2Px$S5wHaUN{V#pFvLmoL;U;2Mvo6WExmnns_oqPoJh-Ij>7*1) zxX^YiG(Nqg)G+0KR!FGQthdGX+S0fDRv5%n4bvPP6(*;=Nd#Y)>`|C%Gf+~rBL}l?jY|zOgHw^c zz=v9vd$a&+UN4yu6=hyw5L84j@Wh#Ao_9i3Y!~W<%U$+2)_xn#mYe2;tqe6RC7Xq3Xyr%x zEs^sxkkgV2Wk;qd!Su)H^1p++dsDy1!9tC!-Zy3hN=|K2g58Yoerf&;DKT z`i1p#VSoB|Tm~H)Du~4XGmH zBdAp1y5r~tE$D$EQ`keUI>UGctVxAExgv^2p(A7w@G{p($tsh=SOr>&NonLtQ_Pm# zXIYkizmdQ*ix2WZs=96Ph-iTL1ija5p&we{_>{hleD3g6YR$4mbS$Ftj8WY|b}g1>c`)e)nn zF*HI*cqpUy59-|nl=@`wVwJBz`#D~&1XNSg%Y`Q}Vj31t&*m*LWBfWfLIvTIFdD7s zv}QYoj}7DdFrsN^TY`3^B^|a?kEKXxQ#a2f4ae)2pZzxnz_KlZzejaZ+Lj!x+ z@U1oVmCPfj{?G4ohnChl7Mtauum2~xgCr3TEaA0Wb`+FY&F0qkOM5tZ)E4xF`lOjV zmtCBKRDzv)1-@L3RduG(n_;WEkTF28@LsjN;*abPnk6pR33}7=NcqJ>{5q?9n@@u@ z77@OA^wt=@ySOFk1V=g!TsY51_%+!Cx8C^wtld}^K8l3Dxa!xfoEhbu`2t3h9WCN} zT3_R2+8%Voha*0(F0Dx5b_TO|W&)<5)K`QeI?jki8uOqo{sVp`N(_HShQS-k~K5S(o zl>B=(acTnv97Q-Nbg6TNoI79%t1z+5UZPS*u5Mak$~<_^l{K=uD6v+73EKx~9&U6` zlg8te-Jb%6ZBG9u?}Oie`Ssej_=WV=TTcCUG1vxwHz0KyQ8-#!|CrE{xMSD+$H&z{ z<92L8Y>*N}a|R3eZK!;fBaE^&hV^z_0(c)XDoSVn!xmtR|IermTj5q}j4abd8{ z4$?vSvkYi7z4s;GJ!T@v3t5_mTmH1PwBC>OEvEdfy1xI#C)vlVT&Ul^8 zg)OmerhBO~+khKaep%mZynyBPFnXY=|9!_|50Jbh=x6YlRwDF-HgL1fh=%Q+Ewy20 zi9OE0o`m~bNl)rT*daolHA$VteVyrD#V+mw6WK@G~%3mx(~rM@p$fmxLxKtHdMim$A*X<3mT*tVoLcK!bS zrGw)#(QsCkyxNt^L6F>n%=sR;R3;zSTyF+IAS)<;Xi8?rvAWe~gtcT7k98Z+UWha6 z>w1qVRY>IuqRhkm#-h^!l0I^!J(u+Sw~K5DcNeaP&YnPmAFDOL=y>oy2?pOa7>q3+ zc<7p8_>$oJ*RR_YeBS2}cV2O<3OXB@z4mNN$U`c&VIr^iCc3M_^P$}@cF$CI?rXpF z2_uMlmG|DgrLWtpHc;zo2W_?hTxGkm@)_>%+Z_6NrzNZiK;vqZvVPspB5T6R&5D(i zq#}$8$LHjApO%p(e-G+&$0I)iu@JPrgmYJZFyBEoZ_3Rh#&K zcMQ@4xJElKNV-b%q;vDf;s&?Rh*}G?uv2Rk^obTr?^cld4ufLA+0UWK;;$9%C#>)l zH?Br;iVc^PIR6{3n$l+nnR)A`3r*;OFh~5^FcQ$IkH^VfeJb|J*#Y7kP`<_j= zdH{#f&rHqU&eOjR0?Z(HG)8aOg>lNioMAyW{lF4hS>(kpV3<)Ck$%J=6HU#k0fZ;7D&H3A+tI2vz3nixi=+ zzx`VBW4kC%m+bV{Hp0_d(HYubaASRO)9=|n9jg%z1>lx_y#^Q*_3c!9kmnVN!j6*D zu;kkl$H4FqYH|9Gvjd&^U60L~8L9>wiT65@U3ig4tilMA!>&PNo3Ck=NB_y&thD`1 z#0}F$QkXavh;q0yiZdroW7z*tdp@>s(?M%W<;i3Vd-Edk+g38zSS-m#x79Hc^MR^g_;Yp)pzD+0!c6ZEdma5+l!zDjyqVjHU~S;+O< zA0cL(4$_YXqREZxZ`n!F4Bd?v5nhj-PhR0BrpxQIo_%P_!WSRmL`n`Idph z^^Dq3bGO2lf!UoYN}=Otu$uXiHMg}bn$2joW_#OsO3QhZ<;Oo{Xsn5vyTaikRnDW> zMSe@-m@JD9EXUg5d53pR`ZxB2lu-|FyO_;rkYo}l8MO^}$ZE2ZPL>f;DeZW9rgp$@ zy!Bm4kKRmF*52oa)%tt)H)Xr4Eaxr4ru;ZCcF(lpx0UN9lhN^E5f2G6<40T_{drEH z0&MU%-1GZYuQcFO+TD`gggWwAPTn|@3$p4b@3Y<=QwlJU`(+fmfLe3^fT(sf);9P3Xp9(%Ci7q)3t>GoFlJU zu=hr$j&Hy+t|OJ&vNMNYfEa<{oP(I~#1{Tf|GQT@JF-k2F*X$!@Qo(q@z465 z&+#y7oLKpimgddw@vBqHy$2?)&{PVMa{~)es=yx68@crVamGqx5pPb@k`hS783y|< zDNcLGm>Yi-o4mXl39^mnp$}qFkP(SR>c&Rg*<$JOc|UpG z4+xEpzC*-%p%_~lsD2mEH1v$k1vrP5Jbfx2@uN+Mu~$u@FRu-r7TSh^|9kI%NfR8C z#MHnvh=mCBZnT6T)`B3*31pc*AZpD0&toC!I~)(KCmCQEJjR_YBDPGJxfy&!&zb}L z1`jef0xiz>3ij5v0dAd5PLFn6@WTY&=S4Ztv!4n9ZygGcJqMXAjjwld8!A$^xtQ+CiL3UMo@vA)mqJH;pM&~V-Nnh zIbZj8+yECZsk?ul_AA3pr9c?NpxNGkBz?9}qmX~zBxcQyDgZe5=b_t=7Q^=~qvux4 z=4{(MXZDi24PDzH0OrcR^0mfz>b$R$UU&MA`$$3Xw7B-^!{&+ybZVX zpZ69(_(|Bn9_f)zo&ErqIF&Jk+g>l#g^zv^OJdHBalemK8;5%sC%udfbF+ZH`j6cy zMLhp=l?XrBJ!e{P5xZqv_=DXkZwA=}Y1sPze|G2W0aDd#HG{$r5A83;P!wQH_JH_> ztcO|mW>N3Fkx2>5uZf$5({==C#?o^Bxr5jGa9 z&ajuqvbFgYruXbx)0}Om595+fjCJ63vggiRw&N~U`Us`a?ngKz8R(|#jpp~AfPf_~ z(J$`Dk3|Tw|A~dxYKQm8W z;je;WtW_Upclgcs(>;M9#rb3j{OuzPVR_brz+Of(M%1~-9ex@UCZRKBL*B@)`#ICjx?sD z1uZ8BQhyc>VuhE4K);gP#NRab1f!~?jLzR0o5Vw(PSQouq$4xD**!#Ei0M_*rVF3Izh zv-LrY_xi985MJWOgjO+4XIV(SU=lEWfbs2s_uM13VeVlOfFlFjGae)N(<8*y>7tDj zgeB*+3A0QVkh8A982W9rbfnCN_-VP=LS;^w`AhM6$~-lDr*pK<&PKX-ro`sYp;}8O zFa?G$CZ1S+9~L7PBy&bdPZ0|*7gZHncCflqaBbJhyI7(V7d-bL=9wKM-dIp4ck)ij zEvg$W3}Rsm0IsKk#Llt6azZ&BO^o(!L z20P@`N1tSUd-rtkaXp>|;%do0HGMIwXkz2my2^M(^eble{X6ziy$_G;o9OM z&1%s5e>}~JS5&TX?H*d`&QbWIhuC01gK_+BVkhm}JCG#A$8rzwwA;~G1ODoNkhMu} z-8Mdg%RRP$W1Y!1+ckS`^E#ZtP#VLZ9ZPy(wqg;jNccMocA5=*`hRl(yH^v(4o3dF z;7wm86}a*Jpqh-^v)Sm^ewshk{tCAgr~niY2YVLH7!s8KZ;dPyc~!$MwEYcPAn+>JJiLF~M%Z3Vq;XS`PMC}#g`xSRH*i)D%B`_1#4~egXn=UAt?$_LhJb zZeIZ2wAD{sx)jtU-Lc~TNv*dtjKqM+AZm8WQgQ5QBhj9pxzR0)j$1Z3R2%3mMZ|a9f9JZB~-=(MJ ztx`w(;%&$a8!Z|697^!k{5z;sjsI%+>zz}tp1xP|GRW|@u%LWafm}a2iYB)1koJT- zCR&k4V_@#;*Q~oU_HWo^>#>ln(R@uZM!lnuuh(^lqj;XHszMm(%P$_S=u*}m1V3}{ z*S=_Bu<5=l2>PexNVj32yW;qh7vv18@modX*ck3CUQ6TMEK5?AUO!m=rK10ABN*W@ z$opld8#Efd6mxxx+7$X8`=_!#b1U__pEY9LGD`2uzM0w|S9JIcZIemgA-Q7iQMOTU zYwsvXIeNOg@%_(hOM|}$!Yb0f@l)pJ@^1tds}#TYSI|zK;ZvZPu}$BjL8ht-GIH=Q z+p!b&ih)MO54>VqF~%M$DNPrhLC|TcvY9zvGboMAZI7_X(zLM09MTFe4y4`1;+OaFQxvp34Oi;JZt%Kq%!;7ierKoFCF$Y= zI%1}-Lu3UMFZwM=nVmcj{4WtZaS#49;oK2-RIn@^g|QDRoyQ|3?W;hl|HDJ9lgHrO zz~4aCN$P~y!1(BCT(prsv0m(T16Ia&5y<4xo|cZ+IIn0}1!}R)^(}-A5g(wNXGdk5 z>>1W~YAz^2j79xxLp<|lPK#jQ;gS@;Qhj-R^VC{*e>mG@t1k$f|M{=~_X&DSP!LJq zwdvvw{%B|`0hAPZYB;e|yn_d+GDsnDfg3JfnihE`!3FW!MQdO4=fUe`OxKim;*+zA ze#XTc&AM9^Or!2p=q%At59E9-!X|MK+*Q8i%+JcMhdVktWca^Op1YI9#d9(mzkMNQ z_Vm{v2gyrxtQ_S$(k9?B&Xp@SG5dY&4zwsv~_NN-A54Ok?^K&4|L)agQ&!!XX0My zYN4}pacrnz;OM*!ZypoaX&1~(;Jr+aK{Dt%RVK^hiHsTpI+p1@6~&Z#LD#uo1xEbr z2yBvu_-^hoBTlv$nYe%IW-@_sRW76inYh5Vv-bqDtwlG``30s_2Z;B>CwIJzq(-wc z;a;FJ#h*~Q)v=X_n7Ytq(w;{7w7Esk=9UJH zgBd0S@DHYslmpCg(j1u*&=*`#@sl)hsr`MevUy6BP-J>$M-lQ8J}ahJUS^5HE9*W< z-{{TORJ4D<*{Bri`mdmrwrzrWyJr5-2=WYgklx7nYxcRD2EV4|HwAdF7#q>=OA%`tPJGe=@;Z z4bZzKlK!&UFBs{5qK@_=JEamqga7iB3Au5ffpN~pb^LjcVqh4)$aeoM+*_p(&bzVGn=-nuJG%>3pYX9mj1Gy#j?^O8S|qp%TI{#ROKFkI`na8 zYXeL2B4;I_~6VpQb4o?;J zsAm5EarMs8eSB}UaBQnlW81cE+fEubHX1gz-Pm>-+qTg(PUF6let&nZ_ul_9>r7_O zdCqh8v-dvpnVHa5b4@5~kEDe?#x3x=4@b1ECS(5eulZEQ!O7lIc~-ha#)vzlMHlxE zCVG}xPW6FFe|z+azEIgqw*DZk^0qRYnaU~kdu!yM{2X9pYA&L$%^X)4$QcGMb1Ue$YHVRs4h z!xU*n6;j9wCMU&39>6axIByFpsFox?s!TTh-tt^X&&p?|$<-!3T`Nt@-Sbm8nhs@P zomyL-d;Rv~THNx0R&)7^_;Y>#H_86I0`@iNC9HoPZ(eo-tripKenX7HkE2U30_$*O zR-4$m3N6Oy2AQ<8wVf!#gD-BRIeWtB6G}4t%+wwNR2RdEman(9FRBDv+@SEWs}VK= z5`4hm5{YjzwfepoiaYJoFznO}qxjb6*8cMTR}+a3%|i0Hf!B>*zACzACLHzLp%5hK zP~0>mMlyEKD@cB1kx7Jf0TI#P5vz|pOGfKPns#ALy$lilD%y++gz2=H@_#G?j>9SY z4^Xe~ZX`X3D)&jiD9X$*j$zP0@obv0ec*>&*guvrKszF{PfNj7%r~nKVfYLMEAj2m zKbFDRtjc%r!;jRlAIOi$GBm>>qTIqc0JVd(sqLzdo=+bmVHLO(2f?q)o!zcKb$~~5 z11zIGM~ReR-(6V1Mbl+6#@oIWFG%~B@6uXCAzMeJm;$du6=l#V-QSX&jYU2SxJEtu!?dSt{2H7QYO{vbIZG@d7o8nta%_H*1^&%q(&4gD)wW zzDY4klH}esJCFQ#Us(BN}xd((j z`_9K5{P_}>9|*E^anUMzie1^_f0+AwKg)`u)zVSP6}z;1l>Tw4xx&E;?-TShwN~~c z<6xkGJRS-L4Tj)X{%PWguj_(VLOk3sV8PE@ck zJ*Yd8>W8a}v&l;b*UisLy>&eX2)S%tiAE2vKkLBW$;-{~@HFpni@&eu-^Hh!hx2vC z?W~@zzspcv&^Olbo2(txoxXlAr*BX_@HgqC%!w6Z=K#Y1_(%T4Q(!7nK@IDte?1_4 ztiv98&`v|G+Vc8W%q3mF`<8=GG`Zwih5SH9erHxp`&l9L?j?Kgh3y2um66w3#nSGw zqnxl+yU@{$@f`t7i9C_AqWURN#`}^`o?*_wf+-9|lfx*|h`YTbhda+(J=y`Tg)Wz@ z)o`4po$}~?v#h!dq%}_&Ngg~NrGg|DN2u7h-y1FwHgR}2q$-twgg;)OT{F;QmA3r8Lc&j;HAOcqQVAg{PdPOQEAOVh=3U&Uia*y;Gg1~W0v@{KlwV$jf zvCA@0?RZ9E3UoOg(KtIvGa^%hcfuFugiMfAx##Yhzi5k)C59#9;alA>@&yMM{Pbv( z3!*wr2Bv1=$EWippK{YhUm){GivZz)a?=MPB0wA%_o(tp95JQP;1xyjw-A8!`7xAy z#Y1^ktD81H95oT@)kHsIs}CVT1ua>AK-i}xs8W!5cX15kz0IxCv5Oz8CVBA@-0!E?67NiaPh}$H}1?6ZOpb0TW4p6@{bBa|s`v9nb{aUNyp7ne3*nRut?|1+A}fGuNSL}}#vs={8*7?M_fj8ALJKZ6Ap75N{sKd3@NoFj$E z2t>$$hxl>@0diYaNv4dVHtem|R3i1+UMm;Y*q%kBt zB{)gx37LhY4-0dY$^7x~J{Yk|&P|$~&W#6nxcIj_^js0X2A3p0l*8@|AQIVfdS}iB zo>s5HP-Kb06W7>ZD6u+c<$hLwP_k?@CeG^uLa|%NYb31iC@<8$+?LzY7-~Ay`Lqyr zfTAu;3<#&XMa4KoC9eL==pBxuK12%?9jdzNDW?aal(#vcB+C4fH1<$T@!7?v!X-az z_&)~5DncWmO30I9_nEDH^K)z@{<#RFaGUz2MDA$?O_^$Kr1Vdk_1%E1ZLAmJ!KvlW zlklC5X8N-MT-5oODna~7Yj}V(H4b23oa;YAk-YjQeApLu2LEiEMEdr9+yGPDq#@Ru zt2ibJx6<$^_gcr0m7ed*t*C-^0iy>;9e8p6r6(V?gPL$MtU?XG;-e^=sW=lJv(5K@ z1{Wm}<-C3~&3BK{cdJ=pLwXg4(l~y@`%|vC00k9>FdnNv?LvjV^&xMRaD#fe+gBrm zu33e3KD?bWHZj4mn1*rRK;6Og+n{Ef!{Vs=-N3gd=8JJhZ1~Y-{PCfY)mUkK zf+0u;ymQ2l3y!vyYf9LPYS1@gcmbD;QvKclTrAPW2{3<@z>o&J*u0+;Y`|>(1YE%) zA-oOY?wmQO={Bp0{BRkmEq-)+eDv~NfQ9t@vB`|f0rio#&&1`?H(nJeI-{Q^Hx+VA&w8jDVL&rMrjz8D>C|clz z6cUgQt^#+Q@;QBy?_@&OhoqBVq-%11KLdlKA{2H#hf>%Jb60Day#e%?9)*?&vf|Q4});rxxae9ez;sb+Sj9SF+N=R@ru$` zWZhK$QUwk3bm*iRLCS#0jv$Yik^E!9#rAZUgF#nZ`OCUTsu3STvM4ExRQo;Faez>o zS>Z*%6`~vT^XR7Mcggx-@BiqFqO?nHe}dvk6}?neBh}1f5BeCmq$sfPtdA(Vf;x+^ zxrtq?vNo9*BiZ+K>+V0?%p}Zf!t!Ow3!saiAD;Zgb40zrH2-H*2>Zlle$2#zipUGc z;yvKK>Ig9OL#ZaobZ9_0Vr78?FRLd|P|guD} zol=htR5ghSy4)P59zXUn;w0@6u7RW1N6nU>R^OP3GjM)hfk<@4JnfT4=t{!)qSJkB z;pd7uxb~x^^{TN!{8cC83eec)+#M;l@E7GIKK%N^=A381!o9H5pWZ|+UBkN!u$ihh z_VE7DeQU6!0z3S>j9;M}UA{uXA6fV`&%!Rg>Q9p*UK>kXFn`574|URjRn^DyxsH0R za`-SlgK%WZC@CPPp^M)S&U}WgO@Mscr2u2vM3u*&ekc`%li~)E4G8{~7!m`3-;Z3xvYQ zRtU5D-Z=Jwi<%c;5-`z*PA=*Rel}$8gFPfWf-yi zZByOmRCD1f$`sW#t;6e-WT6>9Vm(}SFUFL8xV_+_`QbM((WVB9pG8=IIBRJ+4^6)0 zv31NJq=?$n|H!Xjg}C2kq@-dWU?SN`;qruv$jq`M(@ZfRh9#9Woy&@EO6%dFJi8!2 z5I}45!%p{3vdBU{(yXMEf8kM?7MbhG{a2-ck0Qx&vU+v~0#)oKLXkITm0O13$K3W; zRM12v7KTNhMKv~H70pSD0y`v}80Tl<7ADKrz!Fvx__sq+{(nUODQ39n%g3J0IGnM( z@jkFkk&h3&LOZrsE0${Z;$w$oB*CB!s5~^FA3G$j=t}MX4uBn!`9nhwpy))t(aAiN zy5>GQNpQm21A2wJ_`m}p&1F?0z)r;r5H@Hs2)p#PLMnCHK)GbB?4<`|0>zkKa~z9vFYuE zr6-HVy8<_n&9>QE=u-iCm15Ri3qcr7qNPH!8hIJ`la3fQ(qHzx#k-P!Dca7ia^=}u z$5toiS}5;bZXTK2SKT@;V1gico89y^CXb-&+pesT9{)1zjaNvZGi8Vz$eG^h8n83M@f;|U!_uaQ4&+l~J z;46aULxQ(dD=pa`;O`h_!`L=#T|N$M;@biF{j)kL4OUU8xUs|`SZJ*SBQ%i zMb=g7TDKM=gCC%U9Vw;smmRnOS$^mDDM8DO@ zg~pU@Sr7_U`iyjhs|yg@ux{D3p)GuTn;V=v>oU|1*Clf{>13A3y~n7P*w)oD%j)x5 zljAI;({(M7?dWjBC7Wg~#fio@u!^_pPELFEm{%~{kKMM>B;EqS>L;tJ36LVkwUsx5 z^3AJ_4xEGrsI3mvl%0u__ZsHXZQY8Lu7%s0abzJhU)<)*_|f5!EU()qPE;mXib1V>zgC$F7g_V+!XMrBi0c^?VMatq{up8*RjRy8I7e%+YD%Mm8O{qLM7e7F0x)ypT zCA4J|_I_c&2y_jcjx$t|+X$zZg-SA_3S}tRYAeV4W(1>8q}CZN7?dBd6-%_>sOiEXd_m@OEZ#&@#xrc$H%Xo1<#E~bxSSl$Y8m4>Ucn)gI0nx zrxJXQXEI_8QH>yBY|hp4g=Epm4M}vU)^E-=miAC!tsqKa-*a92iA5C<3XiZ|J^7_hh5z5zN)-sXFwfRG0L7X z3P&+{|NK#fQ+UZssPU5AW(8ck7gij3M=f_C%29?}omV%}Vsq`N^3np$PL%?0wGtKw zDu}aIA%TV>RxJ}e2QLpA9s9`QQz^IU7b+2TNPSv(t}&H31nd(@br4PSoV_kd-Dhg# z7Mf$WOHQbAdCcDAw7y=9!oB+mJ5zw=VvyKb{G-OzS=to_kP({`G{)&Z%c@ zcTy$VR`p+8s64R@*L>ezJ*}gTgmqtc5H4bWv@F zqTPI#kEXwZYzq^~Wj|C$tw(9bftYIpXD%x+&dkU5n;6_uHcL-s9Sz_OQG z)g_v;@(mTx2EK+&VgD<>{>L2?>X*s~3-SQbNL zVC>K18h6^-TH!1XM#1nq?4(c#r`>C&6n6n?6ktAfpNAgk-38 zbKmOJKm(L62BFu|IHaND>%nU27?qNt>qhs_%4z6VyWpZBIT}V*huiFr$_*Cf>6pOU zEQE5257j|{7-Q=_F_cpErGnQEZl1Ywn7?(a>$Y0oR0|!Z_LG>ec4t6d`bV8ZzuR5+m!H4d0Bz(sV|h4Kky+ zvyOo8#Qmt`%i9Et@XXxKp_GofDMW`KR=7g?*$))NK+SQ;JPu?&5Ie`4?-^>T$kV-nep|8IXklf4!I`2%fldn`uFKbE>dC?0u3p_sgDBuRE#o z-GHpF-7?)_lI1t8UOao*7q!0d-3e~hxITK3%3hL`N5lXv($!3)Gq}6ph)s}3jl?$T zzRKPoWvz$-Qq_#Nn$TX$#49)L_+E=5dyTiS63^a;3oPaCqb+h;?hS=tAv@7S`mVD z$+golCg7q)qDDc&7Zc*k@~VVbLp%@ybgWlb(E8yp`ojl7q}1Xf=uInyit4x!0z|pB zS1O-yCw9a8h#uME0<8n8NBK)0;aSj!>KXSLmL|~BR^VC4ZCDuDJK0AiFx-XbzR;Yr zTo_Mc2#-+`xfIalD23@Ix;d-*QPczP;KXc|M6m_Es-~S+fzXTk0z9|NubqOnp(B^r zQFt;|ivim7G^7d|LlSJ|u4Tc{2?Vyk;t#KVEP*sTKFUvos9qkdw%@~GTUNSjrEn4+ z=2PiGS2n07kXUsgnjizXur;nqnt6nB9+15)8CNoJ7LXG1p_(9KGO#sAm6~~o!aze& z^_2{&qkXrrxZq5uEsQ@~;PM3cCVt+PVvslXE+)h>Tt6*r9A+y7p$e3d`j=NNSO>_G z7~m=sW3V+AlbS|I8Xk~Bg<)4R1h$Al`5~Gp8#J&rMMfG%7&<^hWy+Ndq&;K?G0>p} z8TgtM6pcI-380|>=qZjVB+196@c&(E*$7F}1G29)@Ja^URsJ_~sAgO`6P5vvd!0o} zZ-{0bwKBRv*>06IN5K_bf}iScvNf`835*IZXga#NX9&wdMrC5=4J)bvFe$zKL051A z?)tmQBs)4j=p7v=ur*0LOC}i`pT#vjieY|Ca^}EUVc>{$BxY+_yjzc;nd|v9?f0C% z+)LG;29W$;Xz)3j3O-U4(mDlW!lu$BqOmueBf;kM0}PmEv9SNz%+Xr|V8DUt6o^Vo zeyAe?fB}T^C+vpyIR?ZJFo278yvZYGXZinuK>%uCpHmGHWa0-HTG*=jdB?%~&Zuula4pyZ zIic|ivZq6cKB8I{<|r)Hgpn`ZGJw1(=U6%&7}Dr4HvmRE6T}T(&{*U|Lxpw1hSiC4 zMM-I&$==W#S8X&Ikfv?DrezDy1_C#QkfxlRA`P~3ge;K-F<2OcA&ojhQRB)5x$A<- zFbSbcu^}zhU=dB{2+qM~+ncZ!UXj!WdDIB03MDrwTPTsKYXl~7WhN9A)M&lB1Z7+j zM2=ovR3zPCfrTA}hL3|%Oh%tj*DRD7VKfp@E^a-O6bdOb0U-!gBqiltVo!%sNWa3o zV`h-Sy0!s@UK@mm?#EWd4oAe%Hh?lA#8g2aGaJ@8+FrK<8Dzq39hKE3e}e)+i{g4F zqw0!kuY$xp2;WzC7gEg@B9En+%Q6!mMirp7gQj$4+*?@QD2mpLwT z9ywyNaVNXEsBBJ5avnQX|)J`b4hwQpjS(y+WbR z@_e%HvXNrdUBhyf6>k0)?@!N%O&RoyRb18!-odhm?BccuyZh0H>`}WHhnUj`yUC}A z?4yvEshenT38OJzOOE4iUCTLsUF#*^Qh|%^2F}ZzDvs;!`E<|i)hw^+r8MttYK87g zy2)-!*OF~_qT9<3b;=#qa@H%}5bDRz`P`4u17xpLu2_C8OKd(8t^|J2f~Y-(tmwJQ z>58DMZh8vt1>!>zGR@z#tTKkUlG5lhKvQjMv4Rf_0NM(NCy?T+&Rz9XaLJJ|V zY+h{nzLT}9T163d=IaS%LgF;_HpW95^e%!utDQzbCOOifjO|(Z%Z%3<9IYPJE_Za7 zA(lj&V?yzbmeCv`(mNJamCuw~7^pF?Z6Tpf0go4aKelifTQVwM?}?~`>?RVYdak6l zRWc*CV}&700Wnb#XUvB)Pt@kA1Y>T8%M63V0DmxppmMRmS_#CHUObj|T2Mpk1#|a< zVP&qK-Ux@bIKtAhwJ@`5SUl67o`B+A%b)-^I3kzdhe~OsI`4mrxVYRKL2h7g#d$P> zGm7dUoDj_UwLQ)2dycDf6h7d|aR`qQhp3QPV25a79_-`qM(V{J^_g&7s5!}K$sfYByo6AU0o-` z3KJXN&LX}c)@6M{y{kM^%Lqb+ym~sWUP=$EA1j!4`w)YD&l#k-RrhVGgbp<|bjFOS z0%B|3S9hliQ8thhf)}1&hKXhyx;e?-+_`Vx)vAoqs1!R$75^V_E3y`J~K z|w=kAMCJa{Qv z!jZ;;)q{6MM(LLeL@vJhQ9n1s^ZLcgn^z2EVi>!Qg!fZ}on0WK)OCk|?bx2XHq1H# z*l1&5np(U~g~+N|3Q~nobaj78{^Mo4@#)3A@@tdOyw`bAwj_2crmhY~^|!PB;@YZV=rKoQQ2iZe6UNX}o`l zP{QD+30~h<76II#Tm1T^C-N8{JKPPOK4?;ICD|#qwchlNlE+hL|4Q3iB58Ob&1-Jn=9xWlQRCvfoLC##Q zuPW)^YrOp%XAV#fBOX)pGiBd=sGg}wjcA@Yd0lzvG)g<^^^>hS@|V9R-#A; zh{1qeBv?`X1kn&pxOG9lKl|#`-ik6@)rKz1pX|Vs$R;u{kIE3(7YOT00II_fc z6eF3~G$H|s+j*@BhgMFe7eg9%;)is6N({3n3mTENV?!k$E@$sSuM%28Ur;ob*%(A3 ztS@9Z6fFE)Z2Z!X{DuHb@f~{Em;+TFJ_N5NPH}S>Ewn<>| zGr~2jI6ifzIntE5#xu9{V}*4Oh6vglM-k*6H+Dgifp)3vpwq^3Jp_C2-x$oT~d)rGI6rLc1HqH?k|tmIucu8pT^ zjc?XgRB?-$J z5=%KE&0M~AE@xWSYuKJ+E5BXq_SBf4+3K38O`cATC(3q{Df#6o`7RW{CS;t1WFP2x z2f1{O$_GctS0rX6QLqV9vTEjx=((ZI+kwqL92}0JrvDK|7hfuZd-#W zem^Lhj2OkFB$uZk3#23+>}j^FGh1dmLrU4wG1@jQ*=DdM8e<=QPq$Z1d4z20sbwJf zkYpXf8zg+FzmJZItn8wk-C9W?(D)L|BlRMAm*h&bn#iBYTHl7HXw9X7r(d%&B4x1D z4Z}_xS4MNIJSHU5g@_}?2;^E!ZQguZNRhj65kKry{hN?MlSJ+yFHmYBvA_3e(W3HK z95~r`wgPE!8fx<|5j?lk73s4SPoYiXx|y!&Fbbe6I!U<whNl5ND&GbDg7?;r(A z%&C*krG!?pYG{mVdtYf@!`s!PeC1+$N618Vb2c>5t!!&FAHs0zv~T^-|s17Y}C#sOVx{52E4(|9B$$y?S`s{~aP5=peO znPLNEk>!cVMjgBP@V~rnZ`OWo1c^1y*@v_wY4GWW z2rFIhFT;-?JE@_yBgCP+x%Cr<1Y)V9m9qn1_^Ttf>j8v4L=@)IIRR5h-u5Aza^39( zDbo|2d4|g_(D0jRl7ySol|&c{miVdSR5;i>Hy0$nem}yh=L<4bFp&V^8Hec!Y1jm! z*tDerMY@5B4pz4YDgZqvOQe>+WVYs!3;{OnEK9i%pmCt(?FPx$bSukH^lOWE-9x3cyJ zAR0$#7U~d4EpW1AcOc70TUMCJXvgES-U|WYj&jd@nucg*P@NVEavF%lGd-l)WkFNZLZR&)@~W{8l1*;ovjDbh*sj?`!vM+RI8fRWZ=Ju z@5N}S_9b?84#?n|`l?7PJWw%A&VlR2d+#smUL}pwpQ`k0ry3=y8&cgdFhHsbX~*ll zEt*_aGSCqxf@>wp?xj&UqRv_NhmqWr1s3 zL(VZiBoAnhv$YI3(Km29%_G=Z+eqwcpk?G<2xXfPIzPeknXrSY?n#Or_Ws(GiluR6 z!oTa^_4a%{uN#v?NZ&;L*Ys@1gwq@Zug${4DWmFG6{t>c391ozEpF0}m=cC{lDQ)KgylSQ0|-I8C~S^s1eIWL z$n^anVhY|86`s!~MMci@9O14)Wm{}o$|_Ct86?hTBueu;=E?yaYxvB5tZgw+;AqYn zu;5}?jmgZo5EHb9VfM^F!!YYk;_``A;>Bx)@x!(TLL}_@BM5R3BV&q*DSXDH1<9iA znL_jSn06I3i}N8ZgAK#WxX?w4OVE`y`15ez#guh2`Jqq^d@B6*w`?oy=_wi84 zsF=vVJpM-xX-}XoK~(ZFT}!8`n-DRGzSlvxu;LD%ns+W*1`t>6&Ukr%S1zP@@g^Gx#vMJvg}>_c2z_Z>;Jtz7V~#0nq~>A5&q!m z@z!3b>QCCn&&UdAS!k4rkH=(Er%m{3i(jGQ{H3~Il{&M6s~!&jtTXzL?+D`JZ%FQT zGr<-c2zg~s7f!zYIJUi21kvPn+LozJ-JBiD5BdiG82asLtEPt+F04y0lvqE@ez@wjwAgDT9c4k z%{&YRl)?AUt#gpX2~fJ-)N*RWWMifaE6@BtaC--y1gY;>>jRT*Akig$U0#Ak)2a6+ zTo?uQVME%0fAmt~^`ccOxN={gO1C#85-ZP6E3R*Yv~#B=kbE5n+Qrp$CkbYt80yHc zVd7dec9YlPXds@@qE{K=dNCtdjOu-2!zCK~P>S%3VrVvJqY-#Bu3WzaPf*PgK3RXF zAraZjJh+b|Vxy~UTpSuFUx9fgV)YCbS#2W~Nw#y2Kxk}baP=HE1&7;awsQb_KMy4Q ztx`HX-#x>>Nr-XHjO!2&*d%z}BN+SSk@YsC7`4zZ!78L_jex3~CD!u0ig0ION&Meo zhWJZj6q**iPCL1nlqXfso+NV-7I5S6IKRi$QRHz-LJy_Sj-ky%ft!cYSj7TYtfxUV z^CMhgy@NPQUv|gX!K29r;mDJtA&Kafoq{6Ok&KTBZ>bm^SOR;#Da@%c@<f`|o|RUID>zn+?-s6_rxWxc zqj8vS9hZHW`9yyZ1}vG8L9C#yOpY>0bYLV^Ab_?kKV&bYdZPdUqMZ0$vRi*mZ&lJ@IwW*afD@` zrW-rPwGaLkT*=SdOijUr0>v?GG9iC0p+v+>ni-TdycpPWEjA57^;On-&RH3oMuL2M zZ=}y3rE+L7rw@FVvii6cp_8_@5wzZ)f)xTTy>}wanr}V{*0DNOe>&!v!M=C5T7}3A z?e@GoqAz42^UkvdALk`4t&rqzXO?`%MZC8}L;qHzUN0(9qeyDYW)g`+a-7zhq7YZY zt1s$7vGSHP=$r|Ur#y34Xa`Domruo7q#=nD`tNR(diib*D2}VK^^iU@d)ys@b#K`R z8g>%-f4t`#gG=-M3cKAJ-bVYS1%D~7qh%uCr4DGtLN$9Nt?;tCPQflT1P;b8$`+pf zYs^fQ=#T{0<&&{X$d?3116|ZA^5D~M6@c12#U)`i-uJ;iRocb~j=h{Pa9X^SpGV4p zVm7d^s6TTnu?!mvjDa_u$*v|wLr<9kKV$`A{L?&EYGCPQ@dICr_ph5wNjK26#5EI6 zK0na}Hc06^hofFHg{3mX5_P8}aNIbPvbq!t;Mk-k*Y&So6O`h==jxy21#- zb&;FZ-aBGn%nhu7(Q-`1L?}#7D7V#lRa@nduN;4?q8znKr5M7}s`FVq;nN?Q1llGd zIS8@k7J~Z-WdB6O3X}>i{p;dAGqgMRn1}yb%8nTk@=VI-5l+Zh#x<9tJ*xZb=_dn2 z9gSWHvR_KCw+Cb@gtD{9-Sa?*J!YuK*Wf9AE^{<*UwBh?5}4*|n8BE&v(t%WV?##; zVk+|^jJ3a)2h;J!eS!O&i}}=0euE=_rw6uO2mNa0Nog|~Xgc}tvCIYA$GLARwpT)` zwoSkC80l#d!0eK1e@@*^ zK!^S`WOW))fwyyOpJx{{-t)c|wB>6AQtRiDQF4@ZzCRP0)y=@D_4%m4iQF_oD7Y>1 zALB0>U$NPkURTm(dUq&a-LHFF63>KzkzPS8fN!TTyhIQn+8tBvwu}vzQeFS0r+`t_ z@RO?YXgJ0n9pVn|2j70xcyD}5|J%5Ft-6RDn`t=4@%+x8;8ws#gQPJWAd+~WXCj26 z6xub*$!=8nY)-Z&)CpNOgP=p~I<(7U{tC*l?P&vuYtouj2)UxO3D_Z$}Ri-o{_Q=mzwf zGJT!5a|7$aP)NJxj17>?eH@!Vd-dHnNJDJ}$sgT0Ji&^KBmUvVUH&>XRIz12y4{|u zR#Ld6(AhLx=6qa8#Di4)YdR}5{Ss=85t0-oDECY1{#gypz5{=P^|G(174AuvGkU)C z(=7cp9t%Z{h#P_&?#marbJSJFyZaw{Vtr%{nrW58<~6l5h0d@LiK7mI^#t*oaH6rp zkie2^q&F^}@7Y~Q}z-5nT)b6_X@UQdm^y&($cjK#vc&)GYy z(b3%=G^lqG8eb@0mScXEze2}8)SdJa~=hu03)VWMeNj6%`Uy}iIc18 z^x~6+$v+NeF^Vb4iMBL*l6`AXfaSqW4uRezPRs}$4bqz=h-!ZS zF^)TM53R6JrYqD-Qo}h^3+3MB1m<>j1X`PR{++#2SkJvzD7!`5n{Lg^6v_5#36E2W z(t!XZs*U}J$}v<(^gER_P2DfvRTcR@;O7HM=6|O_U;Ren3 zTW5pcT+MQ%J09iGEEZa^g0H53Vrwor;q0A)Tpv|?MT(|UTeiRAse_-SDf(rINA$SU znLW0|Zh!Und3&5vmUf$l;dy6*a|(Wc9kv{m@{~Qfnwd6#O7uAWh4{*g^;k-^#~4jO zTbOk3Yei@9?AL?8<%9Mu`LhSx_Ff9PaT0Xk_N&>^jflVC@>>&$YIChnzo`IL_HAGT zmApOc+{MPk29#!%Mk?{En*BRybUU}9(5xK_-qG=%bq>a+IbGefd5yO!2wwDJW?7?7 zjnqyjXRimxiTtJuKGQj$#^xEWj`0wq*A24YEMyP=O6iZ~9%e8;>vY?ykrBPn=Ymaa zPMb`1abB9HAd@+?^sM`_aD@R1%n&*hmPC#7FolUo@}JT4EaJ9UaM?d5Z6G|U%mk{` zpt7yVqk>TJ>}V=ez&0N-DgwAotx_Hwx&`^QXh63jri!8h{9JymTwsE|ji|{4YU{d2 zF3~_kDW89Wpiw&U(V>Hba-vO!gkL%ltJ1_pAmOA&TIik8Zc-vbAW5M?rKr4ut<$1F zFjb?$NSWwsi|n63zNJ#MpH}SbxT_RUWwy0VCW$&6)SHlL3S*1Yr_ihrv3O#ll6G~v zm~&{*N;em)a#jwgA3u&{pQNLdfc!2{uYY5oB+#HYvM7v(lH%E*O*|=Cqrp&SB&>S& z6wxCHN!Osp{HF4UQlBzLON*$_K%NaPSBAXN%ptg-`j+Q(k+cjr*xMfDM)uC%?#4bfJnD=4bm`lHzP5C zbaxKj-Sxxo=Y9XXYu$DC+2`zMuY1;xXGdBE8e!D^)mc;{`dgb#WXY;Uog2qIMS+h# znpbsycD36QkgvDyJCW;B$7yRG^v0X0*E*7!x0lPGvS%71+_OGYA(C)Mj#{2au#i{qs1xYtmIx%0QOElu-OeNIaT}G_*xh9M~ zjmKT(DtMh%uWVzC445^0Gnn|q?KH_AQ!ec=QE2VC*rtgdixQc`J4=oOLPohoQztjp}!>y+Z6;xSL5VoaY%Z`$m&WY=~6K2Xl)+aX`&HhE#zkuB7s z9n{mOv29Z`#ch(W`;BB7pjpD(MdJpmHtkqOGPEPc3EUalL*o^|Skx`c z6V?!F72iNa+|JZq#OD`ym+6>Bb~|X86~X6z&&b4a;x`y1a@tr2k*2%$=;YZ3^>85x z*xWXmbZMo&6N<0k^ct!%Z_qKkc(2aPwq-xYq*qq7BMVSbWt7N1x2Z|m=`GWe8`RGw zs55PDC7r-CG9H6^n-8lzKg|F)r%q1&?KW2kDGp3cXRt-TG@kdF$()3m8jB1%7E zN`+)hb9z3HN^POY&qZottn>QWc4b^kKH8pzj^(NC9h1|D3Z%W z&8!Gn&vf=vF(+A*MiZyGO$bGVMXyJxLVgJ5D;|dcas zukd#`7cR#8RlsY{@;e$?(2t6XooPSI1#cZ$*%EausH`k3H5d;AgI34qH_p1cS2f4~ z3}y8wcYuoH%lqOJ^Q_1+Ioc&?#Q%K4Ea)RXRJHhb_=``F!@A@aoiw}iUVOrSn#ep3 zLiBdv#V3Leb}XOV-S$Jq=9b;mvr2%V^5(>H;R38fPVbDF=DMqpyTc$T89>{EJOoUK* z(pb~4_kEq{n_ea|?qAMR%#`%LI5{NZ3!K&1OZ7DONt%Wj1v~DOuqo)=B5P7@ zs4o6S_4d|#YH6lGSQFU?^=tspA<33#h3p;k?;=`^8bN?@*gN7{{scyKTrh!2Z}fUK!Id7W|UdJwNo!* zEB6PtLKE8uU)C~{73}cEgZ@y~rbBqe$8+}c->2H!OmQ>ujWsbATh_l%R4;+gmM_IB z)&`_f_ZL@>$AMO$Z3gqN)Gc5++4Ap+ih@h1Nwz4s3NP)vqpIkGFJYSY6{;V7FH~c% z+@6tG#!zWOAHJ)2t}67XWV7>g#+V$V2E=c1DpH7FaIebU?VKqgz88LB?Wn{R$|KXt z!IHrJOmq~uQfxc9NsoZnEm(Vv0)H4mFxm!V9P))2+$=3Ra`ZcNj3mEtsY3C;zZGQP zd$b3cjk-@^*M1W|_n&p=N5GbrV1K|~y?N>5QtpJmntw#qfh2k|!X0raK8H0;BK)~# zyj`QGs=X%Kb0RoLk7jl5cR~>eC9c$9Nm1!1;2wJO_NT}Ei)yCtTQF;Ax~EKD!XjZz zLk_CTm(8;;aRhVtf+u3gdm0iye)mN*4&=vMuF()iV#L(zhl@}CPk{x ze*P@4`nQ!Wyps-*kq%GfW3v}o;jedx>Rza;@tIjO)XO8-7I2yAqvS~vD+{(%w-(aS zLWq+LBx18^4|WPs5}fysjy*o_XXNZ)3zUW_C$Q0U!5EwF|DD{2lI1Td=d-&~QwZ;- z1x&TzZ5O%buSnggUb&Ue#(^&eM{{IH9z7iH3jDuZ>=`jck7FiA?qWxkA~H#OW*z1Z z@S{Xx+982{CDd9{*^M08>ruDdVwz-JvLh*z=G;m3hZfyX!`ZN!OWRVhH!fnB8zz~So#tXrJ*w0*$(#qXXaDy6THX! zTf9f_P`pP_4K4mxkjVC7eRYeJgmHfGx%EG zQS}7UA7ATDi^G-Di|Q5h_t>+=SrH-JHDYai2$D3r9Cor6uTlsA?|vYI`rzNY3c6DcQ4!j^`Z?{kEiY1*=yCCA z7`Zr<+2y%<$&k8VG4+=kW@uQ{lS|xSmk+cG2yhHi@F9nyYNY9U3zQ8V)cSv?*2?sB zbdUkh*&*Y;YL%$Da+J(|(V7seGuD1#CZBUItX`rcVB}ZrQfAgWQow6M;zqTa!-G~0 z=UO@momjJ>`Cj=t%N9icV=+PTuqgfV;NS`>6_oln}rLWSV{Iz)7& z&yBh*O{I$zfY-#t(<~J~J)B#abiT=LFIW4$h||$IQR^*-Vube=_aL0EeWoWRu;ytL z8lJa6dAHsA+Pa$&))blKoWu6*`&--LfQ1OBVO@;K@7Yu0@rZ-AAmTC!DcK1Z?5 zSB2R%Jbw^s-@XtX;N4#dZ8vN)wRpGwbgAke=WkeZk20(=NGay~g7W@2Hw%7C2*n?f zM5reFN-Bkm{ZRuPbsoVra$0~8m*1EhUffw^_C^d6ntj>o(L#GgVTX=KFpnO)v5K?P zh!YO4xpL7x6P(9?Uy3f2^m@wboI7-;vU#MZiFC~hiYHAGJ3bNtik}}*#$dcgoXVnn zF4)L=l)-gGcq74aq{Jk#fQ8@#4auTwG)|#wL`$VZNDi1j8rqjYE4z@A4@msIGR&QxaM;8uVR{g5{x6hQ}n-b0}9HDx{0YZMow;?4Dogz?`m zD+_dv_GrGg*!gB2dt<`Tuh%|27>A`F@Dqs{=jG!v97-OfFysT9WhaLR$7LG?xNwGC z?dHNyh1vzAPG6Nw>-FVYmD&|lT6B+M>wzJZvKK^;W z2UG}^XCRmAMq}BvGssju$9j<;kj)67Fic2L<_U_xJT&yw)fAc{W)~=p|E{X@B95Kw zJEG;vx+mq9i(M!#USK>H1|N+^fX#YsYp2U!R6gqrE~8K1gy!Dzh`mbP4P93hnm{2) z2o3lw$Ng?lK9+XSB)1noJsRbGK3^i2^v0h~PZ~CXL_X9_WPK+g{KQ{d8ZfGaw|Nbg zujh8ZnUCI_1dD7W6gnSDBEu%Y(LZUJ#1d?9ZcMJe!ulDjiDhp(O8R`rEwQJOd)gqvL!@Ql4KP()LAxLo_* zb@mM{p@fp{Ko^s$ZN+PySKq5A!65|Alcp@ODys>_Y-kL5#Y@DvM=Ku&MHV@RL>9XS zMI`ps$x zx2PYIhu$ghp^2m4xa!o+CzMT!c=DXrFqU4K5p!CEaftJX!Rz(JnWNU=n?6EI=5ly3 zmwD3^?0ZL9%AEsm^D1Rq)a)zXHr|-(8?Y_x+0JQ2)o;Bv>gH?K_z;7l+>b;L{HWj_ z1ukv`_`uQllLN_@Cr5lN7^sFG*{SZ7wGz6N$D&O0UVR0LHtpW zWQYhO*|u(mRTod4pWUOdY46W`8(LAasUFgTqRVxLr(^MMDAY(u)h3e2#*t;HRGLLd zjaMQf%`RY=)mfC^IWzA@bFJ-9Wbha`3Qr{r|3gl(s2Ajk=Ww)$ag}=oi^5L(ON*4D zln5Vw0hgO)pY&8}G#(l9u9!kf=FLF)q|%8Q2YUnj!0E8v+E15 zLkiOqR?S{cJJFoDZjVq1f~3V4gT||-JvTc`vEG=GK#;qZnsM9E3yRQhhObM+O0B8HiXSE^0B~zz_XiwfBBM-y6}<@ ztRKUl*I$7^&q%SOtN> z_@1gNvSkv1G59SL#;F>aS)&Ny2;IuS5)B)>BEN^+BjJafIHSq5blLPu=Zj3i5LzK& zTWn*gXya@hodh_z8GjV4!}zv3LP5lnw3q4~j-or{e?6#~qd4KM z5fg->Dq~@4c0X0dx)N|y=~_z}p$(g&HVY4Viz}6spkFO8M7hXJ zwOj50WQg7Evq7rz11J!M{JM`jiQ~o!kNX7z1AKm`<-ZD#;^bZLtvxO%f=Cxy_3VmH>45z%n(skEANd-d>+`Ta_05`RVdy&zq`&J1 zR*E;UV<@(`>?25U<crOl4g-j-!4W zt5UCCJ>jYloj#8p-g)c<W(;H6c1S@05oGA`C;-spSu&@#UJXsK%7rXnO_1#um zDiP5}B@?Z4$$yMK5#m()GaXrQlXv23=0pL}%`ohqKs4nMfQs8^fTbU|+ohvtqA%Lj z?dgKC-)-aljqx!*SJYrGZVO>g0Ms4N?DisN#hn`Z@N~Mg01Ita8d`soiz}2i0`dXJ z1n`euikOnF7>Kc#=k_^YjWxZDNPyRMVj;zT+&W3r+ee+9M|yLh@H}mzY;fF0EHT_= zbT3N1eT1N{lnwvXNPb~x)XFeOF7f$|8)&CR*fII7T>P-`WX+g`6lEJSK5XlFfkVs_eo0G^u}bPf4kspiHX?f*dUkgYJR+V1c8{! zOGjE_96&2__1rjxi-xZReyxc6`8{9lTQ>a#Jr)b= z80bDFE;Ri)>{keE$h9S=b8yLO;$vXa@!p5@=a!oWf$1RZlBFWcj~q(NhEH=nCpo@; z?8Dc$=q+V_HqTS2=GRAp*t4?;3K*ped%m|bThyDla>#Bbz$6BHp}J&LY6!@sG@@aq zZGeF}T3^+BWEC^r&l)>%g?Y~;>tWr7yz-cJ_70^mE;$A(wAL$y=ceq&^j!Ga^t|d( zs-*#L3@Z~LGM6WvssDP-J$_;CDHq9;7&1Q#+Io5_KVcd|o$|q`U)Vc-s6f(wm_oI4 zICo+%-vFrUh!9%(@Eq_sJF(5NEx-E-3KEvTnuupu*sAFDd%#_GyU(;|0m^`&4{bm1 z`q=Q(3KmA$`p3>{Rd;sA7P2oFu*7TeLipgZKXG&~D$6Pgsr}sMEyZ&Vbx`UzhABoD zluq{x?p(V-ON3D19^7v1FSRNhklW>Uyw%k*_{;pcG;&3=$ASN$k6y?g@*x8I`#UZA zE!LRlCZ$KXQjW(B;1+v9Rju{wtA%MS30Omx=J$mte%E!S36BZeRtnW4G%Bd!DaPYL zu;1X?O+fKd3Gw^X?)4cX*WIb8?y|fk>j@sciwp!7V`LX3*0PVd2c$a6(tFS zXov1oC0B#a{9_=TWKQn6#)J0t;(a8YPh=V>R&l7#vuOI5{Pe!y$+rt+?8a+qp%;z; zO`|1bx<5LLy6on^nv8!|CaVQDIr1mJR`TQGVY4`X&ALd!-?;HfJwEWvJpQ#g^Sjn$ z|CZX~6o>hQtP0k7xyH;FriPE2>a2ou{J`jhYwy>~H`=@d_Aq&u{pGuW*`yn%64mn} z$@_81`|px=Y4$=&>_p?$BWU7`!;YfEViy1ov~Q%sH@dD)D@~G)GxJGDMS`kQ4`n|Y zGiNn=BTBMGj078Yeo<3}3s0VyLpGfomSqze8W|VW>LPB}S+6R1uaYsYV85@|rq4Ky z$?e%u@yGHVPwDG27uP{d{^PB@%yq@lfcCoUJ!7}PnZgXjQ!r#l3UD7$3Bb1R4uCBO z!t;e$jd;?@gB6~k+S6tCQm#d=13DLL2S;CF3(s0NYAcg5l8$(2WZLjTi(1Iv0^oZv zmIc9FNnL5krOrL8y?#a*GIJy>;Qo&k%l=9ZjaK3Az$Z2wBxpZEa&$aqWdxz4&>HFejJtagwM%DJI}!VCx3tZX>PcR-1YhPdLL=0O&OQP< za3ia<=kNeinc2fWqgDy-HkNc7Bm2j(-yWz;glm`OH=ivUc)nC`>`|zk+ud)<@cF{d zKdfEH=Q6G-zYqk~4^#~l>DwwBKfQ~?GntQr4wuy)+Qhl=fl`Rr@#L6Y ze4IMOi*u7cJ?XDgv!pEJ*%0n*Y^6e&&!&ux)&}o_}x$8VPAr zFPxZ10230bGQ{;hB|V1z5~dS>60{t_0rm%`->rfky0eh2_%e=f?w$@gvX&K+7aADV6xpO%M$vw{fP%C-yPT6XY7S)u%eTag8jjudynP zAoXtuR^AR&P>bb*GEYaY!GDE1(v!BAbY!9D(NE6xh1+MMqQ;Rn^(E7WKKJVzmiqjr zhwpCTZh~C2{OhqiCijTdbHFFv+9g83g83te3D{$Xd0g@AO&@%w#rf-0Vy!h5jZ@C@ zHiba^lrrAf2sEI{|U$?t$ z_Pd5(#bemlar8+yA=rIr-}W=NP~XSDrfFFtz_ZGsA7#mXJ_TBm@I357UFzvSN`SnW?2M(BIHs{*16!9 z7|({#n0u1X^<2yxZtr|V%5%{ZoTKL)XSi65`f#aH055G@hU!SS({&A|D1AH5lr#%~ zk+mG|Y{{Ks@KEj>>x1Mj zeVN%ioQ|pq&1%L{ElI`c`XASjy^XZw4u>FZM?}13rx_~AMhY_S_#Xe7j;5uR;J#Y(P^SbiT?*2M1eUfuH^T&4v zmM4}T&n>EiuAZrVsESsYW~Zj9&Tt>-R#tGdjpeCocK5^DZv72lchi0`3h(~w1G>9; zJoXB-Cvz2+Js?Ra>~Qd;O8A5QSfjq?OHIwe_?&WmO`DeXJtWuNX$c*WrK4ulCY7KU zCs5Jd4iitvjP1}6!-8eZS||*L!3V|fpTRfy%^9hURDSzBvkzmomBq%pgbyB*kG=~} zzNaXze{}`Fr{g956{Bz0RxZhr=G)05F>P_we9a&Ae5PHb1JgC2_$x(1H^}#7@Dna{ zD^-h(#pW16GAi=Tqr=ck2lKe(zH*L;Z2^&wd(N4}r)0`P>tJD3eja9fQK8-+F8`o9 z5dqeOIJa}L{#B6F-2&psyMV_$zIa!Mp0@*4!bLm+!R_Ybz46AaQ;tDM)Sk9VT77qX zHqZL|Ay=%uksM;w3g8rz^sC=imsRK6UmUh`Dp`)oKD)ZHk9>PVPfvxXUr8YCs*in} zuze5yY2uI<+=UU+G|AYnPZG&;_6MV;HkoZ60ojaJJR3%TD-KRQfjkv29=airt48E+U4)$ABp zUi`;P+O?@V9S@Ib6uosl418#r;Fl6P}0h&_|rvi!IZRExHY+qt|vG44**4eF=*hp zix_&srecB!P zyj?PSO1>1mVlUQYI_!?hBs&F~*T_9Q%MAHUM^3_onX?1jw={cN#90?%SwZ!E`pHDK zE3V9Xz}{O*G?WaZ<5u_?Bw*ruqtgKpSnL_<-e~h@Suyr~Vr8|(!=5qZpZ}9scy!do z5OiKxb~(C{9WORVS2GwaBHgM1fO}N`me`j&4nGp#}mMEmBh27_L z67Y$hheOhu1a6ugT+IbmZnC{p!vts#HBV>DG=?vST(3}@#W%BoO{Fta?C=4h#`)%U z!;$4*iY!4Vw=Uz6mE4ADAqL^PWFR=8jhBj(o@OeH9VLp6m)h#1w^ftQvBnA)`?j$w z4kHlgv(@O!!iYUInA|T|k7?}vr0!b71dQ|POv_r;RP-z2zhov!YfM_adQ2w~WE#LU zPwQzb^&lY0TWCMlR@%tziwLnx$wDz^T_ZnV#AwmkoM5@l6V5j&BOme8H9q#J#l<4bQD&2^F zx8Ef$>Zym#>28UBLpMo&cG&TEHqp=z(hJsKey$iw)_QkctXnomMgjC{W-^w7JaX*a z&;H4ltf>ZZN?#M3WR(&##aIQ#~0*u&V+zyNWdS-|$}VMFm` zs{!QUU4KMu{7`;YoYkoDn+0gSkWc&L-R=3OkR?8g5SX0=nAV5(*qJHq-av5=!XRV* zWY*%{F!{Mb$rZcW`83ky)|vZ(3dOTd7Br<=5}3R|T!TRw)lep6zbPv{wzocYRioqC zj392U^?qhRD?PZP0s4^``q=ExZ>P0WwgFMlf zYM>;FD-F*s@r{daB@}q%t~SdBaHzfNayNuH9r{pxZ?#|TduQLG-~9Dr{-V4Xr)e~@ zUip^z&e^YvHJYT`&`pE%&@9jNUX8gtcg4>833bj7QtO~Jq!yk;z)`=>{R5dnhAc@L zvk;LyH+dm?)j!7L=RN#~?bbfp<6xSGT2;N)njMMr0_IgPoX|VHkd&m8gkdgvrD>wZ zL*WDh*}a%@li}t*+Aft>9G_km%lUw~UhFkOV$JXb<_Oy27&!E)Tl6-}=!3Qz3*dQ2 z-9gA5dyDzy?M$J??vti)%hu7q8v773o2#u|@hl+NKK<|$tyh|ju{asWuLDR$93W<4 z)V$?A2JPtx=YH?hcA6!ELB-vxuWvJ#Ru$nwWHF`}?*Eb!e+J$?F5VJrwC>-mb>gEWY$AulQC$Ftgi=CfH zV)ENS+g6)PUhB+FR|8N%T`&Rwr?C$0CzPsRN zlw_M~lsdKAo`;FyG2_bxOI^18K-P^JZ1B>|azR0wraf|Zcay`i+b+PJ=TV{O=KN45 z(&+y*dyexN(BJ9n*hLsZct<{~rFp;keY5))j=PmsLf_t_`@zd-`g(ZEw_a0R0dM}5 zEUHOi>RGK9ggy^9bhBf#+>G8W27y0F`S+w>mpRz@Lf+Ib zEXSeTuP2`xC~akUsdFhGzU1TqKHRj4l&{KA+}e=YoQ?4U7jM+4l3jB>gr|3)RS==A zbw?-B9-O$sW%B_D8LijNI!P1u)NylW%kf!!Iq<1VX#x%kaCajY-yTK#hYMU@Kgl%?|i6UTNsCV)My&9^~>k4+E2KuE~^Z zOY?{G@zC3L5J_*=LX7g(rEGMXs_wV9vf#%W1uI@8-Y_G(nrYgR1#j`T1C@$#*GHV~ zX{FS1YCzO9!6$W{arCF0&a{qNjStpvl2wX;5sfTy^KM%D;~CwgMF-ckTB6x2Umt}pWhQ- z2tFB}*8CxGj*}_0)fN2IBraWIRNCLE)iai0p_a_=Fe6fbYg`k1Db6gJ>_Z|dT!>;{h|ktJ$@ zl;(VD+p72Lp4>N@HG8SrzC;e?+3(9m{Bo1PfdIB9upkq}@*(htS*$K`183~Ihl#7n z=Rmmq%^E$}D+^$!gcdD%6pEIjHTv%v={kTe`mMp#wfQUQ3CgF{ului+W%qu?BaOMp zW>cl`YVAI8&9Tm{=lg;zy>5TleMu(;7L(r5d6#)m8yDz9n)_{hSH8khUuTRL$BnGY z2P9=tOu81E8w!m-j{YX>7rbMqf4ps|iT*N^teS8~#Wty&7=o_Ja4;Na^P>~3VLuHO0%@Np&Lfd(^keGd{t&3k(8R{rRoanY4 zE9WsY{%7|5k||mCSuk}5ar=N*gL}<_+!t?ap&67Sv8Xjm@pJP;TYX|CrY}io*ad7Q z!z?L#x#quceYz~R=*cp*lcu~kuG~+P?HfpnGuR&u5%Oha$@AHa1Y}j+##?x!;0DX> zWLVOV@ui>;se&~nQ{D!u&&}sgLiCi{cW;|hAuq!Y-xWCbV1JYW7bl}(#)~Bft{>`l zkps1aPFg@B7SN{$8yO#dOAdB{!Z|NJVR-_%I%oLPNnJx%U1_rE%dU6}6}pZ(DRn2} zD`w~#O1vM2w0BhQ>B;IHaEMe3!W~~!UfXdwt_7`SfZeg%J zHXx}=B1O+~Sn8tFN^zlE9EYX5y^ zH4A*;59%=b{cHDbG(QWounSE9OI*uxzR4N0ve0$A zTY)AaGeoRGB98`e;Meuk-~g(H`u2GXuhOQ37T^4Hp7C`rV+Hv^MQ0{rh4g{orih)^ z&F`eA89BcJBy>;E2>du4J}+f&9Lm3by$39RzuZnF;TU)gT?t-RAEB6tmueFi3-eZ% z zMwl`CqG>#x$LU7Elg!2mi%eGx^)>K#t#;_`#yO=!)AHc1Ujp!!n9s~+_H^BL;b+e6 z>`0j;3o=Rmy#%&Q0;7i`y2k{r2G~0O>W%XMV<`8GHqaC^)rzs44%xP>VGgxC-`zZt zUhslxHwCO5!>R^QADk&&i6BmtZh*Uiyv9CFAGsR*#-y?>gVk>WOc=99Pt)_1>!;JpZD8Orq3U2Dpf{ zT2r!+$vRpQJ4HM~w3j3FueYWoCq{N(Csaoie$8t0I^Vk_xUvO(n1JmZ76zLwACh04 zF?l=34jrD^M!&hgRJ_`PMRX0tr*Efi4^1qP4EmlfUK)9g@cyMx_tjWEm`f+Am}7Bs zF7cMR>{Vk~?TY8G07Lz552hwangbf%U9hL5Zy(hZ9+4jpu^fll*m7VD%lvjY`JL7A z3F>uw7j*q_Qr)<0fxZiR4|z4$a`3l?e`NU}t6j3W)#0sqg^@?(QtPCsFId#`Z2a7) zi6d)8EYN>c7&%K+yw&flbKy8k{M^N1uI%+8-Y7ZaXmW$YvWVyT#nxPn_L=)+ah3m@ z^UK4C^mMDE3GD_B*IXzgx(tnj2@TGOk*N3C*45NNm)#Ke=52fz*16Ge zBZ}wwxcAk@)*Q?A>YkVDdixxdnTmqHVtMCNtKU^do8O+O>k|JcPA~Qq*2k-KhJ(49 z84e?;*W;&m@9@p;$exGRwuUgYHnwGw=lMel*}bbkR~z|HZH+XezP{d#m*B&faY7tM z9u8np-y<>58rKq;sf$*@50I;R-rnDdLI-g3*>&b=N9dc=OZBbx*3;SebZwoCRyT*X z^lcdToz}JQD(va%vSy|NXx!?Q55}y~w@8fT$XfC^I(%6hmd?>6yJ-+M`I_i_l_=5YtNaD1^vkjGPosITTtwR@J0%odiyFYFyG!kqzzLFcx@d-zxp zdFlPut>V>qOWRocoiMIf{^tGy|5xxL@wLET31VLA50(4^l_RSrZCw%M$FQM^M}nE} z6u*&O&0k$^4V`ZvMdY-4Uj29{8nBqoe=uiv{10`_T}X#@*dKoLtNeBVH+f$V#cO*X z*ByC!#jRfKuo9s*GX7NnP*G! zWU{0#r<9I`@U0;rEA!pnGFEw?%^7?3jXCBKXSMooRvPO4d%9|^VYTC(%D6x6&)=ed zJWII(7&*VWkO+&F=24spzBBK9{%D?de{M^Zudbt;!!2zX7A+N%UCP-LEUt`7>=u*J z*r6Z7G7+{d?gVwXXhJP;jQ=fjCb_UD&w|H@6DonKmww!dDjxJ@RW7yCdA^8B&6}D< zKRiqEJv~n#{;QLId5exg+|lTrdAtJbcWu+(2x-5V+ofjD>nU>Pw7w>81^7ZRr*1T~ zK6AxsP}>?RcYYHTh(@Z5Z+eWd?Xfo!v^Ut+zq^~KZv=jUzI|BJmuzghck^~UD=wUv zIA8Oz^3$50Wy=4m=;xj$B>ds^$YzUrXDxWog7US%&d=6m?o6Zh!g&#)S*z(9#Ex|| zsL$f*Hd2F$V3?x)k$1v)=OZQjYWLAn<=jINYW_u1u#nm^-CYn^ARt5kW!@<_Y3vqu zsb_J-OgZQ@5abC=s`bHcHZ9nw;q7zvIijLh%}-S};aqG?coJ>B+HkMxK-mzp>9l~2 Kag4E*5&s`voZJKe diff --git a/py-modindex.html b/py-modindex.html index 823a276528..f11325e8ec 100644 --- a/py-modindex.html +++ b/py-modindex.html @@ -564,11 +564,6 @@

    Python Module Index

        darts.models.forecasting.baselines - - -     - darts.models.forecasting.block_rnn_model -     @@ -659,11 +654,6 @@

    Python Module Index

        darts.models.forecasting.regression_model - - -     - darts.models.forecasting.rnn_model -     diff --git a/quickstart/00-quickstart.html b/quickstart/00-quickstart.html index 465d0b1a5e..1d51c2ee3f 100644 --- a/quickstart/00-quickstart.html +++ b/quickstart/00-quickstart.html @@ -723,7 +723,7 @@

    Some TimeSeries

    l)Z6i1tFjgM_A2($$UTEAwnm7Evoa7mO$ZO4DH_4cP=K4WyB!;K^WW-%Dle zK5BBZiKJJ<73!0<^HwLuAW9C6kyV9>G%|D<@4n1K51^>H%K2ByuhDD$a(CPBx#3>t z((CR~*J`=+)vb}92H0LbQX7-ARvFddCpMKIt~PGUN3#oa!|B$3m2nk&}$=WEZ zbaj_)JlI{BL(8*bSwERxCOEmjqS||%*u0*39n$*95Jc9fr)FKlbk7Jz(de4d+Xbf; zOJGi&Q7#O&cz5QOIkGaX)cBa%qw@F4*u(pLQHGxr9aOP4e~wS@pqCpIFm#&G%ctzU zo8K8`{!Js;P zJ#$VdbK)#(=tO>qtx`|y>-{*myPGL+@_mx45wY)=vc9&FBbTG!X^sDPF~gEGCP-sE zvglm&2*(hOl=@&tk*+jeR)u_-Z7rQE3!&VGTcxo}6zu|PkpriO=2U(te7P&e zksDWK-Kq4?K_TYe#$=T(tNza#i}MHe%JyUP<&D8?JC2&pW8Y;4lMH(eefWZ&w)8Re zX1LT^=_NMwD=4Z}HqA;;hp`vz$!&8+6VGj`Nb#aA#Na$#&XBr~_xb;~KIz$t6$|mp zJlL4~Ma47O0{F%VZt|6%O?Zkr3%~xxh4%qHe_&|z=wrD>)Kyp{p|ZK&{2ZGa)xQiJ z>cVl1TF!H=gQX@=9$%$ly2>_AxW*zsY=#4?i3Sh`N3Lw4W4^{A1L?ZFr(Pe2+14)s z>o&o1dhaFl(u6j@djzPnnswa;)sbzxE0oHRbInd`n-Wp6TFl;=%ay7J4MkmH^pf{v zoMByBy3gR(eU z96w_T&8q;Skt)V>2G=@+(VNgq`Zlc85npk?pf2Z>BBaeNWq&iO?$UFZ!GZ#{Z$f5Rsp)C!uS#+@XU0G}ahaXQ*Xn|LPHw#Wkf@`}&@Db)i!o+_p^BuK~%hc>K z_5KWkkVT4bS123Xuwx~0^RZTSCkuFM^3f2mEX_LY`y!CGr0?oky_w*;?19LK`tk+k z1KjctMawXE-arE>@#W=LH!kfoqlSma80%c}4VxOX>!UZ+CcIW%$KK+t&P=d0v=o_s zz;9rw3+w$bP4zziQJu;4lI%(f^#z3Jkq3`^G5idARTR6`Bi!t`m|r9OTx9H`6KXd* zxad7n_$77dT2HJj2gs=`BA?vJ_Fuy`BWz;H+|oyu>5IXN+%i|CG&*W=c(6qlWF&MS zpfe0ge;6q<2duiK&|Yk)m;b2sV8AJ(^KkXK#@CQ=A~Ntlt1z$E&SEu)F6Ti>z&+WOBrQdJY54$HZO9XnG{FNUM4+I6t8Sf-sb$mk4%n=3*LO_r+~wvJRPwZIuK}pGsjVp$1s1t@G~MXPp>S^Nc_1LhhN9iugp`@YG>lRmuhe}uy`9r zUU8+x--t1Q#_GodJTFiOkP1P~{=yq(PkYJeyBVa!1S%ge?6 zMNMk$a>BoKOz7eK5@6u(Mt5BDi%_+$(X~|AJvxU-nuY8Cx!d{G(Hg_THTzl;o5-f% zWmOPX`Ao-Qjmv< z5;12YSqJeQ$hfEh|BvXIz<4j+_GM-`W~2>KG5>`1S7su-OwByZ5Izh7JBB28l^G`|A2r? z5@-HlbnR*P6+%$gt&iiTCQTuW)BHAq(oBqNZN__qZTUrv|9Bx0fVMZF2h0U{w;3F@ z0C``GvCio`Z}NogYH9~d>m6{=wz#o&vCY5V#h#bKf9XbYp`6_plU=>ES|BQ(2lan6 z4W0wh+ES34O|Q0VrVVG{P5idU&|*owa=0{Utb}pa!p0d-s79<+#oC z8MXcSNBu3C6+!Y3Ar=J(_%RN``1j1tm;Wd`Tg=R)!8v;MKR$AV)JsR!!_?ACB!0ok z(5s95A{la06YW&J>c}tPXTlGb*TDP=yYJsuH<1o(gIg{GuSG|Ohmi9zb`9R~2D*^3 z$5z6_@5zS0NCiW9*2$HPAYl;*qK)~6@BITlqs%UK<@_iIOFu}y+72JKZ#xw9)n>@S zr>4NySA)w818-1f2cQHSiB09#fK(5RbOv7Zl6VR*pn+eYrd$Tr-cIWpaqz&ATd@g* z|7}L@g+OJ)B)4?+NPjjcwU=tV z(H9EprKym+v0u0)@7PyYVfgOVe*#8lz;*20 z{)s43)aH)IsKQ$<@gRWXykVGfP{{mYsCo#9b~q7%`+5PcoIpZRmw4ISq-myYSwpC_ zCDZ=|kh*KL%5STY3$xk*aa9Z}{eo<2^U>bsB`)G?M2dl-rBpl>jTb!7STT{40Eh6o zh~fX`_yWHpuHirC6!1e7!i`g^Hveg#DFa&|OTQze#G))t-Osh?w2$3fV#GbJ8!fV+ zf{gLYO})0=E&9ZFYFqETT$1-J5WdTU1JjMDe!}P**@p?@j|9s|O|@Li!GyZOuf~T5 z&S+QG+h!VyHJf4hnb8)q(1iZX03MUd4%_Mo%x2*4+?p7=Rs%Qwr=60E8Q9Y}fPj}q zq-*;8(xQGi(%Aspc?lfNNsItqYfpY3b7o``OmK4?*x;FT+r}3g;lFFv92BcGrL_^D ztO$^OHt<+88N|Bp7T?{^fs{yhWZDD=1x%aM!vt?>)`kf7|1A1kFB$(>g%4R>@CBZk zX6!WQXW7>?ZrVrWJ-++I5K$xlhv}DwpATdOeFzW%tONHf8~%1+V10ELIsBoiD7kIi zmvJkh{ShMs?!UL6gB~$y_%Cf*PEjqZ$<`62Lv9p0GQEK%vT>Sgl$hq4?+^ACc^hR0 z%Z#A!zSus^bmI|7ze=Qys|(61d|J%|Y27YggsetdXKTIN(m1DfscUslSN5?1T-RP# zZIiSbRaGB?hy=D^XHN@qOY^HMPjzF0VlNfEBAps z;L`oQY$mDMxX@d9reaE542XIf?2$mhtrO zgMsB&@-%_V>p~~}WPQd9#}$xL^4wTcit^vtUjA9p&wlCAPbE6p$f};u!D2x#!NzyYhF7ENK~o zeK>7#2=+s60V+{Jg`8fEI(58GK*%nNwW^<*aY+(C#;gZD{$fa7Mk}Y%G{_Ju#rjeU zN~|wo@CzMhlXHO9-gXQyo`1P!v{;YnTa3X_+Xlzy!V>!@ubb2bEg5w%u&7_9SLxRB zJjT6IE9-QoQmp3~n4enO*WCrUv!F}zXB`$yu}w2UmJ5k$VZ;#SP63Y z2zl)Aq46&BK=Se~uY;d`iEQz%ny4=Q16vEhriq`T&QofiJRBV@PRBr+EZC;{L&Pc? zTciFmc$R;su-^5~f3ndaX|wka>75%-hPb7?d}qC&rRJVcSsx_}a$!Pgk7WMz zTOX`Y+EfOZYhv&GUK{jOno?vnt~<{2`HkBg9xBTy$zgY|ug$?)ovP)AeZmDao1K@# zURc-z^u!2FW>&WS<&JkCfINe!MfJwIu+-^0N``*C%?^Etai>-Nh#z(7E8 z2GPyZWcN=QyKwi`AWNA26C#iGwf+eCDd4wTv0I~fa2Lnq2{H|{ZAgSAT8L7=e|*Eh zdjo{p7I@)0V`AsH^_J=>q9GPM3b0#qI0kL&XeCycYn9%Mt&0v)WY^%fA`mb9-sO#z zU6q9ojClq2^>wBq0Zxt`RtNNsMO%=GJBu98agfzF+oS8?XMK`KiMFWy5s8TS5qi;1 zZn4j7jvZ=Z_5o6pJ)nv&37pRs5T)<*Y2(M7>AUELcqEsv!C!U{*LmDbhqh&ktL#t9t3kG-i z62(<8eYl>QQO#$$NG~I8Sv0n5*5dC9GRBvy>$<3B&(?bmD~_%@isR0@wqaPyS%)wVg?*gzr1ThY92#nrnbF&B4YFU*(F3Zi zzQb=6D) zWNdB!`5_2CI||xH`i!=Xm-ycgK|IlzKxIN8a13o4!!SpsFjXjV#N5S^GwWo# zCj_j7Wq50&W1C+g6UcnG6~b|aID3lZv~$sE*2IuE&n4DbPV&hHFOUOY!MNBM?y{xY@!HS zAseDUNxT$rc6-ggeNDAR^^dzA*vDfL%q`*efb;W4&Wvn|4PnK-4CT8dDxcy+=^X-U zB=V&wzMk8AN41`Yg@heNGp;Mf_bj>clXbLE^1~B+M*KVoyyp(q&jayt*wX*ua0?g4 z0`%|mAGCNs9v<_p#=q5$86rb+&CuR;^!t$|Cb6t;QrQ0=rrt5I&gP5Pj&0jE8>ev^ zvvHFhvvJeLwr$%^!v>9Q+fHM)J@@YOKks|KWiosA9;{jG`mMQvac~fE>bzilxWQd< zFh90s*!{LPw6*24?B4zRZ0}5Ea|l1zu=DTv?~D8HcTb$!te{q(oY7N_rz#Tz1azuKf>VD%#55U+tnS(^H z+xzn;z8fyoGt$Y~?Kp!%iQ9tO0bi^!o?<|H{7EMV&hth4h=-TcQ58eR;>D^H748feTBJyd{4a6VT@`Cx5qFQ^&3 zxsu`Jx5zRqCQs)im{Mht{wgb9Z`D1MK0T8_dD4KF7sAt}495 ztmr$GBjy49T3n4y=@(Ru2y*n;mhXkJl>A*$F(NTe4!BS%I<+@@`{GTFYT}TG(d-@p zLn%&7_N$s^@WUp8O$w4R8AH8F8^o{GrIX=-Ev%t3!B)V^SAm#xw7Mk}qt%huU77QV zw-P{z`M`)u-|&{Z9rixnB?-uR>$F3(@(+9W8Xx$bbq(INrsODW-7c*I5(Xm1(_)s8P7B+9 zAo{DH$f?uuK!1$>@Y2Q!4(N^vVedZHvqx093Sa9BlNzVD9YKiy|eBePF#0S@}Pz zX$vO?UJR>D4n`Cz5&rP}RIEQGxc?}lK!^Aq4?oAPCCo?x8;otdmfxK}=YRSbR9i}1 zb}rL35L}vFz1H@+qv^Rvsyea4isBI45gDZ-WZVzmN&hx*>E||S59(cynqm{o&*)xr zFQOD3FB2KGH|gS-WHPR>4XpKv?_T)FaU7C__x)zu&v{McD)Et1KQE`GU9W;!1P?4L zo(Zmj!6}CfJD9+Bd*cp7R|ffYlS!fs`}8$j(W0@`S4kx$V)`Fa6v%WvUOlllCs?)rz|>sG#Wb%?v8PRFqqReOhA3x)8^VYE30| zM);>8Srk=?XONFaShuRuz=8-!SRQfMUW{b*5s1e+S_rmC!~l389#E9X`=AVZD2Cf# z#l5GEVmV3n?DqOYHvc{uBcQCxi7`L$1!bG&|TcuJTI|^~Z6B z``5wRtFJH3Ng)PqS#4l{GqPX4+3ROvQ3FJU8RNghS9#BT@3G9g|MS4kLQDlJFRKEo zJY4fv($Q(SChR{ckeo9ZkA;98LQiYi(yg*fF*?>faUjt%-eD;fS(@72<@5YKw!8ax z-L22-($G?FXDqvD*SEhbuWM(%pQk-3a$APG>()lsLh-MR9Da3BA2uRRsPs5NCCFxIq%v3jpj8^Id(C9!f;=om#QfMiHV)u%dYa}| z0fbl`r6kKc@7Qu`8q1DhG-#L3-SJaOdvo6I=fC`eFNEX1!Eo;QU?s|#{0{ynsb{>L zUU5tlVI^tI;e>C#CGy^D(lCl#BNPq&mPwqz#TMKk*Ke_rLKV;q$qsSA-=#wH_N^M@ zJb0wDkqW!CCWNFP<39}nvXv`64n23A8Q&E9BgDN|KSXh2EPU?qYr`E1S_Il&?9JY)Nfb%!)b*~H zg-zC!KlYk;NDz#idS*3EkeAU~S2G-5|AGmbsLa*(G>P6dAA1>IQgA@QPu0v5xBSyQ zhNtmDKLul?Xy-gsHseiUYCG?k!;meJLf!)$731FLJ4BvtZ^BG3b*1J-D7IMXvd$D&Ho zF`f6TK=0;P<#~JlQtSn_j#0i3944KXN#Rps>7}KWA-i&aR~EK*+{(dY@hjj9l;!t*!wdYReel6#f4{9mq8>bv?wVY`(yUU1ArB2H;YSx+ZS#6RaijsZ2(@B{H_d$yJ<8z z27q$|WyU8V>Nx^YnN#JvBWk{Zh*T|co7(tivxC!r)fUAAP)f+SV_cxhFCiv@7AUIXfp^_zc%_8S`F{dO8$xP@77{4 zq`fn;_W*P&meM%t`VUn@s~4cs1-h0CJlgO>8T)hKc#;u74Z74E;?`2*^@-z+q5c&o z5|}x<2G+Xz?3f|YzWEB<%s{*L z_p+^>|HbyGZ(3Z(W*Do;rNaY{8jnX*?T-?8**DxXW>NgW{-YC_{~iOi#S^jZrY2!! zgpLlU`Tl+xY*kwFRDJ1T6xbM;dmFD`y;9Zax?KSYphFZ9nL6T-mpCa6HX%J-xjl}e zKWSEABTGiF7rWd(`mr1xa0+Kd4QSuQF(rcaMh^ZV&flNZk3P9g!?*3vkOFtfBcRJM zV!yqCZjk6R!v_J^k&yliE5!p7z9=_g@Ly_$s)MWx4EQJ~j6$%wo*mY)@0Y@S)ExSN zv{8V2f>BytPTnlA4?P%n=)OB2xEe_Jmt@lXLFp`(`UFk`rPWcPIGmRA>~eUZ&(FCr zYp=D=DSPCn_HE+lcF|1U=nwBUZPf@Cq>kMEmH`j_~u41{+Gb`gsr6fUts*d z35>ak4`Toos6Urk;*4w!4tfv3lqQu@QD&x4tw5N}Q2u5q!C*hfDpiqcbMOS_g&upU zJ*m z(}{j*47Z#(2b`2O|MC|VQDAMPW|I3U;Vqoy6^s)}%dv&W@hs1?KnRqdKXPh+Z~4me z!MTCZ>J=Cp19_>&@{5GXLeyO+SV!TucPNWra!A|ql{?Go-PD?S|3jx>S1yo?ShUAx z6vtzqkPg4|xdvJMach{L93!EcThiI5emJUK?*tJTPnmb@d*Hm|2;PPhY7Zx>{2rmS zt0G}xyGH*4&`{!hYtVK*ELW$;%=vaZbbpJ{L)64ieN?t_hiRd&;tD{y^dw(<(wKtgGDfEHj{1@E+vUHweH~afj{=5N`1q1e`8(^ubME@g;Yi@D9 zJ;2A8^8jQK-8km$uRrkrkcCvL!!6;4>j_+g-c-;mm@F2erzQ`R%XA9yl9E&DmTjdmi(*-f0@Xcpr9$(p=NX z<-Z<@5zsh~3xU*>n{&^w;~8D z*bP+-MiF6upI~K6#$I>ir3oNPi|QAr^4H-sN*vD>DUhss6>E}ank4k6Fv7dF#w(Pa z0ZF(4yOCtC&ENy;x>DbdUjR)+pTr7P(SUfWXl94S=f8h!)K zX6{JC)&n4Ml|{px>FCG}GHmeGbUB^U4MlkuWijAaUJNsZCC z-+CV1jq-f`OtGGAE3JEOZ5!Be5QZ>_40m{JK?Rra~`gq8E1=>NVS20Zt zL2N;Jv`UjKl>8ljp!q{aSXpOG+)+x;I`2*-*ZQzZ^tcd4ftlG=^o~y{XF&E3j+pfU zHS^_%+MLUmf7{2{>nPOlRQ6G`apnd{LK@J0up{MG$Xxls85!rw<@E5AdIskMfUXGf zhHO9cMm-OJw35KX0aBaad5;^|Py}@mhmoS8`194o9S zwCtk=f7A0_4i-ys)wy-|ho=8Bm)N?0R2=(rKX59)in>DmfXp7=a95^p2=q(_*kHbF z>Vr#eZ-UBkHLGG*6u#B&7UO|`VLq_&cw7=U#0nXR};GFpb$5#9U2+BNjF2ve%tsTQpIM{9* zWuZ5qm7;$InWI2;1p_@VeR;wR&5#)J%la@!6B}STM~W%O1V}EVlGvy~3G##CRfd(| zloZarI-aCqBkwK)5m)&g4I_4je}xRq?{xyO{^OVH&t)w*floLYe8d$EYDlSQ8Z*yQ7O_TQz29emM6&-KMPvI5VPzeqU*^4V*#r(rolB1UhX@cbeGm zz?L2X<65~}??**Fp)HLCpUA|MW%W-hAo|WBq4|*Y^Ql!udqg6u2bJE_*D&=h&7o?#6@vZn{G|36(U zctwHFsOTm4`RW6 zbiw{(PFZ&B-zfk<7c_r|t-#Sa8LJ-c3QQM>f#)H1)W9^&DX9EM7uTqEyMkAZk;=yh zvA@K0h5-4ZKC*p;kccn1Va5ZP$gE;WYTbM!|1PRo@ii`XmU_-HTL8OvAWY#;&rxOZ z#ZCORJ#>MJErcvbKq8q`?5A=LAC=t!njNIoIx%7Jo)l1(h)3b?F&vn*wZZe6)(GIm z86xj4rw{%<_gC(v_0}c(cFMGYP0MO9USxjQZ`zymph}y(aX4+O1R^PITJl*B)qOt? z&~t1>mDklD@k7gLV?Z)Gsq=jVg?T#8j=S01g42IQUlMy%8dSV*nI`i|x}PqICdKod zQ|0%~O-V*>4&a%a8k|==LwS^UspzwkQh)?vle+qp#B6tNG}wTdK1xgQaZ5M&!%+9X z>M9BuF4HRKmd$Rt0R*ASRkI+tpveQ||7PVRFG9r) z7o3|fhB4!#K)dh+(k?8_LA=4yfWiuL#?YXB4`(V;BK7_2a4wci%H1ds`_vIZsWiR? znSQhX3Sj_Wu>G9{qPzO}|Hl{Ya#mo0%}86SG2D6f4$3TX)&(0eRn-K+!5_AL1Gm1q zdQ{2fq`UeaIGCbMAy|EeP=*$Ga2FcALw@wTKBo1%i<1T?Sk#}x8VU_msarTOuQJXl zm$}=^3BLj$t=flx?j?ri5l8fkp}=&MV8xpW92M2%d!jpcqQSUJFM{s#;qRxyBLFJO zlXyJ)5?GtTDcaeQQB!q{iJ)Kqgz7wB8|>EVB1m$LM|ra9MXY>#GpYhDBG2k}aH~^7l?{#_MH zL7ngx+s6>M%dpiUHN0O`42cDApetU!z2w%+TLiRG(w`bA?cPh4Ot4_Uri=@^= zplSu}yDEp>nDln?*vHd)D{}I0Yt714h?ZiiS_MspHsTSh`5Jjv%&JN;7W@%QMSQ4e zotyHHN6p7}BpfZSvP%NPH~gp%KDP}mi|+iVNDv`HTmzt0`Tda^RJ-+f7sQ$^sg{-b z^^Ed-@)ig*fuvlXLwWJSV|4H(8QtpIC5An$X7c1(xZ#yBbiPJ zDAuqZLqBv?yYC3ug+i!3M?`4Waj~2j`-IDsgPL`(o}eHbpmLi(9BgBHaBAJ7!Mg>s z&~y^!dw$&_rO3h!E9UCu-NPW5MY>z$TA%MmPEW1p0TJd8?Iw7BXuZTzGmBC_;oCt$ zh%lA6UXPXi1li-LNSEySD~Owd0WXP+`Fa6Q2b;HtSIhmnV}tU?Fcjlh^cTxdIORgG zH0YlLp>uyFB#7%WKGZzK z{WN{U)9i05vWH{6HN)LiuPGd-=s0n<_DaFwss@u4*!U=LsxA+9%K7n8L0Czc|9=3Phzs3x(`E7hD$WVSllgN3F7!1hmr{bT>cnRoS z*_W`fZJ?@qS<7F)*R-e-j|S}A4C84%F2eHS+|*+`n7DlwsNjseCCVRIYq5~ z?{J#ScVkJAnwy^X$+z4$ZV0o0@4ANa{LB4M&l6G-9DzgD=GYqbJgQip!JMXDiD@pM03*OCzJX47OmDhEVHV)FDa?+jJ1d)T`Xb|e%Z7# z`t&IC(ARg6)}NN-3S(&STIu_&yH=9g<&Id3X4UJ?*uF4j7$R$Wl>2AWx~9-f=t^RE zd4zMP{uET04=`Coh&810YigNnD4-r{hNn+sx23G@&@8w1u68`3MNp(YXHoHxFhTg{ zq1%{1Av8AMAisi>U?{_KKQZZCK;{1qzBm=%<+`aciRHL5`WFHnlur5un+Vo`%$62Py#uYUvqi$2(1O(-((H&LsUl*GzIurYLzWY* zuRNH|06q@pc6$``gpy|Mr{t$Sg>Y?`XBMD}C-yxTP9@-v==@+>Wif=}0ou>DoD^?F zGgd853s~_d-kf8NQ2j`k*3VV`0!!;tt1$MwlaP0B93+($52X`JyBG!$=n`e=+lH97 zycLii?>Jb_Yz|V57kBZ*At}<&q8t5Wb6W!KiG0+a_=QBUuB$F$Xc}6qo3_& z@P)^Y3W8@^OQb4?1!Rn8=cY)b;}KVRtKu@asqS8d-0p!FchFxa;E#d2_N89yhhtI? z#Y+A3>nTLdsPKSgaJ{BBsr|=EYf*9*%@#pFX3oE~!&9D{C*@U(R!)CaF4xBf+fpIU zRV38+a+9206L=xyPPpE+&12x_D|1H_DD$4i7$}#Y=$7gRW42f9Br0HITA%ZHYGthG z>NvOMRW@WFV(R%+u3=x$BqW6~siTyU^IpW;J3H{!+b4P;Bhs=^=a>>07}-q|cG)GU z(@b$7QGC=Ar%$D*Nc5O9>r=isxtC<~*8DO%*VKnpcK?!}DoT}bMo3iMw0zsTKP#@@ zB{D&oSEXNw?V(Fe2a~&lB}G{iqQa&m#d|Pk7Z5Sg+)kM)Byn?RO;!EnEOL7PMne8X zREgXV#t<^gz^yFou(YjFV{U41Rsr7n_ivPRgg&pt&11SdxS}_tphD}ni`SA&51UFT zoYoLsw!9V04U}0UP@Wj?;wbc4&B&m2w_K1Qw@?xsYXQTG^hT{B9@s8xBY z6eORmgT1%*)m6T74)Ux_SMs=e7NqxQdero>Jx!m5TD;hw>mqfzNqwj9plNwf4BdqE zg82Mn#NDjx%wvAd-rJ~%G4f^tUaQDw_-~?b_}uIGc(EnY!~?7^Z`-f#=UnMwhyvA< z`{MKaxlr`0F~fVMEKVvt@9Vjrg5w6Be0&3@75l??yYnR_QFdXvZ-Ml5EZaei?!{&lAEFBI$?ul4F`T!}AZ^GZXK2WQBO3ybnlAg;{d$5kBb1Wvu z=vOKEdq%b&oU)&AMwTsoewa6#vOj?jo4o(_t=C#cC=IyhEWD50yWvpPtWb`E@2+n! zj1&~g7v%{>y76XBThIwkc@D(>O!Mcvv>_|$VkAt@v$noq9%?hu&k`tiM-xl)+X{rr z83YD=cuOs9DSJryKwkn~9(yt#m^p~;v!h@S<>?!727EV(uiq|l_pdU(|tz9ypPc_d@UazWFa-tOfhN0I} zz_f{ICAxSws^(aMe_tfXP^o4^j|xNoQJkYJw2`QOuusBK`RE{I6yuB&ky#<=Xi2Qf z3bE6NjYBH>TRLZoV1Qer&tesA{5M8*Z21h+8WquiJS=w75-x>d!$lRspcFWE*-<89 z=H>fFG1t*~DJI*0t!bKp)_AKxYrRDX+~jS6*#%uaznZc4BbH$~@^b{vpAN%C`CNH( z@bd89_L$D-ru~~7J+D8BC?IC`5Tw5Q;q`lEzR*%06@LGmRb@jEulaHaYLh^}y%b5N z&uS_?o{rOc%ZBYaAY5XzPZNedwL0TXjJtzdRs`w`r_|LEz zlr+8&^GuPyQ!uphFl2V&#R@`N9SBWfsj6wcAxJ91pDiYqKxndk@V%wM-=-j3l`c7H zJ>$~r@XmC<)?1|X(0If#&R`#%>{QFWE1*G7@X_bY`HXH`f}k!6nU4MWI_TYgMpa_w zO(W(SpO}^wu)c_chZ}x>PPSOjF7AipboHN*oZ}6ewWexkJ}leO^~IhQpna!@EbHMt zJW4GPrUDtfSXHv{B+M7sm)?CR2(Pn|y(D1Z^IAYfQG&4jqzCLO22i1xF}lYCxpYXZ zl>s}^;V(Rf@ohqQdIA#ZFHLJ`{E)a~HD#;@gs#8BFMnSMtqGau=4~y|sva49PgRDn z{h}A_A?Uyff`@2$Z@zw!fSQ)&Y`9MWK(a4_bv{oLW1n|4n4Z`+_#;{1n z!0*!74DY3IYEjIBzbgOVSD_v{?mJ<4=?(9ph%N1tX^_FEBig!WeZjZ2KvV<@SR(FO zWSbdg)T4V8C*PBYRvzjsA}ES6;{;|>WUVA?Mg-d!-xIrMK^|wUn*yKVHfD`&yfg`B zp&Z_Wa5iCzor5umbTFBM;C9c#Th~)e?6}GV4?g;NaLy*0Dv+V-hIEhG=Z@-9{&zj2u<0r+P$|&Ko((V{NIVUi5mJoo`&>vZ98}W81Z9lKcSKTc(8vQ;}CC!x+Vb5v7UhpGP!l)32uh+spqE8--1xYKSJr z6(hz788V;p*GpSZ5>}t(pq?ti?8J*MbRu3~=?4{1S!|o=bC|m1lj|}P8l{Ksd-J#k z>?aayWYs9p(iGGTqXw~f!GEpkz^(Iu);7A5aZCXR!utopkzJ|e@Ul* zS?9pzA@bAv6S1s*GmzL`_`!*#=fQHf2Z%{SEWP!97|r`Oj}d1L)wZ9ER!ZSj(^s55 zJ{ckeE4~pG4{hHAH_xgwOH8lL^|dFfetaUJ++BRl$^~ArXLz2)Y6hc-b*-IZT+71Z zXL3TG-QqZ;q$(FDazPV}G1DTNRb#xnu4*&GaYloqSa`PLSO5;J_+nEuv`Lh?7GBmk za)nH02M9`w&irSrKk&rVe%e$5E_wuuXjrAeI5yqyDU9N(RdgTJ8^6kt1&kvEC~Jtv zGZrX}QkHz9u#>Myi3yuq#CxFWx?Zq#%e?)xxy5z9vrwvj^9g zc}wyhhEx8qCQbkMk8)-!HJF|Q_ODf-<#GiAl3~7^W+@aQXxyKZ`B9YgMW)NW2!w8D zOoTVQ#VA6OtUo8~(+37v@oLb96+jK60TQI-~4FZ+iRxm8vYISV#~ zkcQP5f3K*cG*Vfq<4$;Yo@GPqjIoAT%MN;-B`U<&r-V7L7~U-Im)lg!U^(NZsf>LbDZmC4YqM z8kaJP=P7*`(9D$MC8EZB)yZXWSd&(0feTC0*?-;q8 z>m9lPE@VHN7-YS^8dUt;jM%xD6h_C#j~D_U3H#B+;p?esf`+XbDBTv-!!~U6!moE9m{w%?#02u4Z z4R{Bhy}t>6A;QFqJ2uA9ugt#^eZCI-K5tFXm`632_RhHnxmEFJ787@J2wn`dgf7Y>nC^Iax^`n!%U8*uufTN?Uw^s0H?^&s zz1SLDhBS&hC3jhD8hBrUQ9}r$UJk)oPOUi;>^#Cks^w4cDOgG2Bo@|_X*5@W8~(fp z)j0FENWh>PZriVeB0!BMjhk=RKf4WjF{7Mg$*$Ss9k)wwOnusTK&m_IN~=FL+i1I^ zuf^*t4O)R0sy&?OGF0pCB{H(I<>TY6@>WSmi~yBWj?yy}?0&#pQtCwftG>=cwSP3U zx}Q}2;oY&732xOVRl0*>;5j(TS#t{~>&vr*O7CWk^;7VYf8K_m@k42#Woi`DlV~-3 z70XI?T+XU8-}qG&Eu^kRYDaqCi`N7Bm2vO)H{0y(S(n>E;$(QhhNa?bp!X7#aHItxz8?m-x~Qght|8Ate$bjPWTt8@LYIt1 z6DzAH*&vvsJ)yXfgGgDxO**Aub2s?((VRwR35>WA1f+iYF0AbWWzd_q%WL$(wpx{d z^dRAYDxc)D{Ggvzi?kEbo1Dv*vFgPOp}k)HM`|YJuu_76D^0ua<>Cix)s{?g9a%tj zFj-#G@1b?KfnMDFj@@mg`0&zcWl`1LyS~|pTsH?d-*+w-=@Q(3*dvYWlnIzNu0bhy zq$sPq@D6RqJ!!DX((rRKXx|`>TtUjoD+SQ3B*3$PSp+$bRNZHK6UvcGs_;p5eigMG zgEprjWd|eC03$JS<1QNHiS4G%UK0dji-7q~VcMCaoHDT|r~By9I$@tM_LWrD`e27$l}d^YMN z!4*T70b=ZQR`m-;s&GwB1(%*{9@wywq~RgfGuQ<=;J@^A0Hboz!Usl`&JThCPqXBI z)6Cg=Gbimb<4@$re5vJIV8t$|8q8t#tDR<>q4|ETb7s-OT>-%(rQI+2(Q@F^{n#$z zERRV2x@oGA8%8@d`<`@>(>ChyO&jN#UwyIQC(D%A!$_W@FKuFyZ!Whv2bQFSQX8+0 z!E{5d9}c=%HVjUWP_Ig(q?##Bs#0v(?gF)R?KqA7<)EK{yJ#%N7q!X)K{uA&$~}G@ z1F%rsT4_lH?8qD-6CaVDI!=rAxC%FDrlx~)`G-ja=mh;WtkS~f#Xctq8b~Zk1XqQe zVyTTF7TnJ-MW}Ryj)BW?O;%_hnRQIn&DrqY7hEx?B z)9sg8_gPeNFhXhs5ONgKL+Za9+#ivDGVhsa*tK1UNQ72kjDbXEBFbXKR-_wG=7XbQ z`Cu=jR~RxWF&Nn+l%hMb2)qdA&dxq!6r&DjB!~$cHGwMx`$jcM_MK*iLJSIK_Ou;4 zPs5I;nsJfIWe_XMr+8G~!2l|5F?y0f#k(jmOJSYvh2F%%fJkId{|r8ip7pcYh?YT^BqK&d>U1CObSMXtP1$M zB3@?g ze}A@o+n9O~$~jreJ{Zc~G5YMbVg)t>t(r_XzF zog3V&-VUElQ0kA93uOzH@Hn6dT6W%eU01jaxZU>G9EEA;khf$LyS-;uv{5E-6a9A4 zwvBt_|M}2wWAbm!yGL8mt25`xuLIA9nQeyK?uO5`7t(Bk-=o_D&08`=_&L^U$=+cc zRJ?5WwH&Zo-$qCiu65#3PdjS|Z7-a?Cw_TQEY5x^4K8UT4p)z*Dk^p$k7;s~2sm(U zMRC$X{I4^^~i(g zdR2Nh+UGi&Y7OJW?Z$}q<7*M@6Fc@F5%@?Xyme+G#H$^cDwCVqO*i9(+tSQU-`mzO@4|eXa zo(LtlurheV+lxvjcJ^~E)#5oRQ%yc6RkQqSEF-jv(>>8@b(X+J%*qa-A33^7tHEdB zkLXj)Fqin3iK>-yS{~Op=>)wx~F@h>GbZ6Os#sT^)&DZln7-c0w z-oqSah{pus+&GLkWlcX%kd9oc8tG?CyU$1XLC##9c{72s)FNZWBzyAk83^c zJ6nf=aa!kWKG@Ey!>HVGW0X~CvxX%3XuEME_qh@o%nX{8B+egpMhd&eB}n^|Mmlv9 z>qNqM5%sldDC&bt;s{@K#YYj!?R08h#6d>pjB#k=5$AnM+r76{0>PGWtyGVyl~LR2OL`t= zP~WM}S}GH_SG4pRil7_mItD8aiwxpsyntW=oFa1wZ41Qsw|7+H!{>K zhL;L5ojq#%lfWXh&Ff;)XoKwkXQ0?%lz=$_sc98C$1s}~1ZQQdZr?4B;%`4tY?|?* za?Y-?9VPN$fY#DOjM*8bg$XssrmNUS<{LAXLvsdd&iMhY{V2g%qP%m1tc!IP;daEj zer--*sljKtY`n>Kn6;{Q$^5TQj5%bgopj1Wk?ZVkv$M!zBzh0N%V<_b{uZG2F~8 zc6Uoz`op zsi~CJq`&oF9P2Z={G#=^JNYjbjZfjL>L#5#MW|q>73ffPIQ6i~QT&Iq?=ys;8|D}1 zmDVU`joXDM{eo8x90E(iIH7B*xbnom9wbFHGdF-z)|L}W>WgIH2Vld`u&q>bGs+lyq2dwh{9T~s?__#YKVw>R8LorG#@=>=jrIHMjQ1XXGX zFbZj$vRcH8pyjKrdLmMYoMv$1sfmsAA=xAQdS?#9uGdD2PzY4x#FYpr8bDQ6TofR~ zdLFw-!gp0q!$By}PVr0u$h#b_67P73&iuxI8K~N^p49JXC^Zy<&I1@>?xRt^mYfn% z^W(osC=RS(R0waBSX>1(EQC}m0WUyAU<>;hm%BV|#lp_{Q?iIabqOR^R%0(dK$KaP zeCg?d6=<$+m!Z|MbW#DSS*0`#m62Nm;yFqsSNZCcbug&$)ZCTz^KY(^FQ%_m1cDx$ zu)baY-?QIpPikbpUX2JW)0>y*yiYUp>WypAXQ=&;+>F1T`Y5c&UAUrI)H7R=(kaEQ z_@xLFV42Z)PK%3|%;^0F4QFORnJl8D6KYTfQBpRVgw-z&??Bs7p%Bh2NHajS?xR|` zkq5kw*7Z@M(Ds_$#tM>sBsn~wFy*xz%$@9Xp4^*f4c1VG0D-WrN(DL16~*1TOoPS| zmzV1)g**ZW%$us?$Vr#iq6t`B`xTf*d~gqH0(V@GKr{ep=o`&Xyg>2icO*wQ=_p);|ipC z=aXQ$aNPc)aKp|2N9eVqO_$geTaTHWC5YYWIh_{ZvcpG+)#oFMtzy+WR1bN zn&lQe)fM$hx&lCKOA`g8jHbwFh$J%>Fjr9S!?vt5jiDq_8q|M3Wl0Yo{jaSFGtd@R zdoXU;4*IkPrEOuskP)hN`}2TjQ4Wg2$U3ZPn4=lS!YhsWfYA6kd1aK9c>#IC5ZKf26IE zr|#i@I-w`S)Y+N;Mf71g<=&HG15y9}%owkC{ zxTp?XA2N0d_k*q!$6bYh@pGYL%JK3$BDVXqcF-y^=TRQoq$^;+z^WMs}M3W>+2BvwM#J`ptAw9dt!(&}_jGzs|`y z9f%oUq?~d}shM^F)S~yHQ~UPeY7&Cr;RVW7F0G zaAAkw7v4c7svW^+(12T9ubI`1S;fw>(biDXZ%C3*F#{Wj-S4RfjGb3lAB!=?PD;rO{NwO>35T9&ha$rcSO|Bd^R9nmC-+WRt;}b6yCu7@%d3h^dZQURyhhQVv_ajzv|(F7AU?a5Dl=rU`FQSp5a` zD4j8+3-PAd{%_(b@0>#J!3zsPJyItzf@2E#L1A1)wQZDgG*AN*|BVhC&hwZ?>E6V| zjP!Ou1@sf!54jtf|2M+L-Cn@lg99r5Av8LkLVqzFgbz8?w<)m6cwRwUEd|1MLwlA| z^ITgLRV+tQm}d|P(VW1}ZM<6L?v%;aw_-l+F}ee8dVKsYVt>dC{DXDuHk zEk^w2!-0al6%BS1`Sfe;Pxc=LN7ZMX=$JL|^gt{X0(a7{$_Xm7 zPpjPl_6Xgdl6!_K+?f=9l}DPlM|=W&7oBp^7YLDmdy*2}PVp|^0ScRSu(|`aYFU|) zAd~PcxkN#qBUAI07n1H5y-LFSHZ(mCv+1-dI9(s1jpay3S9afJ`uv@ydbvs^=EVsCCu2=QOEAage3b~ zKK2a9kCt|bN^sp9Da|ma)cN3_^6ED?_a}ASh_vwBb{q)Q{6Q8WS0ZB5ym>X+kHGKY zGxH%iir(k|(DwUe|&H=m>s57B9?dP$B><$g$%VXoGqRsSzEldGhc z80EMUAq~lIbjy1=v^JT@`fAg6g`XkG@8VMl|(KN=Gz4jTF+(IphT^n zvo>;9{unwjzpI>n?IK+5om1^r+j@TfbG}_f{$Obrt`rifU{WQEtS>CTo=r%11arF5 zldybJJahN2a!jFcqcE72jFxSLqYyIO&xS=^G>621Jn&KxH9p&LM!Tb;$|E~HJ>PkIw~xTp(k84wsPIyXj|f?}#qP@zgR_B#O3W;2(FtZ*cscWdEz$2nO9L9_yRL z@5I1iL&ZrrAQBpgkjQj2ak}+HM7o$3Xb8Dz+Gpi3hgc#$Jnx*!ajg~u*A-}y81d4n zq&fk0B#kEH@Nn4opkMyxuRLP8bL3}}^BCdbFKMA2B<7v(O%)uu;^3{u(B?A(hVZXo zUF5Q0pN_n0*{PX9Q0i{`e}z5EXNT0s1Fyi7Pv$y!^UxQ*{fnXE`L~FIlU&-#5)out z(WGKr;ZUC$uzJ(|b)8}h;whwMe8DkO;cvRy&rx(9Z2ng(*gj1K*j>ZNtH7v>m7Osj8cxUz$cLv zc<|ylZlCXno=;4p1;T}p3(X-CyaoBjp?mR_liit{!K#Rf{JJ=90PhaB7%ZnsFQ1sX z?f1?B9Hs}M^G}&w+aGu*32`u=4!_@&Ua;?$PAF$ph`X+KGOeY(J}NGR-;@dKkU}FV zEd)kD%8B7V46e@y)SsqSznN!hmoGy#HcUqzJYz`74wBz_T6oo%X1B_`cMmwF+MfB!azkZaiTxzgZY;Zl1xFT+#kXAB zzfo&`MVF+MCTMy3%o&DeNbqaPePCjpGoAPwG<@*TxjcRDi0;v)YX?m1dELvzMc1#s z%gq)D{~^$>(&SLJB%G^YhpMY4`2WL3UVbjD*~&rM;J0ragNR4eKRuNh_kX zENAR|#^)K32X^b}u+wiuG`+n0~? z@*s#e&lVf?p5o=NM%<6YvfO>|!CU@1eM)LrlN1w^(zcbre@7?80*y~t_kav5}JI?S>w>vuRmP#)vp*d37a)HVyrr5 zS!axKF^O#aK+pZVBIKd}M^2fKC%o6jKOBZ1aPsol3;oln@>na>9{zaNO`L!L!C-Ko zG9fRodbxg?(G#CD%h0Kt@7>B8pDZUQ*GQN8Ciq-bGGr-raZgLXcPndrvg%vr8dP=r zwy?#ZNqovFJNv2VD{yiD8FZ*?;DQD3E-s>jdot>N4ecU@_MnYgmK0?tp4#y z&@rEbERWM*?>WfuZ*M>Ee*g6LrKgkXo)L8XQ5@k0{o(fyijj(z(BYw<%jzfb(%BmZ z_bd#~aV%aK53Gz*)%T&XeCd04J-m4@4{JN{Y`(=EOQX05!=U-e&gF&veyRIwMW$`x zfQ08_EV>W_XK|LfW~AG>ow*CHTCJ`__?h1P0~mF4zJQ{+AT}y4{Ar%@?sAs8=d#zm zEr1Kg>djPItyd&)-Wy;%7xZTSB?*~x9;-mY7*PiufDrRk+Qsl6_n2TAf)=&m=%j9ZR z$SfZgC5b7nTiRU~E3=H~RW2G(ZuwlXrkUl$s=zTvc1ymC(r1 zhjq!3Cni(9E8nKpF7jKk_;jZEsjZvrOSO##z*jjbRc>Ly-hc=!YdL33D;|yrkA1V-T zcw4Uq8Rx*J3Nb)*L$ZTPWIT4IT4c`D5kC&=k%?%vDiS3OXzEV><>E?a`m5+mxen>I zMh@Iv?a_-%r|Ot9#pY+NN~0gMd5xiggiWTyx}qPoRz)#yjLp(|RYX5-oBBZu3!730 zHA6pMrD|c^2%Qaw6~Z7wt=eG08lI>k%K|@gRv47sY19UN1AGQtRtWv*^ooR8YX?NF zS1Jr5x2YC%z#OpZv}PE@u30uL*gK$W&EjDYyY^8!R%tP3i%!vMMMXbqi;6-63Y|}vwM0K|y+UH%8l9*WONf5t zR`r7x7&@yiDu;f=YGuQ?6+R&@3x+|Adey>$IW$*iKRiZpdT}Pn{Ec_`L3XHIGK`tH z;K5z#FczUs`LJm3gs!#9h|%cHO9@>#C)_$LDMsVhDk~HaoRGF&c`?d>O^Klo=!9Vh zrN(IFO6A6kr5kb_mL211%+SKZr_^DAF^pWRx>z#D=W4yWVi>zkQK5;3PppG-Vi>bhEiq;0fD?yR z#7LA{CB&jVI9-kk2jz+ZuT)s0MldT5990Db$^no%V4VVBohQHPBj4Gxp2R~Q=;^-J zW8LlZT=zka{sdp?(QW+9cK5K3Pfn*A-o+=)nT8Py2P8Orpbz8Ida^H=yWncIXZ=X* z77u+rG#A9WECWWO*Q*B>0bDS)Vudggzg4NAi|2w~7sbO!+-gijQS)%B9YrJ$m@=3Y$S}I`z!FF+NLcRWHN1&5IT-EPP5GmMFu>wJMV( zb9}DWt3!sd+ms)gX!yiBC^m*ME7cfNW)3)USW%2bsZ~fU+C$UzN8v~OCzi5P%Cano zBUFC=UUm1W=}y-Gp8WPu4l?sYUI~TM#EGfp~)T$|#0iYTC!h*XZbTtw4&$2h=L5V?o z^zhvk6oc4w>WO({e3sU#CWdjF7ZX}o_>?*_hPky$7C^NmT*l>I0zMCY52 zPrEqXpEvKsBlb-Z?Q>pZDfahll=Z-A9r*@q$@_rOt#FetLlRzCvAYVjsbYtIfp@rr;V=O6ehCkFbhIl4Yq1Sn3%HS4&`01i>=zwJ|?l97jP&Na^ZJ-#{=*( zFqkg`1Bfz^-@^~(CFY4iN#F?j=;}@FBP&lx=o+g=U2b9@ff&p?csOt1U2N5cP%$CB zx%R-7TSA3}bINtGRU1OZWH9NX6V}u`%6wb<;LyTS3kWill%0Z%LwR@p{$5nH-Z_r% zfy0{UMB4%~T#S;tkFMSnFtX~+1T~MHK6DKbVog%!B;IR3CPt8P7h&k;iXG|6%nU7h z^xTj4W^M||M6d4kk~qsz$(ZiY${LUol=s;_x_VQ<$gl<=Mmo@H4H#nk+(5pp$GS4K zgCO9KB1l>0ol<^T=_ zQ5(R49J|TA1IzLt@^hUfP-@ZaI@qcW0b+`Q1L1(Pze2d|u}hLafjeHoDzpIzBJ~64 zbEw2zY5?SW5S=jG7qAL#0D^c*pr0EOa^ZJ-#~;B*^dIL(^dBKc^#8-sSU&xMeQ$78 z8rj5=fC?@-+@#{N`pw>11kGjT+mh&V*bE{XNZIAp!%5v`rv-rf(8|l&zgg*JzY#;2RxB=^>l6ytKSGB4pn$z*|x7sW3m%%fr0~{C26}mKSMIw5-2QirDogNd8y`TOMtK-#hSH`lWNU&0|4Ix z_-Zj&s1^f|Y7t4YSv#qs*_>z#5FD_Cu6A@zJ=bdk5Cn>FvvzY?xjEVrEG(>7UIp>y zcvG;*kj}kj{pM&(u(05zj$MBj6pvGl0pi1pOfe?VXmE9$waXep&Uq8ih*64j6)opP zTgc!r)SLsi7v-F@78v0|tA8c~nAQF)T7ia+rs*7pp(g57u)`w&{|r#qbt>9Il7X)5 z9K@t2?Nm31WCiCHSVi4A(H1f|w2=!%f#-B{$S4sdo`V2XHJ&PlARJ(*JR9d1WuD_r z0V2zAM-?-TQN;{=R1rh#dG&Tl>^asDA||vEAjQES&~YCW#b@p5vgC8LB}7;;bSx99 z&*oK`P=k)O0|^LF z58Co^N)Xy>0uceQB((8xP7^w81riGAyi&`@=_#c_BZxR~grSYA3d+#Q#vt**PL#EL zotYyWwgL$SR36&$aatcbXao`m*weh_-uUCZ(*VSGIFV?}w+WSKw*`dzpgPgUy=kFn zzYRzb@KVv1n+sae@s_5d1K2*V~10-pR&L@j=hRbRC|ZfthFu6&bXI zwCnDyhIFDSL}Y*}(#Fdv8ELl#g!=(PQ5h^1l>tmqiK8WL+*A;gPBw;!4_4CGxH_Ze z8#IE514B{TIJzh)ooEUd8QQz@vZ{2dEnIL|C*h*7bfPI-WZ(kKzQ^-A%<0w;AtDB+ z8WwCor~=c*X?2C^k_~LoIAy$o$aJzXXnY7V(-Fs)bfya?C=mmTkY+-dlOQRW!A6fI zHXRE@No}fRh{%D1^FUc}s%#9(2e#yNBq}YL~t4M&}61FG?~EgoQVH zq&jc}J7$C-MQwat)S^x_1&J&M4`*DC+WsBJaZo{O+r4Q;>aZ0^D1e&OmWNZK)Ls*? z2;gL?Jr5^zsl!$vp};9qTMkZ0Q@br7+i4 z%2s-wJe&Dh7FK&XiE=F{FscdeUnS7j^efFBN4BQrM$i zX|~r4T>h}-SIf4#TDDcAt$l(Qv8^uE_`pIhV%om^8svet z6VK*;mk)g}=jE`MC1GIYv0g_yjddfI$F|pF+beZe;Z38OrK$*d<04Ore3+)zZ>@i) z?3A)Bi3X4xa~p=sCM$+8vr2;<1r3ov|}ZCaTU%jL;a! z_HoMG#9wx$Z-N&)zufrQ<%!XBmN_~L`kmSsqcY?2hM5`OFf;rcX4OS~D{_CbjCBqH zg36e@aNTp&?bgnGjvtNJwq|r^0kC}W)Pb!m7Qw{~O_1fmUd!>8m5gB*T-fGwIg<1F z`kQ*c&nAA_pV|JNzef349Qpi>=*iGQb$r!^_OaE&TKwvWI0pY8UYzrNnHbr}e@gx6 z#8PkX7ny{V@9PNvQ`r%U+WEc^R^rF|?KH8LB;s@p()A-`)%}6K)I?{o1OR(_pZu}!1 zD7OR)Pd-3!0xO{v+Smsp|H-LI>!*U}AE0j}<9+Bf#)$Ji$ujgnWhYv#5kf@|Q$0kT z@N!;$Z_9hqw)x34mI*Zd8eagFI9}CAb6RU0pf@Kj8f~guchkzquV>4x{34I5*V#ba zTds}lW3uYq!WN6FeH`)AC(2!uG}fPy%R4<4Q?9mM;-7a+vu$VZxQ3Yn}ENo6q$cwO5Hvi9=*g-&h~y9#)mXc;=;hS5!Ckr^`$_4RiP@h z0Sm!k16jRjrnZq?ZVniu&YrTm;SF|{ooxvhlMoxJY$&#MO*&urKah zL%@i%H_6qFYkaHR<>qiPYVDh=8QyUB+}W0ZLFsL!s~gtHhPn%F;X>2jT~{-@i9L3g zo5RLvu&aeZpi_HWDB8e=ti2(PLBQiX(kNNL2CKa-uR*ZmoAWAJzy+(bQ?F)>gZ+Bv z8p1^sL`mrHu@YCKYqSLn4ed1{P<%}YAYT&+7L+_QIj<7Xuc z=wS6XN;ZmjV$)<*BeXdZrjWV7_qA?S`#r zgAlUG*4UDgxD?i=Qd?wX_syj07zy`w(QpC zVshhdH50gaGbi&MnZbNVhBe<|vaz>ryi?nIs~7-Aiaq?QIr54z=xVh6w`Q2rn}91> z00tW)McCUHe7YHAEP9)SYezJ)Rrpe4!02@L4c85AuzUDyOW>e1whT0htG_ScQe(jA zGZWC-TMCrU6#Vc6e!jj$uOTA};){ z=616_rQQaeV{C&w+sb7i25v7QS}Z)#-fFA0;ns`8A&_hBL%GlH=BToxd$Sdne>ImI z`0DRC-`b>W8q3nj;ZbpEdHyk%YITieqAhO~K$n|X`G3cbViz{x06M4&ZA?Ru+8_QP z3z_C#HnSlNQ5D*lh9I}F7XJt0y4?0!{NHBgH)~g)msi;Xu+Pt5yn6L^_x8VEZ&VuD zM3%@arf( zc>DOm%NLKoR`_8E62=_9R%_D$TU$VZUFn}2%!%v0*8<3S*lWM%}0O!R`-zcPH)=W6jKC`Qux_M|}%!?niTPg*6BH1IXJe+}w}G-tvu=VsK4*^!zy2bzK{Tw}&tLz~M}B2}*u8!6Zll=FKAduQ z5#UJPz5Vd|#iz}3lmGfkoc_`+OQ^(DG${Wb=RXf6HTC=&0I_Y6kP#Q(!%HW+*K zFG&zBlGhjWz(s>Hh5G0qhrnAUiZG3s5ot9?LC7tZ2G1- zRDP?dgMAK8=WWOyShx*1r}3c}8xU#rFlq1`|6%h^{IGf3{-NC){};a%XL2kl7uxpe zeny(UEf2|&rt(l5`;Q{n-*ca`d{E7|V7smUF8<=U@~<{ndz+UFzmm7Suz2ETVl?bL zb8;=&E#4udf83ok|LW_nx6NPAgXAf?>-Ia@R^E*Me*Jq1^_kBTnq}L_=jCX5+Guq2 z?8VUf#YP<3$U_@>NWq6Ze%jX8)0ZGWZ}TtlcB}$ha%T?c#fJa7seavvUpM^MO--TTGxF0II@Y4o9f7-144+E%Q?%_U$jCSWkXqPe1uD zl|k#48-H`1&=e;_(^B=Gz@k0B!KGK4njDlLn@kzg3E{N@+_g=`eAA}Dyips4{j8^6KQi_d|Zy+LrFrXY zHT;-r`P{AdQ56a1gtv7H9H+ z4r58^KZ(%F`j;2P`ZRrAB}&uk-&HnkdQDbo1DTIb3(PO1%XwQ})Upfo4J z_V)%w{M0%>HqB3qzFpr4hWV{t7VpbqRDPLN*XNx+dTlatN>wkW!erAjS&osXF%v@! z2YxG*Bc$4Kj3dayVx*#Tc+sEo9p=DTa(&wVwL3NwZSVM-n3jwGSOopB{pIzG-RF&L zxe+a|Px8NZ2Y;%Tih=x5_)#A4UcxvtaQW}G`8#1=I#(ath+~Uxl$5bTJX#`_e~Ht3 zEkFJ_W-ktI%7dHw;D3E3o&y&)obUMb`o*jFuN5ae8W8mvk5&ifQy#63$LBoSy^KtH zwC(3-Jvu;Y(;gl0@p+Ff>gdEr3uR{JqYX4W_0fWxnfqwN%}#!_;KpY^+DIeQA8q@E z2YUxeZ33i)t~LYG?!#aTq}AWdJVm>c*@=o4oYqW5y94W~ih>)Tir_GEk7#}>cd6%p zZhjSi_pF|YzqazvIe>PvQLL|;5wIC&+O4Et%^2o1Rx_qr?fswl(Y9LWC$64yST2mk zAbIOOa_O9%bPBG&Yjo8&2{_QE4J7NncLGRO8^4xsw_{h!GB^6sWoqnK_ZVgTYy0YU zG>1LltQlf=6&|(8UKRA zcdAZ^rsa7z*3moB(O+kK`d+=K?-yg5?W%Pb-+np!`PNTadq|$&E=PvsW*kxmY(GFY z+s!|D+YN8q9_#-TzZuIhyg&c%nHb7j#Yo0Ojq_$6#3GsHV^01gYP@s&g_n1{qG0@8 zG|S~3PRx1~qAF@hd z{C`FV874W*ip#}MpSF3pJ*29!ca1)mfAJG-_wN6F^{L(2(f?!anJRvk57Rf|*}|VI z;nU_tcF#-kzZYVTSe8Env}ea_>#Z+Z^EZ{M^-@Q3riwl^|{ zSyfYya>d<7F1g!Wzu2P?b}8HogFKjiwogaXvHrF7hf?2XehHRym!%M!jm|Wy_%Vs} zTlK@H{^2^Ctl(e$hZu!Xzqw6&xqt_75-SbutGJrz4)AL`H#>Nu?_wXW>*!!mMcduh z__k^KmjJsiH@}ZOcqX0B{D*oXP3(hYbGA-HeU`t-mz8(rFFNOFRffygr{(vS8UMy{ zstR7dRE@vcD0wFD7uPoj!`splVB6RB?;|&h)hLtK=%- zsxT~P#W%4!IQL$)#zWRlogZsqo!9qt5WA;WmuY*g0kG-9@F?T zqw$#bWD)0e-JleChz31<$E1(vfWOrVg@PD)YE4$C`Zj6*TkD7REXRy5ff!1jm|&as zpl9{A^XE)&7hc%$dn>QbF6Egl9$_<6eA6B%Aid{JHmxS|NqFc^4NiO7E-u>>N)K7{ zN^FojZQS?mDz^OzW?|91gtvZ~iK_d;Bq0%o}>bspPZ^Of%NrRf^6Q(p;3SAMPyUIpELs~@r@ysL(=TzRlMQt z%bR-`ZtC`%roFtEH#7mi7u1G_)MAueBBmj zz81gnhj00tvctjQo3G70la?HQKJ;dBiK(gr_i!Q?rI!xtqP=DZB(aH6bbA7d4)+*+o=T)y%~)Fny~V!}%-@ z)r(5xA!V=lW4BT{*EiSM8|eOAM5g7kSy#JQEb9-u&*drK~@G{P6tNi)LEY-t{H zDQ0E-iMRFEc*K~1)FiqLG?vVMoWbs$f7LyJ-`vE^ar;)l56#S%syVg{ zUwi&lb+h5ONHJk8PVlOwIMkbZRSQjCOMd(QEsC6s<(4r`<6c+1$qUkN-}kE~>QNN@ z;Tjbe$rnq-#yt0fZ*D5PJ^?1?gEsuQS04AO<9betm6vyZ&M%NG_z$yium>ca6Du_3 zv5h#U?AW4=VcwlFHAA_!MB*Ldz3xh}j?TZbuaA`oS3!S$_^YqKDTkOlGX&xi>J9n! z;8g6&F5lN<&n@r&*XCoZkbB>()@%(9H$8n@zJ^r$U)1-pfkT64W&d)B=uiAP_UBCt zp&X49zwyf{%0wZ}Qt86SAYo#c#Fhi!ZQs1vZRgnSx2e>;LaO{GE_lf4=GxE5Gw4s; z_Rp;jzu$iP@L{3DZkw`0{u)rEsTj%oP>SY0)RMaDiP4zZ04GItST>KO=qd z+>9RLu&DOvuR3aV@Z+|{>_SK5ZL1Dj`H@ky`uJ)4L9RSqfFCp~k?UovO~b!zUon=v z__TmGXjbBNXPTF5_3lV!?>?W(i5JX*cQA5S}J$n-+rd@q~*xB+gDGKe+l+->HGGdewviqZj~cq zqb|+cRQ#7M%9~i#V)Lh0yMMMW+i$+x?w0Noy*9mT>P;avqpefEh5o&`Ve;dgxa*E8 zqg{+NY+p+JI(k>zi#N#jQ>A@tYL-&8ocLioJ|j4AVx(c|#Bdt0G5T@a5gdpSk7&;? zsAj%?(9f(%B^7IH6+U$_x6NR0Bu}vyMV1R8JU_{H;?A92@Dusf>xC1s*Ql?$k$0SWle8B0&-IQv zOx}zaI+w_k6Y?LriKnrUA@8n2S@`Oh)y=hf$$ zW&r#{^$DIRzWCu2Cpl;37|ld$|HR!s`Mi?M6tG*ZyZyXqeo*MiqSt{3|6deu@*oe{ z|F6_>#DBd0t=o6UxFX=gt5)zTE>xRMF)zE9cTaPFW{^7PKYuLkgZm&a@75b%%iTCN zcd%nyEynt!LRWcKdCj2kLZ9vS-4k>AS{xeMbvxpO!nxToy6#-)`4{c}+s6HZr^AM# zFRiyq6K^`^l|QYAzmi7>dG}JgNnG2G-2i89OO2gbZ@qq(Q{EWV8`XIAA+3%F*7c6k z)mAlirnr$+qwHLKk4e`U;HfN|IJxokkX-X+5JD8 zeAhsH&IvTZlc4ngM)@;nwu9(_rFj4y$_#87%-d@N&~Pq(l2~5;6+|_iF8?T3I$S+2 z59<3C9DF;^1VH6i@W>9;>KZZbE+5$M-@bbB`OjA8b@derulx#ycMQVN?nD>`tYat( z#Q!e8c=1O5r0wzatd$+o;$)V#ry0kvBeO)PCidjN^_`IOfnGCB2zABJ0#D3ETAiw8 zCcyUEZQy^Vk-D%|h1ys03Z=UG(gf-YwW;68b?Tbrsc@V`jSQ zwyrf#?PCg^*!4N)f>w;ZKfRP?MVMQ8QDKbn!S5mBCl$Z4v!8g?vE_4n*0{R-__5j@ z4k%vedy}}CieLFLH+HLITfJPo+4Y>7(PwP_#G6Z3|E%Jw(qPA!jnaA4{&?ODe$}jc z=2c(Cn`@|vtB&8OrRQKf@$)Hohk9T{)H&xS94deHB)ZEfhl zDJ(qs05b}@ZEfg4=s&U4lY^_~evE(^x+5O^Sv|q&DP3|(AcpQ})C04|I^ACvT(1S9z`P`{_6{fm1p)@)2r7d2##BqK$yETpCT;IML4MhEus(;60Zr}~K znp=;e+jQ=g{l?>Sfe?s7}wR(y+U5N7eKkm~|=a>K=a!G&(fC ziAL?4=m*W4XcG3<8WtflaAFk4^g`w3b8=?p&()57eH+`eJF!^(WBHq^EBuCch%Yj> z%;Y}Wv9DGY$V2ibk*WL9Tv*o6y-BRWs)zb#z3Ua=b~1h+>95C7cF3ZD?3IqzMPqjK ztg8BseKRAG)z2L5D!&HY8`b$O>j`IGzW%K13d?O=xlT+BTzS3Ic13;}*uoiUKjDu2 zz^|%9`5m`5K8st{)hm$rN~_#^{TGd=V!k)Okgm2$Yl2llkLFK_tL@@~N;zQvXC0ri z;!bOzdeYwX5o&tgw$9h``_u2WUIp{uVE$Zcj2p#Py<_1k@hG}V%KjvlA*v^2d`krr z566*=lhmAI<}URyrdGf!;ysu?m>ybBr2p1>0zIDOD2PFym1WuK|NL4GoGgZ`GrF%n zh~L|Ocm{fG+xlvk>9OWY?)H_=(@4+jeJK?&ug#TMC~dAA<}RX(mcwPlbBcntU7QC0 z;U%INY&>}FJ#-ZN9kZ__Gv!ZPF>rZkw$G`TbuR!1QN6NA->HFZEj6oGB`Nxlm0#o& z!%6y142`QA=6YP4lk6NEbE7o%ENdNrJgDtP?%x$5zg7K5Noh4{sCh9wulHy&2)}Q7 zy}@_l&X#r7EliDjO4D8==5ru+ycK#gulrHDgH{$UD))gL zj4V;`;*jvRA?Q5OChawx2!neT2In|FcxqMogjqeBSs$L8&8i@p&8L^UlWpr2U*!gV z@A$Fn2K;j!brq^=9d>Q{%cO+JRengb61bMF=3EeDco_@XUj5eEGioVzHVu+!T7G(9 z21slf78iL^DBfFJ1{$Z56o`twniM&1+7Gv5`+WUvro*OK^r}Y6+>V;|)7<`MOVeu3 zA@v(f>t@k(`0=Sk5Q7h5j9q?CZl*ttn?>us@ZxX?sv!k&baQN9LqT+4kKGOU>Z5hB z#sB$VO|z=!R*R)=_4s)`(o6ERt$(0-RS?639ff?3%~*IIs4o1boJ{?*rCZ=1i` z0Zg^2w;8Da{;%}wufPB1@U#CH|Hs3g8}_-Hmjplizc$+*#J6S;{^9V$5B^Wz{`}K7 zDqhUb0gYgO3xs(*9Dh3eaOZ#f)6vk+=?Rpwi*LU9?x&xB`pehsr~S7oU5ws-YAANN z`lS z^ACSvKe2D`OwXwPSZW1){QBpgzW>XQ-~IH>52k^)A4y`^NwI@bgcHuWeI% zU2rx6{Vg8!cd*bu{rHz34&NVt?8oJhJ=LKgJ&hgCszp zz#S8_JT$##S{z9rS%f^)?C2E%oG3| z+C))X`ilp_015jbn@i3VO0i{SOYx?GaID!jZI`&t7f(ot>v;Nq-DA5gS5!f;h)!YAmj%2-=0u9rLG$%u)VtzZNe1LP$k$9d%uZVg!f`of0l|)Su%cQk}ROG7c?4S zWLvvx)D{+tj}nFi*e zGaS8d$sVo+}g0oS)$M~cCEG*6(h&SD3r81dx6l^4HZt7bE?wv zJ&b#*k_?y#B=?%XB(Ww%4vE)U0&l&OISTeexoxQC*;`kgtZON2rV|!S*oRsB*k4Mi z%^6a*=mkR8qU%9pnCQKa_|Cz=jngA1F6Nl1c-OMLll$_Z&l9lQO^qyZMjO?GR%S36 zh=4t872ksceg>JqoidS>tTzF=yst`0@p?Qz(bsn@Baut{PCmr=HmkUEcMJF`1&kQ&tK%{4elW26kOtb-`6(UxPL|b{ojwr zLo|>7`{&W8V4TydWaqj(9;SHoOqgQJ9b*}N`ux`^%G{s*%PhBLV4lZYv3yqDFpK1K rNwAFL^X1;LzQ8bp54!?T6n78@z#hD>UKlh@-y%x(e~Efm_e* literal 97923 zcmd4Y^;6vL8!!CDVew^gheeB9ad)?3h2mPQKyfJUy12U)cXzkqPK#5dxclLAzGvq7 z7oMLolf5U&B(FPr<$Wd86dI0J*7oic*7mOE_AU-i9u%(TPR`a2_7ogIY6?{+2OD!! z7k&yeV<#8q_Z3?I`;ni5jfI1Uh3$QfrjfwJ@EOFEsp(al22#yiPQD&*Xg50 zfxhc^fuT>gZS!-MQ_%r5YM>=h87+hMC&R2IUeOjlzkv(1S;yt3wEKJSUv_^1TUthYkJGu@fz3#&GfZae+nTpCPW>#9Q~u^AB)0 z;&CrhVB_UVxly}Pzg--ibuo3xxAtVkFz>Lc^5e%1{SzBZK=eH@Kj~5lQB8j=);fYPw zwCDH?yJ!jT5#F1=S_qsHMLbFYVIi$xXbs^`HP)vlxc+n=K) zT7j*5-f3(3TgCXOdPUj;IQ(ces`bqU>2o>O3Zt9^EJ6FOwXPs;aGD*N*6ydcy`kR) zHyy4>)*|1%UU3%XAZ$iJN9|fz^F`x|+*DU$0k-L1oRWCatXqXVtVw)j3o+`kjpYJITQ>Tu<@*~dVwo}% zpwAyyV||y-1gkjVUC19}FYybcD~#B*?B`2oC;`zVS>`SU&0;l>3q98v*X9W~>yhGz z&afc_k8J7K62a@fddo<3ZQe$*{@(njj$c-k9yV$(W?WxN*#M8xA!x)Tergh^G8GLs zi=lg!N80+oYhrjZ*wA-AwJ`Y-QFmU|_;;1x-LPVE_lPH*i+5$sjn>9;8%4q7feE{5wv=J$*YDnnPGbmdKZ%IWpN~oX7n+(ZLak#mH}aa z+>@QY#lzO^;r6)-1~)aF3*RZk<~f@?6Sg`xGBUE??Xl}&-KQcxL_#AU<}(fli7y;$ zjo@HdP+NXb?d0Ah*XnOwv4=}ojMdSaF50z$t{-D|TQUFUD0;<5AV&DFl~t(qJ*9GU zC9+t?Vl*Pf46P%EN*FD}WK11>?_9(Yxe`%q|E%2{uD<>&cmV!PUY3HM6e$v+F(WE~ z-&_|wFyvEs(_;V8TIAaKq1nSSUNrUV@F{nTBf)Q^6y!2;N(oB0Qg)Z8%@)ik@8RDi zH=gr@oH-F9N>2$=!R@k=A)0adeX$KUKh* zh$MGMWnjZj<5%XW9fdj`tLfQakE-(ZFzu-$TZdf|YT!@c9IU z{6R;TTFT3+2np@^B)3SluHi-4OZng#f*y}YAnI#10(GQ*qYLo%_fso6FnwcS;jsV91%&tmh# zzu58>CDK&hVYI?00>K)6eOe;YCKKYApV+I!mIS&vv7g2|8dz{6>xYVA9anA>(J(T$ zalV@Wd%I%e2Z- z_ksl}{mEEXoitZ8^>%p2H!foZoyn+5>!sOx5#!L>L-vTk>%DyB3=RF~r^XO|A))*r z!Vt$5Vt|4nl1C5!E8|2R{T~c1_a|4WM#J@nUpYf#=CM}eU3xUSU4rl)L_!${)`Iqh zS4SZ)PgPnQ%{((R_PNP9n+@du{F@TVUAj!0iv(}W1XYs1`tszj{roZY$lSq9cc@|2o0#9u{^Rk|@!NH5ZO4Om_x=4En+#cdx65$hU0bmM`lrfNlIK zz~L>H;FD#T$r+l=t$v~Tw^iCvDAyfY{2r@JcllKLaIVgqCn+VF;U$|FFvhpsq)`Dh zHPo|UL;g?|yz8jA(%HqZ{dTG1xXKaT#U7JQSB*8n+Kbkxst z$H?&^!))g-EPb~4_pU^oVNSSv@sxan*)kzaXtN73!`R|y5U?Vtvf4@y8N<)lt?v~S z#uoRO-^{yn`ljzx|P&&mLA9~Y0HIhArxfcK0 z#Vb@--NnGK!L`)E0^7WM8;o&R<8W;T5VY| zeo5*ja7IPfn>sn=TW7-Gny@M~`N&CFaNCJVchfmberDay=pFZdd-}d;OcvlE=UyL4 zX23-FYfQhAXqD(UGYOHW0Vbxw!YLwh(&PNWPC@-% zP|09Wbx}}ra8Rsy(2i8l4$T11TmM8_MG<|J_NX4+TIe>PkfD>0+e57R_kRKLW5rm0 zujLuLUUAZj*0=GoNFw;ia{NxbM_b~spb|}{hf#PciCYc~jJ%=nl2g79K%O4^zC@w^ z*G4j-={ESuIf@86Sh)ga5%3T9V@T2K<*;+5dv$z-YzMO*SE5as&vi>RWktSR|Ava% zSZo3FujSi8XRk38Ygv2gqv3oWR`hB0j4YRLC=+VbYS!~-DHP+QH>JY#HZNrm zfi%-8(*CohYe+l_b%=xrPfmaI&y|icAVTi?$hTtHy5`qZ`wQJdUD~eJO%+44qnThWL+oJ-;4p__!I64%z1l@!faQtDqV#k+|MMfkW zhGe5I)CH#kI}%6l=-;v#MhYa{4eY*Ma8H+uhDF`T3sUuWLZ=*LG)*4JuS2H=qo4G2 zT#lpr4yqy70xsgxBVpzA|1k*rTgdTwTqZvS|O9 zsfeig33F6LFv`AVx4l{VLB;<<{-MsoUGvk$-Ju>D&89JgJ%%A}T1}9X?+C7kFu=&f z2L;VnQ0`E38;<}OTvQ10ldSVYCy&wC2c%l|4<=AKB!LEqQ+#o0&rMlPlwTu zT*F?T)Ixjg+1Cfk4*Dg$`H``B3Fhy!PCLPVF(z)ZZ@88b_W8QX6+xp`)EfDfA*1vE8oe>boy8;5I(ZrThs{5`s zXsjQvkwyf6Atw4fb$V;=13ZO&ag)yCyPZw4uGqUJHa&WdF7L^ICMsqlmidxJa3`@~ z_QtC_%QJA>19x2UC(pu|x3Hfa4nAr4OO@*;sb*{cGpM4@2p#PdgONIZL4i0q#ID;M z{#27nJ6Sm;Ano@7$0`?U2$i@snflzNgtTFQ=xgHf;nv<0Ak_%OGEmsLN{w!mzHqxu zmM~1eI`~G;uVLLDmzDi7Uxq7Z;TX4)E~r0r!;w#%h*OrvB;KIYw7bhvBt2)l3N=#E z1D7QBDJ8_=1j}q=sEN+-Uwc@5QTgvkv29+1eXAF3GaJscqH6wMeVK$TZ%Kj{8rHa( zsnLV6a(K#!e3)7r$-0ibr~RYz^%vJW=)9kmV;;aN9)7}uiF&S=9rD@6k;s&NW(%r< z_beV=3|LXxi0H6z3wXs|6mkAa0hQ!mH33jRJA6%|s82vFn6HQae*SgYeomX{MWP@g zX0GZiO<`=S8@&!146K2nHiW3%dZfyNNyLWRO;|K7vhCWtBB!}e!@75}Mfb<(&fo(h znAxa#=1D@wVFqW6pzp!0PKCG#XaG}Y7z$BhxJg3qX0f0oI9a}=uCOLOHkq0lWxt;L zW6}z-{pTmi_0mxFpS|+p%*Ra~0R%9FfM&_4Zv6{QjDz!iOk!)vOHDvS*gT-yUem@K z1#8hV`-sf?+uwLHQ}Y8gp(P{Ez!EAl?HR4A5&1*Qurjx9tl3o5!`59K%qshvM;2u>@ zk#~Iyn1E*N5fmQSu-Yr#r_+(kkr%C$s(G#V@lhUzForBK*n{Qy~FpWOB2c5CL(I7!g{t-8M<-yU8|U-V|r50WZwsCD@^6vI)^Um%qcng!aK zSUruy9%izf)~SybFzO(jBdkw)SfCWjOU?=@hkTKGq8}-MAS#X9sUcon1pB$kWz&Tk z#u`qE(B+otAco0=h`i|S|E^>3N4c+d9CR>gc`sKr5T)0)>2~H{fD(~lV{X${mUt~T z40?7g<|g);A?NX2Ud~QC*$Uinb7jJ4&(49xETIE>3Dm*?+U~)na2GNC}yHed}do&Js#e z|A@;VO1oE557NwaesY;_Ye`I~5s@AHxc~MOemIzz^i!rPzu~;Y#oG>i&ZmJ(i24=ydG-VIHJq z?KGDQIg*4Pc9sJX4$d?Wc3+fOA`il)N8jfJ3*)a0Y@xa_ZQu4t*++~Uu*C}qU;kq=WJqO6;BkP!^zx7c};k}{; z)hb>a0xObeqoKJ>S}0%yho)P@)HfbdGSda6eDK>zh)G9d_gmdE8##Sq#AfO(c<^`^ zWs>MHf|E@QBJPVLLa9s4C@aYC{k0E`BsRm4$pix9YR@hJ&obQ^CW4zr zz^IXJk3Y}#x07zkqJUE9#xmz!`1q3AW3ZC3afdnJEYk2hZBxCiQl9n`MCa>*a`%D8 zEeo0k*K9Jcp!6;9P7R9{szGFqB&kH`ewLz@d_3^+PY2r~}b7=#n z{uN{SrWsTF87G|nN2}cSKNsFhQoOgw#_I(PbT1twUu&iw>iRm%Cihe&Yn`B}a)X}z zgzA4{T)(OmA*(roQK+2{QH#I%LGiLbP*yfllRO!)!moBpV(*M&5LTceQY}D-SvKAp z;K&6Yy?UAKfSX+A*)6Nv%quaTy*5PncsTVl@)K6|7nTVACmsr+`tPR47;!TA@O6pn`V^Ej&cliP@yPMM5(aAJO zcTwUxD4P_sz*D!c>heeMx!;a5O`LqM1NF*pW3#CyY4O9U8QP^e8LlyYmct)g)xxba zvW2q%+rJt_w0(+Q8JL@Ww_pPiC?4DC&**nUV3Q_me{9VSXw zHOgGv_FpjyY7L`=+>qOUH$*t(xzfEaFQMPK*qmncM$_7uw)lDe(1MxI`yQ{Ty>hhV zTW?h94C}AMYrrhEDE3F8JF*QH{of*$vEd=6GwvpIQONM?Kv%GzFeQKbeYT+>NzT;m zzps9aIzQxQ4`Lz3+TjvLEAguz~%ShT1s9aHe3FhMKcc;n(hhz%(*bMM#n@Qs| zw5u(jw2Q=gs#VlBx7=BG4sHx`Mzeb?yOreqk#+cfwoEh(w+uOq&~11MYW)44Aze+7 zqk08yeHl)zmyXNA2&M4BzA0^Q{FlMYn|&BdA`^d91*Pr>QnF^qR=y+lQRrzuJ>p&(sgrGq*p*2Fh1{ z7d6;JTgTP1XhPe*;lP}=Yo%On`a>_A?F5nfH&`-bbB~*J$M8q~`}c|lHT7yOxe>TC z>>s0}#a5%A;K)jWW#Wy+-(MS;UZYu`u!4Ak$SP%(G(MPc6027t?`;t@iR)REP#b>u zJgZtYa$+rK%N4t!0+aD;S+h>14$aW}(ITx9M2yb%n`WGgvCCR4*|rFmqs$A{gtJgB zkhPL)$opG{O(`qOVnRz(%N0%=w3>$!XCNxKgu;Nh)LQtza3T5So7dt-Gk8hOA^*;% zRzFmiEQ|Dm#Iea&NUvunlVR_)_&gch+va4>G9uuN=S#onOdS=tA1}}(b(09)4p`=B{UtX}4`ZL28 zaPjOKb2DOeq$to7{vkMsHlxO0R0;D$X!bn(*6u2 zgF|Wz;F}Oi2Cm;j7xZA*dLwYik)?w)6$A}o`t2$-N95&*iwwf$iGhfV)&pCN5ZHLVl4Y-dMf)OSkN z@mo4TcuAG4|DzJXFfSpXx7rn`mZ1Q0NTBd{kA@wHrF#GkITse=hf1PjhtKG%K75|O zkNKsq>W(?7Dfqh0fgra3qw$QDO5^CR?bL-dvaI0|c_6Xvw~R4Sginx>{LQZ&*5E&u zB0O2mBav4C61BJR*`Q;ktI5jORAC8 zvXR}QkxRUhZ)}lg^pR&2ktGC?IarZz$dTQE$g}&1yYq;%1EBwA#L_Y_Z93v@1enwV zENTH()&M(8fup$*Z>hlWIACp9#GPNnn|s7x$A~4Xh!mrUVV#I-)rbw*h!W9=9Nvgw zwuoc;h&PIeDT0U+tcY&ph-LsV_&&V*JiPfJJY_RHXF0rjI{a=VJf|moswKRnCcL>c zd@48mE;ambT=?Ix@EpJJ6!-8u$M9yW@V`dkXFB13Rm0z8!>2@1l6b@K*iho>QSvBI z$_P+eu}}t)!|wnn!S~3O=V50DVRxHh8_Qu+(_yhAVck7pB`sk~HDNiWVJW#`-Kir> z)892Et*%M%83??kq~%XeO{s%TL}udEn=y$y-eriZzsrDqmmw+lE+cgQU52dOyNrs$ zcNu!>6fLnS|H)8%mtjKtE<-KhT}I33yNvPUcNw7nWMsd~*rEG>GD6fT+%IIDNJL!KiN+aH7DBQoxFf00>jH>@9qvl;kZ0);@e5U^=V^;ltGVI=E zgf;&sL;qdIfd0FT0+#=u%jjks>(|(QL`@bi`l~9Bvh^WVz08eVnSuKWrBrjwC-tDn zenTt?*dLjatA0vdqkiZr)TZT`g`_P%DBSlU$tDLT8QSX;R;2!qVMP7s9hOBI*AsHX z`_&58BRcBTHAhEON%jov(da3HIFdUt;L2oM;8z=`Kzk!My5~>WuV<;w+bS*ze66wX zBm5JwvKKUv`&?9?mBQg+*%?71uR9pge~lDHFr)dYKyj@Dmo0r4q=~Hq=VZxc{?7;& z@q3C4&Itd71(eqKn z=-Q<|STuR}F~pQs(?P`OZ-8;cs2PYE+yK*nx&Hv~zIh-534A>O_p~3b{e)qx&%9 z)O3w|`ZMuzC*bVyjB@=|zsfe?olmQlaYIzkXAyCqRBB>hjneB491H6e3$@g&j19|e zgS2RM{EhLg{Nj>72}VuV3W(-6h7syFjmlZuMSy&pMuTx;o5YdPR6iS!rQ;FC6LJ?= zwZXz2^Mr+^Nl53peIOaCbtmQu>Gk+bKQ!Y>ENZdkg$kL{Bq5ChhzS4kxnu!y0Bdgp zf-D9)&8YF*s!K;CHxww;+3zF51*aO;IUu(myk8C;Wc^_M=1+q_;X}ni zz@fV@LD0ZHyddCUcVrbLuW>6kfNGPzLiO2!wN&<583s4_?<71;$eR#6E^<~S98LV$ zxm&Op)saD;JEp5P$*bu)4NCO1D_lqz%pVG>t#F(3xG=*M!LI&A8fowk%W--jE+{@V z3nh45feJQ$0UD&}*fA(!Ri;1-{6V2nIPV_#l_^c^uzCFQe>!Uyn%*eq@6 z+p?9^4j)9%L@wh!!L$KaU1_=V&!3Mop$Sdyg5WMFCHhPXmmPvkDA} zK>012zm;SSm-yL#hIao$r99<bP7&BlO(s_Nj4ln8GuO*jt7|d+DM(bpf;Aok4!dR6?Yb8m2MWY$UVfuC9UpSUt!W%!h`ps{ zD5Ozu(2yO^HYlPb{}quC`Ckl|jJLNBu9lp?a5`<7(1?k zFenD>B1e`-Em4qZ*6kuE*I}$9M|iL8P)Drnj8TV}(Cov9cnRzykw`$z@D>CF%~EhE zv7b#i(4lL6>=;R(VPO#_m^pe$1n_z(lqDi{;;`CinEFNAXwt)GT~IN9eum}5oYR91 zKwPdgnfbgY9(bZvD=KEMUWT4YoIYfg9+L{NF)Eck+jJ-c=!k-`%#C37w?eugpQ}v&BDUs|@bTiY}t9H|* zTgrcdm0c#sJd{wRZd%*T#a*+D#|}SfO6wSQ{mct7X}6<-eJ#Sns$I6vhz?jPSCXV? zT0^`PjBYUYejmXF|2~3Dy!JO<>fQT@5NX@y!CjH2wINEZH9MI14Y{V4ED!n^udVH$tn+{XKR3#{9Wj*dvcaE}i9IK-bTM2;Z2J1H2(v#ibfdgDNLXIwS z#y7gbA{&b?1z(g|N$`>`1UQSH@cv=`W0?E6=&64v)JXo=em{O*BzsNFz*FTW>9^i= zD{-0ScC;yg(}5nn(W)7B+MXifP3POm;>%?V6w)CO9AY*DYkQmzrM6x^kMsywtrHZ^ zP_oTXkdc)AJ$gJIZvXoGjzPP)d@th3>XL2lOhMGA9P*2*DP}CloUk&vT$02#0bltW z4-t8PqApO2vc;O1tZz?vnSY+&VgUB%Ps#c}{b(LtPUdcAUmD2gRCx`b)$XZf3%=ta z9@_ks-(fM)QXr}fc&Td})U|G9t_#YHDY4?EpvIO+RE{!;WMA&txJ7g` z-x+sIx}7Gbkd7>jD@pK3WCnEBCuh_)hHx5`?64c(F@G$1P7L`{+?{Sr?t^+a!y-q7 zy=l|Jgo;o)z!3gBXjk1W&LEF2kWGB~RVx|GY9EqR_4@LS2xzMp)j(2yV zFGeB5NGf71#tw&**pV_$j{~G)e#0XpyW1+QMq(om&3b|IDqEr@_1_T54m8MlQ zDQZkE8g;=4aoWckSS=sd812cua^OAovUatzkxJ`pQ!AmCZ?`S{R{+9q&f5SVqW5U1AuGn+4@X za_O?&q{ep=Vn?NgKTNH7@C*r6Qu|9yU-R7AF7+O*b-ZjKXCcWX(FDmKC2E4jdZ}z- z9@x-71K@23cw)6pYlFr6Y;3VTILJSv{rNY77mOKLhc5cQ`M`Ki_PtbJJ0(6G?g9R1VVGP|)$8@d=7P`AORj(KWz zKPP>AI)3TASjywTa)wQ9jF<>;Xr+P+88&MikN9rYLfZ%5ToE6xSZV7WwMVOjG5$TS zzBd3KCm+9umN4eUE;5dmbV9>VF>s$-bU(rbl7X9cY+H=A#eUPEvq_IQv%sS7BS5Q` znXu&vEI5ggZnwXTtEf(lK4uT64c;5+9|9?Nej;*ONQ@Kpl{TXi%%SEW7Xl0ah=LSM#OLFIL6tx6c|8B6s8(q-5r;6Y0hm zE+mcJ#cq_>jHp+-R67?7Ra2_?usWbQmlDT4?tFzXC`2ma%HnO7bYYg~U4vT$m`$-WCEP;(029Gx4g1|UjXXsC$ zW5@=>o=eUowm_VIiEP6zT;1CP@b(ER%@(&y{qY%oK5F-mzj{wMi8!U7dzv4>s*08Z zsb?doVC7C6cps0c-`@Hcy>xB<1@Tklzrg;!+U>CZfIzRE8d=+x-I`@pZ&4jKu1xs- zoLK;_X&WNDDt!aGB3+)ayv{xc_ZwL;v)G2Y`-T38vY-CPsv*V|R1cEv9Sb+-#f5S@s(->*9Mw=%`w)-7P!Q?MC*jRRZ?(&U1F zB*MA(W`LhJpoPAe1;z|$hUrhk{{aI|p~CUapN5V26kef}9#exW_KSKEu3iGVD{xyL-!4jP6|^M!cprLIjj7a9D-6#~3<6Ko8j)jetQqAH z_MSImS|6d;sDvC)Iif|HW(Wjjqp?l&88!wn!1tV zvtP(+C4qAYlVkgYYArg>I2MArhi&QFxD(1;2>bNEye@WTRHezkKQbIB&X5U>OJ2(g?O1oajn<&(kU9$dZXTkQdEVuP9MNSW3XPNXMC>Dwo}&d zrbn9cHemw%qO=uc545Uilw0_0Q6{GCn7eHoNx{e}2B_c-hz+5kiaYKHC6vVu;9=Bp4)PS^R!7=dwRjEj!mlunm-KCu!;a)$T&+^f$p;%rp4IL`-|4zqouj?-bkz;4;p5`+yxmmq~f z9Tb(=JnvE-ZYcE!XK$bs8&oJzVj$=jZzV@>5E6fwxU;2~jAl#4g^j?$?p_ojUYqst zb2nofU&E&E$~r|R>HX;@X>$bU7!-QIel8Yey3|gaL%>~p)`!bAF}D>4nq=J$!=H)V zj#!@myB&r(F0li|Kb`s}8L|EHZ6M?V8WyFz~$?c8+jEz zW^s03@ofC6=pT`=FD|iU@QBn4Y_cND3dl3|2M=&R;pv6~4~DO3^VM?iS5>W^6Z|qw zuqJh4SdihggpHBmxYF2UoAW-P{luaE#*zvXCqbaleCNqFMTVvpxw{2V*>i>1zaWuW zjCEr5O9~mj$2cr^@feDnN>5O_x{d@?vprgZKm2#|3GsjLKf9or4#I?sBf2r>8!bD6 z^ZoK#+*DE;HUx2GKqIJFTT%bd6Lx&*G<75}{Owkw9mk|9-gBF#nZHN(B9vS)0_qQZg%fNVOv@5+p1T8af?J4<)ij)DfPfXx=oBszJ~y{jl>Jlk?#> znLPh-RYutjfBGNK<0W^tukB@DcdCYn4|V?KN%Xh1J?!;QZghLUx_9fmUgj7IdmH$+ zzIyuH)jU6izHvo;@)+#u?s{UAIz@O2{A|>f{T+6~R8U2%jrMavY=#eLxB5*Q|GZ%(u>=~w z`}sn7Qfq9YFJhZ2NaA~t{z?7|Ke}n#_tw~$aXX@l0=8c$-Iu$LQOGKs<&Zy;pN%VP zhDJkkZDA`GybLe39L-de{Z^Kj_EYOGT?#dZimSTOesp>zQVJt*T%_KvaNvnQe^26JZau+i|Y2Zfr6_g)t_~*dPYCUSEk@ zsWXbFeti&-&PJ1IA`B`W#B5z5RCj7LXjaelyX9|~v(%5cb-K@exGhDmA|%E( z_R-E)EtHBWgv8GG-E*Eliy!KU3te6sLn$moSVxiKBFkNlRg-^yv)Mf2CTRrZfH&^>dqNhl3S z!;Mu8T2Aj`r)?$gCsH;CXDPdMP5^>m1YiWR^0W+Fa3#POiz^{C8_HAUcPjZ>Qr>QQ zH3`?P$ov;7Q8vnt8@3CjlOdwrC~yDuNO5R;p-jcdgQs7Xk33-`S8S$kv^jF&ILh*(ke*WIQKxuH^vTklg`mZl%|;8W zLJ2=U`i+_e9RwCOJ~hTB>gPub>p1E1Kx()q98d`2pNTj)oJP6Z;u1N&${vgqF2vQ$ zjFwUQ7o?~bpvtjlgakoHv<*QVKRvk2N)w@0E)VqP({a;kaygV@1qlKYurjo%3+4q$ z+!DWJY;#IUp!0ve@==wU5rQOb(l`>sTxQK&u*-Hw;^NfgiNVvmZ13J*`MK(=W&6 z92AwRw;IMmy^x6wnq}}tmSz1Mlo@aF6Pe*S`~Z}r2SrAqykO0wFA9yDF~4RuRu89y zxTAbx;b)*MbTPXWlRYej1jhAYkHb@%7P>jL1VQZ&f=pnM5oms&35FN>s=}#f|3Rkn ziJOLIozoY2#my+04iu*xh>giIk4xZRrX8UWH&6}!my4zF(bGdb;sTT?=lXda8na7H+hK;=c&_5PJ&l1^;rHBZAhwNZ(Sz_JS&X(i zI3U)^36+ndOacH7OPtlG$3h`ZqoRYPpNqpN9J=EpP<77Z169QzST%#V5{%GhW+#H! zC6(wL`mq>lecB{iu0f_~*mL7Cc@(tUU8>V+qX~I^1u0At%JPh+A+Yhvt7r%mdFzBg z@cpaNrA2nkfv0v&-W?V1QEEY8OR4sz)Wa}qUK;hB${ zcU}GY-pBf^?K~^rmA45=d7m8#?~{*@E=`{VD5#FY=SdiDz86<7UC8WE_rT}r7;a~* z9bZ+hX9Ei@oeH5-YKva^BACld$xbyneg zW?1fDf-E27q$YV_#V&^ieK-T{3qeSh{tHO3>?^VdY(`BP4eViXp>s?oC_z~si-u~j zgF;>>eN>F=8{PDmvLX~hM4IpR<+P_kM6k8>pOHN1R2#upq4dTmwAeGoS)!a2Ny=t^ zPDFuBqXSeg4H|@Bx|R5NthTFfeC zzH}TsSjsB-{enrs1Y43cj}tiGf)W&U^K-Klxq_@Np)h*0*amghin|>N$O+CrOd1=) zBQW6(d_`%Db{N=L-adFt6azf@nK&<)7r<6?K{t8A$#M zDi0_UpP=17%1r{w_ol{$P$z=r!)56>6G8Ecp7b=7jU;M}ssYwA;L?GeC5VRfO)f~p z!cXtA)K~tpo@$Rv9cZ?C1t|+sXB*!+=0t2G)=tvbIQ72ZzcBFd&d^J*zvJ$PZ7_ zBcqt7sAJ9YwJ2c7ayBOhBuyWh0L7isiolsJAcZo3+

  • -series1, series2 = series.split_before(0.75)
    +series1, series2 = series.split_after(0.75)
     series1.plot()
     series2.plot()
     
    diff --git a/quickstart/00-quickstart.ipynb b/quickstart/00-quickstart.ipynb index 027ceb95e7..c4bf8a58f6 100644 --- a/quickstart/00-quickstart.ipynb +++ b/quickstart/00-quickstart.ipynb @@ -134,7 +134,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEPCAYAAABShj9RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABI0ElEQVR4nO2deXiU1fXHP5M9gZAQIAESMGAEZBcvCLIpVssitYW6VRQq7tJFW6u1lap1+bW2VatWa9Xi1qpoEdzrgiJBlFtAZJXFgAkhYcsG2XN/f7zzTibbLJmZZBLO53nyvJl3ue+9mcl3znvuuec4jDEIgiAIHZ+I9u6AIAiCEBxE0AVBEDoJIuiCIAidBBF0QRCEToIIuiAIQidBBF0QBKGT0J6CbsL958CBA+3eBxmLjKWj/MhY2uynRcRC90BtbW17dyFoyFjCExlLeNJRxyKCLgiC0EkQQRcEQegkiKALgiB0EkTQBUEQOgki6IIgCJ0EEXRBEIROggi6IAhCgBhjqKnxGCLeJoige+D+++9n5cqVvP7669x///0ALFiwgAEDBjB69GjGjBnDZ5991s69FAShPamtNQyfb5jyE0NdXfuKugi6BzZs2MD48eP55JNPmDJlimv/Aw88wMaNG/m///s/rr322nbsYeupqalp7y4IQqfgUDFszYHPtsCaze3bFxH0ZrjlllsYOXIkX375JRMmTOCpp57i+uuv5+67725w3pQpU9i1axdlZWWcc845jBkzhhEjRrB8+XIAjh07xqxZsxg1ahTDhw/n5ZdfBuC2225j6NChjBw5kl/+8pcAHDx4kLlz5zJ27FjGjh1LdnY2AHfeeSdXXnklZ511FgMHDuSvf/2r6/6///3vGTx4MJMmTeLSSy/lT3/6EwC7d+9m+vTpnH766UyePJnt27cD1tPFddddxxlnnMGvfvUrPvnkE0aPHs3o0aM57bTTKC0tDe0fVhA6IUVl9b+/+H47u12MMe31E9Z88cUXZsGCBaaqqsqceeaZrv3z5883S5cuNcYY88orr5hx48aZ6upqU1xcbIwx5uDBg+bkk082dXV15tVXXzVXXXWV69qioiJz6NAhM2jQIFNXV2eMMebo0aPGGGMuvfRS8+mnnxpjjNm7d68ZMmSIMcaY3/3ud2bChAmmoqLCHDx40KSkpJiqqirzxRdfmFGjRpny8nJTUlJisrKyzAMPPGCMMWbatGnm66+/NsYYs3btWnP22Web3NxcM3/+fDNr1ixTU1NjjDHm/PPPN6tXrzbGGFNaWmqqq6tD8rcMNrm5ue3dhaAhYwlP/BnL2i11hsm1hsm1JmVWramsqgthz4wxHnQ1qn2/TlrG4XCEpF3jYw3V9evXM3ToULZv386pp57a4Ngtt9zCPffcQ69evXj66acxxnD77bezatUqIiIiyMvLo6CggBEjRvCLX/yCW2+9lfPPP5/JkydTU1NDXFwcCxcu5Pzzz+f8888H4IMPPmDr1q2ue5SUlFBWZn31z5o1i9jYWGJjY0lNTaWgoIDs7GwuuOAC4uLiiIuLY/bs2QCUlZWxZs0aLrzwQldblZWVrt8vvPBCIiMjAZg4cSI333wzl112GXPmzCEjI6MVf1FBOLFxt9CPlMB7X8Dsie3Tl7AV9PZi48aNLFiwgNzcXJKTk3nkkUcwxjB69GjXBOgDDzzAD3/4Q9c1S5Ys4eDBg/zvf/8jOjqazMxMKioqGDRoEOvXr+ftt9/mt7/9Leeccw6LFy/miy++4MMPP+TVV1/l0Ucf5aOPPqKuro61a9cSFxfXpE+xsbGu3yMjIz36v+vq6khOTmbjxo0N9ufl5QHQpUsX177bbruNWbNm8fbbbzNx4kTee+89hgwZ0qq/myCcqBQ18lS++L5h9sTQGKTe8MmHrpQ6Syn1oVJqpVLqB0qpSUqpNUqp1UqpEc5zeiul/quUylZKzQu0Y54eKwL58cbo0aPZuHEjgwYNYuXKlUybNo333nuPjRs3Eh8f3+w1xcXFpKamEh0dzcqVK9m7dy8A+/fvJyEhgXnz5nHLLbewfv16ysrKKC4uZubMmTz44IN8+eWXAJx33nk88sgjrjYbC3JjJk6cyBtvvEFFRQVlZWW8+eabAHTr1o0BAwawdOlS19/Rvkdjdu/ezYgRI7j11lsZO3asy9cuCILv2Bb6eWOt7YpsOFbePr50rxa6Uioe+AUwQ2td5dz3CTALSASeAGYCtwJ/BD4GPlVKvaq1rghRv0PKwYMH6d69OxEREWzfvp2hQ4d6PP+yyy5j9uzZjBgxAqWUy8r96quvuOWWW4iIiCA6OprHH3+c0tJSLrjgAioqKjDG8Je//AWAv/71r9x4442MHDmSmpoapkyZwhNPPNHiPceOHcv3vvc9Ro4cSVpaGiNGjCApKQmAF198keuvv5577rmH6upqLrnkEhYuXNikjYceeoiVK1cSERHBsGHDmDFjRmv/ZIJwwnLUaaGPyoI9+2FXHuQehMH9274vDm9Wq1JqGnAdkAQcB24AXtRaT3MeX6u1Hq+UygYma63rlFKPAM9qrbWHpts/Ct8LeXl5pKent3c3WqSsrIyuXbty/PhxpkyZwpNPPsmYMWOaPTfcx+IPMpbw5EQdy21P1PGHf8G9VztY9qlBb4fPn3AwbmjI3C4tNuyLDz0NyALGA98B7gJK3I7XKKVigGitdZ1zXzGQ0rghpdQ1wDUAixYt4txzz/Wp9+1FdXW1y/ccjtx4443s3LmTyspKLrzwQtLS0lrsb7iPxR9kLOHJiTqWvIJuQBeoKSI2Mg6IZffeQ6QnVYWkb56+aHwR9CIgW2tdpZT6EEvQ3acBopzHqpVSEU5RTwKONG5Ia/0k8KTzpVjoAfL666/7fG64j8UfZCzhyYk6lmpj2bGZGcmk7rJkLTq+J+npbT8x6suk6DrgVKWUAxgNbAWilFLJSql+1Av3OuAspVQUcDqwJQT9FQRBCCvsSdHkrpDU1fq9uKzl80OJVwtda31IKbUM+ATLqr4SSAfedr6+wXnqH4DngHuAJ7TW5SHpsSAIQhhhT4p2T4QkZ1Rw8bH26YtPceha68eAx9x27QbObHROPhDeTnFBEIQg05yFXnLM4GHuMmRILhdBEIQAaCDoXSwRby8LXQTdA5I+VxAETxhj6gU9DFwuIugekPS5giB4oqIKqqohJhriYqCbLejtNCkqgt4Mkj5XEARfKHKbEHU4HO1uoUv63BaQ9Lnhy4mapjXcORHHsuUbK3Xu4MtqjTH1qXTV1bWh7F4HTJ87pc77Sa3ArPLtoUTS5wqC4A3bQk92RrcktbPLJWwFvb2Q9LmSPlcQfMU9wgXqBb3kePv0J2x96GZVREh+vCHpcwVB8JUmgh7uK0VPRCR9riAIvmALevdEaxsfC1GRdvSLISa6bRcXeU2fG0IkOVeASPrcjo+Mpe2oqzNERPgmsL6O5d7nDL99ynDbZXD/tZYHoMf5dRwpgcIVDnolh0TQW2w0bF0ugneuueYa1wKnuXPntijmgnCis2yVIXG6Ydmq4NqRRWVWe8ld6zW2PSdGxeXSgfnXv/7V3l0QhLCnqtpw06OG4xXw8QbDD6YEz2pu7EMHNz96O8Sii4UuCEKn5um3YO8B6/dgi2yzgt6OFroIuiAInZbySsM9z9W7WUIm6In1+9ozdFEEXRCETss/3oD9h6zoEwi+1eyKcmnO5SIWuiAIQvBY9aVlnV8503odbAvdLm7RnIUuPnRBEIQgcthZzn7YgNDkKW/Oh95NBF0QBCH4HHEK+sC+1jaYbhDjlgs9qT6jRn2Ri7K2X2ojgi4IQqfFttAH9rG2xccsIQ4Gx8qhttbyz8fGNBOHLha6IAhC8LAt9D49IDYGqmugvNLzNb7SeNm/TX1d0eDcxx9E0AVB6JSUVxrKK61qQl3igx8ffqjY2qY0FnSx0AVBEIKLbZ2nhKiaUMFRa5uW0nC/CLogCEKQsf3nPawkpEFfkl9wxNqmdW+4X+LQBUEQgoy7hQ7Bd7m0ZKF3S3DeRyx0QRCE4HDY6eO2LfTkIFvoBw5b0TJp3Rsm+5LkXIIgCEHmiHMVZxMLPcQ+9K7x4HBYYY01NW0biy6CLghCp6SxhR5s37ZL0Bv50CMiHK7VoqXlwbmXr4igC4LQKTlSalnHKYmWS8RewVkUpBWcLU2KWveytm09MSqCLghCp6SJhd5GLpdQ3MtXRNAFQeiUNPGhB9HlUltrXAuLUpuz0NspdNFrCTqlVCawDtji3HUhcBZwE1AOzNda5yqlhgBPOtu8Q2v9YSg6LAhC5+LzrZYL5IyhwS2oHEoL/VAx1NVZbUdHNe23nR/djoVvK3ytKfqJ1vqHAEqpKOBmYCowFrgDuBa4D1gIFADvACLogiB4pOCIYepPDXExcORNa0IxWNgWeo9u1jaYYYstTYjaZKRa29yDgd/LH3x1uUxUSn2qlLoPOAXYprWu0lpnAyOd5/TVWu/UWpcAR5RSPUPRYUEQOg/PvA2VVZZroizIESG2hZ7iFPRgukE8TYgC9E+1vpj2FbRt2KIvFno+kAUcB/4BzAHcHyQinVv3L4diIAU45N6QUuoa4BqARYsWce6557au121EdXU1eXl57d2NoCBjCU9O5LHU1sHjy3phy9CO3Qfo26MuKH0xBg4X9wYclJftJ68KyssigVSOFNeQl+fZdPY2lm2744FkusWVk5dX1OR415g4oDs7cpo/Hgjp6ektHvMq6FrrSqASQCn1H2AB4P4dV+vcur8TScCRZtp6EsvPDtD22d/9JC8vz+MfryMhYwlPTuSxvLPW8O3BehlISOxNenpwXC5lxw3VtYb4WMgaYPUpposBDGWVUV776W0s1VhtZabHk57epcnx0UOs4wdLmz8eKnyZFE3UWju9UUwG3gKuU0rFAArY5DyWr5Q6GSgEUrTWh5q2JgiCYPHE8oY2XTAjQlyJubrV77MnRYvKrCIXDkfrvzwKjjqX/ac030b/NGu7r6DVt2gVvrhcJiml7sFyuXyDNQlaAXzs3M53nvcbYAmWC+Z3we6oIAidh8Kjhjc/g+goGJoJX+6CkuPBa9+VmMtN0GOiHcTFGCqq4HiFlSO9tXjzofftARERkH8YqqoNMdHBjeBpCV9cLu9gRa2487Lzx/28rVgWvCAIgkd27LPC/sadChm9nIIexEU4zVnoYE2MVhyxIl0CEnQPi4oAoqIcpPc0fFsIeQdhQN/W38sfZGGRIAhtTv5ha9u3R2hWVTZnoYNb6GKA7p0DXix0cHO7FAZ2L3/wNQ5dEAQhaNiC3qeHVSIO2shCD9KXhzeXC0A/Zyx6W/rRRdAFQWhz8p25xPv0cFDtTDFbctwAwfE1t2ShB0PQ6+oMBz0s+7fp3w6CLi4XQRDaHHcLPamrJeLBjXKxviR6dGuh+EQA9zpcArW1lvsmNqblL6D+aW2/uEgsdEEQ2pz9boJunHoX6igXaBi62Fpc7pYWJkRtxIcuCMIJgbuFfqzC+j3UcegQHJeLLxOi0D6x6OJyEQShzXEXdLuocjAt9EJnWGGv5Ib7kxNt907r3SD//sC6dtgAz+e5C7oxbeN2EUEXBKEB1dXVLF26lB/84AecfPLJfPHFF0Ftv7LKcKQEIiMtwbXLtQUzysXOcmhnPbQJ1ELfs9/w7HtW32++yPMEbnJXq75oWXlgLh5/EJeLIAgN+NnPfsbjjz/uer18+XLGjRsXtPZtl0XvFCtdblIXy3oNVhx6dY0h/7BVqLlPj4bHAhX0e58z1NbCghmQleFZ0B0OB/3TDFtzLCu9e2Lr7ukPYqELgtAA2yKfMGECAAUFwXUCu7tbIPgW+oHD1kRr75SmxSfshUVHS5u50Avu1vlvLvctvLKt/egi6IIgNOCbb74B4IorrgBCKOjOKJFgrxR1uVt6NT1mR6YUNMkF650Vq61wxQvP8m6d29h9aKtCFyLogiC4KCkp4ciRI8TFxTFypFW7JtQWepd4yz1yvAJqagKfPPQk6PY97bBJf9iVZ/Vt3Km+L36yJ2Xt+qOhRgRdEAQXOTk5AGRmZtKnTx8g+IK+/5C9StR67XA4XG6X0iBULWppQhQsNwxYFnpdnX9fHrv3W9uBfXy/pleyJf6HiiTKRRCENsZ2twwYMIC0NMsBXFBQENSwu3oLvd7SdbldghANklto9TWjV1NLOjbGQUo3qKn132re4xT0k/2oR9LTWaD6oFjogiC0Ne4WekJCAl27dqWyspKSkuCVr2/scoHgxqJ7crm43zffD7dLba3hm3zr94F+pMJ1uVyKfL8mEETQBUFw4W6hAw2s9GCR75yQ7OtWRt7OsRKMSJdQCHruQaiusVw2CXG++9DFQhcEod1oE0H3YKEHI9LFkw/d/b7+CHpr3C0gFrogCO2I7XJpLOgHDhwISvs1NYbCo1ZUi3sulGDFotfWGvY7qxn37dH8Ofb+/X5UPbYnRE/2s/KQbaEfKm6b5f8i6IIgAJbg2BZ6ZmYmEHwLvbDIWvTTK9kq02YTrFj0wqPWhGevZIiLbd41Yk/G2jnZfWHPfuvcgX39y9feJd5BfCxUVMGxIETweEMEXRAEAI4cOUJpaSmJiYmkpFjxfcEW9ObcLRA8C92b/9z93v64XHbnWVt/XS7Q0EoPNSLogiAADd0tDodliQZb0Avc8ri4062Ldb+SY4G5JUIm6K10uUC9H/1gEXy5yzDv93X8443QuF9E0AVBAGjiboHgC/rBImvbOK1tsFwu3iZEIbBJUX9CFm3cLfQvd8GL78PKDSLogiCEkMYRLgC9e/cGgifottvBFjmboLlcPCwqsnFf/u/LROXRUsPRUitFgacaoi3hbqHbvvgBfqw29QcRdEEQgKYRLhB8C/1QsSVoPZMa1foMtoXuweXSJd5BYgJUVfuWddHlP++LyxXlD+4WumtxUp/gFMNujAi6IAhA8xZ6sJf/2xZ6Y5dLW06KQv2iJl/cLoG4W6A+n8vBIsMep6CLhS4IQkjJzc0FoF+/fq59Xbt2JSEhgfLycsrKAk+00qLLJUhL/791FmT25EMH//zogUyIQkMLPdAvB2+IoAuCAEBhoaWGtlVuE0y3iz0p2ljQ7aX/gSTnOlpq5VuJiYaT0jyf60nQH15quPTeFEqPW08kO/ZZW19zoDfGfhrJPWgtZoqM9P4E0VpE0AWhA7F27VoOHfJjiaOP1NXVudrt2bNng2PBFHSXhZ7ccH8wLPS1W6ytGmxlVfSEXVyjsaAfOGy49e+GTzfH8u7n1r6Nu6ztqJNb1y/7y0tvt7YnpTVcVBVMRNAFoYOwbds2JkyYwPjx4yktbUUNNQ8cPXqU2tpaunfvTkxMTINjwVz+35LLxWWhB+BDz/7KsqTPHO79XHu1qJ2b3ebBVwyVVdbva7cYKqsMW76xUhWMbKWgNy5yESr/OYigC0KHYf369QDs3r2bn//850Ft23a39OrV1BcQLAu9ttZwpMQSx5RGBZPjYiAqEiqroLKqdZOv2Zut7cQR3q3f5lwuR0sNf3u9/vXarbA1x0olMKifFR3TGho/jYTKfw5+CLpS6lKl1EHn7xcqpdYopT5USmU49w1RSq1y7j8nVB0WhBOVXbt2uX5/5plneO2114LWti3oqalNZxODJehHS608Lt0Tm7ocGlQt8tHtYozhjqfqeP1TQ3WN4Ytt1n7fLHRr6y7oj/0Hysph3KnW6/99DZ872zztFN/61BwpidaXmM2AEIUsgo+CrpSKBC4EvlVKRQE3A2cBi4E7nKfdBywEpgN3B72ngnCCYwv6hAkTAIJqpXsS9GAtLmrJ3WLjbyz6V3vgnufg0rsMb2RbNUlPyYDU7t4Fs59zmPsK6/c9vtx6MrjvGgdZfWuorIIl71j7Rme1XoQjI60qSTb+lLDzF18t9EuBpUAdcAqwTWtdpbXOBkY6z+mrtd6ptS4BjiilerbQliAIrcAW9Pvvv5+4uDhyc3ODEkoIcPCgFcDtyUIP1IfeUoSLjb3fzvfijQNO67qiCq78g+/+c4D+aZbVnHvQSulbXGal3Y2PhWljYMwpliP9863W+YFY6AC93Mbcrj50p3V+EfCyc1d3wL0eVWQzbRUDjdLvCIIQCLagn3LKKWRkZADw7bffBqVtTz50u1h0oILuzUI/yXoQYK+PDwLu2QvtcEdf/OdgRcH07Qm1tZao5ziHltnbcv+MyapucP7oAAXd3Y8eSh96lA/nzANe0VrXKaUAigC3Bwhqnds6t31JQJPvWaXUNcA1AIsWLeLcc89tRZfbjurqavLy8tq7G0FBxhKe+DqW4uJiDh06RFxcHHV1daSmprJr1y42bNhAt27dvF7vDXuVaExMTJP+2Mvdc3NzPfbV21h25sQDySTEHCcvr2ku2R5dEoGubNpRzJRTvftddu5NAJKIizFUVFl9zEotJC+vxuu1AH1TepB3MIZ1mw9RcswBpNCnewV5eUcZMQAsGYO07rVUHy8kL4CQyq6x3YE4usTVUVFWQF4A0Tzp6S3n8PVF0IcCpyml5mG5W34CnKqUigEUsMl5Xr5S6mSgEEjRWjcJltVaPwk86XwZ+vIdAZKXl+fxj9eRkLGEJ76OxbaObes8KyuLNWvWUF5eHpS/xfHjlloNGjSoSXt2bvSDBw/St2/fFvOZeBtLbYQBDCf1SSA9vWuT48OyrONHy7uRnp7stc81Thty0RwHy1dbC4qmjk0lIsI3K31Q/zrW7YCy6p6UVgEYhmTGkZ6eTk1tHl3iraIUpw+ODPhv3K+31deT0yPIyAjdZ9eroGutb7V/V0pprfX1SqmLgY+BCmC+8/BvgCVYLpjfBb2ngnACY7tbsrKygPrl+W3hcomPjycpKYni4mKOHj3qEnh/OVTUfGIum0w/XS62T35AHwdfLYHICHwWc+s6a5tzwFBUWt8WWCGUY4fAxxsC959DfSx6KP3n4JuF7kJrrZzbl6n3qdvHtgKTg9c1QRBs2krQm5sUBcuPXlxcTH5+fqsF3a583zgu28blQ/fRVe+eW93bytDmyOztAAw5+fVZF90F98czHGzeY/jhWYGHGVpfFIbhA7yeGhB+CbogCO1DqAXdU5QLWKGL27dvJz8/n2HDhrXqHnbl+xYnRZ35V3IOWDHm3lLVeptk9UamU7y/yYci56Squ6BfMd3BFdODEzN++XmQkujgOyoozbWICLogdAB27twJhEbQa2pqOHz4MBERES1a33akS35+fqvv01LqXJukrg6SuhqKy6xzWzrPpqXqR75iu3jcBT0zRC6R2BgHc6aGpm13ZOm/IHQAPFnogeYpt5Ny9ejRg8jIyGbPCUbooi8WdaYfbpdALfR+qRARYYUtlpVbOdm7J3q/LpwRQReEMKe0tJSCggJiY2Nd8edJSUl07dqVY8eOUVRUFFD73vznUL9aNBgWuicBdne7eKKuznDYuRqmRysFPSbaQbrb8scBfVpXkSicEEEXhDBn9+7dAAwcOJCICOtf1uFwuKz0ffv2BdS+N/85BO5yqawylB63okfsnC3N4evE6NFSqKuD5K4QHUAqWvuJAEIfgdIWiKALQpizZ88eAE4+uWH+1mD50T2FLNoE6nJxt849WcFW5AnsLfDsRgrUf27jLuLu4t5REUEXhDDHXn3pXhrO/XWwBD2ULhdvE6I2LpeLl9sE6j+3cZ8EDWUWxLZCBF0Qwpz9+61ClH37NkwCEixBbwuXi68C7Gs+l2BZ6PYTAYjLRRAEJx988AH3338/dXV13k/2k5YEvX///kDbWOh2JaOSkhJXmgB/cMWgJ3s+z1dBD5qF3rv53zsqIuiCEAR+9rOfcfvtt/POO+8Eve1QW+i++NAdDofL7eKLH/1f7xum/qTOVeLNzjvuTYB7JkFCnJU9sai0qR+9otJQV2dC4kMXC10QBIwx5OTkALB06dKgt99Wgu7JQgf/3C5/X2FY9SU8tNQS5Vc/traTR3r2UzscDpcfvbGVvjXHkDzLcNvfDQe95IXxlX6pVnm58cOga4L40AXhhOfo0aMuN8Trr79OZWVlUNv3Jui5ubk+u3qMMfzxj38kOzvbtc8XHzr4J+j7nGL8zNuwabdVHq5bF/i+D9meWgpdfO0Tq+boP96oLx0XqIUeGelg87MOVj/a8cUcRNAFIWDcLeTi4mI++OCDoLV9/PhxioqKiI6OpkePHg2OJSQkkJKSQlVVlUuUvbF27VpuvfVWZsyYwTfffENubi65ubmAd0H31eVSW2vIdXbncDH86G7Lmr7wLIiP9S6c/Z3d+Law4f5PNlrtFJXBO59b+7z55H0hOspBZKQIuiAINHV5vPLKK0Fr27aGW8pD7q/bxT6vtLSUefPm8cMf/pCKigqmT59OcnKyx2t9tdAPHIGa2vrXW6zaGVz+Xd9Es3+add4+t1j0qmrDms3155Q4C0T0CnBStLMhgi4IAWJbuJMmTQJg+fLlQXO7uAt6c/hbis7dul6zZg2ff/45/fv357nnnvN6ra+CbrtbBveHrvHW7yf1hskjW77GneYKOK/bDuWV9e3ZBMNC70yIoAtCgNhies455zBy5EiKi4tZuXJlUNpuyX9u4+5H9wVb0M855xwcDgexsbG89tprHiNcbHxdXGS7SoaeBFd81/p9/nTfi0/0T2vYDsAnG63tvPMgw62rgfrQOxsi6IIQILag9+vXj2nTpgGwcePGoLTtq6D7a6FffPHFZGdns27dOpy1gr1ix73bET0tYVvo/dPgj9c7eP63Dm6f57uP2hb0fW5RLrb//KzRDtfEakx0U4v9REfyoQtCgNjWcb9+/VzRJlu3bg1K26ES9N69ezNhwgS/+jJw4EDAKihdV1fnShQGsOYrw/+2xvGTi2FfoSW+/dMcdIl3MO88v27jyoCYdwhqagwGyHb6z6eOhl7JDh79jyGte8fPjhhsRNAFIUDcLfSEhAQAtm3bFpS2vQm67UP31+Viu0/8ITExkdTUVAoLC9m/fz8ZGRlUVhl+8w/Dn18G6M6Zo00DC701xMY46J1iOHDECk/cf9gq1jy4P/Tu4SC1u+H2y2H4ABHzxoigC0IAGGNcYpqRkeEK/du2bVsTK7Y1hNJCbw0DBw6ksLCQ3bt3UxuVzvd+bdi0u/74B9rN5eI5CtIj/dOsaJl9hbiiW6aOsrYREQ7uvVrEvDnEhy4IAXDo0CEqKipISkoiMTGRHj16kJaWxrFjx4JSHs5XCz0vL4/a2tpmz7Gpq6vzeVVoS9gpfHfv3k3PJKiogqx0uOVS6/hH640rOqW1Fjq4RboUwLrtlgtnwnARcW+IoAtCALj7z21OPfVUIDhuF2+CHhcXR69evaipqXGJdUscPnyY2tpaUlJSiI2NbVV/bEHfs2cPXeIdvPl/DjY87eAXF1tiu+pLazFRTDSkdm/VLYCGkS56u/W7Gtz69k4URNAFIQDc/ec2Q4cOBQKfGC0tLaW0tJT4+HiSklpeQeNrLLrtbklLa73pbE+M2lWUTunnoGuCg7QUB4Mzqqmoss6z6nW23qLun2pdu2Gn4Zt8K2HXkP6tbu6EQQRdEALAFlFbVCF4Frq3VaI2vvrRA/WfQ0OXS2POHFZV36cA/OdQb6G/9Zm1Pe0UiAqg1NyJggi6IARAKC10b+4Wm7YUdNtCt8viuTNxWP3q2EAmRKH+C6HUmXpd3C2+IYIuCAHQnA/dXdCN8Vwb0xP+Crq30MVgCHqfPn2Ij4/n8OHDFBcXNzg2YWgVdlBPIBOizV2vhoh17gsi6IIQAM25XNLS0khOTqaoqIiCAi+ld9x48803WbhwITk5ORhjeP/994H6HCot4a8PPRBBdzgcLVrpSV0MYwZZv9sJtlpLr2SIjal/LRa6b4igC0IANOdycTgcrXK73HXXXTzzzDOMHDmSmTNnsmTJEqKiopgzZ47H6zy5XDZs2MApp5zCU089FRRBh6YTo+78+jIHE0fA7DMDugUREQ5XzpbEBKsIheAdEXRBaCW1tbXNulyg3u3iz8SoLZClpaW8++67JCQk8MYbbzB5sueqEC25XKqrq/nxj3/Mrl27WLx4sUvwAxV0TxOjc6Y6WP1YBL17BO4isf3wpw8OLGLmREIEXRBayf79+6muriYtLc215N9myJAhAGzfvt2ntoqKijh69CgJCQk8/fTTzJgxg48++ojp06d7vTY9Pd3VH/fFRQ8++CBffvklYEXMrF69GgieoDc3MRpMbD+6uFt8x+vSf6VUGrAMqAZqgcuAk4E/AnXA9Vrrr5RSvYHngC7A41rrF0LWa0EIA+ysg5mZmU2OnXLKKQDs3LnTp7a++caqAjFw4ECuvPJKrrzySp/7ERMTQ1paGgUFBeTn55ORkcGePXu48847Afje977HihUrXBO0gcSh232E5i30YHLZuQ7WbTfMny7Wua/4YqEfAiZpradiCfZC4F5gFvAj4A/O827FEvmpwI1Kqbjgd1cQwodgCrpt7dpi6S+NU9v+4x//oLy8nEsuuYR//vOfxMVZ/44RERH07NmzVfew8eRyCSbnjnWw5bkIhg8UQfcVr4Kuta7VWtsVaBOB3UCt1vqo1nofkOI8Ng74SGtdA2hgeCg6LAj+sGvXLtLT03nwwQeD3rZtVQ8YMKDJsYEDBxIREUFOTg5VVVVNjjcmUEEfPNjyS9guni1btgAwd+5cUlJSuOSSSwArh0tkZGSr7mGTmZlJamoqffr08bk4tdA2+ORDV0qNVkp9DiwC1gAlbodrlFIxQLSb8BdTL/SC0G68/fbb7N+/n1/96lds3rzZ+wV+4MlCj42NpX///tTV1bmE3xOBCnrjqBpb2G1f/g033IDD4XCtYg2E2NhYCgoKWLNmTcDZJIXg4lP6XK31RuAMpdRFwG+Abu5taK2rlFLVSqkIp6gnAUcat6OUuga4BmDRokWce+65gfY/pFRXV5OXl9fe3QgKJ+pYNmzYAEBNTQ3z58/n9ddfD5oI7dixA4CuXbs225/+/fuTk5PD2rVr6dq1a7Nt2GOxo2GSkpJa9T7Z2RM3bNjAnj172LNnDxERESQkJJCXl0ffvn1ZsWIFvXv3Dtnn4ET9jLU19iR4c/gyKRqjtbafGYuBMiBKKZWM5YKxhXsdcJZSahVwOvCrxm1prZ8EnnS+bP0SujYiLy/P4x+vI3GijsXOh+JwOFi/fj1vvPEGN9xwQ1D6YbetlGq2P8OHD2fVqlUcOXKkxf7aY7HFY+zYsa16n+zQxj179lBRUUFtbS1ZWVkNLP5Qv/8n6mcsnPDFVBmtlFqllFoJ/Bx4APgt8DbwEvBr53l/cP6+CnhCa10e/O4Kgn/Yk5J33XUXAI888khQ2q2pqWHfvn0AnHTSSc2e4+vEaG1trUf3jS8MHDiQmJgY9u3bx7p164B6d4tw4uDVQtdafwFMabQ7Hziz0Xn5QHj7UIQTiqqqKnJycoiIiOBnP/sZd955J19//TUVFRWuqI/WYheU6NOnT4tt+Sroubm51NTU0LdvX+LjW1f1OCoqikGDBrF582Zef/11QAT9RERmNIROi13MuH///nTr1o2srCzq6ur4+uuvA27bF4t60CArsUlLgl5bW0tlZWXAE6I29sTou+++C4ign4iIoAudFltIbUt52LBhQH1IXyB4Clm0yczMJDIykn379lFRUdHgWG5uLkOHDmXSpEl89NFHQOCCbkew2PcSQT/xEEEXOi2NBd22YIMh6L5Y6NHR0QwYMABjTINl8oWFhXznO9/h66+/Jj8/n3vuuQcInoVuI4J+4iGCLnRaQmmh+zqJ2diPXltby8yZM9mxYwcjRoxocH2wLHSAnj170qNHj4DaEzoeIuhCp8X2lbeXy8X93nZftm7dyv/+9z9SU1N5//33eeaZZ0hMTATqV3u2lkGDBrli7IOxgEjoeIigC+3Otm3bePjhhxtkCgwGjS30wYMHExkZye7du5v4tP2ltRa67Xo5/fTTSUtLY9CgQXz88cc88cQTjB07NqA+xcbGuvKsiLvlxMSnlaKCECoOHz7MOeecQ35+PgMHDmT27NlBabeiooJvv/2WyMhIlxUdGxtLVlYWO3bsYMeOHYwaNcqvNsvKynjrrbf44osvyM3NxeFwNMmD3hg70sVeVdpcRMuYMWMYM2aMX31piaFDh7Jz586ArX2hYyKCLrQbxhiuvvpq14rLTZs2BU3Qd+/ejTGGAQMGEB0d7do/dOhQduzYwZYtW3wW9OLiYhYtWsRrr71GeXn9ernRo0cTGxvr8VrbUrYF3c5QGKi/vCVuuukmqqurmTdvXkjaF8IbEXSh3Xj66adZtmyZ67U/5dq80djdYjNs2DCWLVvmlx/9P//5Dy+8YKX3nzhxItOnT2fUqFFMnTrV67UZGRnEx8dTUFBAUVGRy0K3XSPBZurUqT71S+iciA9daBeMMSxevBjAlVvFn3Jt3rAt4uYEHfybGLX7tXjxYlavXs1vf/tbZs+eTbdu3bxcaeUfd3e7BGsRkSA0hwi60C5s2bKF/Px8+vTp44rD3r59e9Dya2/cuBGgiVvFFnR/ngbsCJXGcd6+Yrtdtm3b5nN0jCC0BhF0oV348MMPAZg2bRrdu3enT58+lJeXs3fv3qC0b6fNHT16dIP9gwYNckW6HD9+3Ke2bGu/tRON9nUfffQRVVVVpKWltZhOVxACQQRdaBdsQT/nnHOA+rjpYPjRjx07xtdff01UVJTLIreJjY1lyJAh1NXV+eR2qampcU1kNnbf+Iot6HaOFXG3CKFCBF1oc2pqavjkk0+AekG33RnB8KN/9dVXGGMYOnRos1Eothvmyy+/9NpWTk4O1dXVZGRk0KVLl1b1xxb0gwcPAiLoQugQQRfaHK01JSUlZGVluYobB9NCt90tp512WrPH/RF0238eSFx342tDFeEiCCLoQpvT2N0CwbXQ7QnRxv5zG38EPVD/OVgl6tyr34iFLoQKEXTBI9XV1UFvszlBd7fQjQmsOmFLE6I2tqBv2rSpxXtVVlYC9YJuhx62FvcvBBF0IVSIoAst8vXXX5OWlsaiRYuC1uahQ4fIzs7G4XBw9tlnu/anpqaSkpJCSUkJ+/fvb3X7NTU1fPXVV0DLgt67d29SU1MpLi5uNqpm6dKlxMfH89hjjwXF5QINc6uIy0UIFSLoQovcd999HD16lOXLlwetzSVLllBVVcWMGTPo2bOna7/D4XBZ6YG4XXbs2EFFRQWZmZkkJye3eN7IkSOBpm4XYwx33nknxhhuueUWl7UfqKDb18fFxdG7d++A2hKElhBBF5pl3759vPjii4BVXaeoqMiv67/99lvOO+88fvjDH3L33Xe7ysE9+eSTAFx33XVNrmlNAYrt27fz8ccfu17b/vOWJkRtWvKjf/DBB66J2fLycoqKioiNjXVN3rYWW9AHDBjgSnErCMFGPllCs/zpT3+ipqbG9drfHOIvv/wy77//Pq+99hq/+93vOOOMM/j73//Ozp07ycjIYMaMGU2usV0k//vf/3y+z9y5czn77LNZsWIFgKucW0vuFpuWBP2hhx4C4Kc//anLws/KyiIyMtLnPjXH1KlTmTt3LrfddltA7QiCR4wx7fUT9uTm5rZ3F4KGP2MpKCgwcXFxBjBjx441gHniiSf8ut8NN9xgAHPppZeaqVOnGsD1c9dddzV7zbp16wxgBg8e7NNYampqTFRUlAFMz549zWOPPWYAExkZadavX++xjS+//NIA5uSTT3bt27FjhwFMXFycOXjwoHn66acNYH784x/7NXZ/OFE/Y+FOmI+lRV0VC11owiOPPEJFRQWzZ8/moosuAmDz5s1+tWHnLLn44ot56623OOOMMwCIjIxk4cKFzV4zcuRIYmNj2bFjh08unsLCQtdTxKFDh7jxxhsBeOCBB7y6XIYMGUJ0dDS7d++mtLQUgCeeeAKAyy+/nJ49e3LllVeybt06HnzwQe8DFoQwQARdaEBZWRmPPfYYALfeeivDhw8HWi/oAwYMoEuXLrz11lvMmjWLxYsXN4jJdicmJsYlxFprr/fIy8sD4KSTTnLVz7z44ov5+c9/7vXamJgY18SofS/bF3/ZZZe5zlNKkZSU5LU9QQgHRNCFBjzzzDMcPXqUCRMmMHHiRJeg28vpfcEY06REW48ePXjzzTddKXNbYty4cQB88cUXXu+Tm5sLwIgRI3j//fe59957efrpp3E4HD71c/z48QB8/vnnlJeXs2nTJiIiIlBK+XS9IIQbIuiCi5qaGpd74ZZbbgEgPT2dpKQkDh8+TEFBgU/tHDhwgIqKClJSUnzKGe5OawQ9IyOD0047jdtvv92vfCu2oK9du5YNGzZQW1vL8OHDW52zRRDaGxF0wcWyZcvIycnhlFNO4Xvf+x5gxYf763YJJOe3Leiff/651ycCd0FvDe6C/vnnnze4vyB0RETQBRcrV64EYOHChQ3C9PwVdNvd0hpBz8rKIjk5mQMHDrgEuyUCFfSTTz6ZHj16UFBQwNKlSwERdKFjI4IuuLBXaDau8tOWFrrD4fDZ7RKooDscDpeV/tlnnwEi6ELHRgRdcGGvkLSX4Nu0paADrhDHUAs61LtdABISEpoUxBCEjoQIugDA4cOHKSwspEuXLvTr16/BMVvQN23aREVFhde2AhV0O3TRU3pbY4xL0FsKg/QFd0E//fTTiYqKanVbgtDeeP30KqXGAQ8D1UAecAXwfeAmoByYr7XOVUoNAZ50tnmH1vrDUHVaCD62u+XUU09tkmukZ8+ejBkzhvXr1/Phhx8ya9Ysj20FKugtLcs/duwYS5YsISoqirlz51JZWUlycnJA9TnHjh2Lw+HAGCPuFqHD44uF/i0wTWs9BcgBLgBuBs4CFgN3OM+7D1gITAfuDnZHhdDSkrvFxo56sXOmtERNTQ379u0DrAU/rSEzM5PExEQOHDhAYWEhAM8++yxZWVksWrSI66+/3hWVEoi7BSApKcmVFGzs2LEBtSUI7Y1XQdda52uty50vq4DBwDatdZXWOhsY6TzWV2u9U2tdAhxRSvVsrj0hMB5++GEuuOACLrjgAm6++eYGCbQCwbbQbXFrjC3ob7zxBnV1dS22k5ubS21tLX379iUuLq5VfYmIiGiQ3nbTpk0sWLCAAwcOEBsbizGGP/3pT0Dggg5WmuAFCxa4xigIHRWfHYZKqZOA84DbgF5uh+z4Nvcvh2IgBTjUqI1rgGsAFi1axLnnntuKLrcd1dXVruXl4cChQ4eaLGsfOnRos5kLG+NtLHbe79TU1GbP69WrF3369CE/P5933nmnQTbDmpoa1qxZQ3Z2tuva9PT0gP52WVlZZGdns2rVKlc8+gUXXMCMGTO47rrrXMv0u3fvHvB7dPrpp3P66adz5MiRgNppDeH2GQsEGUvb4GnOyCdBV0p1A54HFmAJuPvyv1rn1t1sSwKa/HdorZ/E8rODlXkvrMnLywtowi3YfPrpp4AVWjd27Fgee+wxVqxYwVVXXeX1WvexbNu2jbKysgYuhj179gAwefLkFsf8gx/8gL/97W+sXbvW5Uf/z3/+ww033NBkFemoUaMC+tudeeaZPPvss+Tk5HDw4EHAytPygx/8gF/96leUlJQAVmm4cHqP/CXcPmOBIGNpf7y6XJRSUcBLwF1a6x3ATuBUpVSMUupMYJPz1Hyl1MlKqUQgRWt9qIUmhVZi1+KcM2cOixcvJioqirfffpsDBw743Mbx48eZPHkyZ555Jjt37gSgtLSUb7/9lpiYGI8TmRdccAHQ0I9+7733UlBQQFZWFrfddhsPPPAADz/8MPfcc09rhujCdrmsW7eOVatWAXD22WcTFxfX4IkkGC4XQegs+GKhXwqcAdyhlLoDeBx4CPgYqADmO8/7DbAEy4L/XZD7KdCwuHJqaiozZ85kxYoVvPDCC/zyl7/0qY2XXnqJw4cPA1aa2SeffJLt27cDVlUdT2F7U6dOJTExkU2bNpGTk0NycjIbNmwgJiaGL7/8koSEhABHWM+IESNwOByuIs3Dhg1zlW6bM2cOL7/8MiCCLggN8JQsPcQ/YU84Jbnfs2ePAUxycrKpqakxxhizbNkyA5ihQ4eauro6j9fbY1FKuQpNxMTEmLy8PLNkyRIDmIsuushrP+bOnWsA8+ijj5oVK1YYwEyePDnwATbDKaec4urrT3/6U9f+vXv3mn79+hnA7Ny5MyT3bivC6TMWKDKWNkMKXHR0bOv87LPPduVZmTVrFr169WLr1q0+5Q/XWqO1pnv37syePZuqqiruu+8+V9stRbi4M3v2bMCKdrEnJqdOndqaIXnFPQXBOeec4/o9MjKSt956i2XLlpGVlRWSewtCR0QEvYPg7m6xiY6O5sILLwTg3Xff9dqGXZFnwYIF3HXXXQA89thjPP/884D3OpwAM2fOxOFwsHLlSt5++20AzjrrLJ/H4Q+2oEdERDT50hgxYgTf//73Q3JfQeioiKCHEXv37mXRokXk5+c32F9TU+Mqfuwu6ADTpk0D6qvttMSePXt44YUXALj22ms57bTTmDt3LmDlTnniiSc4//zzvfaxV69ejB8/nqqqKrZv3050dDQTJkzwaXz+YheaGD9+vFQNEgRf8OSPCfFP2NPWfrRFixYZwFx55ZWufbW1tWbevHkGMAMGDGjiKy8sLHQVNq6oqGi23bq6OjNx4kQDmCuuuMK1v7Ky0hQWFvrdz/vuu8/l2540aZLf1/tKXV2defzxx83WrVsb7A9z/6ZfyFjCkzAfi/jQOwL24p5XXnmFY8eOYYzhxhtv5IUXXqBLly7861//alJerVevXgwfPpyKiooWsxM+99xzZGdn06NHD/785z+79sfExNCrV69mr/GEuyUfKncLWOltr7vuuhbTEQiC0BBJLRck9u3bx/333095eTlRUVHceOONXivPu1NXV8emTVZIf1lZGa+99hpg+b1jY2N54403GmQGdOess85i8+bNfPzxx0yePLnBsY0bN3LzzTcD8Je//IWePQPPyDB8+HAyMzPJycnh7LPPDrg9QRCChCfzPcQ/YY8/j13XX3+9yw0BmFGjRnkNJXTHDku0f8aOHWt69eplAPPMM894vPbVV181gJk2bVqD/e+9957p2rWrAcx3vvMdv/rjjezsbPPQQw8FtU1fCfPHYb+QsYQnYT6WFnVVBN0D/rypdsz0PffcY3r37m0A8/bbb/t8vR1TPn78eBMfH+8S9smTJ3sVzeb86Js3bzZRUVEGMD/60Y/M7t27fe5LuBPm/2x+IWMJT8J8LOJDDyX79u1j586ddOvWjVtvvdXl4rjvvvt8bsPO/T158mRX9ElUVBSPP/54E795Y5rzoy9dupSamhouuuginn/+eWJjY1szNEEQOhAi6EHAjhGfOnUqUVFRXHfddSQnJ7N69WpWr17tUxu2oI8aNYqbbrqJxMRE7r77bp9Lotm+7LfeeguA//73vwDMmzevScEKQRA6J/KfHgQaL/pJTEzkJz/5CWDlS/EFW9BHjhzJmDFjKC4u5te//rXPfbCt+pdeeokjR47w+eefExUVFdIoFEEQwgsR9AAxxjS7ivO6664D4KOPPqK2trbZa21KSkrYs2cPMTExDBkyBMCrm6UxkydPpl+/fuzdu5ff//731NXVMXHiRBITE/1qRxCEjosIeoBs27aNAwcOkJaW1sA90rdvXzIzMykrK2PLli0e2/jqq68AK5dKdHR0q/oRERHBpZdeCsBf//pXAM4777xWtSUIQsfkhBD0/Px8srOzyc7O5ttvvw1q27Z1Pm3atCZWtb0kfu3atR7bWL58OdAwGVVruOyyywBcJeK++93vBtSeIAgdi04v6EePHmXYsGFMmjSJSZMmMWTIEPbu3Ru09u0cKo1zrACuhUAtCXpdXR033XSTy88+Z86cgPoycuRIhg8fDkCPHj38WtgkCELHp9ML+j//+U+OHj1K79696d+/P8ePH2+w/D0QjDGusnBTpkxpctwW9M8++6zJsYqKCi6++GIeeughoqOjeeGFF4JSpHjevHkATJ8+XaJbBOFEw1OQeoh/Qk5tba0ZOHCgAczy5cvNpk2bXAtwCgoKvF7vvrjg3//+t3n99dcbHN++fbsBTFpaWrOLfyorK01sbKwBzJEjR1z7Dx065EqW1a1bN/Phhx8GMMqm93zkkUfM/v37WxxLR0fGEp7IWNqME3Nh0TvvvMOePXvIzMxk1qxZjBgxgvPPP5+Kigoefvhhn9vZvXs3l156Kd///vd55plnXPvtGPNJkyY1G5USExPD6aefDtAgcdYVV1xBdnY2GRkZZGdnu1LgBoOYmBgWLVpEnz59gtamIAgdg04t6I8++igAN9xwg6vKz+233w5YhR2Ki4t9aseuXwlw1VVXuV7b7pbGCbHcaex2qaqqck2krl692uXzFgRBCJROIegVFRVN9u3atYt3332XuLg4rrzyStf+CRMmMHnyZIqLi3n11Vd9at8W8BkzZmCM4fLLL2fHjh1+Cbo9Mbpp0yYqKysZPHgwJ510km8DFARB8IEOL+iPPvoo8fHxfP/7328Q7/3kk08CcMkll9CjR48G11x++eUArhS1nti6dSubNm0iOTmZ119/nfnz51NdXc3VV1/Nnj176Nq1KyNHjmzxejt0cc2aNVRXV7tcL+PGjfNvoIIgCF7o0IJeV1fnilhZvnw5I0aM4O9//zuVlZUuX7e9YtOdCy64gIiICD744AOKioo83sO2zufMmUNMTAz33XcfCQkJLuv8zDPPJCqq5bTyGRkZDB06lNLSUj799FMRdEEQQkaHFvTVq1eTk5NDRkYGN9xwA8YYfvazn/H73/+ew4cPM3r06GaFMzU1lcmTJ1NdXe1KZtUcxhheeuklwLL0wVoB+otf/MJ1jid3i83s2bMBePPNN0XQBUEIGR1a0J977jnAihp57LHHWLhwIZWVldx7772AZZ23lBPFTmblye3y3nvv8fXXX9OnT58GlXluueUWUlNTAZpUo28Ou2Tb0qVL2b59OzExMQGvChUEQWiCp5jGEP8ExPHjx01iYqIBzLZt24wxxhQXF5vMzEwDmK5du5qSkpIWr8/NzTWAiY+PN2VlZU2O19bWmsGDBxvAPPLII02Or1+/3vzjH//wqWJPdXW1SUlJcRWtGDdunB8jDQ5hHlfrFzKW8ETG0mZ0vjj0l19+mdLSUsaNG+fKUNitWzeee+45unbtys9//nOPmQbT09MZP3485eXlLrdLYWEhF198MX/4wx9YsmQJO3bsoH///lx99dVNrj/ttNO46qqrfMqKGBUVxcyZM12vxd0iCEIo6JBFolevXs2NN94IwMKFCxscmzx5MkVFRa64c09ccsklrF27lmeffZaLLrqIP//5z7zyyiu88sorrnMWL14clGo/559/Pi+88AIggi4IQmjocBb6+vXrmTVrFsePH2fBggVcddVVTc7xRcwBfvSjHxEVFcW7777L3r17WbJkCYDL4h84cCBXXHFFUPr93e9+1xUNI4IuCEIo6FAWul0js6SkhAsvvJCnnnoqoARUvXr1Yvbs2SxbtozLLruMwsJChg4dyldffcWaNWtISEhodX7yxiQnJ/Poo49y4MABBg0aFJQ2BUEQ3OlQgh4VFcUrr7zCgw8+yNNPP+2zJe6JH//4xyxbtozs7GwArr76aiIiIpg0aRJ5eXkBt+/OtddeG9T2BEEQ3PEq6EqpJOB9YCgwXmu9WSl1IXATUA7M11rnKqWGAE8627xDa/1hKDo8ZswYnn/++aC1N2PGDNLS0igoKCAmJsa1ilQQBKGj4Yu/4jgwC3gVQCkVBdwMnAUsBu5wnncfsBCYDtwd7I6GiqioKJeffM6cOU3SBAiCIHQUvFroWutq4KBSyt51CrBNa10FZCul/uTc31drvRNAKXVEKdVTa30oFJ0ONnfccQcpKSkNkngJgiB0NFrjQ+8OlLi9th3Z7tZ+MZACNBB0pdQ1wDUAixYt4txzz23F7UPD5ZdfTnV1dQO/eePXHRkZS3giYwlPwnks6enpLR5rjaAXAd3cXtc6t3Vu+5KAI40v1Fo/ieVnB2vVZFiTl5fn8Y/XkZCxhCcylvCko46lNYK+EzhVKRUDKGCTc3++UupkoBBI6SjuFkEQhM6CT4KulHobGA0MBv4OPAR8DFQA852n/QZYguWC+V1QeykIgiB4xSdB11rPbGb3y43O2Qp4zyUrCIIghIQOt/RfEARBaB4RdEEQhE6CCLogCEInwWFM2EcPCoIgCD4gFrogCEInQQRdEAShkyCCLgiC0EkQQRcEQegkiKALgiB0EkTQBUEQOgki6IIgCJ0EEXRAKdXFuXW0d18CRSmV4Nx2hrGc5Nx2hrGc0RnGAaCU6t/efQgWSqnu7d2HYHJCLyxSSp0HXA3sB/6gtd7fzl1qNUqp7wPzgG+BBzr4WBKAPwL9gB86q2Z1SJRSo4CHgbXAYmelrw6JUmo6sAioBP4NvKu1LmvfXrUOpdRU4BdYRXgeA7ZorSvat1eBc6Jb6D8CngI2A9cppTpktkil1PnAj4E/YBUgudW5v0NahFrr40AVkIg1rg47FqwMpPdprW8DBrZ3Z1qLUioSuA6rQM1dWLUQunTg9+Vi4J9YX0wzgbnt253g0JoCFx0Wp+V3MbAaKAD2AV8AK537T1dK7e4I1q1zLJcC7wDrgau01geVUl8DLymlUrXWhe3aSR9xe19Waa13O0ViF/Af4KdKqXe11vvatZM+4v4Zc9bYPQ5MV0rdhlUEZh3whtZ6d3v20xecY7kE+AQoA77Ceprdi1UfIR6IxvryDWuUUvFYRe3f1Vp/AnwD5GP9/1cAs5RSQ7TW29uxmwFzwljoSqlLsYpyJAB7tNYlQG9ggvMxeAMQh1U+L6xxG0scUKi13u8U8wgsq/abDiTm9ljisb5g0VobYCjWe/Ef4FqlVL/26qOvNBpLjnN3AtAH+CVwA5a7YlY7dM8vGo9Fa10AfIjl1tuA5aq4GrixvfroK87Pzr+xjLjPnLsdwACsUphbsT57We3SwSByQgi6UqobcBHwe6wP5XeUUj2Bx4GrlFJdtNabgZOAzHbrqA80M5azlFJDALTWdVgCUuM8t384PxI3GstHwFSl1DDn4U+wnjyOYYnIT53XhOVntpmxnK2U6gu8hmXF9tNaF2MJvf3+hOV708xn7Byl1Cla64+BD4DHtNbzgDeBGKVURLiOxUkUsALrSfwnSqkzgfeAM4FhWuvDWMZRPITv++ILnXZS1DkT/0vgLSAbmALcBMQAbwBXAFOBa7De8E+x/LWvaa3fbI8+t4SXsazAGssFWuscpdRCrA9qMdADuDGcJq58HMt5wLXAWVg1avcDx7TWd7RDl1vEx8/YOVjjGIllCc4Edmmt72qHLreIj+/LDKyniz5YgrgIOKq1/ml79Lkl3MayAmt+LMP5Og/LSFgA/B8wAqvg/XbgfCyX31Pt0OWgEZbWTqAopTKAP2P5+noDz2mt3wYeAM7WWv8JeA74o9b6D1gf4GuBTWEo5t7G8mesyZ0/OC/pjyXoO7XW88NMzH0Zy3PAncCfgGe01pdorW8OQzH35TP2LFb01FKsR/4zgDVhKOb+vC/PYBWKvxP4IgzF3H0s6cDftNYay7ip0lq/6Dx+HvA8lktvKrCuo4s5dDJBV0pNcXtcStZa/1lr/SyQqJT6tdb6v1i+M7AKXScopRKdj5LztdYPtn2vm8fPsTyK8zEe65F4gtb68Tbucov4OZaHsawmtNYvOK8Pm89pK8YSo5Tq5qy5+4sO/r50AeK01v/GeiJ8pB263SwexpKklLoKuBcYB6C1fhcY4jxvM/DTcBpLIITNP0ogKKW6KqXex/L3zcSasFmtlLrWecqnwPeUUsla61ql1BTgdaxIijIArXVN05bbngDGsgdAa/2p1rqo7XvelEDeF2foIuCaG2hXAhjLbucEPFrr2nboehMCfF+OAYRLPL0PY1kFXOncrlZK/c55/n7nuWHzvgSDTuNDV0qdjrUQZRzWQoFk5zYHS7SPYVmvW4B/YD3Ov9YeffWGjEXGEmpOsLFUYn0hfQakYU2E/rcduhpyOo2g2yil/orl23tBKdUH6/F9F/Bz4EWt9YH27J8/yFjCExlLeOJlLM93lFDeQOgULhdoEGr0IlbIWKrWOh8rlnkpVkhiaTj5Y1tCxhKeyFjCEx/HUtaRwxF9pdNZ6ABKqZ8AJwNHgd3A11rrL9q3V61DxhKeyFjCk840ltYQ9t++/uBmTYzEipndo7V+oSO+oTKW8ETGEp50prEEQme10OcCb2qtK9u7L4EiYwlPZCzhSWcaS2volIIuCIJwItKpXC6CIAgnMiLogiAInQQRdEEQhE6CCLogCEInQQRdEAShk3BClaATTgyUUplYJcbAKsz8e+f+p7ESNaG1btWqQaXUUKziDx87s3SilFoCzAfGOlO1CkK7IIIudHYWKKXuwUr9elEQ2hsK/M75+8dBaE8QgobEoQudDjcLfQ8wEJiGVT/yb1gpU9Ox3I2/waqLmQJoYJHWeotS6k4s0X4Kq9pQMlY90HXUW/42Z2NVwJmPVTjhQmfbP9JafxqSAQpCC4gPXejMbAM+x3KzXImVQrXIeezHWDUzN2EJ+1hguVIq2u36yVjFQ5KwSpYdxCqMAlat0EuxysrZnImVajYDq6KPILQpIuhCZ+cZLKt5IlapPpuZzu3NWuu/AsuxkjoNcjvnL1rrh7Es/UxncYds57HNWuuXGqVkvVNrfQ9W/u3MoI9EELwggi50dl4CaoFc4P1mjptGW3eOOLc11P+vePJRup8f6V83BSFwRNCFTo2z/NuVwLWNStm95dz+xZly9QKc6Va9NHnUuZ2slLpEKRUf1A4LQgBIlIvQ6dFav9zM7iVYk6NXY02arsOaFK1WSnlqbjVW/copzuv6BbWzghAAEuUiCILQSRCXiyAIQidBBF0QBKGTIIIuCILQSRBBFwRB6CSIoAuCIHQSRNAFQRA6CSLogiAInQQRdEEQhE7C/wO7xtvbXVIP4QAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAG9CAYAAADHrnYfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHRElEQVR4nO3dd3xUVfo/8M9MeiUJgYQkkIQSeglNICIICIIFkC6sgCgo8GVxfwu4LrKy7OIKC4qroIIQRRABqYqoFJUmUoPSCZACBJKQQnoyc39/DPfOvckkmTuZkvJ5v16+uDN3Zu6ZY+A+ec5zztEIgiCAiIiIyEG0jm4AERER1W0MRoiIiMihGIwQERGRQzEYISIiIodiMEJEREQOxWCEiIiIHIrBCBERETkUgxEiIiJyKAYjRERE5FAMRqohvV6PGzduQK/XO7opNQL7Sx32l/nYV+qwv9RhfxkxGCEiIiKHYjBCREREDsVghIiIiByKwQgRERE5FIMRIiIicigGI0RERORQDEaIiIjIoRiMEBERkUMxGCEiIiKHYjBCREREDsVghIiIiByKwQgRERE5FIORaiA1NRWurq7Izc1FcXExfHx8cOvWLel8REQENBoNNBoNvLy80LlzZ2zZssWBLSYiIrIeBiPVwLFjx9CxY0d4eXnh9OnTCAgIQGhoqOI1//znP3Hnzh2cOXMG3bp1w5gxY3D06FEHtdjxioqKHN0EIiKyEgYj1cDRo0cRExMDADh8+DB69epV5jU+Pj4IDg5GVFQUPvzwQ3h4eGD37t3Q6XSYMmUKIiMj4eHhgZYtW2LFihWK9/7000/o3r07vLy84Ofnh5iYGCQkJAAA4uLi8Pjjj8PHxwe+vr7o0qULTp48Kb338OHD6N27Nzw8PNC4cWPMmjULubm50vmIiAgsXrwYL774Inx8fNCkSRN88sknZb5fp06d4O7ujq5du2LHjh3QaDQ4e/as9Jo//vgDgwcPhre3N4KCgvCnP/0JaWlp0vm+ffti5syZmD17NgIDAzFo0CAIgoC33noLERERaNWqFcLCwjBr1izL/0cQEdVAN24LeHONHmeuCI5uisUYjDhIYmIi/Pz84Ofnh+XLl+Pjjz+Gn58f3njjDezcuRMdO3bEjBkzTL7X2dkZLi4uKCoqgl6vR1hYGLZs2YILFy5gwYIFeOONN7B582YAQElJCYYNG4Y+ffrg3LlzOHbsGKZOnQqNRgMAGD9+PMLCwnDixAmcOnUKr7/+OlxcXAAA8fHxePLJJzFixAicO3cOX331FQ4fPoyZM2cq2rNs2TJ07doVZ86cwfTp0/Hqq6/i8uXLAIDs7Gw888wzaN++PU6fPo1FixZh3rx5ivdnZmaiX79+iI6OxsmTJ7F3717cvXsXo0ePVrzus88+g6urK44cOYKPPvoIX3/9Nd59912sWrUK+/fvx7Zt29C+ffuq/88hIqpBZrwr4F+fA0+/LqCkpIYGJAI5RHFxsXDjxg0hLi5OcHFxEeLi4oRr164J3t7ewsGDB4VffvlFuHv3riAIghAeHi68++67giAIQmFhobB48WIBgPDNN9+Y/OwZM2YII0aMEARBENLT0wUAwk8//WTytT4+PkJsbKzJc1OmTBGmTp2qeO7QoUOCVqsV8vPzpbZNmDBBOq/X64WGDRsKq1atEgRBEFatWiXUr19fer0gCMLq1asFAMKZM2cEQRCERYsWCQMHDlRcJykpSQAgXL58WRAEQejTp48QHR2teM2yZcuEqKgooaCgQLh+/bqg0+lMfg9S0ul07C8zsa/UYX+pY63+ajZWJ6C34b+Dp/VWap19OTs2FLKNrl27IiUlxe7XDQ4OVgxxVMTZ2RkRERHYvHkzunXrhg4dOuDIkSMICgrCY489hoSEBAQGBkqvnzdvHubPn4+CggJ4e3vjP//5D5566ikAwIcffoi1a9ciMTER+fn5KCoqQqdOnQAAAQEBmDRpEgYNGoQnnngCAwYMwOjRo9GoUSMAwF/+8he89NJLWL9+PQYMGIBRo0ahWbNmAAxDOOfOncOGDRukdgiCAL1ejxs3bqB169YAgA4dOkjnNRoNgoODce/ePQDA5cuX0aFDB7i7u0uv6d69u6Iv4uLicPDgQXh7e5fpp/j4eERFRQEAunTpojg3atQovPfee2jevDliYmIwatQoDB06FM7OtfLHmojIpGzjyDl2HhbQN1rjuMZYqFb+q52SkqKYjVIdtW3bFgkJCSguLoZer4e3tzdKSkpQUlICX19fhISE4NKlS9Lr58yZg0mTJkk1FeIwy6ZNm/DXv/4Vy5YtQ8+ePeHj44OlS5fi+PHj0nvXrVuHWbNmYe/evfjqq68wf/58/Pjjj+jRowfeeustPP/88/j222/x3Xff4R//+Ac2bdqE4cOHIycnB9OmTTNZh9GkSRPpWBzWEWk0Guj1erP7IicnB8888wzeeeedMufEoAkAvLy8FOcaN26My5cv44cffsD27dsxc+ZMLFu2DD///HOZNhER1VbZecbjnYeB5TMF6R5RU9TKYCQ4OLjaX3fPnj0oLi5G//79sWTJEnTp0gVjx47FpEmTMHDgQCmzIAoMDETz5s3LfM6RI0fQq1cvTJ8+XXouPj6+zOuio6MRHR2Nv/3tb+jZsyc2btyIHj16AACioqIQFRWF1157DePGjcO6deswfPhwdO7cGRcuXDB5XXO1bNkSX3zxBQoLC+Hm5gYAOHHihOI1nTt3xtdff42IiAjVWQ0PDw8888wz6NChA+bNm4c2bdrg999/R+fOnS1uMxFRTVFYJKBQNrnwxh3gj+tA+2aOa5MlamUwYu5QiSOFh4cjJSUFd+/exdChQ6HRaHD+/HmMGDECQUFBZv9m36JFC3z++ef4/vvvERkZifXr1+PEiROIjIwEANy4cQOffPIJnn32WYSEhODy5cu4evUqXnjhBeTn52POnDkYOXIkIiMjkZycjBMnTmDEiBEADENDPXr0wMyZM/HSSy/By8sLFy5cwI8//ogPPvjArPY9//zz+Pvf/46pU6fi9ddfR2JiIv773/8CgBS5z5gxA6tXr8a4ceMwd+5cBAQE4Nq1a9i0aRPWrFkDJycnk58dGxsLnU6Hbt26ISMjAz/++CM8PDwQHh5uVtuIiGq6B3lln9t5uOYFI5xN40A//fQTunXrBnd3d/z2228ICwtTDEuYY9q0aXjuuecwZswYPPLII0hPT1dkSTw9PXHp0iWMGDECUVFRmDp1KmbMmIFp06bByckJ6enpeOGFFxAVFYXRo0dj8ODBWLhwIQBDLcjPP/+MK1euoHfv3oiOjsaCBQsQEhJidvt8fX2xe/dunD17Fp06dcLf//53LFiwAACkOpKQkBAcOXIEOp0OAwcORPv27TF79mz4+flBqy3/R9TPzw+rV69G7969MWTIEOzfvx+7d+9G/fr1VfUhEVFNlW0iGNlxuObNqNEIglDzWl3L6fV6JCQkIDw8vMKbcU21YcMGTJ48GVlZWfDw8Kjy59X2/rI29pf52FfqsL/UsUZ/nb0qIHpK2dt40lYNwhrWnLoR/rSQzX3++ec4fPgwbty4gR07dmDevHkYPXq0VQIRIqK6TD6TxlU2ur/riP3bUhUMRsjmUlJSMGHCBLRu3RqvvfYaRo0aVWaVViIiUk8+TPOMbPHunTVsqKZWFrBS9TJ37lzMnTvX0c0gIqp15JmR3h00OHlZQEIKcPAMkJ0rwNerZgzVWJQZ+eyzz/DUU0/hsccew/PPPy/tVRIbG4sBAwagX79+WLFiBeTlKOfPn8fYsWMRExODqVOn4s6dO9b5BkRERHVUliwYqecN9H+4qkFxCRBfvZfbUlAdjGzevBnHjh3Dp59+ip9//hkLFy6Ei4sLDh8+jC1btiA2NhabN2/G0aNHsXPnTgCGHVbnzp2LsWPH4sCBA+jYsSPefPNNq38ZIiKiukSeGannBQT4Gh+bmvZbXakKRnQ6HdauXYv58+cjODgYGo0GLVq0gKurK/bs2YPhw4cjLCwMgYGBmDBhAvbs2QMAOHXqFFxcXDBs2DC4ublhypQpuHjxYrVfJZWIiKg6y84zjkD4egE+nsZhmQf5jmiRZVTVjNy7dw8FBQXYt28fNm7cCG9vb/zpT3/C8OHDcePGDQwaNEh6bfPmzaWVQK9fv44WLVpI59zd3REWFobr168jNDS0zHWKiopQVFSkeM7Z2Rmurq6qvlxNJS6lrmZJ9bqM/aUO+8t87Ct12F/qWKO/snKMx94eArw95OcE6PWOL2Q1Z9qy6mAkJycHiYmJ2LVrF5KSkvDqq68iIiICeXl5ir1DvLy8kJ9vCMvy8/PL7Cvi5eWFvDzTOaR169Zh9erViudGjRpVZkv52i4pKcnRTahR2F/qsL/Mx75Sh/2lTlX66869+gAMm4zmZN5CUZ47AMPCjwnJ6UhIyCn/zXYirgheEVXBiLi3yMsvvwx3d3e0aNECAwcOxJEjR+Dp6SkVsgJAbm6utI6Eh4eH4px43tPT0+R1Jk+ejPHjxysbWscyI0lJSWjcuDEXDjID+0sd9pf52FfqsL/UsUZ/6WSTZVq1CMU92e/4rh71ER5eM1akVhWMhIeHw8XFRbEboHgcGRmJa9euoU+fPgAMm7WJW9E3bdoUW7duld5TUFCA5ORkNG3a1OR1XF1d60zgURGtVsu/0Cqwv9Rhf5mPfaUO+0udqvTXgzzjEI+ftwb1vADAMDSTk6+BVlsLp/Z6eHigf//++PTTT1FUVIQbN27gxx9/RExMDIYMGYJt27YhOTkZ6enp2LBhA4YMGQIA6NKlCwoLC7Fz504UFRVh7dq1aN26tcl6kbooNTUVrq6uyM3NRXFxMXx8fBTFvREREdBoNNBoNPDy8kLnzp2xZcsWB7aYiIiqA3HRM60W8HQHfGQDDg/yHF8vYi7Vodi8efOQmZmJAQMG4M9//jNeeeUVREdH49FHH8XIkSMxceJEjBw5Ej169MDQoUMBGDIdS5cuxZdffonHH38cZ86cwaJFi6z+ZWqqY8eOoWPHjvDy8sLp06cREBBQJlD75z//iTt37uDMmTPo1q0bxowZg6NHjzqoxY5XusCZiKguEqf2+noaRiqUwYhj2mQJ1cGIj48Pli5dil9++QW7du3Cc889J52bPHky9u/fj4MHD+LPf/6zYjinbdu22LRpE44cOYLVq1er3p22Njt69ChiYmIAAIcPH0avXr3KvMbHxwfBwcGIiorChx9+CA8PD+zevRs6nQ5TpkxBZGQkPDw80LJlS6xYsULx3p9++gndu3eHl5cX/Pz8EBMTg4SEBABAXFwcHn/8cfj4+MDX1xddunTByZMnpfcePnwYvXv3hoeHBxo3boxZs2Yp6n8iIiKwePFivPjii/Dx8UGTJk3KLPV+9OhRdOrUCe7u7ujatSt27NgBjUaDs2fPSq/5448/MHjwYHh7eyMoKAh/+tOfkJaWJp3v27cvZs6cidmzZyMwMBCDBg2CIAh46623EBERgVatWiEsLAyzZs2y/H8EEVENIwUjD+eIKIKRGjS1l4N6DpKYmAg/Pz/4+flh+fLl+Pjjj+Hn54c33ngDO3fuRMeOHTFjxgyT73V2doaLiwuKioqg1+sRFhaGLVu24MKFC1iwYAHeeOMNbN68GQBQUlKCYcOGoU+fPjh37hyOHTuGqVOnSoHi+PHjERYWhhMnTuDUqVN4/fXX4eJi2G0pPj4eTz75JEaMGIFz587hq6++wuHDhzFz5kxFe5YtW4auXbvizJkzmD59Ol599VVcvnwZAJCdnY1nnnkG7du3x+nTp7Fo0SLMmzdP8f7MzEz069cP0dHROHnyJPbu3Yu7d++WmT312WefwdXVFUeOHMFHH32Er7/+Gu+++y5WrVqF/fv3Y9u2bWjfvn3V/+cQEdUQ4jCN78MgpKZmRiCQQxQXFws3btwQ4uLiBBcXFyEuLk64du2a4O3tLRw8eFD45ZdfhLt37wqCIAjh4eHCu+++KwiCIBQWFgqLFy8WAAjffPONyc+eMWOGMGLECEEQBCE9PV0AIPz0008mX+vj4yPExsaaPDdlyhRh6tSpiucOHTokaLVaIT8/X2rbhAkTpPN6vV5o2LChsGrVKkEQBGHVqlVC/fr1pdcLgiCsXr1aACCcOXNGEARBWLRokTBw4EDFdZKSkgQAwuXLlwVBEIQ+ffoI0dHRitcsW7ZMiIqKEgoKCoTr168LOp3O5PcgJZ1Ox/4yE/tKHfaXOlXtr6JivYDeOgG9dULMdMNn5BUYn+s7q+b8f6iVG+V1fVmPlPv2v25wAHBytXnJJmdnZ0RERGDz5s3o1q0bOnTogCNHjiAoKAiPPfYYEhISEBgYKL1+3rx5mD9/PgoKCuDt7Y3//Oc/eOqppwAAH374IdauXYvExETk5+ejqKgInTp1AgAEBARg0qRJGDRoEJ544gkMGDAAo0ePlobJ/vKXv+Cll17C+vXrMWDAAIwaNUqaBRUXF4dz585hw4YNUjsEQYBer8eNGzfQunVrAECHDh2k8xqNBsHBwbh37x4A4PLly+jQoQPc3d2l13Tv3l3RF3FxcTh48CC8vb3L9FN8fDyioqIAGAqh5UaNGoX33nsPzZs3R0xMDEaNGoWhQ4fC2blW/lgTESnIMx9iZsTdFXByAnS6mpUZqZX/aqfcB26lOroVFWvbti0SEhJQXFwMvV4Pb29vlJSUoKSkBL6+vggJCcGlS5ek18+ZMweTJk2SairEYZZNmzbhr3/9K5YtW4aePXtKNT3Hjx+X3rtu3TrMmjULe/fuxVdffYX58+fjxx9/RI8ePfDWW2/h+eefx7fffovvvvsO//jHP7Bp0yYMHz4cOTk5mDZtmsk6jCZNmkjH4rCOSKPRqFpRMCcnB8888wzeeeedMufktUWlF85r3LgxLl++jB9++AHbt2/HzJkzsWzZMvz8889l2kREVNvI96URa0Y0Gg28PQRk5TAYcbjggOp/3T179qC4uBj9+/fHkiVL0KVLF4wdOxaTJk3CwIEDpcyCKDAwEM2bNy/zOUeOHEGvXr0wffp06TlxGX656OhoREdH429/+xt69uyJjRs3okePHgCAqKgoREVF4bXXXsO4ceOwbt06DB8+HJ07d8aFCxdMXtdcLVu2xBdffIHCwkJp0bwTJ04oXtO5c2d8/fXXiIiIUJ3V8PDwwDPPPIMOHTpg3rx5aNOmDX7//Xd07tzZ4jYTEdUE2fLMiOx3NR8PMBipDswdKnGk8PBwpKSk4O7duxg6dCg0Gg3Onz+PESNGICgoyOzf7Fu0aIHPP/8c33//PSIjI7F+/XqcOHFCWn73xo0b+OSTT/Dss88iJCQEly9fxtWrV/HCCy8gPz8fc+bMwciRIxEZGYnk5GScOHECI0aMAGAYGurRowdmzpyJl156CV5eXrhw4QJ+/PFHfPDBB2a17/nnn8ff//53TJ06Fa+//joSExPx3//+F4BxwbwZM2Zg9erVGDduHObOnYuAgABcu3YNmzZtwpo1a+Dk5GTys2NjY6HT6dCtWzdkZGTgxx9/hIeHB8LDw81qGxFRTabIjMgKV8Ui1poUjFT/u3Yt9tNPP6Fbt25wd3fHb7/9hrCwMNVTnqdNm4bnnnsOY8aMwSOPPIL09HRFlsTT0xOXLl3CiBEjEBUVhalTp2LGjBmYNm0anJyckJ6ejhdeeAFRUVEYPXo0Bg8ejIULFwIw1IL8/PPPuHLlCnr37o3o6GgsWLAAISEhZrfP19cXu3fvxtmzZ9GpUyf8/e9/x4IFCwBAqiMJCQnBkSNHoNPpMHDgQLRv3x6zZ8+Gn59fhasS+vn5YfXq1ejduzeGDBmC/fv3Y/fu3ahfv2Ysf0xEVBXKYRrjUhpiMJKTj2qxUZ45NIIg1IyW1iF6vR4JCQkIDw+vlUsqb9iwAZMnT0ZWVpa0f1FV1Pb+sjb2l/nYV+qwv9Span9t2i9g3ELDLfzdmRrMHm0ISAa8psf+U4bXZO/VwMez+i8JXyuHaah6+fzzz9G0aVOEhoYiLi4O8+bNw+jRo60SiBAR1VWmCliBsmuN+Jjek7ZaYTBCNpeSkoIFCxYgJSUFjRo1wqhRo/Dvf//b0c0iIqrRzA1GagIGI2Rzc+fOxdy5cx3dDCKiWiVbthGeooBVlnSuKcEIB/WIiIhqIHlmpJ5szciamBlhMEJERFQDZZU7tddYsMpghIiIiGymNtWMMBghIiKqgcpdgVUejOTbrz1VwWCEiIioBhIzIxoN4GXci5SZESIiIrIPMRjx8QS02rIrsALAg7yasa4pgxEiIqIaSBym8S21qBmn9hIREZFdiJkReb0IoMyM5LBmhIiIqHbKyhEwdake//pMgCO2eNPpBCnQqCgYqSmZEa7ASkREpNLrHwtYvRsABDzVU4PoKPteX57xKD1M481hGiIiototNVNA7HfGx8mp9m9DeauvAjUzM8JghIiISIVVO4CCIuNjR9zwFWuMlMqMuLlq4PJw3IPrjBAREdUy+YUCPtimrBFxRDCSlWM8Ll0zAhizI8yMEBER1TJf/ACkZiqfy65mmRGAwQgREVGtpNcLWP5V2ZkzjlhYTLkvjabMeXGtEQYjREREtch3x4FLiYZjfx/j8w6vGalgmCa/ECgpqf6rsDIYISIiMsO6Pcab+l/HGrMRDglG5JmRCoZpgJqx8BmDESIiIjMk3TP8qdEAY/oZn3dMMGIMjCrKjAA1Y6iGwQgREZEZMh4Y/qznBfjJ1vaozgWsQM2Y3stghIiIyAyZD6fT+nk7PvOgLGAte97R7VOLwQgREVElBEEwBiM+gKuLBm6uhseOLmCtx2CEiIio9ssvBIpLDMfiEI0jp89WmhnxcGyBrVoMRoiIiCqRKVvxVApGHLiwWJYsGJFvjCdiZoSIiKiWqSgYcUgB68NgxNsDcHIysegZp/YSERHVLpkPjMelg5GiYqCo2L4Li4nBiKkhGoCZESIiolpHnhnx9zFkInwdeMMX22OqeBUoHYxwBVYiIqIaL6OCzAhg32CkoFCQhl4C65l+DTMjREREtUxFNSOAfetG0rONx+UFI/KiVi56RkREVAtUFozYM/uQlmU8buBn+jXMjBAREdUymTnGugsxGJEXj9rzhp+aaTwO9DP9GgYjREREtYwiM+Jj+NNRC4vJMyOB9cpO6wWMC7IBDEaIiIhqhWo1TJNpPC6vZsTZWQN3By5XrxaDESIiokoop/Ya/lQUsObCbtKyjENG5QUjgGNXiFWLwQgREVElxKm9Wq1xpooiM2LHGSvKYZryXycFI5xNQ0REVPNJO/Z6AxrNw0XPFAWs9ltYTHUwwswIERFRzScPRkSOKhJVBCN+5b/OkcvVq8VghIiIqAKCIJgORhxUwCpO7XV1Mb1jr6gmzahhMEJERFSB3HxApzMclxeM2LeA1fBnYD3jkJEpNWmtEQYjREREFTA1rRdwTAGrIAhSMFLe6qsiBiNERES1hKlpvQDg6W6YXQPY72afk2+oAQEqLl4FlMFITjWfUcNghIiIqAKmduwFDEMk9p6xYs6CZyJmRoiIiGoJ5TCNskZDLBK1WzBi5rReAPDxdMxy9ZZgMEJERFSB8mpGAGP2IbtaBiPGY3u1z1IMRoiIqNrS6wUs+kzAnJV65Bc6Zq0MU5vkicQbfm6+oa22ptixt5xN8kQN/YzHd+/bpDlWozoYmTp1Knr16oXevXujd+/emDVrlnQuNjYWAwYMQL9+/bBixQoIgvF/zPnz5zF27FjExMRg6tSpuHPnjnW+ARER1Vqb9gMLPhXw303A1z87pg0VZUbkq7Dao0jU3AXPACAk0Hh8O70WLno2f/58HDp0CIcOHcL7778PADh8+DC2bNmC2NhYbN68GUePHsXOnTsBAEVFRZg7dy7Gjh2LAwcOoGPHjnjzzTet9y2IiKhW+vx740008a5j2pD5wNiGMsM0dl5YzNxN8gBlMHIr1UYNshKrDdPs2bMHw4cPR1hYGAIDAzFhwgTs2bMHAHDq1Cm4uLhg2LBhcHNzw5QpU3Dx4kXcunXLWpcnIqJa5u59AftOGR/n5Dt+mMa/nGEawF7BiPG4smAkOMB4fDvdNu2xFmdL3rR8+XIsX74cUVFReO2119CiRQvcuHEDgwYNkl7TvHlzxMfHAwCuX7+OFi1aSOfc3d0RFhaG69evIzQ0tMznFxUVoaioSNlQZ2e4urpa0twaR6/XK/6kirG/1GF/mY99pY61++urA8aVTwHDKqeO+H+RIQtGfD0FRW2IfDn2zBxBVd2IJf0lrxmp71vx9ZydDAujpWYCt9Mc93Os1Vae91AdjMyaNQtNmzaFVqvFV199hVmzZmHr1q3Iy8uDl5dx8MzLywv5+YYBtPz8fMU58Xxenukwct26dVi9erXiuVGjRmH06NFqm1ujJSUlOboJNQr7Sx32l/nYV+pYq79ivw0G4CY9TknNQUKC/X/FT0kNAuAOAMjOSESJbIdefbEfAEOK4tqNuwjyLFD9+Wr669ZdY1tyMxOQUEk2JtC3EVIzXXEnTcCNG4kwIy6wusjIyEpfozoYadeunXQ8ceJE7Nq1C7///js8PT2Rm2tcnD83NxceHoaQ0cPDQ3FOPO/p6QlTJk+ejPHjxysbWscyI0lJSWjcuLFZEWVdx/5Sh/1lPvaVOtbsr/hbwJl45XOC1hvh4d6m32BDBSWGP52dgFYtmkC+HUzjEOOxp08QwsPN/1xL+iun0PCntwcQ1aLyi4U3Ai4mAsU6Dbz9wytdQt5RLBqmkRM7MDIyEteuXUOfPn0AAPHx8WjWrBkAoGnTpti6dav0noKCAiQnJ6Np06YmP9PV1bXOBB4V0Wq1/AdQBfaXOuwv87Gv1LFGf206IABQDkHk5JuX8re2zBzD8IafN+DkpLy+r6exnbkFGmi1FU+3NUVNf6VmGtoSWM+8vggNNA7NpNzXIChAffvsQdX/1QcPHuDXX39FUVERiouLsWHDBmRnZ6Ndu3YYMmQItm3bhuTkZKSnp2PDhg0YMmQIAKBLly4oLCzEzp07UVRUhLVr16J169Ym60WIiKhuEwQBG34sWwvhqP1VxALW0jNpAPsWsOp0Au4/XJq+smm9IsX03jSrN8lqVGVGSkpK8OGHHyIhIQHOzs6IiorCihUr4O3tjUcffRQjR47ExIkTodfrMWzYMAwdOhSAIdOxdOlSLFq0CEuWLEGbNm2waNEim3whIiKq2c5cAS4nGo4f6wj8dhEoKHLMkuZ6vYCsh1UGpRc8A0qtcppb9rw1ZeYAYg1qZTNpRKGBGoiZm1oTjPj7+2P9+vXlnp88eTImT55s8lzbtm2xadMmda0jIqI6Z+cRY1Zk/BMaXEwQUFDkmMxITr4xAPA3kRmRL3r2IF8AYLthEDXTekWKtUaqcTDCQVAiIqpW5IubxbQ3Tp91RGakoqXgAfsO01Q1GLmdVn1XYWUwQkRE1cq9DONxkL/xhu+IzEjGA+Oxo2tG0jKNx5XtSyMKqW88rs7DNAxGiIioWrmXafhTqwUCfI2ZkYIioKTEvr/dV7QvDWDf5eDlmRFzp+g29Ie0tkh1XoWVwQgREVUrYmakgR+g1WqU2Qc7Z0cyFZmRstkIexawWjJM4+SkkZaFZ2aEiIjIDIIgSMFIQz/Dn/Il13PsXDdSaWbEjoFSaqb5m+TJiXUjdzPsn1kyF4MRIiKqNnLyDcMxgGGIAbDvDb+0yoIRJycNPA2rs9u3gNXP/PeJdSN6vXEIrLphMEJERNWGvHhVrIuQByPVLTMCGNtXHWfTADVj4TMGI0REVG3IgxFTwzT2z4wYhzX8TUztBYxFrPasGQkopy2mhAQaa11upVqxQVbEYISIiKoNRTDib7iJ+ngab6bVOjOSb6h5sRUxGPH3AZydzV9cLVSeGammM2oYjBARUbWRKvvtX6wZcWRmpLJ1RgDjKqw6nbHexRbEYETNEA1QMxY+YzBCRETVhqlhGkXNiCMLWMsbprHDwmfFJQKyHralasGI9dpkTQxGiIio2riXYfzN3WRmxEHDNK4ugLur6dfYIxi5e994rDoYka/CymEaIiKiismnnpqc2ptn32EGcWgkwAfQaEzXachXYbVVEevmg8bjFmHq3lu/HuDycFtcZkaIiKjas2UBpjmUBayGP+U3e3sO0+j1gpSRaFS//NfZOjOi0wn439fG/y8vP6NuZ2CNRiMN1TAYISKiaunu3bt4++230bx5c/j6+uLAgQMOa4sYjLi7GodnvO24GZ1cejZQojMcVxSM+HoZgwNbFNjuOgLcTDEcP/kI0CpcXTACGIdq0rKAwqLqV8Tq7OgGEBGRYxQUFGD69OlYv349SkpKpOc/++wz9OvXzyFtEodpGvgZh0UclRm5I6uvEPd3McXWmZEVW43Bw59Hqg9EAGURa8p9IDy4qq2yLmZGiIjqqF27dmHdunWKQAQAUlMdszKWXi8gNdNwLA7RAI7LjKTIgxEHDdOcvSrg57OG41ZNgIHdLPsceTBSHRc+YzBCRFRHXb16VTqeOHEitA/3mndUMHI/27B/CmCc1gs4LjOSIpvB0iig/IyELQtYFVmRURpotRZmRuob31cdZ9QwGCEiqqOSkpKk4xkzZiAgwDAWkZbmmCpHUzNpAMDNFXByMhzbMzNyx8zMSICv8fj+A+vVY6RlCti4z3Ds5w38aaDlnxXawHhcHYtYGYwQEdVRycnJ0nFYWBgCAw25fIcFIyZm0gCG2hEx+2DfzIgxsKioZkTeVvl3qKrfLgJFxYbjFwYBXh6WZUUAZfvl36u6YDBCRFRHiZkRZ2dnBAUFScFITk4OCgoK7N4esV4EABr6KW+84swau9aMyIdpKsiMyIeUrBmMJN4zHrdvZnkgAiizN/Il7qsLBiNERHWUmBkJDQ2FVquVghEASE+3f2FBeZkRQLYZnaOGaSrIjAT6GY/lQ01VlXjXmMFo0rBqnyXf5ZfBCBERVQt5eXm4f9/wq3/jxo0BAA0aGAsLHDFUcy+z7FLwIjEYyS0wzLqxBzEz4uNZ8RCJi7NGyjxYNTNy13jcJKhqn6Woa8mu2mfZAoMRIqI6qHS9CABFZsQhwYiJTfJE4jCNIAB5dhpBEjMjFWVFRGJ7rRmMJFgxGPH1MhYB32dmhIiIqgP5TBoxM1KtgpFyMiOAfYpY8woEaZquOcFIAz/Dnzn5QH6hdTI3YmYksB7g6V61mhGNRgN/b8MxMyNERFQtyDMjpoIRR6w1Iq+3EG/uInvv3HvXzOJVkTx4khfiWqqkRMCth/FgVbMiIv+HdSPMjBARUbUgz4xUt2EaXy/AzVWZCbB3ZsTc4lWRtaf33kkHdA/3xbFWMCLWjWTlGDbfq04YjBAR1UGVZUYcGYyUrhcB7J8ZkU/rDa5f+RCJtaf3yqf1VnUmjUg+oyYzxzqfaS0MRoiI6qDqlhkpKhakG2TpehEA8PE0BgT2yIyYu8aIqKG/sX3WmN6rnElTtXoRUXWeUcNghIioDhIzIy4uLmjY0PCrtyOn9ioWPDMZjBiP7ZEZuZNu3uqrImsP0ySkGI+ttcOuctl663ymtTAYISKqg8TMiLjgGQB4e3vD1dUVgIODEb+y5xXDNNUxM+JnPL6XUfV6jMR71lvwTCQfpmFmhIiIHCo3NxcZGYZf38V6EcAw/dNR+9NUNK0XKFXAapfMiPFYdWYks+rXt+aCZ6IAX+NwD4MRIiJyKFMLnonEYCQ1NRWCYL8ZF8ode8vWSDgqM6LVGtb5qIy1h2nEYMTVxXRwZgl/eWaEwzRERORIpmbSiMRgpKioCDk59ptyUdHqq0DpzIjtgyQxGAnyB5ycKi8g9fMGnB+ucGqNdUbE2TSNGwJarfULWKvb/jQMRoiI6hhTq6+KHDWjRl5nUXrBM8C+mRG9XpAWPTNniAYwBAxiu6uaGcnKEZD1MA60Vr0IULpmhOuMEBGRA5kzTAPYORjJNB5XWjNi42AkPRsoebjgmDnFqyKx3fcyUaUhLnm9iLVm0gDVezaNs6MbQERE9lVRZsRR03vTMo3Hpmo07LnomdriVZE4vFRUDGTnAvW8Lbu+YsEzKxWvAuWvM7L2WwGuLkB4ENC7o3WGhNRiMEJEVMdUx8xIhqw8RX7TFNkzM5IiD0ZUZEbkw0v3MqoQjMhn0jS0XnDgL2uPPBh5/WMBqZlAWAMg6WvHBCMcpiEiqmPEzIirq6siEwI4LhgRb45eHoCrS9kbope78djWmRHFGiMB5t+crTW9N/GubI0RK2ZGnJ018PUyHIvDNPmFglRwa81rqcVghIiojhEzI/IFz0SO2rlXDEbkRZZyWq0GXg+Hauw6TKOqZkS2JHwVilhtscaISNq592F/J8uGhBpbsVhWLQYjRER1SHkLnokckRkRBEEapvEvJxgBAJ+HwYjNh2nuq1sKXmStzfISbBiMiMFexgNDvycxGCEiInurqF4EcEwwkl8IFBYZjk3Vi4i87ZQZUbsUvMh6wzSGPxv4AR5u1q3hEPu3RGcI6pTBiGPqRQAGI0REdUpFM2kAoH59493XXsGIvJjSv4KiT7GI1daZEYtn08iCkdRMy6b2lpQIuPWw221Rw1F6Rg0zI0REZHeVZUY8PDzg5WWocrRXMCJfDdSczEhxCVBYZLtFu8TMiI8n4OWhooDVz3hs6TDN7XRArzccW3PBM1HpzfKS7tmmWFYtBiNERHXIrVu3pGNTwQhgXGvEbpkRM4MRe03vFTMjarIigHX2p7Fl8SpQduGzRGZGiIjI3uQBRulpvSKxbiQ9PR168dd0G5JnRvx9ys9EyIMRW9WN5OYLyM41HKsNRrw8NPB8OAXZ0poRZTBi/RqOAB/lzr3iMI2bq+ll+O2FwQgRUR2Snm4siJDXh8iJwYher5dm3tiSvGakvKm9gHIVVltlRs7FG49bmE4cVUgcqqksM5KaKeD1j4GDce6K56/fNh6H2yAzIp+tlPHAGIyENQA0GhawEhGRHagJRgD7DNUoClgrmtprh8zIqcvG4y4t1d+cxaGatCxApyu/rmX6cgFLvwSm/6+B4vtfSDC+p1W46stXSj5MczPFmAVy5BANwGCEiKhOkQcj/v4mdqSD/YORjBzjDdicAlbAdsHIycvGtnRpqf79YjAiCIYN90xJvidg2y+G48JiLU5dMZ67cNPwp7OTZZmZysj7N+6a8dgWxbJqMBghIrIxnU6Hfv36ITAwED/99JND2yIGI35+fnB2Nr09mSMzIxUN0/h4GjMVthqmETMjzk5Ah2bq3196fxpTVn8jQF6Kc/aq4U+dTsClRMNxizDTy+JXlbx/42RDUsyMEBHVcqdOncLBgweRnp6OF154ATk5OZW/yUbEYKS8IRrAAZkRRQFr+a+zdWYkr0DAhQTDcdtIyxYck0/vFfd8kSsuEfDJLuVzZx4GI9dvGxd/axOh+tJmkWdGbslW+3fkgmcAgxEiIpu7ceOGdJyUlISFCxc6pB06nQ6ZmZkAKg5G5LNs7J4ZceDU3rhrxjU+ukRZ9hmV7U+z45ByhVfAmBkRh2gA+wQjcsyMEBHVcjdv3lQ8fvfdd3Hu3Dm7tyMzMxOCYKiJqE6ZEXGdEa1WGXCUZuvMSFWLV4HKl4RftcNYkyLuRHwl2TCl+PxN4+vaRtgmU+HhpoG7a9nnGYwQEdVyCQkJisc6nQ6vvPKKXdbwkDNnJg1g/517xWEafx/D7rzlUWZGqrYCqyAI2HVYwM5Dxs85daVqxatA6VVYlW28eFPAwTOG46jGwJh+YlsMU4ov3DS+3laZEcD0UJgjV18FGIwQEdmcPDMirnp67NgxfPrpp3ZthzwYCQgof0UvRxWwVlS8Clh3au+hOGDoGwKG/V3Al/sMQYCYGXGysHgVAIJk3Srf4wYAPtppDDZeHapBZ9lQ0JmrxmEaJydDsGIrpYdqfDyBet41tGbk3Llz6NatG9asWSM9FxsbiwEDBqBfv35YsWKFlA4EgPPnz2Ps2LGIiYnB1KlTcefOnaq1nIiohhAzI+7u7vjss8+k5x0ZjFSUGZEHKrYORnQ6AZkP63krKl4FrLvomXxxs3+sFfAgT1a8GmH5brlhskVtk0sllXYcNvzp7gpMHAx0amE8d+qygIsPr988FHBztV1wUDroc/QQDWBhMKLX67F8+XK0adNGeu7w4cPYsmULYmNjsXnzZhw9ehQ7d+4EABQVFWHu3LkYO3YsDhw4gI4dO+LNN9+0zjcgIqrGBEGQgpHw8HD069cPoaGhAIDExES7tsXcYMTZ2Vlag8TWwzRZucbjiopXAWWwUt4aHuaS74dzNRl44xMBOp3hsaVDNIDhO4g1GfJgpKREkB63a2pY9r59JKDRGH5p330UKBBn0thgsbPSbZSrscHItm3b0K5dO0RGRkrP7dmzB8OHD0dYWBgCAwMxYcIE7NmzB4BhWpuLiwuGDRsGNzc3TJkyBRcvXlRs2EREVBulp6cjN9dwxw0PN9xlGjVqBAC4e/cudOId0E5tEVUUjABAw4aGO5StgxFzV18FDPUY2od3rVtVTNjcz1bWc3ywzXjc1cLiVcCwpLqYHZEHI3dku/GK5709gcjgEgDKacC2rBcBqmcwYnrFmwpkZmbiyy+/RGxsLJYtWyY9f+PGDQwaNEh63Lx5c8THG/Jg169fR4sWxnyUu7s7wsLCcP36dek3BLmioiIUFRUpG+rsDFdXEyXAtZBY1Gbv4raaiv2lDvvLfNboK/m03vDwcOj1egQHB0ufm5KSIgUntiYfcvH396/wezVo0ACXL1/GgwcPkJeXB3d393JfK7Kkv+QZDn/vit+r1Ro2r7udBiTfq9r/l4oyK9EtBOj1lhfIhjUArt0CsnKArBw9fDyVu+OGNTC0Xa/Xo02TIly/46J4f6tw2/799PdWPm7c0LbX02orz3uoDkZWrlyJcePGwcdHGcLm5eXBy8tLeuzl5YX8fMOgXn5+vuKceD4vz3QF0rp167B69WrFc6NGjcLo0aPVNrdGS0pKcnQTahT2lzrsL/NVpa9OnDghHfv6+iIhIUHx7+epU6fQvn37KrXPXPJC2qKiojKzfOTk/2afOXMGISEhZl9HTX9duuYOwDCVw0nIREJCVoWvD/QJxu00N9zNEHAtPhEuqu9iBrfuNgBQdh6xk1aAn0sSEhIsD0b8POsDMNzxT8TdQrOQEpw57wnAkBLxcs5AQoIhGmob7otvjivvjwFut5GQUGzx9Suj0fsCMM5B9tCmISEht/w3VJF8FKU8qv43Xrp0CRcuXMC8efPKnPP09JRSkQCQm5sLDw9DtZGHh4finHje09P0hPLJkydj/PjxyobWscxIUlISGjdubFZEWdexv9Rhf5nPGn0l/lIGAJ06dUJ4eDiiopQraonDN7Ymzzi3a9euwuvKz7m6uprVRkv6y1m2P0pEmB/Cw/0qfH3TMODcDUAQNHDzCbd4iKGgxHjcow3w6wXDcdtIDVq2aGLZhz7UKhLAUcOxziUU4eFA4XHj+fYt/REe7v8wM6IcBtNqgT7dQ+DhVqUmVCiy1EydTq0DER4eaPrFdqIqGDl9+jQSEhIwZMgQAEBOTg6cnJxw69YtREZG4tq1a+jTpw8AID4+Hs2aGeZGNW3aFFu3bpU+p6CgAMnJyWjatKnJ67i6utaZwKMiWq2WNwsV2F/qsL/MV5W+kmcfIiMjodVqFcPTd+/etdv/h/v3jUt/NmjQoMLrBgUZF55IT09X1UY1/ZWVIwB4uBCbr6bCdUYAIKyBcTjhdpoG4cGW1XdkPDB8jo8n8M8pGgz8f4Y29Ghj3rBCRRo3NH6n22mG75Scamx3k4bG79kmXFmS0LQR4OVh25+HQF9j+wAgPLjyfrc1VcHIc889h4EDB0qPly1bhpCQEEyaNAlxcXF4++23MWjQIHh4eGDDhg0YM2YMAKBLly4oLCzEzp07MXjwYKxduxatW7c2WS9CRFSbyIORiIgIAFDUiNy+fdtubRELWF1dXcsMnZcmXxL+3r17FbyyatQUsAJAaKAG4o20KkWs4myaAF9gQFfgnVc0OHlZwBt/qvpN2dT03mTFPjDG4/q+eoQGGr9L28pHNKqsdAGrvL2OoioYcXd3VxQxubm5wcPDAz4+Pnj00UcxcuRITJw4EXq9HsOGDcPQoUMBGH7wly5dikWLFmHJkiVo06YNFi1aZN1vQkRUDYl1Gi4uLlIQIg9G7LnmknyTPI2m4puuOJsGsO2MmowHxt/QK5vaCwChshvnLQubJQiCYqE1jUaDuc8DgHWyA4pg5J4AQIOkh/GcRgOElBoR6dTCGIzYeiYNoOznwHqAp7tjsyKABQWscm+99Zbi8eTJkzF58mSTr23bti02bdpUlcsREdU4YmakSZMmUvpfXgzqqGCkMnbLjMjW+zAnGJHf6G+lGW70auXkAyU686+pVpgs8yFmRMRgJMgfcHVRtjm6BfDtMcOxrfakkZMvelYdpvUCXA6eiMhmMjMzkZVlmB0iLwBt2LChFJjYa5gmPz8fBQUFAMwLRuyVGblfampvZUIrWOHUkmvaIhgJrAe4Ppytm3QPKC4RpKXhw0zc/Kc8BTQLBbq1Aob1tn57Sguub1xa39Jl762tSpkRIiIqn6l6EQBwcnJCw4YNkZKSYrfMiJoFzwBlMGLLzEiGLDNiXs2I8djSYRpFMGLGNdXSajUIDRRw444hYLqTbtgMDwAam6jPaBIEXN2oqXTozFo83DT46i3gx5MCXhvl+CEagJkRIiKbka/rUXpqrDhUk5KSYpdVWNUGI/K6EptmRh4GIx5ugLsZ+8F4eWjg9zCDYmkBq9qhIUuIwx8ZD4DLslX/TWVGANgtEBEN7qHB8plaNA5iMEJEVKvJMyOlgxGxiFWn09llZ1xzd+wVOTk5SUGLPWbTqAkKxKGaW6lQbMiq9poAEOBjm5uxvLZFXMMEABo3rB43/+qGwQgRkY3IMyPyYRrA/jNq1GZGAGMRq21n0xj+VDNcIg7VFBQpAwtz2bpmBCgVjJwXTD5PRgxGiIhspKLMiHxGjT2KWC0JRsS6kdzc3DKraFtDfqEg7VRrTr2ISDG914Kkkj2GacJkGRBlZsQ216vpGIwQEdmImBlxcnJCWFiY4lxNyowAtsmOZFgYFIRVca0R+Y69tihgBZRtlGdimBkxjcEIEZGNiJmR0NBQODsrJy/WhGDE1tN7LZ3VYliF1cCSzIjaGTyWMBV0mFrwjAwYjBAR2UBOTo4UAJSuFwFqxjCNrRc+U7sUvCi0zAqnll/XHjUjIlMLnpEBgxEiIhuoqF4EYGYEKD1MY/5NWrHWSDWtGQkKAJydlM+xXqR8DEaIiGygsmAkKChIWlvC3pkRc6b2AnbIjFg4XCJfq8OymhHDn+6uhgXAbEGr1SgyOADrRSrCYISIyAbu3r0rHcuHZEQuLi7Szd6emZF69eqVqV8pT3WtGZEvt27JkvDyHXttqXTwwcxI+RiMEBHZgDwYCQoKMvkacagmJSUFer3epu1Rs0meyNaZEbU79oo0Gg1CHn4Ni4ZpZDv22lLZYIT1IuVhMEJEZAPyYESeYZATg5Hi4mLFMIq16XQ6ZGRkAFAXjNg8M1KFWS3iUM39bMN6JebKLxSQX2g4tndmpLyl4InBCBGRTcgzCeVlRuTDN7YcqsnKypKWTVcTjAQEBEi7C9smMyK7lsrAQF7EeltFdqQq11QrrIEyE8JhmvIxGCGiWiU/Px9XrlyxaM8Sa1KTGQFsG4xYMpMGALRaLQIDDXd9W9eMqM2MyIMRNXUjtt6xV650JoQFrOVjMEJEtYZOp0OXLl3QsmVLrFy50qFtETMJbm5u8PU1/Su4vdYasWQmjUisG7l3757VAzxxmEajAep5qXtvqCzroGZGjT3WGBHJMyFc8KxiDEaIqNa4du0aLl68CAAOD0bEzIh8Cm9p1T0zAhizOgUFBRbtTyMIAsYt1KPNn/T4PV5QPJ/ysFl+3oapsGqEWbg/zX0L1zaxhLyNwQGAizMLWMvDYISIag35Df3ChQuKXXPtSafTIS3NcIcsb4gGUAYj9sqMqA1Gqjqj5swVYNN+4GICMH+NMRg5f8M4vNKxueqPVW6Wl1p+xqagUMCba/RYtcPwGnssBS8KDgC8PAzHLcIqfm1dx2CEiGqN0jf0PXv2OKQd6enp0lTd8opXAfsVsFojMwJYVjeSKItfvjtu3KRu2y/G5597TH3GwNyakY93Af/6HJi+XMBPZwS71ow4OWmw6i8aDOgKLJ7KrEhFGIwQUa1R+obuqGDEnDVGACA4OFg6tlYwYqquw5GZEflMl+ISYOtPhuNtvxjbOexR1R+rqL+oaJjm4BnjdXYfEXDfwrVNLPWnQRr8uFyLmPYMRirCYISIao3SN/QDBw4gPz/f7u0wZyYNALi6ukrBgTWGaaZOnQpXV1esWrVK8bwjMyO305TB0cZ9Aq7fFhB3zfC4WyugcZD6G7WriwYN/AzHd8pZokUQBBy/YHz8wwn7zqYh8zEYIaJao3Qwkp+fj59++snu7TBnjRGROFRz586dKs1Wyc/Px5o1a1BSUoLZs2fjypUrAAw3ZPEYcEBmpFSg8PNZ4P2txu9pyRCNqNHDr3I7zXRGKPEukHLf+PiPG4b/RPbIjJB5GIwQUa1haqjj22+/tXs7zM2MAMYi1qKiImmVVEukpqZKN+SioiJMnz4dgiBg06ZNOHDggNSW0NBQVZ9b9cxI2efe/9p4/Fwf1R8pEYdqikuA9Kyy5+VZEdHhc8ZjBiPVB4MRIqo1xGDEzc0NLi6GndS+/fZbuy+AZm7NCGC96b3i7B3R/v378d///hczZsyQnnv//felfjGXtWpGtLK7jfi/o20kENXY8sxIiCzJUzoDAwDHL5T//93JCfDxtPjSZGUMRoio1hBv5mFhYXjssccAADdv3sSlS5fs2g41wzTWCkZMZS3mzp0rZVvGjh2LMWPGqP7cKmdGHgYJTRoC3Vsrzz33mOqPUwipZEn44xeNx57uynMBPih3/ReyPwYjRFQr5OfnIyvLkKtv1KgRhgwZIp2z91CNJcM0QNWKWOWBgoeHR5lrfPjhhxZ9rp+fH5ycnACoz4wUFgnS8ElIIDD+CeXNf3jvqgUDIYHG95cuYi0uEXDqsuE4shEwqJvyPIdoqhcGI0RUK8izCo0aNcJTTz0lPbb3FF8xGNFqtZUWjNoiM7Jw4UJ4e3tLj9esWaN6GXiRVquVhmrUZkbkAUJIIDCmn3G4JiIY6NTCoiYZP1M+TFMqM/J7PFBQZDju0RYY2F0Z+HAmTfXCYISIaoXSwUhUVBQaN24MADh16pRd60bEDEJgYKCUVSiPLWpGOnXqhPXr16Ndu3ZYsmSJIktkCXGoKSUlBTqdzuz3yQOEkPpAUIAGS1/VoF0ksGKWpsrDJMphGuX/X/kQzSOtNcyMVHMMRoioVigdjGg0GrRq1QoAkJ2dXabA01YEQVDsS1MZW2RGAgMDMWzYMPz++++YM2eOxZ8patKkCQCgpKQEKSkpZr/vtiIzYgg8/jJGg98/0+LZR6ter6EIRkoN0/x63hicPNIGiAzRoLlsIpGtl4IndRiMEFGtUDoYAYDmzY2bnly7ds0u7cjOzkZRkWF8wFHBiHwGjDWEh4dLx4mJiWa/T5EZscGOtUH+ht1wS18LMGZGXJyBTg9/DAbKsiMcpqleGIwQUa0gv5GLC4m1aGEsSrBXMKKmeBUAPD094etrGDOorsGImBkByg9Gjv4uYPpy4Kk3G+HoH4bn5EMntghGnJ01aOgvXsv4fMYDAZcfNrNTc8DdzRCxDOlpzMY0bsiZNNUJgxEiqhUqy4xcvXrVLu1Qs8aISGyvNYIRHx8fuLm5Wfw5psiDkYSEBJOvuZBg2JTuYqKrMRiRD9OoW/jVbOLnptwH9HpD8HNCXi/Sxng8pAcwZxwwbgAwabBt2kOWYTBCRLVCdRmmUbPGiEhsb25uLh48eFDJq00Ta2KsnRUBys+MpKam4sKFCygqKkKvdsbXGzMjxudskRmRf26JDkh7OI1YXrzao40xA6LRaLDkVS02LtAi0I+ZkeqEwQgR1QpiMOLq6ipNY42MjJRmbFTXYRqg6nUjJSUluH/fsAmLPYORLVu2oG3btvD09MTpI1/C7+Fs4mPnDYW8YjDi6Q74elm9WQBML3x24qKyeJWqPwYjRFQriDfx4OBgKQBxd3eXbqSOCEbUZkYAy4IR+a68tghGgoOD4ezsDEAZjFy+bFhVTKfToXFYqHTjv5cB3LhjHKYJqW+71U5NrTVy7rrhTx9PoJm6rXjIQRiMEFGNV1xcLNVMyG/sgHGoJiMjQ3HTthX5MI29MiOlp/Vam5OTk7RmizwYkS+z36pVK/Rsa3zPvpNAVo7h2FZDNIbPNgY5t9OBrBwBCQ9nH7dvyiXfawoGI0RU48mzEeUFI4B9siOOyIzYciaNSMwwZWRkSHUtYmakXr16aNiwoSIY+fpn286kETUqlRn544bxcfumtrsuWReDESKq8UwVr4ocGYyYmxkRpyIDlgUj8gXdbB2MAIbsSF5enjSzplWrVtBoNOjeGtBqDEHIgdPG99pqJg1QdhXWc/HGxx2aMStSUzg7ugFERFVVUTBi77VGxGGaevXqmT3FtiZlRgBDMFJSUiI9btmyJQBDkWpUWDEuJbmiRLZqvHwoxdpK14xotcaMDDMjNQeDESKq8eS73VaUGbHHWiNqloIX1cRgJDs7W3osLrsPAJ2bF+JSkqvivbYcpmnob9h8T68H7twH7stmRrdjMFJjcJiGiGq8ijIjTZsa70i2zozk5+dL9RRqghFfX194eHgAqL7BSOkl4cV6EaBsMFKaLYMRJycNgh9uSHwr1Vgz0rgh4O/DYZqagsEIEdV4FQUjHh4eCAsLA2D7YMSSmTSAYcZHVVZhtfVsGqBsZkQ+k0YcpgGAzi1MBCM2rBkBjMHOnXTjDB4O0dQsDEaIqMarKBgBjHUj6enpyMjIsFk7LJlJIxLbnZGRgYKCAlXvtUcBqzi1FzAsCS8GI05OTmjWrJl0LrxhCRr4Kd/byNbBiInP79Cs7HNUfTEYIaIaTwxGtFqtyYyEvG4kPj6+zHlrsTQzAiiDqJSUFFXvFTMjbm5u8Pb2VvVec3l7e0sr2968eVMapomMjFQU6mo0QA/ZFF9fL8Db07bDJaaCnfZNOURTkzAYIaIaTwxGGjZsCCcnpzLn7VXEao3MCKB+qEYMRho0aGDTRb7EoZqkpCTk5eUBUNaLiHrJghFbD9EApmfrcJimZmEwQkQ1mk6nk4IAU0M0gPXXGjl27BhGjhyJDRs2SM8JgoADBw5Ij+0VjAiCYNNN8uTkRawieb2ISJ4ZsWXxannXcHEGWjYx/VqqnhiMEFGNlpaWBp3OsKhFecGItdcaee211/D1119jwoQJeOWVV1BUVIQ5c+Zg48aNAAAXFxd0795d1WeqCUYuXryITZs2oaSkBJmZmdKaH7YORuRFrCJTmZHurYDwYMNx32jbD5eUzr60agK4unCYpibhOiNEVKNVVrwKWH9678WLxj3qP/74Y+zdu1dajVSj0SA2Nhahoep2aDM3GLl58ya6d++OnJwcnD17FlOmTJHOOSIYMZUZcXcDjq3U4GIC0KeTTZsEoGxmhMWrNQ8zI0RUo926dUs6li+rLufl5SWdq2rNSFZWlmLBLwBSIAIAn3zyCZ5//nnVn2tuMDJ//nzk5Bjmr65Zs0ax4JutpvWKzM2MAECjQA36ddHAyckOmZFSX5vFqzUPgxEiqtGSk5OlY/n009LEupHU1FRkZWVZfD35rrU9e/ZUZEBWrFiBl156yaLPNScYOXXqlKJOJT09XfHY3pmRgIAAmwdA5gisBzjL6pZZvFrzMBghohpNHoyIi5uZIl8L4+bNmxZfLykpSToeMGAATp06hUWLFmH37t2YNWuWxZ9bv359ODsbRs5NBSOCIGDOnDllnl+/fr10bO9gpGXLljadvWMurVajmN7LYZqah8EIEdVo5gYjERER0nFVghF5ZqRJkyYICgrC/Pnz8fTTT1v8mYBhjZTgYEPVp6lgZM+ePTh48CAAQw2MuOaHfIE0WwcjwcHBcHFxkR6XN0TjCNEPa5SbhQKhtu0GsgEGI0RUo8kzFfYIRuTXq2hYyBLiUM29e/cUu+KWlJRg7ty50uP//Oc/GDVqVJn32zoY0Wq1iu9sqnjVUVb+RYN3XtFg52JNtcjWkDoMRoioRhMzI15eXvDz8yv3dZGRkdLxjRs3LL5e6cyINYnBiCAIilVY9+3bhwsXLgAAHnnkEYwcORLjx48v835bByOA8jtXp8xIaAMN5j6vQdtIBiI1kepg5N///jcGDRqEPn36YMyYMfjll1+kc7GxsRgwYAD69euHFStWQBAE6dz58+cxduxYxMTEYOrUqRZtBkVE1Yv877ijri8GI2FhYRX+RmyLYRprZ0bkbZQHTH/88Yd0PGPGDGg0GsTExJS5vj2CEXk2pH379ja/HtUNqoOR8ePHY/fu3fj555+xYMECvPnmm8jMzMThw4exZcsWxMbGYvPmzTh69Ch27twJACgqKsLcuXMxduxYHDhwAB07dsSbb75p9S9DRPazcOFCeHl5YenSpQ5rQ1ZWFnJzcwFUPEQDGKb9igWi1him8ff3t/o+MOWtFCvfT0dcwE2r1SqmEDs5OVWYGbKWuXPnYtiwYVi6dKli/RaiqlAdjERERMDV1RWAYXGfkpISpKamYs+ePRg+fDjCwsIQGBiICRMmYM+ePQAM09FcXFwwbNgwuLm5YcqUKbh48aJifQAiqjkEQcB///tf5Ofn44033sCVK1cc0g5zi1cBw81aHGKwNBjR6XTSNa09RAMoV4qVr4ciD0bks4LkwUj9+vWh1dp+5L1p06bYvn07/vrXv9r8WlR3WLQC63/+8x/s3r0bhYWFiImJQfPmzXHjxg0MGjRIek3z5s2lv0DXr19X/CVzd3dHWFgYrl+/bnKVwqKiIhQVFSkb6uwsBUG1nV6vV/xJFWN/qWON/kpNTZUW3iopKcHrr7+OrVu3WqV9asiHTEJDQyv9TpGRkbh+/TqysrKQnp4Of3//Cl9fuq/u3LmD4uJiAIYhGmv/zMkzDVevXpU+X8yS+Pj4ICAgQHq+Xbt26N27Nw4dOoQePXo4/O8A/y6qU1f6y5wg2aJg5PXXX8ecOXNw6tQpxMfHQ6PRIC8vD15eXtJrvLy8kJ+fDwDIz89XnBPPi7s+lrZu3TqsXr1a8dyoUaMwevRoS5pbY8mr9qly7C91qtJfcXFxisfbt2/H119/ja5du1a1WRa3w8PDQ7ESqin16xsXozh27Bjatm1bwauNxL46e/as9Jyfn1+l17OEk5MTdDodLl68iISEBBQXF0tBV5MmTRQBGGBYaO3EiROIiYmxSXsswb+L6tT2/pIXj5fH4r1pnJyc0L17d3z55Zdo3LgxPD09pbFbAMjNzYWHhwcAwz8S8nPieU9PT5OfPXny5DKV4nUtM5KUlITGjRvbJe1a07G/1LFGfx0/frzMc++++y4OHTpk12mV4i88ANCxY0eTu8rKtWvXDps3bwYAFBYWVvr60n3122+/Sefatm1b6fstERERgfj4eCQmJqJJkyaIj4+XNgJs1apVmWuGh4ejY8eOVm+HJfh3UR32l1GVN8oTx1AjIyNx7do19OnTB4BhjFMc22zatKkihVtQUIDk5ORyi59cXV3rTOBREa1WW+d/QNVgf6lTlf6S/3Yu/iZ/7NgxbN++HSNHjrRWEyslrztr0qRJpd9H/htaYmKi2d9f7Cv59cLDw23y8yYOcT948ADp6emKWTXNmzevET/j/LuoDvtLZQFrTk4O9u7di7y8PJSUlGDfvn04efIkoqOjMWTIEGzbtg3JycnSfglDhgwBAHTp0gWFhYXYuXMnioqKsHbtWrRu3Vr1rpZEVD3IC0DfeOMNxbE9p/uqKWAFqr7WiC2n9YpKF7GWV7xKVJuoDsW2b9+OIUOGoH///oiNjcW//vUvtGzZEo8++ihGjhyJiRMnYuTIkejRoweGDh0KwJDpWLp0Kb788ks8/vjjOHPmDBYtWmT1L0NE9iG/kc+YMQO9evUCYLh5lq5psCUxGHF3d5eWR69IVdcaseWCZ6LS03sZjFBdoGqYxtvbGx9//HG55ydPnozJkyebPNe2bVts2rRJXeuIqFoSb+Senp5o2LAhevXqhaNHjwIwBCS2qKUwxdwFz0SNGjWCi4sLiouLLQpGxEJDrVaLkJAQ1e83B4MRqovq9iAVEakmCIJ0I4+IiIBGoyl3fQxbys7ORnZ2NgDzh0y0Wq0UKN28eVP1kJKYGZEvoGZt5QUjLi4uZg1FEdVEDEaISJV79+5JO8WKwx5RUVHSeXstgKa2XkQk1o08ePAA9+/fN/t9BQUFuHfvHgDbDdEAhvaJxYxXr17F9evXpeednJxsdl0iR2IwQkSqyOtFxGDEEZkRS4MRNXUjqamp+OWXXxQrrwK2K14FDDV2YvYmLi5OWo+JQzRUmzEYISJV5Ddw8cYeEhIirRtUW4KRpKQkREdHY9KkSfjTn/6kWFDMlpkRwDhUU1JSIj3HYIRqMwYjRKSK/AYuDnloNBrpBnr9+nXFTdRWbBmM5ObmYujQodLu4l999RXefvtt6by9ghE5BiNUmzEYISJVTA3TAMa6kZKSkirtimsu+RLaaoZNKltrRK/XY9KkSThz5ozi+f3791t0PUswGKG6hsEIEaliapgGsH/diK0yI4sWLZJWjPbx8cHjjz9e5jXMjBBZF4MRIlJFvIF7eXkpNp5zVDDi6uqKwMBAs98XFBQENzc3AGWDkfj4eLz11lsADENPGzduxIoVK8oEArYORuR9KTJnszGimorBCBGZTa/XS4WckZGRioXG5DdQe0zvVbvgmaiitUZOnTolHb/22msYMmQIvL298fnnn0vTan18fMxa7bUqSvdtaGiotPEoUW3EYISIzJaSkoLCwkIAyuEOQLnWiK0zIzk5OcjMzASgbohGJGYZcnNzkZaWJj0vX+69W7du0nGPHj3w6aefonnz5li8eLHNdyZ2d3dX1KWYGrYhqk0YjBDVICUlJVi5ciX27NnjkOuXVy8CAA0aNICvry8A2wcj8t1zLQlG5G2XF7FWtPfMxIkTcfXqVcycOVP19SwhD0BYL0K1HYMRohpk9uzZmDFjBp599llcu3bN7tevKBiRLwufkJAgZVBswdKZNKKmTZtKx+YGI/bGYITqEgYjRDXEb7/9hpUrVwIAdDodfvvtN7u3QX7jNlVQKQ7V6PV6aRlzazl9+jT+/Oc/o2vXrhgyZIj0vCWZEXkwIt+ITgxynJyc0KhRoyq0turatm0rHbdu3dqBLSGyPdvs9EREVlVSUoJp06Ypii3ttdKpXEWZEaDsjJqq3kRLSkrw2Wef4aOPPsLJkydNvqZLly6qP1cejMiDJjEzEhoaCicnJ+j1etWfbS0TJ07EgQMH4Ovri6efftph7SCyBwYjRDXA//73P5w9e1bxXHUbpgGsP713zpw5eO+99xTPaTQatGrVCt27d8fQoUPRo0cP1Z8rH/YQg5G8vDypmNXRQzQAUK9ePezYscPRzSCyCwYjRNVcUlIS3nzzTQCGG7GYHXFEMCIO0/j4+MDf37/MeWtP7923b590HB0djWnTpmHMmDHw8/Or0ufWq1cPAQEBuH//vjRMI69DqQ7BCFFdwmCEqJr7xz/+gdzcXADAtGnT8M033yA5OdnuwYhOp5OGMUqvgyGyZmZEEAQp+GnRogVOnTpl1Sm1TZs2xf3795GUlISioqJqVbxKVNewgJWoGhMEAXv37gVgWPF08eLF0g0/LS1NWmvDHm7evIni4mIAypoLuYCAAGlV1qoGI6mpqVIQ1rRpU6uv7SEO1QiCgISEBAYjRA7EYISoGktISJB2ju3Zsyf8/f0VUz7tmR25cOGCdCyf6VGaGCwlJycjLy/P4uvJC0vLC36qonQRK4MRIsdhMEJUjR05ckQ6jomJAQCHBSPnz5+Xjtu0aVPu6+RDNVVpn3wasa2Dkfj4eAYjRA7EYISoGjt69Kh03KtXLwCOC0bMzYzIl4W/fPmyxdeTZ0ZssUkcMyNE1QeDEaJqTAxGNBqNNIXV3rvjisRgRKvVKgKO0uRri1y8eNHi69l6mKb09F4xGPH19UW9evWsfj0iKh+DEaJq6sGDBzh37hwAoH379tK+L/Ibs70yI3q9XgosmjZtWuEOstYKRmw9TBMWFgZnZ8OEwmvXrklTe5kVIbI/BiNE1dTx48elFUDFehHAMKsmJCQEgP2CkYSEBKkYtaJ6EcAwjOTk5ATAOpkRf39/m2QqnJycpIXbLly4IO2lw2CEyP4YjBBVU/LiVbFeRCTWjdy7dw/Z2dk2b4u59SIA4OrqKg2BXL582aIl1YuLi6VMhS2yIiKxnTqdTnqOwQiR/TEYIaqm5MWr8swIYL0ZK+aSByOVZUYA41BNQUEBEhISVF8vMTFRCmJsGYyY+mwGI0T2x2CEqBrS6XT49ddfAQDBwcFl9oGx94wac6f1iqpaN2LrmTQiBiNE1QODEaJq6Pz589LwS69evcqsPmrvYETMjIib1FWmqsGIrYtXK/psBiNE9sdghKgaqmiIBrBvMCIIghSMREZGwtPTs9L31JTMiHx6r6hx48Y2ux4RmcZghKgcOp0OBQUFDrl2RcWrgPImauu1RhITE6U9YswZogGgyJ6YG4wUFxdLOxLbeo0RUelAR6PRIDQ01GbXIyLTGIwQmZCUlIQmTZogLCzM7rvj6vV6HDx4EADg5uaGzp07l3mNj48PgoODAdg+M6JmJo3Ix8cHYWFhAAzBiBhklOcf//gHXF1d8dprrwEwDtNotVqbDpv4+voiMDBQehwSEgIXFxebXY+ITGMwQmTC8uXLcfv2baSnp2Pz5s12vfYvv/yCW7duAQAGDBgAV1dXk68Th2pSUlKQk5Njs/aonUkjEodqMjIycO/evXJfl5aWhrfffhsAsGLFChw6dEjKjISFhZX7/a1FnmVivQiRYzAYISolNzcX69atkx5XZX8VS2zYsEE6Hj9+fLmvk9eNxMfH26w9lgYj5g7VbNy4EcXFxdLjGTNm4P79+wBsO0Qjkl+DwQiRYzAYISpl06ZNyMrKkh5fuXLFqp9/9+5dXLt2zeRiYIWFhdi6dSsAw0qrzz77bLmfIw9GbFk3Ip/Wa85MGpG5Raxr165VPP7999+lYwYjRHUDgxEiGUEQsHLlSsVz1gxGLly4gMjISLRo0QJ+fn7o27cvFi5cKA2zfPfdd8jMzAQADBs2DF5eXuV+lnzhs6pmb/Ly8vDf//4Xu3fvVjwvn0kTEREBb29vsz/TnGDkzJkziIuLAwBF7YbIljNpRC1btpSOTc2uISLbYzBCJHPixAmcPn1a8dz9+/eRlpZmlc//8ccfkZ+fD8CwEd7PP/+Mt956C8OHD0dJSQk2btwovbaiIRoAaNeunXQs3tAt9f7772POnDl49tlnsX//fun55ORkPHjwAIC6IRrAvGBEnhVZtGgR+vXrpzhvj8zIyJEj8fTTT+OJJ57AuHHjbH49IiqLwQiRjDwr0qBBA+nYWtmR5ORk6TggIEA63rdvH2bNmiVlJgIDAzFgwIAKPysqKgpubm4Aqh6MyIdGXn31VWlK89KlS6Xn5cGPORo2bAh/f38AwKVLl8qcLygokOpj3N3dMW7cOMX1APsEIx4eHti9ezd++OEHaWdkIrIvBiNED6Wnp+Orr74CAPj5+UnTTAHrFbGKm78Bhl15Dxw4IG1jv2rVKikIGDNmTKVTTJ2dnaUA4erVq9JaIJZISUmRjq9evYp33nkH+/fvx//+9z8AhmBhypQpqj5To9FI2RF5hkW0a9cuZGRkAABGjBiBevXqoXPnzpg4cSIAwNvbW3U2hohqJgYjRA/FxsZKwcCkSZPQqVMn6Zy1MiPyYCQsLAyPP/443n333TKvq2yIRtSxY0cAhtqOP/74w+J2yYMRAFi8eDFeeOEF6fF//vMfREVFqf5c+VBN6eyIfMbSiy++KB1/9NFHWLlyJQ4ePMhMBVEdwWCECIab+SeffCI9fuWVVxSFjdYepmnQoAHc3d0BGKayTpo0SXpNZGQkevToYdbnyQOmqgzV3LlzR/G4qKgIt2/fBgA8/vjj+L//+z+LPlcejMinCGdmZuKHH34AYCiM7du3r3TO3d0dr776Krp27WrRNYmo5mEwQgTDQmNiwNG3b1+0bNkS4eHh0oJb1him0el00mJm4uqkgGE4Y9WqVXjyySfh7OyMRYsWldkYrzxiZgQAzp49a1G7CgsLpeGSjh07Ijw8XDrn4+ODdevWQau17J+K9u3bm2xfXFycNLV5yJAhFn8+EdUO/BeACFBkRaZOnQoAcHJyktbyuHbtGnQ6XZWukZKSIn1G6c3Y3N3dsWfPHuTl5Zk9RAMAHTp0kI4tzYzcvXtXOm7WrBlWrlwpBQcffPCBIjhRKzo6Wjo+c+aMdCxvqzy7Q0R1E4MRqvPS0tKkhcbq16+P5557Tjon1kkUFhYiMTGxSteRz6SRZ0ZEGo1G9b4ofn5+UrBw7tw5kwupVUY+RNOoUSMMGTIEv/32G44dO6aoG7FEgwYNpI3nzp49K+1RI8+SyLM7RFQ3MRihOu/zzz9HUVERAEPhqjhdFoBV60bkxavW3KZevJnn5ORIG8ypIS9eFTff69Kli9l1K5URMx9ZWVm4efMmAGNmRKvVqp4yTES1D4MRqtNKF66+/PLLivPyGSTVPRgBLBuqMRWMWFPpoZqSkhJpifmoqCh4enpa/ZpEVLMwGKE67dChQ1Jxap8+fRSZEEAZjFS1iLWyYRpLVXVGTelhGmsrHYxcvnwZhYWFADhEQ0QGzo5uAJEjrV+/XjqeNm1amfM1aZgGsGxGjb0zI/LpvgxGiAhgZoTqOPlCYaZ2yA0MDISfnx+AqmdG5MGIWNRpDZGRkdIGdtVxmCYiIgL16tUDYAiWWLxKRKUxGKE67erVqwAMwyamdsjVaDRSdiQxMVHa5M4S4jBNw4YNFUWyVaXVaqUpvgkJCdKuv+YSh2k0Gg0aNmxotXaJNBqNNJR069Yt7Nu3TzrHYISIAAYjVIdlZGQgPT0dANCiRYtyXyevG7l27ZpF1yopKZFWNLXmEI1IflM/d+6cqveKmZHAwEDVU4vNZWq9kfr16yMkJMQm1yOimoXBCNVZ8fHx0rG4uJkp8roRS4dq7ty5I60BYs3iVZGlM2oEQZCCEVsM0YjkwYioU6dOZq80S0S1G4MRqrPkWY6KghFrTO+Vz6SxdWbk999/N/t9GRkZ0hortphJIzIVjHCIhohEDEaozhLrRQDzgxE1N3q50rv1Wpt8hsrFixfNfp+ti1dFrVq1KlMnw2CEiEQMRqjOMjcz0qZNG2m2ysGDB6UlzdWw1bReUb169aT6C0uDEVtmRlxcXMqstMpghIhEDEaozpIHI82aNSv3dS4uLujTpw8Aw6Zy4uqhath6mAYwZkfS09ORmppq8jWZmZlYt26dNNwkX/DMlpkRQDlU4+LiosjmEFHdpioYKSoqwsKFC/HUU0+hT58+mDRpkqJyPzY2FgMGDEC/fv2wYsUKxW+Q58+fx9ixYxETE4OpU6cq/hEkcgQxGAkJCTE5rVduwIAB0rF8aqq5bD1MA1Q8VCMIAj7//HO0bNkSL730EsaMGYPs7Gy7DdMAymCkTZs2cHV1ten1iKjmUBWM6HQ6hISE4NNPP8XBgwcxbtw4vPbaa8jLy8Phw4exZcsWxMbGYvPmzTh69Ch27twJwBDEzJ07F2PHjsWBAwfQsWNHvPnmmzb5QkTmyM7Oxr179wBUPEQjqmowIs+MWHPBM7nygpGbN2+ib9++mDhxovSds7Ky8N1339ltmAYwbL4nki9hT0SkKhjx8PDAyy+/jODgYGi1WgwaNAguLi5ISEjAnj17MHz4cISFhSEwMBATJkzAnj17AACnTp2Ci4sLhg0bBjc3N0yZMgUXL17ErVu3bPKlqPpLSUnBsWPHpP/s/bNgbr2IqG3btggKCgIA/PTTTyguLlZ1PTEzEhQUZLOMQKtWraTjS5cuSccTJkzAL7/8Uub1u3btsuswTffu3TFhwgS0bNkSr732mk2vRUQ1S5X2pklMTER2djYaN26MGzduYNCgQdK55s2bS+s4XL9+XbGolLu7O8LCwnD9+nWTvyUWFRVJ0w2lhjo715m0rrgehfhnbXPkyBH07dtX8f00Gg2+//579O/fX/XnWdJf8im6zZo1M+u9/fv3x8aNG5Gbm4tjx47h0UcfNetaxcXF0k2/cePGNvv/Kl8P5cKFC9Dr9UhLS8ORI0cAGIKNjz76CJMmTUJmZib27NmjKCJt2LChzX/mPvvsM+m4Jvx81/a/i9bG/lKnrvSXVlt53sPiYKSgoABvvvkmJk2aBG9vb+Tl5SnG3b28vKSls/Pz88uMyXt5eSEvL8/kZ69btw6rV69WPDdq1CiMHj3a0ubWSPI6g9pk1apVZf7yCYKAJUuWmJWlKI+a/jp58qR0XK9ePSQkJFT6nujoaGzcuBEAsHXr1goLUQVBwMWLF5GWloaMjAypfiogIMCsa1lCEAT4+PjgwYMH+OOPP5CQkID9+/dL559++ml06NABjz32GHbt2oXs7GwpUHF3d0dGRobqpeTritr6d9FW2F/q1Pb+ioyMrPQ1FgUjJSUleP3119G4cWO8/PLLAABPT0/k5uZKr8nNzYWHhwcAw/CO/Jx43tPT0+TnT548GePHj1c2tI5lRpKSktC4cWOzIsqaRix6dnJywsyZM7FhwwakpaXh0KFD8Pf3h6+vr6rPs6S/xGXgAaBnz54IDw+v9D2jR4/GnDlzABiGHk29JzMzE1988QU++eQTk7NuoqKizLqWpdq2bYtff/0Vt2/fRv369RVrqQwaNAjh4eEYN24cdu3aBcD4G1mjRo0QERFhs3bVVLX976K1sb/UYX8ZqQ5G9Ho93nzzTWg0Grz11lvScs6RkZG4du2aNAUyPj5emi7ZtGlTbN26VfqMgoICJCcno2nTpiav4erqWmcCj4potdpa9wOamZkp3aQ7deqE9957DyUlJfjwww9RWFiIPXv24Pnnn7fos0v3161bt5CammqyWFJeM9KiRQuz+rlJkyZo1aoVLl26hOPHjyMnJ0cROO3evRtjx44tN+MHAL169bLp/9PWrVvj119/BWBY1O3YsWPSuUcffRRarRaDBw+Gq6urYihUrAMj02rj30VbYn+pw/6yYJ2RxYsXIz09Hf/5z3/g7GyMZYYMGYJt27YhOTkZ6enp2LBhA4YMGQLAUEVfWFiInTt3oqioCGvXrkXr1q1tNquAqi/xRgkYbsyAYQhOJA9aq+Lu3bvo0qULoqOjERsbW+a8GIwEBQXBx8fH7M8VZ9XodDr8/PPPinNLlixRBCK9evXC/PnzsWDBAixYsAAbNmyw+VCjfEZNXFwcTpw4AcDwC4FYoOrj44OePXsq3mfrmTRERBVRlRm5c+cOduzYATc3N8VUx/fffx+PPvooRo4ciYkTJ0Kv12PYsGEYOnQoAEOmY+nSpVi0aBGWLFmCNm3aYNGiRdb9JlQjiDUKgDEYefTRRxEUFIS7d+/iu+++Q05OjrTiqaW++OIL3L17FwCwaNEivPDCC9JvHjk5OdKU1op26zVlwIAB+OCDDwAYpvg+88wzAAxFqmIdSmhoKPbu3VtmxVF7kAcjGzduREFBAQBjX4sGDBigCKZsPZOGiKgiqoKRRo0aKQr/Sps8eTImT55s8lzbtm2xadMmda2jWufo0aPScUxMDABD7chzzz2HVatWoaCgAN9++y3GjBlTpets2LBBOr5+/Tp++OEHPPnkkwDM363XlL59+8LJyQk6nU6x3si5c+ekG3+fPn0cEogAyum98uJVsa9FAwYMUKz1w2CEiBypbg9SkV2VlJTg+PHjAAyrkMpno4wcOVI63rJlS5Wuc/HiRZw5c0bx3MqVK6VjtWuMyNWrVw9du3YFYJg+K07ZlQ8/9ejRQ3WbrSUyMrLMhnRA2cxIUFAQunfvLj3mMA0RORKDEbKbc+fOSbOqSv+m/thjj6FBgwYAgD179pSZfaWGPCsi+uabb6Qptebu1lse+VooBw8eBAApyAIcG4w4OTkpdhkGAF9fX7Rt27bMa0eMGCEdy9coISKyNwYjZDfyIZrSv6k7Oztj+PDhAAzr0oir96olCIIUjGi1WsyYMUN6/pNPPgFQtcwIAPTr1086FodCxMyIm5ubw3ejLb0BXY8ePeDk5FTmdf/3f/+HuXPn4u233zZ7ATciIltgMEJ2Iy9eLZ0ZAZSzarZt22bRNY4ePYqbN28CMNRFzJ8/X5r1tWbNGly6dEkxpGJJMNKrVy9pKOTAgQNIT0+Xsi2dO3d2+LT00sGIqb4GDIHTO++8g9dff12aok9E5AgMRshuxMyIp6cnOnToUOZ83759pVk08sBFDfkQzfjx4xEcHIznnnsOAHDv3j20bt1aWuckKCgI9erVU30NDw8P6QZ/8+ZNfPnll9I5Rw7RiEoHI6WzUERE1Q2DEbKL5ORkJCYmAjBsmObi4lLmNc7OzlJxaFJSEm7fvq3qGkVFRdi8eTMAQ8AgDvu8+uqrZV7r6uqKBQsWqPp8OflQzZIlS6Tj6haMaLVaPPLIIw5sDRFR5RiMUJX98MMPeOutt5CRkVHua0xN6TVFfjOXF4Wa49NPP5WWeX/22Welxcz69OkjbeLYpEkTvP3220hKSsL06dNVfb6cvIhVvq9EdbjxR0VFSUNFHTt2VLWoGxGRI1Rp116i9PR0DB06VFrif82aNWVeU1RUJC0UBlQ8bCAPRn799Vcpu1GZnJwc/POf/5Qey7eo12g02LlzJ+7cuYPGjRubLOZUq2vXrvD19UV2drb0XHBwMJo0aVLlz64qd3d3LFu2DOvXr8fixYsd3RwiokoxM0JVEhcXJy32tWXLFhQWFirOC4KAWbNm4dChQwCAkJAQ9O3bt9zPk2cW5IWmlfnkk09w7949AIYN7UpnKNzc3BAREWGVQAQwDCmJ+zCJevToUW0KQWfOnInjx48rMjhERNUVgxGqkosXL0rH2dnZilVJAcNiYx9//DEAQ0Cwbdu2cndrBgzZBXFX25MnT6KkpKTSNty6dUvKyLi4uNgtGyCvGwGqxxANEVFNxGCEqkQejADKje4OHDiAP//5z9LjNWvWmHXDFodq8vLy8Mcff1T6+n/84x9Sdmb69OnSbtG2VjrrUB2KV4mIaiLWjNRyp0+fVhSCBgQEYNiwYSaXDLdE6WBkx44d+PjjjyEIAqZMmQKdTgcAmDt3LiZMmGDWZ/bo0QNfffUVAMNQTadOncp97ZEjR/DZZ58BMCzVLt9vxdbatWuHBg0aIDU1FVqtVpoJRERE6jAYqcUuXryI7t27SwGBaNasWVixYoXVriGXmZmJAwcO4OrVq9LiY3379lU1dFK6iPWVV14x+bpff/0VgwcPhl6vBwD87W9/Q/369VV+A8tpNBrMnz8fc+fOxfTp06u80zARUV3FYZpa7JtvvikTiADA6tWrkZmZWeXPz8rKkjaKk686um7dOixatEh6vGzZMlWFo506dZLWISlveu9vv/2GQYMG4cGDBwAMM3TkQ0L2MmvWLOTk5GD58uV2vzYRUW3BYKQWk69iumzZMgwbNgyAYe+Xzz//vMqff+nSJel4zJgxUmZg8+bNSE1NlZ7v3Lmzqs91d3dHdHS0dI3S65ecP38eAwcOlKbV9uvXD6tXr3bYMuzicvNERGQZBiO1lCAI0kJjfn5+mD17Nv71r39J51euXAlBEKp0DfkQTXR0NJ5++mnFeScnJ0WGRA35UM1vv/2mOLd48WJkZWUBMAwB7dy5Ex4eHhZdh4iIHI/BSC117do1KTvRq1cvaLVatG3bVlob4/Llyzh48GCVriEPRlq3bo2RI0cqzr/00kto0aKFRZ9d3kqsgiDgp59+AgB4eXnhm2++qXCqMBERVX8MRmop+fLr8hVP5fu0rFq1qkrXKB2MDB48GF5eXgAMe8NUZe8XeTBy7Ngx6fj69evSnjW9evWSrkdERDUXg5FaSl4vIt8LZvjw4QgKCgIAbN++XfVmdHJiMOLp6YnGjRvD09MTq1atQnR0NGJjYxESEmLxZ0dERCA4OBgA8PPPPyMvLw8ApJVcAeCxxx6z+POJiKj6YDBSS4mZEScnJ3Tr1k163tXVFS+//DIAQKfTYfXq1RZ9fkFBAa5fvw4AaNWqFbRaw4/Sn/70J5w+fRqjR4+uSvOh0WikGpT8/HxpZVd5MNK7d+8qXYOIiKoHBiO1UGZmJs6fPw/AUFhaeihj6tSpUvCwfv16i65x9epVaX0P+Zb11jR06FDpeOfOnQCAX375BYAhqOrevbtNrktERPbFYKQWktdYmNoht3HjxujZsycAID4+Hvfv31d9jdL1IrbQv39/qTh19+7duHXrFq5duwYA6NatG2fQEBHVEgxGaiF58aq8XkROvvbH2bNnVV/DHsGIh4cHnnzySQBAamoqli5dKp3jEA0RUe3BYKQWkhevmsqMAJAWFQOAM2fOqL6GPYIRQDlUs3LlSumYxatERLUHg5FapqSkRFqXo3HjxggLCzP5OmsFI87OzmjevLkFLTXPU089JS0lX1xcDMBQ3FpekEVERDUPgxEr0ev1uH79Oq5du4Zr165VacpsVcTFxUnTYMsbogGANm3aSPu/qA1GTpw4IQUjzZs3lz7HFurXr49HH31U8VzHjh1Rr149m12TiIjsi8GIFRQXF6Nnz55o1qwZWrRogRYtWiA0NBSzZ8+2e1sqK14Vubq6ol27dgAM+7+IAUxlTp48iSeeeELKUgwaNKgKrTWPfKgG4BANEVFtw2DECr777rsy+6cAwAcffIBbt27ZtS0nTpyQjh955JEKXysO1ej1epw7d67Szz59+jSeeOIJxb4w//73v6vQWvOUDkZYvEpEVLswGLEC+Q64Tz/9tDRttiqLillKDEZcXFzQsWPHCl+rpm7kzJkzGDBgADIzMwEYshPffPONXZZjb9q0Kdq3by89Lj1sQ0RENRuDkSq6f/8+du/eDQAICgrC9u3bsXnzZqno8pNPPpGGNGztwYMHuHTpEgCgQ4cOcHNzq/D15gYjcXFxGDBgADIyMgAYgoFvv/3WrvvCLF26FC1btsSCBQukZeKJiKh2YDBSRV999RWKiooAAOPHj4ezszPCwsLw7LPPAgDu3LmDXbt2WeVa586dw4IFC6Rl2Es7ffo0BEEAAHTt2rXSz+vYsSM0Gg2A8oORc+fOoX///tLCaDExMdizZw+8vb0t+QoWGzRoEC5duoSFCxfa9bpERGR7DEaqSD5E88ILL0jH8t1x5etjWEqv1+PZZ5/FokWLEBMTg+Tk5DKvkdeLyPejKY+3tzdatGgBAPj999/LZHBu3bqF/v37Iz09HQDQs2dPfPfdd/Dx8anKVyEiIlJgMFIFly9fxq+//grAkGWQ12j0799futEfOHBAsUiYJU6cOIGEhAQAQEpKCoYOHVpmBozaYAQwDtUUFhZKQzyi2NhYpKWlAQB69OiBvXv3MhAhIiKrYzBSBfJN5uRZEQDQarV45ZVXpMcfffRRla4l1qWITp8+jRdffFEalgEM024BwzLqbdq0MetzK6obkT/+9NNP4evrq7rdRERElWEwYiG9Xi8FI05OTnj++efLvGbSpElwd3cHAHz22WcoKCiw+HrffPONdCwWjn711VfS1Nr09HSplqRz585wdnY263MrCkbi4uIAGIKbli1bWtx2IiKiijAYsdAvv/yCxMREAIbiSlMzPAICAjBy5EgAQFZWFg4dOmTRtZKSkqTAoFu3bti4caNUePrWW2/h+vXrUlYEMK94VVReMJKTk4P4+HgAQLt27aTZQURERNbGYMSEM2fOYPjw4fjvf/+LwsJCk6/ZsGGDdDxhwoRyP+vpp5+Wjvfu3WtRe+RZkaeffhrPPvssXn/9dQCGtUyWLFliUb0IADRo0EDav+bMmTPQ6/UADAWt4hBQZeuVEBERVQWDERNeffVV7NixA3PmzEHHjh2xf/9+xfnCwkJs3boVgGHIRJzGa8oTTzwBrdbQzdYKRgBgzpw5UjHpunXrFDUlaoIR+euzs7OlDIz4J8BghIiIbIvBSClJSUnSrreAYcbMgAEDMGXKFOh0OgCG5d/FlUiHDx9e4eJfAQEB0rLsFy5ckIZ2zJWbmysFQyEhIdKwir+/P6ZPnw4AKCoqkpajr1evnupddPv16ycdi9diMEJERPbCYKSUHTt2SMf+/v7S8dq1a6UZMRs3bpSeN1W4WtqTTz4pHX///feq2rN//35pqOjpp5+WakUA4LXXXpMKZEVdunSRMjHm6t+/v+J6AHD27FnpuQ4dOqj6PCIiIjUYjJSybds26fjnn3/Gxx9/LD2eP38+4uPjpSGRBg0aYMCAAZV+pjwY+e6771S1x9QQjSgoKAgvvfSS4jm1QzQA0KpVKzRq1AgAcOjQIRQWFuL3338HAERGRqJevXqqP5OIiMhcDEZkUlNT8csvvwAAoqKi0K5dO0ydOhUTJ04EAGRmZqJ///7SFN3Ro0fDxcWl0s/t2rUrAgMDAQD79u0ze6+a3NxcqTbF3d1dkcEQzZkzRzGN15JgRKPRSEM1ubm5+PLLL5GbmwuAQzRERGR7DEZkdu3aJc0mGT58uDQk8s4770jZAXEVVMCwF405tFotBg4cCMCwmd2xY8fMel9sbKy0Od3o0aPh6elZ5jVNmjTB5MmTAQCurq6IiYkx67NLkwc6y5cvl44ZjBARka0xGJGRD9E899xz0nFQUBD++c9/Kl4bGRmJHj16mP3Z8qEac2bV6HQ6vPfee9Lj//f//l+5r33vvffwzjvvYM+ePRbvaCsvYhWHaAAGI0REZHsMRh7Kzs7Gvn37AABhYWFlFg6bPn26opDz+eefVxSTVkbMjADmBSM//PCDtKLqE088UWERqaenJ+bOnWtyGMdc4eHhaNasWZnnO3XqZPFnEhERmYPByEN79uxBUVERAMMQTekZKc7OzlizZg0CAgIQHBys2HfGHEFBQejSpQsAw+Jid+7ckc4JgoD33nsPs2fPxs2bNwEY9oIRVZQVsabSwYyvry8iIiLscm0iIqq7GIzAUJj61ltvSY/lQzRy3bp1Q1JSEpKSkqRVS9UYMmSIdCyfQrx//3689tprWLFiBdq0aYNXXnkFp0+fBmBYil2eVbGl0sFIhw4dVGV/iIiILFHng5GSkhKMHTsWly9fBmC4Affu3bvc13t6epq9CV1pI0aMkI63bNkiHcuXls/Pz8fq1aulx//v//0/uwUEjz/+uOIx60WIiMge6nwwMnfuXGkhsvr162P79u022xSuQ4cO0uqoP//8M+7du4fCwkJs374dgGE2jPzawcHBGDdunE3aYkqDBg0UtSkMRoiIyB7qdDCydu1avPvuuwAMNSFff/01mjZtarPraTQajBo1CgCg1+uxfft2fP/998jKygIAjBkzBqdOnULfvn3h4eGBJUuWwM3NzWbtMWXw4MHSsZrZQkRERJaybLyhFoiLi1MUoX744Yfo06ePza87cuRIvP322wCArVu3omHDhtK5MWPGSBvz3bhxA5GRkTZvT2l/+9vfkJeXhzZt2qB9+/Z2vz4REdU9dTYYadu2LWbMmIH33nsPM2fOxNSpU+1y3ejoaERGRuLGjRs4ePCglPnw9/fHE088Ib1O7f4y1lKvXj28//77Drk2ERHVTXV2mMbZ2Rnvvvsudu3aJQ3V2IN8qEan0yEvLw+AobjV1dXVbu0gIiKqLupsMCJ65plnLJ4dY6mRI0eWeW7MmDF2bQMREVF1oSoY2bp1K8aPH49HHnlEsZstAOzevRtDhgxBnz59sHDhQsVmcMnJyXjxxRcRExOD8ePH48qVK9ZpfQ3VtWtXhIeHS48bNmyIvn37Oq5BREREDqQqGAkMDMTUqVMV+5gAwLVr17B8+XIsXboU3377Le7evYs1a9ZI59944w088sgjOHDgAIYPH445c+agpKTEOt+gBtJoNIrsyKhRo+yenSEiIqouVAUjffv2RZ8+feDj46N4fu/evejXrx/atm0Lb29vvPjii/j2228BADdv3sSNGzcwefJkuLm5YeTIkdDr9Th79qzVvkRN9Morr8DHxweenp6YMWOGo5tDRETkMFb5dfz69evo3r279Lh58+ZISUlBXl4ebty4gSZNmiiKM5s3b474+Pgym9GJioqKpH1ipIY6O9eqAs+mTZsiKSkJgiDA19cXer1eOicey5+j8rG/1GF/mY99pQ77S5260l/mzA61SjCSn58PLy8v6bG3tzcAIC8vD3l5eYpzAODl5YX8/PxyP2/dunWKJdEBw1DG6NGjrdHcaicjI8Pk80lJSXZuSc3G/lKH/WU+9pU67C91ant/mbNmllWCEQ8PD+Tm5kqPc3JyABj2cfH09FScA4Dc3Fx4eHiU+3mTJ0/G+PHjlQ2tZZmRiuj1eiQlJaFx48YOW2+kJmF/qcP+Mh/7Sh32lzrsLyOrBCNNmzbFtWvXpMfx8fEIDg6Gp6cnIiMjkZSUhKKiIimYiI+PLxNsyLm6utaZwKMiWq22zv+AqsH+Uof9ZT72lTrsL3XYXyoLWEtKSlBYWAi9Xg+dTofCwkLodDo8+eSTOHDgAC5evIicnBysXbsWTz31FAAgIiICERERiI2NRVFREbZt2waNRoNOnTrZ4vsQERFRDaMqGPn0008RExODHTt2YO3atYiJicGePXvQvHlzvPbaa/jLX/6CIUOGoEGDBpgyZYr0vn//+9/49ddf8fjjj2Pr1q1YsmQJp7ISERERAEAjCILg6EaQkl6vR0JCAsLDw+t86s4c7C912F/mY1+pw/5Sh/1lVLe/PRERETkcgxEiIiJyKAYjRERE5FAMRoiIiMihGIwQERGRQzEYISIiIodiMEJEREQOxWCEiIiIHIrBCBERETkUV2AlIiIih2JmhIiIiByKwQgRERE5FIMRIiIicigGI0RERORQDEaIiIjIoRiMEBERkUMxGCEiIiKHYjBCREREDsVghIiIiByKwQgRERE5FIMRB+JK/GRL/PkyD/uJbI0/Y5VjMGJnmZmZuHXrFgBAo9E4uDXVX3Z2NtLS0hzdjBojLS0N+/fvB8B/ACuTkpKCTz75BJcvX3Z0U2qE+/fv48KFC9DpdI5uSo3Af+vVcXZ0A+qSZcuWYe/evQgJCUHXrl0xePBgNG/eHHq9Hlot48LSli1bhl9++QVBQUHo0qULnnrqKYSFhUEQBP7lNqG4uBhTp05FUlIStmzZgoiICOh0Ojg5OTm6adXO2rVrERsbi0GDBsHb2xslJSVwduY/h+VZtmwZvv/+ewQHByM8PByjR49G+/bt+XexHPy3Xj32ip0cPXoU58+fx5YtWzBjxgzk5uZi8eLFAMAfzlLu3buHv/71r7h+/To+/fRTPP/880hOTsbevXsB8LcMU/R6PVxcXNCxY0d069YNK1asAAAGIiZkZWXhwoULWLNmDf7+978jLCyMgUgFtmzZgvPnz2PXrl2YP38+fH19+XexAvy33jLsGRsqKCiQjpOSkuDk5AQ/Pz90794dL730EkpKSqSbhl6vd1Qzqw2xvx48eIAWLVrgnXfeQWBgIPr27YsGDRogPT0dAPtKJPaX+NtWVlYWrly5gpdeegmpqan48ccfAQAlJSWObGa1IP+7eOXKFSQnJyMqKgpxcXFYunQpvvvuO1y5cgUAf74AZX+lpKQgNDQU7u7uiIqKgre3N3x8fBzYuuonLy9POua/9ZZhMGIDGRkZeP311/HRRx9Jzzk5OSEiIkKqfwgMDMSMGTOwbds2pKWlQavV1tkxfrG/Vq1aBQBo1qwZnnrqKXh7e6O4uBgAEBAQII2/1vXfLkr/fGm1Wuh0OtSrVw9t2rSBn58f+vbti/Xr1wNAnf6t39TfRY1Gg+joaGzcuBFvvPEGXFxc8MMPP2DBggX8u2iivzw8PODs7IwjR46guLgYJ06cwN27d/Hrr79KN+G63F9z5szBokWLpKCf/9Zbpm7/q24DH3/8MYYNGwYPDw/MmDFDer558+Y4f/48kpOTpec6deqEXr164auvvgJQN1Oe8v6aOXOm9HxYWBgA44300qVL6N69u0PaWJ2U9/Pl5OQkFRg2aNAAkydPhpubG1588UW8/fbbDmyx45TXV15eXoiPj8fx48fx9ttvY/bs2fjXv/6F1q1bY/ny5QD4d1HeX8OGDUNMTAw+++wzPPbYYwgNDUVoaCi++OILfPjhhwDqZn9duHABEydOhI+PD6ZMmSJlPPhvvWXq7q9MNvDpp59i48aNWLx4MWJiYgBAKvDq1KkTwsLCsH37doSFhSEwMBBarRaNGjWCXq+vk4WGpvpLTuy7kpISpKeno1OnTtK5goICuLu716kCuop+vgDAx8cHHTp0gKenJ/bt24dbt24hNzcXEyZMAIA69TNWUV+1bt0aTZs2xfbt2zFy5EgAgKenJ3r27IkdO3YgOzsbvr6+jmy+3VXUX4GBgRgwYAASEhLQpUsXTJs2DQDw3XffYfv27cjMzISfn58DW+8YcXFxiImJwbx58wAAOTk5cHV1RadOnRAeHo5t27bx33oVGIxUkfxm8Nhjj+HkyZPw9PTE77//jk2bNiE0NBT169fHmDFj8Oc//xnz5s3Djz/+iIEDB6J+/fp48OABQkJC6swPpzn91bBhQ4wcOVJ6XXp6OrKystCuXTtcunQJH374IR5//HE899xztT4QUdNfDx48wIEDB3D+/Hnk5eXhhRdewIkTJ7Bv3z7069ev1v+Mqfm7OGnSJPz++++Ij49HmzZtUL9+fSQmJqJZs2Z1JhBR87OVn5+P48ePY9CgQdL7kpOTER4eXmcCEfF7C4KA4uJiJCYmIiYmBklJSViwYAHq168Pf39//N///R/+8pe/YPbs2fjhhx8waNCgOvlvvVoMRiyUl5eHlStXwsXFBb169UK7du3QokULtGvXDm+++SaKi4vxzDPPwM3NDatXr4YgCBg7diwmTZqEPXv24Mcff0SDBg1w+vRpLF261NFfx+bU9NdHH30EQRDw1FNPwdPTE3/88QcKCwuxcOFCHDhwAOPHj8dzzz3n6K9kU2r7q6SkBGPHjsWQIUOg1+vxyiuvwMPDAy1btsTt27cd/XVsytK/iy+++CL27t2LQ4cOoWHDhjh9+jTefPNNR38dm7P0Z6t79+7Ys2cPUlJSkJaWhiNHjuBvf/ubo7+Ozcn7KyYmBm3btoWHhwfS0tLw7bffokGDBnj00UfRq1cvrFixAu+99x5mzZqFadOmYfv27di3b1+d+rfeUhqBlTSqXb16Fa+//jratGmDwMBAXLx4EY0aNcI//vEPZGdn47PPPsOIESMQEhICANi3bx+++OIL/O9//4OPjw/S09Nx5MgR3Lt3D2PHjoW3t7eDv5FtWdJfGzduxLJly+Dv7481a9bg448/xjPPPIO//OUv7K9yfr7ef/99eHt716kC36r+XczMzMTx48dx584djBw5kj9bJvpr/fr1WLVqFVxdXXHw4EGcPXsWAPDqq6/W6f46f/48pk+fjrZt22LlypXS6z///HMMHDgQvXv3rnP/1leJQKpt3bpVmDt3rvT4xo0bQs+ePYX9+/cLgiAImZmZgiAIQkFBgSAIgvDgwQOhb9++wunTp+3f2GrA0v46efKkIAiCEBcXJ1y/ft3OrXYcS/qrT58+wpkzZ+zeVkfj30V1qvp3URAEoaSkxI4tdqzy+uvgwYOCIAjCvHnzhJEjRwqCYOyXcePGCdu3b7d3U2u8uvMrVBWkpaUhMTERgKEI8MGDB/Dy8pKmtdWvXx+BgYFYvXo1AKBevXoAADc3NwCGQqdOnTqhRYsWDmi9/Vmrv1q2bAkA6NChAyIjI+39NezGGv0VHR2N5s2bO6D19sW/i+pY++8iULsX0jOnv+rXr49PPvkEADB9+nTcvn0bX3zxBXJycpCamgofH5868XfR2hiMVEAQBKxatQrPPvssNm/ejOzsbDg5OcHHxwf5+fk4ffo0AMOiUo888ghSU1OxY8cOAIY9VX777Tf8+9//xoIFC9CrV69an6Jjf6nD/jIf+0od9pc6avqrR48euHv3Lnbs2IEmTZrgX//6F06dOoW//vWvGD16NKKjo9GuXTsHf6OahwWsFTh+/Dhu3bqFoUOHIicnB8ePH8cTTzyBZ555BklJSXj//ffxww8/4NChQ5g2bRqaN2+OhIQEAIbfLL7//nvk5uZi8+bNqF+/voO/je2xv9Rhf5mPfaUO+0udqvTX448/jt69e+PKlSsIDQ2VskukDgtYK1BQUIBr164hIiJCWh103LhxCAsLw4MHD5CQkIALFy4gKioKnTp1wr/+9S9ERERI6zqIa2HUFewvddhf5mNfqcP+Uqcq/cXN76yDPVgBd3d3tGvXDt7e3ujTpw/u37+P48ePAzAsMNWuXTuMHj0anTp1wt27d3H79m20adNG8f66hP2lDvvLfOwrddhf6lSlvxiIWAd70Uzdu3dHREQEzp8/j/Pnz0vP379/H4sXL8Zzzz2HqKgodO7c2YGtrD7YX+qwv8zHvlKH/aUO+8sxGIyYQRzJ6t+/P4qKivDHH38AAC5evIji4mJ06NABmzdvxuzZsx3YyuqD/aUO+8t87Ct12F/qsL8chzUjZhIeLgX83XffYdu2bbhw4QJatmyJ5cuX15nlkNVgf6nD/jIf+0od9pc67C/H4GwaM2k0GhQUFGDLli24fv06Zs2ahTFjxji6WdUW+0sd9pf52FfqsL/UYX85BoMRFY4cOYKWLVti1apV0qJAVD72lzrsL/Oxr9Rhf6nD/rI/DtOoIAh1Z7t6a2B/qcP+Mh/7Sh32lzrsL/tjMEJEREQOxdk0RERE5FAMRoiIiMihGIwQERGRQzEYISIiIodiMEJEREQOxWCEiIiIHIrBCBHVaF27dkXXrl2xe/duRzeFiCzEYISIKjV16lTppj9u3DjFuczMTMTExEjn//e//1n9+rt375Y+n4hqHwYjRKTK1atXcfr0aenxjh07UFhY6MAWEVFNx2CEiMzm7GzYzuqrr74CAOh0OmzdulV6Xi4rKwvvvPMOnnrqKTzyyCMYOHAg3nzzTaSkpEiv+fjjj9G1a1c888wz2LdvH0aMGIFHH30UL7/8Mm7evAkAeOutt7Bw4ULpPWKG5OOPP1ZcLycnBwsXLkSfPn0wePBgrFmzxtpfn4hshMEIEZktKioKoaGh+Omnn3D37l388ssvSElJQf/+/RWvKywsxNSpU7FlyxakpaUhPDwcubm5+O677zB58mRkZGQoXn/v3j3Mnz8fGo0GhYWFOHPmDP75z38CAMLCwhAaGiq9tl27dmjXrh2CgoIUn/HBBx/g2LFjcHFxQWpqKj766CP8+uuvNuoJIrImBiNEZDatVotRo0ZJGRExQ1J6i/Xvv/8e8fHxAIB33nkHmzdvxqeffgqtVovU1FRs3rxZ8XqdToclS5Zg69atUk3KuXPnUFBQgJdeegkvvfSS9NrY2FjExsZi2LBhis9o2bIldu/ercjUnDhxwqrfn4hsg8EIEakydOhQeHh4YPPmzTh58iRat26NDh06KF5z4cIFAIC7uzv69u0LAGjVqhXCw8MV50Xe3t547LHHAABNmzaVni+dQanIgAED4OLiAj8/PwQEBAAA7t+/r+7LEZFDMBghIlV8fHwwePBg5ObmAiibFbH0M0VOTk7SsZpNxU19BjclJ6oZGIwQkWqjR48GAPj7+2PgwIFlzrdp0wYAUFBQgJ9++gkAcOnSJSQkJCjOm8vd3V06zs/Pt6TJRFSNlS2BJyKqRPPmzbF//344OTnB1dW1zPlBgwZhw4YNiI+Px7x58xAeHo5bt25Br9ejQYMGUjBjroiICOl41KhRCAwMxOzZs9GpU6cqfhMiqg6YGSEii9SrVw/e3t4mz7m5ueGTTz6RAoeEhAR4enpi8ODBWLduHfz9/VVdq0WLFnjppZdQv359pKSk4I8//sCDBw+s8TWIqBrQCBxUJSIiIgdiZoSIiIgcisEIERERORSDESIiInIoBiNERETkUAxGiIiIyKEYjBAREZFDMRghIiIih2IwQkRERA7FYISIiIgcisEIERERORSDESIiInIoBiNERETkUP8fwRyVeTleX98AAAAASUVORK5CYII=", "text/plain": [ "
    " ] @@ -146,7 +146,7 @@ } ], "source": [ - "series1, series2 = series.split_before(0.75)\n", + "series1, series2 = series.split_after(0.75)\n", "series1.plot()\n", "series2.plot()" ] @@ -2970,7 +2970,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.16" + "version": "3.10.13" }, "pycharm": { "stem_cell": { diff --git a/searchindex.js b/searchindex.js index b7a8e2982c..5593a232ff 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["README","examples","examples/01-multi-time-series-and-covariates","examples/02-data-processing","examples/03-FFT-examples","examples/04-RNN-examples","examples/05-TCN-examples","examples/06-Transformer-examples","examples/07-NBEATS-examples","examples/08-DeepAR-examples","examples/09-DeepTCN-examples","examples/10-Kalman-filter-examples","examples/11-GP-filter-examples","examples/12-Dynamic-Time-Warping-example","examples/13-TFT-examples","examples/14-transfer-learning","examples/15-static-covariates","examples/16-hierarchical-reconciliation","examples/17-hyperparameter-optimization","examples/18-TiDE-examples","examples/19-EnsembleModel-examples","examples/20-RegressionModel-examples","generated_api/darts","generated_api/darts.ad","generated_api/darts.ad.aggregators","generated_api/darts.ad.aggregators.aggregators","generated_api/darts.ad.aggregators.and_aggregator","generated_api/darts.ad.aggregators.ensemble_sklearn_aggregator","generated_api/darts.ad.aggregators.or_aggregator","generated_api/darts.ad.anomaly_model","generated_api/darts.ad.anomaly_model.anomaly_model","generated_api/darts.ad.anomaly_model.filtering_am","generated_api/darts.ad.anomaly_model.forecasting_am","generated_api/darts.ad.detectors","generated_api/darts.ad.detectors.detectors","generated_api/darts.ad.detectors.quantile_detector","generated_api/darts.ad.detectors.threshold_detector","generated_api/darts.ad.scorers","generated_api/darts.ad.scorers.difference_scorer","generated_api/darts.ad.scorers.kmeans_scorer","generated_api/darts.ad.scorers.nll_cauchy_scorer","generated_api/darts.ad.scorers.nll_exponential_scorer","generated_api/darts.ad.scorers.nll_gamma_scorer","generated_api/darts.ad.scorers.nll_gaussian_scorer","generated_api/darts.ad.scorers.nll_laplace_scorer","generated_api/darts.ad.scorers.nll_poisson_scorer","generated_api/darts.ad.scorers.norm_scorer","generated_api/darts.ad.scorers.pyod_scorer","generated_api/darts.ad.scorers.scorers","generated_api/darts.ad.scorers.wasserstein_scorer","generated_api/darts.ad.utils","generated_api/darts.dataprocessing","generated_api/darts.dataprocessing.dtw","generated_api/darts.dataprocessing.dtw.cost_matrix","generated_api/darts.dataprocessing.dtw.dtw","generated_api/darts.dataprocessing.dtw.window","generated_api/darts.dataprocessing.encoders","generated_api/darts.dataprocessing.encoders.encoder_base","generated_api/darts.dataprocessing.encoders.encoders","generated_api/darts.dataprocessing.pipeline","generated_api/darts.dataprocessing.transformers","generated_api/darts.dataprocessing.transformers.base_data_transformer","generated_api/darts.dataprocessing.transformers.boxcox","generated_api/darts.dataprocessing.transformers.diff","generated_api/darts.dataprocessing.transformers.fittable_data_transformer","generated_api/darts.dataprocessing.transformers.invertible_data_transformer","generated_api/darts.dataprocessing.transformers.mappers","generated_api/darts.dataprocessing.transformers.midas","generated_api/darts.dataprocessing.transformers.missing_values_filler","generated_api/darts.dataprocessing.transformers.reconciliation","generated_api/darts.dataprocessing.transformers.scaler","generated_api/darts.dataprocessing.transformers.static_covariates_transformer","generated_api/darts.dataprocessing.transformers.window_transformer","generated_api/darts.datasets","generated_api/darts.datasets.dataset_loaders","generated_api/darts.explainability","generated_api/darts.explainability.explainability","generated_api/darts.explainability.explainability_result","generated_api/darts.explainability.shap_explainer","generated_api/darts.explainability.tft_explainer","generated_api/darts.explainability.utils","generated_api/darts.metrics","generated_api/darts.metrics.metrics","generated_api/darts.models","generated_api/darts.models.components","generated_api/darts.models.components.feed_forward","generated_api/darts.models.components.glu_variants","generated_api/darts.models.components.layer_norm_variants","generated_api/darts.models.components.statsforecast_utils","generated_api/darts.models.components.transformer","generated_api/darts.models.filtering","generated_api/darts.models.filtering.filtering_model","generated_api/darts.models.filtering.gaussian_process_filter","generated_api/darts.models.filtering.kalman_filter","generated_api/darts.models.filtering.moving_average_filter","generated_api/darts.models.forecasting","generated_api/darts.models.forecasting.arima","generated_api/darts.models.forecasting.auto_arima","generated_api/darts.models.forecasting.baselines","generated_api/darts.models.forecasting.block_rnn_model","generated_api/darts.models.forecasting.catboost_model","generated_api/darts.models.forecasting.croston","generated_api/darts.models.forecasting.dlinear","generated_api/darts.models.forecasting.ensemble_model","generated_api/darts.models.forecasting.exponential_smoothing","generated_api/darts.models.forecasting.fft","generated_api/darts.models.forecasting.forecasting_model","generated_api/darts.models.forecasting.kalman_forecaster","generated_api/darts.models.forecasting.lgbm","generated_api/darts.models.forecasting.linear_regression_model","generated_api/darts.models.forecasting.nbeats","generated_api/darts.models.forecasting.nhits","generated_api/darts.models.forecasting.nlinear","generated_api/darts.models.forecasting.pl_forecasting_module","generated_api/darts.models.forecasting.prophet_model","generated_api/darts.models.forecasting.random_forest","generated_api/darts.models.forecasting.regression_ensemble_model","generated_api/darts.models.forecasting.regression_model","generated_api/darts.models.forecasting.rnn_model","generated_api/darts.models.forecasting.sf_auto_arima","generated_api/darts.models.forecasting.sf_auto_ces","generated_api/darts.models.forecasting.sf_auto_ets","generated_api/darts.models.forecasting.sf_auto_theta","generated_api/darts.models.forecasting.tbats_model","generated_api/darts.models.forecasting.tcn_model","generated_api/darts.models.forecasting.tft_model","generated_api/darts.models.forecasting.tft_submodels","generated_api/darts.models.forecasting.theta","generated_api/darts.models.forecasting.tide_model","generated_api/darts.models.forecasting.torch_forecasting_model","generated_api/darts.models.forecasting.transformer_model","generated_api/darts.models.forecasting.varima","generated_api/darts.models.forecasting.xgboost","generated_api/darts.models.utils","generated_api/darts.timeseries","generated_api/darts.utils","generated_api/darts.utils.callbacks","generated_api/darts.utils.data","generated_api/darts.utils.data.horizon_based_dataset","generated_api/darts.utils.data.inference_dataset","generated_api/darts.utils.data.sequential_dataset","generated_api/darts.utils.data.shifted_dataset","generated_api/darts.utils.data.tabularization","generated_api/darts.utils.data.training_dataset","generated_api/darts.utils.data.utils","generated_api/darts.utils.historical_forecasts","generated_api/darts.utils.historical_forecasts.optimized_historical_forecasts_regression","generated_api/darts.utils.historical_forecasts.optimized_historical_forecasts_torch","generated_api/darts.utils.historical_forecasts.utils","generated_api/darts.utils.likelihood_models","generated_api/darts.utils.losses","generated_api/darts.utils.missing_values","generated_api/darts.utils.model_selection","generated_api/darts.utils.multioutput","generated_api/darts.utils.statistics","generated_api/darts.utils.timeseries_generation","generated_api/darts.utils.torch","generated_api/darts.utils.utils","index","quickstart/00-quickstart","userguide","userguide/covariates","userguide/faq","userguide/forecasting_overview","userguide/gpu_and_tpu_usage","userguide/hyperparameter_optimization","userguide/timeseries","userguide/torch_forecasting_models"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":4,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.todo":2,"sphinx.ext.viewcode":1,nbsphinx:3,sphinx:56},filenames:["README.rst","examples.rst","examples/01-multi-time-series-and-covariates.ipynb","examples/02-data-processing.ipynb","examples/03-FFT-examples.ipynb","examples/04-RNN-examples.ipynb","examples/05-TCN-examples.ipynb","examples/06-Transformer-examples.ipynb","examples/07-NBEATS-examples.ipynb","examples/08-DeepAR-examples.ipynb","examples/09-DeepTCN-examples.ipynb","examples/10-Kalman-filter-examples.ipynb","examples/11-GP-filter-examples.ipynb","examples/12-Dynamic-Time-Warping-example.ipynb","examples/13-TFT-examples.ipynb","examples/14-transfer-learning.ipynb","examples/15-static-covariates.ipynb","examples/16-hierarchical-reconciliation.ipynb","examples/17-hyperparameter-optimization.ipynb","examples/18-TiDE-examples.ipynb","examples/19-EnsembleModel-examples.ipynb","examples/20-RegressionModel-examples.ipynb","generated_api/darts.rst","generated_api/darts.ad.rst","generated_api/darts.ad.aggregators.rst","generated_api/darts.ad.aggregators.aggregators.rst","generated_api/darts.ad.aggregators.and_aggregator.rst","generated_api/darts.ad.aggregators.ensemble_sklearn_aggregator.rst","generated_api/darts.ad.aggregators.or_aggregator.rst","generated_api/darts.ad.anomaly_model.rst","generated_api/darts.ad.anomaly_model.anomaly_model.rst","generated_api/darts.ad.anomaly_model.filtering_am.rst","generated_api/darts.ad.anomaly_model.forecasting_am.rst","generated_api/darts.ad.detectors.rst","generated_api/darts.ad.detectors.detectors.rst","generated_api/darts.ad.detectors.quantile_detector.rst","generated_api/darts.ad.detectors.threshold_detector.rst","generated_api/darts.ad.scorers.rst","generated_api/darts.ad.scorers.difference_scorer.rst","generated_api/darts.ad.scorers.kmeans_scorer.rst","generated_api/darts.ad.scorers.nll_cauchy_scorer.rst","generated_api/darts.ad.scorers.nll_exponential_scorer.rst","generated_api/darts.ad.scorers.nll_gamma_scorer.rst","generated_api/darts.ad.scorers.nll_gaussian_scorer.rst","generated_api/darts.ad.scorers.nll_laplace_scorer.rst","generated_api/darts.ad.scorers.nll_poisson_scorer.rst","generated_api/darts.ad.scorers.norm_scorer.rst","generated_api/darts.ad.scorers.pyod_scorer.rst","generated_api/darts.ad.scorers.scorers.rst","generated_api/darts.ad.scorers.wasserstein_scorer.rst","generated_api/darts.ad.utils.rst","generated_api/darts.dataprocessing.rst","generated_api/darts.dataprocessing.dtw.rst","generated_api/darts.dataprocessing.dtw.cost_matrix.rst","generated_api/darts.dataprocessing.dtw.dtw.rst","generated_api/darts.dataprocessing.dtw.window.rst","generated_api/darts.dataprocessing.encoders.rst","generated_api/darts.dataprocessing.encoders.encoder_base.rst","generated_api/darts.dataprocessing.encoders.encoders.rst","generated_api/darts.dataprocessing.pipeline.rst","generated_api/darts.dataprocessing.transformers.rst","generated_api/darts.dataprocessing.transformers.base_data_transformer.rst","generated_api/darts.dataprocessing.transformers.boxcox.rst","generated_api/darts.dataprocessing.transformers.diff.rst","generated_api/darts.dataprocessing.transformers.fittable_data_transformer.rst","generated_api/darts.dataprocessing.transformers.invertible_data_transformer.rst","generated_api/darts.dataprocessing.transformers.mappers.rst","generated_api/darts.dataprocessing.transformers.midas.rst","generated_api/darts.dataprocessing.transformers.missing_values_filler.rst","generated_api/darts.dataprocessing.transformers.reconciliation.rst","generated_api/darts.dataprocessing.transformers.scaler.rst","generated_api/darts.dataprocessing.transformers.static_covariates_transformer.rst","generated_api/darts.dataprocessing.transformers.window_transformer.rst","generated_api/darts.datasets.rst","generated_api/darts.datasets.dataset_loaders.rst","generated_api/darts.explainability.rst","generated_api/darts.explainability.explainability.rst","generated_api/darts.explainability.explainability_result.rst","generated_api/darts.explainability.shap_explainer.rst","generated_api/darts.explainability.tft_explainer.rst","generated_api/darts.explainability.utils.rst","generated_api/darts.metrics.rst","generated_api/darts.metrics.metrics.rst","generated_api/darts.models.rst","generated_api/darts.models.components.rst","generated_api/darts.models.components.feed_forward.rst","generated_api/darts.models.components.glu_variants.rst","generated_api/darts.models.components.layer_norm_variants.rst","generated_api/darts.models.components.statsforecast_utils.rst","generated_api/darts.models.components.transformer.rst","generated_api/darts.models.filtering.rst","generated_api/darts.models.filtering.filtering_model.rst","generated_api/darts.models.filtering.gaussian_process_filter.rst","generated_api/darts.models.filtering.kalman_filter.rst","generated_api/darts.models.filtering.moving_average_filter.rst","generated_api/darts.models.forecasting.rst","generated_api/darts.models.forecasting.arima.rst","generated_api/darts.models.forecasting.auto_arima.rst","generated_api/darts.models.forecasting.baselines.rst","generated_api/darts.models.forecasting.block_rnn_model.rst","generated_api/darts.models.forecasting.catboost_model.rst","generated_api/darts.models.forecasting.croston.rst","generated_api/darts.models.forecasting.dlinear.rst","generated_api/darts.models.forecasting.ensemble_model.rst","generated_api/darts.models.forecasting.exponential_smoothing.rst","generated_api/darts.models.forecasting.fft.rst","generated_api/darts.models.forecasting.forecasting_model.rst","generated_api/darts.models.forecasting.kalman_forecaster.rst","generated_api/darts.models.forecasting.lgbm.rst","generated_api/darts.models.forecasting.linear_regression_model.rst","generated_api/darts.models.forecasting.nbeats.rst","generated_api/darts.models.forecasting.nhits.rst","generated_api/darts.models.forecasting.nlinear.rst","generated_api/darts.models.forecasting.pl_forecasting_module.rst","generated_api/darts.models.forecasting.prophet_model.rst","generated_api/darts.models.forecasting.random_forest.rst","generated_api/darts.models.forecasting.regression_ensemble_model.rst","generated_api/darts.models.forecasting.regression_model.rst","generated_api/darts.models.forecasting.rnn_model.rst","generated_api/darts.models.forecasting.sf_auto_arima.rst","generated_api/darts.models.forecasting.sf_auto_ces.rst","generated_api/darts.models.forecasting.sf_auto_ets.rst","generated_api/darts.models.forecasting.sf_auto_theta.rst","generated_api/darts.models.forecasting.tbats_model.rst","generated_api/darts.models.forecasting.tcn_model.rst","generated_api/darts.models.forecasting.tft_model.rst","generated_api/darts.models.forecasting.tft_submodels.rst","generated_api/darts.models.forecasting.theta.rst","generated_api/darts.models.forecasting.tide_model.rst","generated_api/darts.models.forecasting.torch_forecasting_model.rst","generated_api/darts.models.forecasting.transformer_model.rst","generated_api/darts.models.forecasting.varima.rst","generated_api/darts.models.forecasting.xgboost.rst","generated_api/darts.models.utils.rst","generated_api/darts.timeseries.rst","generated_api/darts.utils.rst","generated_api/darts.utils.callbacks.rst","generated_api/darts.utils.data.rst","generated_api/darts.utils.data.horizon_based_dataset.rst","generated_api/darts.utils.data.inference_dataset.rst","generated_api/darts.utils.data.sequential_dataset.rst","generated_api/darts.utils.data.shifted_dataset.rst","generated_api/darts.utils.data.tabularization.rst","generated_api/darts.utils.data.training_dataset.rst","generated_api/darts.utils.data.utils.rst","generated_api/darts.utils.historical_forecasts.rst","generated_api/darts.utils.historical_forecasts.optimized_historical_forecasts_regression.rst","generated_api/darts.utils.historical_forecasts.optimized_historical_forecasts_torch.rst","generated_api/darts.utils.historical_forecasts.utils.rst","generated_api/darts.utils.likelihood_models.rst","generated_api/darts.utils.losses.rst","generated_api/darts.utils.missing_values.rst","generated_api/darts.utils.model_selection.rst","generated_api/darts.utils.multioutput.rst","generated_api/darts.utils.statistics.rst","generated_api/darts.utils.timeseries_generation.rst","generated_api/darts.utils.torch.rst","generated_api/darts.utils.utils.rst","index.rst","quickstart/00-quickstart.ipynb","userguide.rst","userguide/covariates.rst","userguide/faq.rst","userguide/forecasting_overview.rst","userguide/gpu_and_tpu_usage.rst","userguide/hyperparameter_optimization.rst","userguide/timeseries.rst","userguide/torch_forecasting_models.rst"],objects:{"":[[22,0,0,"-","darts"]],"darts.ad":[[24,0,0,"-","aggregators"],[29,0,0,"-","anomaly_model"],[33,0,0,"-","detectors"],[37,0,0,"-","scorers"],[50,0,0,"-","utils"]],"darts.ad.aggregators":[[25,0,0,"-","aggregators"],[26,0,0,"-","and_aggregator"],[27,0,0,"-","ensemble_sklearn_aggregator"],[28,0,0,"-","or_aggregator"]],"darts.ad.aggregators.aggregators":[[25,1,1,"","Aggregator"],[25,1,1,"","FittableAggregator"],[25,1,1,"","NonFittableAggregator"]],"darts.ad.aggregators.aggregators.Aggregator":[[25,2,1,"","eval_accuracy"],[25,2,1,"","predict"]],"darts.ad.aggregators.aggregators.FittableAggregator":[[25,2,1,"","eval_accuracy"],[25,2,1,"","fit"],[25,2,1,"","predict"]],"darts.ad.aggregators.aggregators.NonFittableAggregator":[[25,2,1,"","eval_accuracy"],[25,2,1,"","predict"]],"darts.ad.aggregators.and_aggregator":[[26,1,1,"","AndAggregator"]],"darts.ad.aggregators.and_aggregator.AndAggregator":[[26,2,1,"","eval_accuracy"],[26,2,1,"","predict"]],"darts.ad.aggregators.ensemble_sklearn_aggregator":[[27,1,1,"","EnsembleSklearnAggregator"]],"darts.ad.aggregators.ensemble_sklearn_aggregator.EnsembleSklearnAggregator":[[27,2,1,"","eval_accuracy"],[27,2,1,"","fit"],[27,2,1,"","predict"]],"darts.ad.aggregators.or_aggregator":[[28,1,1,"","OrAggregator"]],"darts.ad.aggregators.or_aggregator.OrAggregator":[[28,2,1,"","eval_accuracy"],[28,2,1,"","predict"]],"darts.ad.anomaly_model":[[30,0,0,"-","anomaly_model"],[31,0,0,"-","filtering_am"],[32,0,0,"-","forecasting_am"]],"darts.ad.anomaly_model.filtering_am":[[31,1,1,"","FilteringAnomalyModel"]],"darts.ad.anomaly_model.filtering_am.FilteringAnomalyModel":[[31,2,1,"","eval_accuracy"],[31,2,1,"","fit"],[31,2,1,"","score"],[31,2,1,"","show_anomalies"]],"darts.ad.anomaly_model.forecasting_am":[[32,1,1,"","ForecastingAnomalyModel"]],"darts.ad.anomaly_model.forecasting_am.ForecastingAnomalyModel":[[32,2,1,"","eval_accuracy"],[32,2,1,"","fit"],[32,2,1,"","score"],[32,2,1,"","show_anomalies"]],"darts.ad.detectors":[[34,0,0,"-","detectors"],[35,0,0,"-","quantile_detector"],[36,0,0,"-","threshold_detector"]],"darts.ad.detectors.detectors":[[34,1,1,"","Detector"],[34,1,1,"","FittableDetector"]],"darts.ad.detectors.detectors.Detector":[[34,2,1,"","detect"],[34,2,1,"","eval_accuracy"]],"darts.ad.detectors.detectors.FittableDetector":[[34,2,1,"","detect"],[34,2,1,"","eval_accuracy"],[34,2,1,"","fit"],[34,2,1,"","fit_detect"]],"darts.ad.detectors.quantile_detector":[[35,1,1,"","QuantileDetector"]],"darts.ad.detectors.quantile_detector.QuantileDetector":[[35,2,1,"","detect"],[35,2,1,"","eval_accuracy"],[35,2,1,"","fit"],[35,2,1,"","fit_detect"],[35,3,1,"","high_threshold"],[35,3,1,"","low_threshold"]],"darts.ad.detectors.threshold_detector":[[36,1,1,"","ThresholdDetector"]],"darts.ad.detectors.threshold_detector.ThresholdDetector":[[36,2,1,"","detect"],[36,2,1,"","eval_accuracy"]],"darts.ad.scorers":[[38,0,0,"-","difference_scorer"],[39,0,0,"-","kmeans_scorer"],[40,0,0,"-","nll_cauchy_scorer"],[41,0,0,"-","nll_exponential_scorer"],[42,0,0,"-","nll_gamma_scorer"],[43,0,0,"-","nll_gaussian_scorer"],[44,0,0,"-","nll_laplace_scorer"],[45,0,0,"-","nll_poisson_scorer"],[46,0,0,"-","norm_scorer"],[47,0,0,"-","pyod_scorer"],[48,0,0,"-","scorers"],[49,0,0,"-","wasserstein_scorer"]],"darts.ad.scorers.difference_scorer":[[38,1,1,"","DifferenceScorer"]],"darts.ad.scorers.difference_scorer.DifferenceScorer":[[38,2,1,"","eval_accuracy_from_prediction"],[38,4,1,"","is_probabilistic"],[38,2,1,"","score_from_prediction"],[38,2,1,"","show_anomalies_from_prediction"]],"darts.ad.scorers.kmeans_scorer":[[39,1,1,"","KMeansScorer"]],"darts.ad.scorers.kmeans_scorer.KMeansScorer":[[39,2,1,"","check_if_fit_called"],[39,2,1,"","eval_accuracy"],[39,2,1,"","eval_accuracy_from_prediction"],[39,2,1,"","fit"],[39,2,1,"","fit_from_prediction"],[39,4,1,"","is_probabilistic"],[39,2,1,"","score"],[39,2,1,"","score_from_prediction"],[39,2,1,"","show_anomalies"],[39,2,1,"","show_anomalies_from_prediction"]],"darts.ad.scorers.nll_cauchy_scorer":[[40,1,1,"","CauchyNLLScorer"]],"darts.ad.scorers.nll_cauchy_scorer.CauchyNLLScorer":[[40,2,1,"","eval_accuracy_from_prediction"],[40,4,1,"","is_probabilistic"],[40,2,1,"","score_from_prediction"],[40,2,1,"","show_anomalies_from_prediction"]],"darts.ad.scorers.nll_exponential_scorer":[[41,1,1,"","ExponentialNLLScorer"]],"darts.ad.scorers.nll_exponential_scorer.ExponentialNLLScorer":[[41,2,1,"","eval_accuracy_from_prediction"],[41,4,1,"","is_probabilistic"],[41,2,1,"","score_from_prediction"],[41,2,1,"","show_anomalies_from_prediction"]],"darts.ad.scorers.nll_gamma_scorer":[[42,1,1,"","GammaNLLScorer"]],"darts.ad.scorers.nll_gamma_scorer.GammaNLLScorer":[[42,2,1,"","eval_accuracy_from_prediction"],[42,4,1,"","is_probabilistic"],[42,2,1,"","score_from_prediction"],[42,2,1,"","show_anomalies_from_prediction"]],"darts.ad.scorers.nll_gaussian_scorer":[[43,1,1,"","GaussianNLLScorer"]],"darts.ad.scorers.nll_gaussian_scorer.GaussianNLLScorer":[[43,2,1,"","eval_accuracy_from_prediction"],[43,4,1,"","is_probabilistic"],[43,2,1,"","score_from_prediction"],[43,2,1,"","show_anomalies_from_prediction"]],"darts.ad.scorers.nll_laplace_scorer":[[44,1,1,"","LaplaceNLLScorer"]],"darts.ad.scorers.nll_laplace_scorer.LaplaceNLLScorer":[[44,2,1,"","eval_accuracy_from_prediction"],[44,4,1,"","is_probabilistic"],[44,2,1,"","score_from_prediction"],[44,2,1,"","show_anomalies_from_prediction"]],"darts.ad.scorers.nll_poisson_scorer":[[45,1,1,"","PoissonNLLScorer"]],"darts.ad.scorers.nll_poisson_scorer.PoissonNLLScorer":[[45,2,1,"","eval_accuracy_from_prediction"],[45,4,1,"","is_probabilistic"],[45,2,1,"","score_from_prediction"],[45,2,1,"","show_anomalies_from_prediction"]],"darts.ad.scorers.norm_scorer":[[46,1,1,"","NormScorer"]],"darts.ad.scorers.norm_scorer.NormScorer":[[46,2,1,"","eval_accuracy_from_prediction"],[46,4,1,"","is_probabilistic"],[46,2,1,"","score_from_prediction"],[46,2,1,"","show_anomalies_from_prediction"]],"darts.ad.scorers.pyod_scorer":[[47,1,1,"","PyODScorer"]],"darts.ad.scorers.pyod_scorer.PyODScorer":[[47,2,1,"","check_if_fit_called"],[47,2,1,"","eval_accuracy"],[47,2,1,"","eval_accuracy_from_prediction"],[47,2,1,"","fit"],[47,2,1,"","fit_from_prediction"],[47,4,1,"","is_probabilistic"],[47,2,1,"","score"],[47,2,1,"","score_from_prediction"],[47,2,1,"","show_anomalies"],[47,2,1,"","show_anomalies_from_prediction"]],"darts.ad.scorers.scorers":[[48,1,1,"","AnomalyScorer"],[48,1,1,"","FittableAnomalyScorer"],[48,1,1,"","NLLScorer"],[48,1,1,"","NonFittableAnomalyScorer"]],"darts.ad.scorers.scorers.AnomalyScorer":[[48,2,1,"","eval_accuracy_from_prediction"],[48,4,1,"","is_probabilistic"],[48,2,1,"","score_from_prediction"],[48,2,1,"","show_anomalies_from_prediction"]],"darts.ad.scorers.scorers.FittableAnomalyScorer":[[48,2,1,"","check_if_fit_called"],[48,2,1,"","eval_accuracy"],[48,2,1,"","eval_accuracy_from_prediction"],[48,2,1,"","fit"],[48,2,1,"","fit_from_prediction"],[48,4,1,"","is_probabilistic"],[48,2,1,"","score"],[48,2,1,"","score_from_prediction"],[48,2,1,"","show_anomalies"],[48,2,1,"","show_anomalies_from_prediction"]],"darts.ad.scorers.scorers.NLLScorer":[[48,2,1,"","eval_accuracy_from_prediction"],[48,4,1,"","is_probabilistic"],[48,2,1,"","score_from_prediction"],[48,2,1,"","show_anomalies_from_prediction"]],"darts.ad.scorers.scorers.NonFittableAnomalyScorer":[[48,2,1,"","eval_accuracy_from_prediction"],[48,4,1,"","is_probabilistic"],[48,2,1,"","score_from_prediction"],[48,2,1,"","show_anomalies_from_prediction"]],"darts.ad.scorers.wasserstein_scorer":[[49,1,1,"","WassersteinScorer"]],"darts.ad.scorers.wasserstein_scorer.WassersteinScorer":[[49,2,1,"","check_if_fit_called"],[49,2,1,"","eval_accuracy"],[49,2,1,"","eval_accuracy_from_prediction"],[49,2,1,"","fit"],[49,2,1,"","fit_from_prediction"],[49,4,1,"","is_probabilistic"],[49,2,1,"","score"],[49,2,1,"","score_from_prediction"],[49,2,1,"","show_anomalies"],[49,2,1,"","show_anomalies_from_prediction"]],"darts.ad.utils":[[50,5,1,"","eval_accuracy_from_binary_prediction"],[50,5,1,"","eval_accuracy_from_scores"],[50,5,1,"","show_anomalies_from_scores"]],"darts.dataprocessing":[[52,0,0,"-","dtw"],[56,0,0,"-","encoders"],[59,0,0,"-","pipeline"],[60,0,0,"-","transformers"]],"darts.dataprocessing.dtw":[[53,0,0,"-","cost_matrix"],[54,0,0,"-","dtw"],[55,0,0,"-","window"]],"darts.dataprocessing.dtw.cost_matrix":[[53,1,1,"","CostMatrix"],[53,1,1,"","DenseCostMatrix"],[53,1,1,"","SparseCostMatrix"]],"darts.dataprocessing.dtw.cost_matrix.CostMatrix":[[53,2,1,"","fill"],[53,3,1,"","m"],[53,3,1,"","n"],[53,2,1,"","to_dense"]],"darts.dataprocessing.dtw.cost_matrix.DenseCostMatrix":[[53,3,1,"","ALIGNED"],[53,3,1,"","BEHAVED"],[53,3,1,"","CARRAY"],[53,3,1,"","C_CONTIGUOUS"],[53,3,1,"","FARRAY"],[53,3,1,"","FNC"],[53,3,1,"","FORC"],[53,3,1,"","F_CONTIGUOUS"],[53,3,1,"","OWNDATA"],[53,3,1,"","T"],[53,3,1,"","WRITEABLE"],[53,3,1,"","WRITEBACKIFCOPY"],[53,2,1,"","all"],[53,2,1,"","any"],[53,2,1,"","argmax"],[53,2,1,"","argmin"],[53,2,1,"","argpartition"],[53,2,1,"","argsort"],[53,2,1,"","astype"],[53,3,1,"","base"],[53,2,1,"","byteswap"],[53,2,1,"","choose"],[53,2,1,"","clip"],[53,2,1,"","compress"],[53,2,1,"","conj"],[53,2,1,"","conjugate"],[53,2,1,"","copy"],[53,3,1,"","ctypes"],[53,2,1,"","cumprod"],[53,2,1,"","cumsum"],[53,3,1,"","data"],[53,2,1,"","diagonal"],[53,2,1,"","dot"],[53,3,1,"","dtype"],[53,2,1,"","dump"],[53,2,1,"","dumps"],[53,2,1,"","fill"],[53,3,1,"","flags"],[53,3,1,"","flat"],[53,2,1,"","flatten"],[53,2,1,"","getfield"],[53,3,1,"","imag"],[53,2,1,"","item"],[53,2,1,"","itemset"],[53,3,1,"","itemsize"],[53,3,1,"","m"],[53,2,1,"","max"],[53,2,1,"","mean"],[53,2,1,"","min"],[53,3,1,"","n"],[53,3,1,"","nbytes"],[53,3,1,"","ndim"],[53,2,1,"","newbyteorder"],[53,2,1,"","nonzero"],[53,2,1,"","partition"],[53,2,1,"","prod"],[53,2,1,"","ptp"],[53,2,1,"","put"],[53,2,1,"","ravel"],[53,3,1,"","real"],[53,2,1,"","repeat"],[53,2,1,"","reshape"],[53,2,1,"","resize"],[53,2,1,"","round"],[53,2,1,"","searchsorted"],[53,2,1,"","setfield"],[53,2,1,"","setflags"],[53,3,1,"","shape"],[53,3,1,"","size"],[53,2,1,"","sort"],[53,2,1,"","squeeze"],[53,2,1,"","std"],[53,3,1,"","strides"],[53,2,1,"","sum"],[53,2,1,"","swapaxes"],[53,2,1,"","take"],[53,2,1,"","to_dense"],[53,2,1,"","tobytes"],[53,2,1,"","tofile"],[53,2,1,"","tolist"],[53,2,1,"","tostring"],[53,2,1,"","trace"],[53,2,1,"","transpose"],[53,2,1,"","var"],[53,2,1,"","view"]],"darts.dataprocessing.dtw.cost_matrix.SparseCostMatrix":[[53,2,1,"","fill"],[53,3,1,"","m"],[53,3,1,"","n"],[53,2,1,"","to_dense"]],"darts.dataprocessing.dtw.dtw":[[54,1,1,"","DTWAlignment"],[54,5,1,"","dtw"]],"darts.dataprocessing.dtw.dtw.DTWAlignment":[[54,3,1,"id0","cost"],[54,2,1,"","distance"],[54,3,1,"id1","m"],[54,2,1,"","mean_distance"],[54,3,1,"id2","n"],[54,2,1,"","path"],[54,2,1,"","plot"],[54,2,1,"","plot_alignment"],[54,3,1,"id3","series1"],[54,3,1,"id4","series2"],[54,2,1,"","warped"]],"darts.dataprocessing.dtw.window":[[55,1,1,"","CRWindow"],[55,1,1,"","Itakura"],[55,1,1,"","NoWindow"],[55,1,1,"","SakoeChiba"],[55,1,1,"","Window"],[55,5,1,"","gtz"]],"darts.dataprocessing.dtw.window.CRWindow":[[55,2,1,"","add"],[55,2,1,"","add_range"],[55,2,1,"","column_index"],[55,2,1,"","column_length"],[55,2,1,"","column_lengths"],[55,3,1,"","column_ranges"],[55,2,1,"","init_size"],[55,3,1,"","length"],[55,3,1,"","m"],[55,3,1,"","n"]],"darts.dataprocessing.dtw.window.Itakura":[[55,2,1,"","add"],[55,2,1,"","add_range"],[55,2,1,"","column_index"],[55,2,1,"","column_length"],[55,2,1,"","column_lengths"],[55,3,1,"","column_ranges"],[55,2,1,"","init_size"],[55,3,1,"","length"],[55,3,1,"","m"],[55,3,1,"","n"]],"darts.dataprocessing.dtw.window.NoWindow":[[55,2,1,"","column_index"],[55,2,1,"","column_length"],[55,2,1,"","column_lengths"],[55,2,1,"","init_size"],[55,3,1,"","m"],[55,3,1,"","n"]],"darts.dataprocessing.dtw.window.SakoeChiba":[[55,2,1,"","add"],[55,2,1,"","add_range"],[55,2,1,"","column_index"],[55,2,1,"","column_length"],[55,2,1,"","column_lengths"],[55,3,1,"","column_ranges"],[55,2,1,"","init_size"],[55,3,1,"","length"],[55,3,1,"","m"],[55,3,1,"","n"]],"darts.dataprocessing.dtw.window.Window":[[55,2,1,"","column_index"],[55,2,1,"","column_length"],[55,2,1,"","column_lengths"],[55,2,1,"","init_size"],[55,3,1,"","m"],[55,3,1,"","n"]],"darts.dataprocessing.encoders":[[57,0,0,"-","encoder_base"],[58,0,0,"-","encoders"]],"darts.dataprocessing.encoders.encoder_base":[[57,1,1,"","CovariatesIndexGenerator"],[57,1,1,"","Encoder"],[57,1,1,"","FutureCovariatesIndexGenerator"],[57,1,1,"","PastCovariatesIndexGenerator"],[57,1,1,"","SequentialEncoderTransformer"],[57,1,1,"","SingleEncoder"]],"darts.dataprocessing.encoders.encoder_base.CovariatesIndexGenerator":[[57,4,1,"","base_component_name"],[57,2,1,"","generate_inference_idx"],[57,2,1,"","generate_train_idx"],[57,2,1,"","generate_train_inference_idx"]],"darts.dataprocessing.encoders.encoder_base.Encoder":[[57,2,1,"","encode_inference"],[57,2,1,"","encode_train"],[57,2,1,"","encode_train_inference"],[57,4,1,"","fit_called"],[57,4,1,"","requires_fit"]],"darts.dataprocessing.encoders.encoder_base.FutureCovariatesIndexGenerator":[[57,4,1,"","base_component_name"],[57,2,1,"","generate_inference_idx"],[57,2,1,"","generate_train_idx"],[57,2,1,"","generate_train_inference_idx"]],"darts.dataprocessing.encoders.encoder_base.PastCovariatesIndexGenerator":[[57,4,1,"","base_component_name"],[57,2,1,"","generate_inference_idx"],[57,2,1,"","generate_train_idx"],[57,2,1,"","generate_train_inference_idx"]],"darts.dataprocessing.encoders.encoder_base.SequentialEncoderTransformer":[[57,4,1,"","fit_called"],[57,2,1,"","transform"]],"darts.dataprocessing.encoders.encoder_base.SingleEncoder":[[57,4,1,"","accept_transformer"],[57,4,1,"","base_component_name"],[57,4,1,"","components"],[57,2,1,"","encode_inference"],[57,2,1,"","encode_train"],[57,2,1,"","encode_train_inference"],[57,4,1,"","encoding_n_components"],[57,4,1,"","fit_called"],[57,4,1,"","requires_fit"]],"darts.dataprocessing.encoders.encoders":[[58,1,1,"","CallableIndexEncoder"],[58,1,1,"","CyclicTemporalEncoder"],[58,1,1,"","DatetimeAttributeEncoder"],[58,1,1,"","FutureCallableIndexEncoder"],[58,1,1,"","FutureCyclicEncoder"],[58,1,1,"","FutureDatetimeAttributeEncoder"],[58,1,1,"","FutureIntegerIndexEncoder"],[58,1,1,"","IntegerIndexEncoder"],[58,1,1,"","PastCallableIndexEncoder"],[58,1,1,"","PastCyclicEncoder"],[58,1,1,"","PastDatetimeAttributeEncoder"],[58,1,1,"","PastIntegerIndexEncoder"],[58,1,1,"","SequentialEncoder"]],"darts.dataprocessing.encoders.encoders.CallableIndexEncoder":[[58,4,1,"","accept_transformer"],[58,4,1,"","base_component_name"],[58,4,1,"","components"],[58,2,1,"","encode_inference"],[58,2,1,"","encode_train"],[58,2,1,"","encode_train_inference"],[58,4,1,"","encoding_n_components"],[58,4,1,"","fit_called"],[58,4,1,"","requires_fit"]],"darts.dataprocessing.encoders.encoders.CyclicTemporalEncoder":[[58,4,1,"","accept_transformer"],[58,4,1,"","base_component_name"],[58,4,1,"","components"],[58,2,1,"","encode_inference"],[58,2,1,"","encode_train"],[58,2,1,"","encode_train_inference"],[58,4,1,"","encoding_n_components"],[58,4,1,"","fit_called"],[58,4,1,"","requires_fit"]],"darts.dataprocessing.encoders.encoders.DatetimeAttributeEncoder":[[58,4,1,"","accept_transformer"],[58,4,1,"","base_component_name"],[58,4,1,"","components"],[58,2,1,"","encode_inference"],[58,2,1,"","encode_train"],[58,2,1,"","encode_train_inference"],[58,4,1,"","encoding_n_components"],[58,4,1,"","fit_called"],[58,4,1,"","requires_fit"]],"darts.dataprocessing.encoders.encoders.FutureCallableIndexEncoder":[[58,4,1,"","accept_transformer"],[58,4,1,"","base_component_name"],[58,4,1,"","components"],[58,2,1,"","encode_inference"],[58,2,1,"","encode_train"],[58,2,1,"","encode_train_inference"],[58,4,1,"","encoding_n_components"],[58,4,1,"","fit_called"],[58,4,1,"","requires_fit"]],"darts.dataprocessing.encoders.encoders.FutureCyclicEncoder":[[58,4,1,"","accept_transformer"],[58,4,1,"","base_component_name"],[58,4,1,"","components"],[58,2,1,"","encode_inference"],[58,2,1,"","encode_train"],[58,2,1,"","encode_train_inference"],[58,4,1,"","encoding_n_components"],[58,4,1,"","fit_called"],[58,4,1,"","requires_fit"]],"darts.dataprocessing.encoders.encoders.FutureDatetimeAttributeEncoder":[[58,4,1,"","accept_transformer"],[58,4,1,"","base_component_name"],[58,4,1,"","components"],[58,2,1,"","encode_inference"],[58,2,1,"","encode_train"],[58,2,1,"","encode_train_inference"],[58,4,1,"","encoding_n_components"],[58,4,1,"","fit_called"],[58,4,1,"","requires_fit"]],"darts.dataprocessing.encoders.encoders.FutureIntegerIndexEncoder":[[58,4,1,"","accept_transformer"],[58,4,1,"","base_component_name"],[58,4,1,"","components"],[58,2,1,"","encode_inference"],[58,2,1,"","encode_train"],[58,2,1,"","encode_train_inference"],[58,4,1,"","encoding_n_components"],[58,4,1,"","fit_called"],[58,4,1,"","requires_fit"]],"darts.dataprocessing.encoders.encoders.IntegerIndexEncoder":[[58,4,1,"","accept_transformer"],[58,4,1,"","base_component_name"],[58,4,1,"","components"],[58,2,1,"","encode_inference"],[58,2,1,"","encode_train"],[58,2,1,"","encode_train_inference"],[58,4,1,"","encoding_n_components"],[58,4,1,"","fit_called"],[58,4,1,"","requires_fit"]],"darts.dataprocessing.encoders.encoders.PastCallableIndexEncoder":[[58,4,1,"","accept_transformer"],[58,4,1,"","base_component_name"],[58,4,1,"","components"],[58,2,1,"","encode_inference"],[58,2,1,"","encode_train"],[58,2,1,"","encode_train_inference"],[58,4,1,"","encoding_n_components"],[58,4,1,"","fit_called"],[58,4,1,"","requires_fit"]],"darts.dataprocessing.encoders.encoders.PastCyclicEncoder":[[58,4,1,"","accept_transformer"],[58,4,1,"","base_component_name"],[58,4,1,"","components"],[58,2,1,"","encode_inference"],[58,2,1,"","encode_train"],[58,2,1,"","encode_train_inference"],[58,4,1,"","encoding_n_components"],[58,4,1,"","fit_called"],[58,4,1,"","requires_fit"]],"darts.dataprocessing.encoders.encoders.PastDatetimeAttributeEncoder":[[58,4,1,"","accept_transformer"],[58,4,1,"","base_component_name"],[58,4,1,"","components"],[58,2,1,"","encode_inference"],[58,2,1,"","encode_train"],[58,2,1,"","encode_train_inference"],[58,4,1,"","encoding_n_components"],[58,4,1,"","fit_called"],[58,4,1,"","requires_fit"]],"darts.dataprocessing.encoders.encoders.PastIntegerIndexEncoder":[[58,4,1,"","accept_transformer"],[58,4,1,"","base_component_name"],[58,4,1,"","components"],[58,2,1,"","encode_inference"],[58,2,1,"","encode_train"],[58,2,1,"","encode_train_inference"],[58,4,1,"","encoding_n_components"],[58,4,1,"","fit_called"],[58,4,1,"","requires_fit"]],"darts.dataprocessing.encoders.encoders.SequentialEncoder":[[58,4,1,"","components"],[58,2,1,"","encode_inference"],[58,2,1,"","encode_train"],[58,2,1,"","encode_train_inference"],[58,4,1,"","encoder_map"],[58,4,1,"","encoders"],[58,4,1,"","encoding_n_components"],[58,4,1,"","fit_called"],[58,4,1,"","future_components"],[58,4,1,"","future_encoders"],[58,4,1,"","future_transformer"],[58,4,1,"","past_components"],[58,4,1,"","past_encoders"],[58,4,1,"","past_transformer"],[58,4,1,"","requires_fit"],[58,2,1,"","transformers"]],"darts.dataprocessing.pipeline":[[59,1,1,"","Pipeline"]],"darts.dataprocessing.pipeline.Pipeline":[[59,2,1,"","fit"],[59,2,1,"","fit_transform"],[59,2,1,"","inverse_transform"],[59,2,1,"","invertible"],[59,2,1,"","transform"]],"darts.dataprocessing.transformers":[[61,0,0,"-","base_data_transformer"],[62,0,0,"-","boxcox"],[63,0,0,"-","diff"],[64,0,0,"-","fittable_data_transformer"],[65,0,0,"-","invertible_data_transformer"],[66,0,0,"-","mappers"],[67,0,0,"-","midas"],[68,0,0,"-","missing_values_filler"],[69,0,0,"-","reconciliation"],[70,0,0,"-","scaler"],[71,0,0,"-","static_covariates_transformer"],[72,0,0,"-","window_transformer"]],"darts.dataprocessing.transformers.base_data_transformer":[[61,1,1,"","BaseDataTransformer"]],"darts.dataprocessing.transformers.base_data_transformer.BaseDataTransformer":[[61,2,1,"","apply_component_mask"],[61,3,1,"id0","hierarchy"],[61,4,1,"","name"],[61,2,1,"","set_n_jobs"],[61,2,1,"","set_verbose"],[61,2,1,"","stack_samples"],[61,2,1,"","transform"],[61,2,1,"","ts_transform"],[61,2,1,"","unapply_component_mask"],[61,2,1,"","unstack_samples"]],"darts.dataprocessing.transformers.boxcox":[[62,1,1,"","BoxCox"]],"darts.dataprocessing.transformers.boxcox.BoxCox":[[62,2,1,"","apply_component_mask"],[62,2,1,"","fit"],[62,2,1,"","fit_transform"],[62,2,1,"","inverse_transform"],[62,4,1,"","name"],[62,2,1,"","set_n_jobs"],[62,2,1,"","set_verbose"],[62,2,1,"","stack_samples"],[62,2,1,"","transform"],[62,2,1,"","ts_fit"],[62,2,1,"","ts_inverse_transform"],[62,2,1,"","ts_transform"],[62,2,1,"","unapply_component_mask"],[62,2,1,"","unstack_samples"]],"darts.dataprocessing.transformers.diff":[[63,1,1,"","Diff"]],"darts.dataprocessing.transformers.diff.Diff":[[63,2,1,"","apply_component_mask"],[63,2,1,"","fit"],[63,2,1,"","fit_transform"],[63,2,1,"","inverse_transform"],[63,4,1,"","name"],[63,2,1,"","set_n_jobs"],[63,2,1,"","set_verbose"],[63,2,1,"","stack_samples"],[63,2,1,"","transform"],[63,2,1,"","ts_fit"],[63,2,1,"","ts_inverse_transform"],[63,2,1,"","ts_transform"],[63,2,1,"","unapply_component_mask"],[63,2,1,"","unstack_samples"]],"darts.dataprocessing.transformers.fittable_data_transformer":[[64,1,1,"","FittableDataTransformer"]],"darts.dataprocessing.transformers.fittable_data_transformer.FittableDataTransformer":[[64,2,1,"","apply_component_mask"],[64,2,1,"","fit"],[64,2,1,"","fit_transform"],[64,3,1,"id0","hierarchy"],[64,4,1,"","name"],[64,2,1,"","set_n_jobs"],[64,2,1,"","set_verbose"],[64,2,1,"","stack_samples"],[64,2,1,"","transform"],[64,2,1,"","ts_fit"],[64,2,1,"","ts_transform"],[64,2,1,"","unapply_component_mask"],[64,2,1,"","unstack_samples"]],"darts.dataprocessing.transformers.invertible_data_transformer":[[65,1,1,"","InvertibleDataTransformer"]],"darts.dataprocessing.transformers.invertible_data_transformer.InvertibleDataTransformer":[[65,2,1,"","apply_component_mask"],[65,3,1,"id1","hierarchy"],[65,2,1,"","inverse_transform"],[65,4,1,"","name"],[65,2,1,"","set_n_jobs"],[65,2,1,"","set_verbose"],[65,2,1,"","stack_samples"],[65,2,1,"","transform"],[65,2,1,"","ts_inverse_transform"],[65,2,1,"","ts_transform"],[65,2,1,"","unapply_component_mask"],[65,2,1,"","unstack_samples"]],"darts.dataprocessing.transformers.mappers":[[66,1,1,"","InvertibleMapper"],[66,1,1,"","Mapper"]],"darts.dataprocessing.transformers.mappers.InvertibleMapper":[[66,2,1,"","apply_component_mask"],[66,2,1,"","inverse_transform"],[66,4,1,"","name"],[66,2,1,"","set_n_jobs"],[66,2,1,"","set_verbose"],[66,2,1,"","stack_samples"],[66,2,1,"","transform"],[66,2,1,"","ts_inverse_transform"],[66,2,1,"","ts_transform"],[66,2,1,"","unapply_component_mask"],[66,2,1,"","unstack_samples"]],"darts.dataprocessing.transformers.mappers.Mapper":[[66,2,1,"","apply_component_mask"],[66,4,1,"","name"],[66,2,1,"","set_n_jobs"],[66,2,1,"","set_verbose"],[66,2,1,"","stack_samples"],[66,2,1,"","transform"],[66,2,1,"","ts_transform"],[66,2,1,"","unapply_component_mask"],[66,2,1,"","unstack_samples"]],"darts.dataprocessing.transformers.midas":[[67,1,1,"","MIDAS"]],"darts.dataprocessing.transformers.midas.MIDAS":[[67,2,1,"","apply_component_mask"],[67,2,1,"","fit"],[67,2,1,"","fit_transform"],[67,2,1,"","inverse_transform"],[67,4,1,"","name"],[67,2,1,"","set_n_jobs"],[67,2,1,"","set_verbose"],[67,2,1,"","stack_samples"],[67,2,1,"","transform"],[67,2,1,"","ts_fit"],[67,2,1,"","ts_inverse_transform"],[67,2,1,"","ts_transform"],[67,2,1,"","unapply_component_mask"],[67,2,1,"","unstack_samples"]],"darts.dataprocessing.transformers.missing_values_filler":[[68,1,1,"","MissingValuesFiller"]],"darts.dataprocessing.transformers.missing_values_filler.MissingValuesFiller":[[68,2,1,"","apply_component_mask"],[68,4,1,"","name"],[68,2,1,"","set_n_jobs"],[68,2,1,"","set_verbose"],[68,2,1,"","stack_samples"],[68,2,1,"","transform"],[68,2,1,"","ts_transform"],[68,2,1,"","unapply_component_mask"],[68,2,1,"","unstack_samples"]],"darts.dataprocessing.transformers.reconciliation":[[69,1,1,"","BottomUpReconciliator"],[69,1,1,"","MinTReconciliator"],[69,1,1,"","TopDownReconciliator"]],"darts.dataprocessing.transformers.reconciliation.BottomUpReconciliator":[[69,2,1,"","apply_component_mask"],[69,2,1,"","get_projection_matrix"],[69,3,1,"id0","hierarchy"],[69,4,1,"","name"],[69,2,1,"","set_n_jobs"],[69,2,1,"","set_verbose"],[69,2,1,"","stack_samples"],[69,2,1,"","transform"],[69,2,1,"","ts_transform"],[69,2,1,"","unapply_component_mask"],[69,2,1,"","unstack_samples"]],"darts.dataprocessing.transformers.reconciliation.MinTReconciliator":[[69,2,1,"","apply_component_mask"],[69,2,1,"","fit"],[69,2,1,"","fit_transform"],[69,2,1,"","get_matrices"],[69,4,1,"","name"],[69,2,1,"","set_n_jobs"],[69,2,1,"","set_verbose"],[69,2,1,"","stack_samples"],[69,2,1,"","transform"],[69,2,1,"","ts_fit"],[69,2,1,"","ts_transform"],[69,2,1,"","unapply_component_mask"],[69,2,1,"","unstack_samples"]],"darts.dataprocessing.transformers.reconciliation.TopDownReconciliator":[[69,2,1,"","apply_component_mask"],[69,2,1,"","fit"],[69,2,1,"","fit_transform"],[69,2,1,"","get_projection_matrix"],[69,3,1,"id8","hierarchy"],[69,4,1,"","name"],[69,2,1,"","set_n_jobs"],[69,2,1,"","set_verbose"],[69,2,1,"","stack_samples"],[69,2,1,"","transform"],[69,2,1,"","ts_fit"],[69,2,1,"","ts_transform"],[69,2,1,"","unapply_component_mask"],[69,2,1,"","unstack_samples"]],"darts.dataprocessing.transformers.scaler":[[70,1,1,"","Scaler"]],"darts.dataprocessing.transformers.scaler.Scaler":[[70,2,1,"","apply_component_mask"],[70,2,1,"","fit"],[70,2,1,"","fit_transform"],[70,2,1,"","inverse_transform"],[70,4,1,"","name"],[70,2,1,"","set_n_jobs"],[70,2,1,"","set_verbose"],[70,2,1,"","stack_samples"],[70,2,1,"","transform"],[70,2,1,"","ts_fit"],[70,2,1,"","ts_inverse_transform"],[70,2,1,"","ts_transform"],[70,2,1,"","unapply_component_mask"],[70,2,1,"","unstack_samples"]],"darts.dataprocessing.transformers.static_covariates_transformer":[[71,1,1,"","StaticCovariatesTransformer"]],"darts.dataprocessing.transformers.static_covariates_transformer.StaticCovariatesTransformer":[[71,2,1,"","apply_component_mask"],[71,2,1,"","fit"],[71,2,1,"","fit_transform"],[71,2,1,"","inverse_transform"],[71,4,1,"","name"],[71,2,1,"","set_n_jobs"],[71,2,1,"","set_verbose"],[71,2,1,"","stack_samples"],[71,2,1,"","transform"],[71,2,1,"","ts_fit"],[71,2,1,"","ts_inverse_transform"],[71,2,1,"","ts_transform"],[71,2,1,"","unapply_component_mask"],[71,2,1,"","unstack_samples"]],"darts.dataprocessing.transformers.window_transformer":[[72,1,1,"","WindowTransformer"]],"darts.dataprocessing.transformers.window_transformer.WindowTransformer":[[72,2,1,"","apply_component_mask"],[72,4,1,"","name"],[72,2,1,"","set_n_jobs"],[72,2,1,"","set_verbose"],[72,2,1,"","stack_samples"],[72,2,1,"","transform"],[72,2,1,"","ts_transform"],[72,2,1,"","unapply_component_mask"],[72,2,1,"","unstack_samples"]],"darts.datasets":[[73,1,1,"","AirPassengersDataset"],[73,1,1,"","AusBeerDataset"],[73,1,1,"","AustralianTourismDataset"],[73,1,1,"","ETTh1Dataset"],[73,1,1,"","ETTh2Dataset"],[73,1,1,"","ETTm1Dataset"],[73,1,1,"","ETTm2Dataset"],[73,1,1,"","ElectricityConsumptionZurichDataset"],[73,1,1,"","ElectricityDataset"],[73,1,1,"","EnergyDataset"],[73,1,1,"","ExchangeRateDataset"],[73,1,1,"","GasRateCO2Dataset"],[73,1,1,"","HeartRateDataset"],[73,1,1,"","ILINetDataset"],[73,1,1,"","IceCreamHeaterDataset"],[73,1,1,"","MonthlyMilkDataset"],[73,1,1,"","MonthlyMilkIncompleteDataset"],[73,1,1,"","SunspotsDataset"],[73,1,1,"","TaylorDataset"],[73,1,1,"","TemperatureDataset"],[73,1,1,"","TrafficDataset"],[73,1,1,"","USGasolineDataset"],[73,1,1,"","UberTLCDataset"],[73,1,1,"","WeatherDataset"],[73,1,1,"","WineDataset"],[73,1,1,"","WoolyDataset"],[74,0,0,"-","dataset_loaders"]],"darts.datasets.AirPassengersDataset":[[73,2,1,"","load"]],"darts.datasets.AusBeerDataset":[[73,2,1,"","load"]],"darts.datasets.AustralianTourismDataset":[[73,2,1,"","load"]],"darts.datasets.ETTh1Dataset":[[73,2,1,"","load"]],"darts.datasets.ETTh2Dataset":[[73,2,1,"","load"]],"darts.datasets.ETTm1Dataset":[[73,2,1,"","load"]],"darts.datasets.ETTm2Dataset":[[73,2,1,"","load"]],"darts.datasets.ElectricityConsumptionZurichDataset":[[73,2,1,"","load"]],"darts.datasets.ElectricityDataset":[[73,2,1,"","load"]],"darts.datasets.EnergyDataset":[[73,2,1,"","load"]],"darts.datasets.ExchangeRateDataset":[[73,2,1,"","load"]],"darts.datasets.GasRateCO2Dataset":[[73,2,1,"","load"]],"darts.datasets.HeartRateDataset":[[73,2,1,"","load"]],"darts.datasets.ILINetDataset":[[73,2,1,"","load"]],"darts.datasets.IceCreamHeaterDataset":[[73,2,1,"","load"]],"darts.datasets.MonthlyMilkDataset":[[73,2,1,"","load"]],"darts.datasets.MonthlyMilkIncompleteDataset":[[73,2,1,"","load"]],"darts.datasets.SunspotsDataset":[[73,2,1,"","load"]],"darts.datasets.TaylorDataset":[[73,2,1,"","load"]],"darts.datasets.TemperatureDataset":[[73,2,1,"","load"]],"darts.datasets.TrafficDataset":[[73,2,1,"","load"]],"darts.datasets.USGasolineDataset":[[73,2,1,"","load"]],"darts.datasets.UberTLCDataset":[[73,2,1,"","load"]],"darts.datasets.WeatherDataset":[[73,2,1,"","load"]],"darts.datasets.WineDataset":[[73,2,1,"","load"]],"darts.datasets.WoolyDataset":[[73,2,1,"","load"]],"darts.datasets.dataset_loaders":[[74,1,1,"","DatasetLoader"],[74,1,1,"","DatasetLoaderCSV"],[74,1,1,"","DatasetLoaderMetadata"],[74,6,1,"","DatasetLoadingException"]],"darts.datasets.dataset_loaders.DatasetLoader":[[74,2,1,"","load"]],"darts.datasets.dataset_loaders.DatasetLoaderCSV":[[74,2,1,"","load"]],"darts.datasets.dataset_loaders.DatasetLoaderMetadata":[[74,3,1,"","format_time"],[74,3,1,"","freq"],[74,3,1,"","hash"],[74,3,1,"","header_time"],[74,3,1,"","multivariate"],[74,3,1,"","name"],[74,3,1,"","pre_process_csv_fn"],[74,3,1,"","pre_process_zipped_csv_fn"],[74,3,1,"","uri"]],"darts.datasets.dataset_loaders.DatasetLoadingException":[[74,3,1,"","args"],[74,2,1,"","with_traceback"]],"darts.explainability":[[76,0,0,"-","explainability"],[77,0,0,"-","explainability_result"],[78,0,0,"-","shap_explainer"],[79,0,0,"-","tft_explainer"],[80,0,0,"-","utils"]],"darts.explainability.explainability_result":[[77,1,1,"","ComponentBasedExplainabilityResult"],[77,1,1,"","HorizonBasedExplainabilityResult"],[77,1,1,"","ShapExplainabilityResult"],[77,1,1,"","TFTExplainabilityResult"]],"darts.explainability.explainability_result.ComponentBasedExplainabilityResult":[[77,2,1,"","get_explanation"]],"darts.explainability.explainability_result.HorizonBasedExplainabilityResult":[[77,2,1,"","get_explanation"]],"darts.explainability.explainability_result.ShapExplainabilityResult":[[77,2,1,"","get_explanation"],[77,2,1,"","get_feature_values"],[77,2,1,"","get_shap_explanation_object"]],"darts.explainability.explainability_result.TFTExplainabilityResult":[[77,2,1,"","get_attention"],[77,2,1,"","get_decoder_importance"],[77,2,1,"","get_encoder_importance"],[77,2,1,"","get_explanation"],[77,2,1,"","get_feature_importances"],[77,2,1,"","get_static_covariates_importance"]],"darts.explainability.shap_explainer":[[78,1,1,"","ShapExplainer"]],"darts.explainability.shap_explainer.ShapExplainer":[[78,2,1,"","explain"],[78,2,1,"","force_plot_from_ts"],[78,3,1,"","model"],[78,2,1,"","summary_plot"]],"darts.explainability.tft_explainer":[[79,1,1,"","TFTExplainer"]],"darts.explainability.tft_explainer.TFTExplainer":[[79,2,1,"","explain"],[79,3,1,"","model"],[79,2,1,"","plot_attention"],[79,2,1,"","plot_variable_selection"]],"darts.explainability.utils":[[80,5,1,"","get_component_names"],[80,5,1,"","process_horizons_and_targets"],[80,5,1,"","process_input"]],"darts.metrics":[[82,0,0,"-","metrics"]],"darts.metrics.metrics":[[82,5,1,"","coefficient_of_variation"],[82,5,1,"","dtw_metric"],[82,5,1,"","mae"],[82,5,1,"","mape"],[82,5,1,"","marre"],[82,5,1,"","mase"],[82,5,1,"","mse"],[82,5,1,"","multi_ts_support"],[82,5,1,"","multivariate_support"],[82,5,1,"","ope"],[82,5,1,"","quantile_loss"],[82,5,1,"","r2_score"],[82,5,1,"","rho_risk"],[82,5,1,"","rmse"],[82,5,1,"","rmsle"],[82,5,1,"","smape"]],"darts.models":[[84,0,0,"-","components"],[90,0,0,"-","filtering"],[95,0,0,"-","forecasting"],[133,0,0,"-","utils"]],"darts.models.components":[[85,0,0,"-","feed_forward"],[86,0,0,"-","glu_variants"],[87,0,0,"-","layer_norm_variants"],[88,0,0,"-","statsforecast_utils"],[89,0,0,"-","transformer"]],"darts.models.components.feed_forward":[[85,1,1,"","FeedForward"]],"darts.models.components.feed_forward.FeedForward":[[85,3,1,"","T_destination"],[85,2,1,"","add_module"],[85,2,1,"","apply"],[85,2,1,"","bfloat16"],[85,2,1,"","buffers"],[85,3,1,"","call_super_init"],[85,2,1,"","children"],[85,2,1,"","compile"],[85,2,1,"","cpu"],[85,2,1,"","cuda"],[85,2,1,"","double"],[85,3,1,"","dump_patches"],[85,2,1,"","eval"],[85,2,1,"","extra_repr"],[85,2,1,"","float"],[85,2,1,"","forward"],[85,2,1,"","get_buffer"],[85,2,1,"","get_extra_state"],[85,2,1,"","get_parameter"],[85,2,1,"","get_submodule"],[85,2,1,"","half"],[85,2,1,"","ipu"],[85,2,1,"","load_state_dict"],[85,2,1,"","modules"],[85,2,1,"","named_buffers"],[85,2,1,"","named_children"],[85,2,1,"","named_modules"],[85,2,1,"","named_parameters"],[85,2,1,"","parameters"],[85,2,1,"","register_backward_hook"],[85,2,1,"","register_buffer"],[85,2,1,"","register_forward_hook"],[85,2,1,"","register_forward_pre_hook"],[85,2,1,"","register_full_backward_hook"],[85,2,1,"","register_full_backward_pre_hook"],[85,2,1,"","register_load_state_dict_post_hook"],[85,2,1,"","register_module"],[85,2,1,"","register_parameter"],[85,2,1,"","register_state_dict_pre_hook"],[85,2,1,"","requires_grad_"],[85,2,1,"","set_extra_state"],[85,2,1,"","share_memory"],[85,2,1,"","state_dict"],[85,2,1,"","to"],[85,2,1,"","to_empty"],[85,2,1,"","train"],[85,3,1,"","training"],[85,2,1,"","type"],[85,2,1,"","xpu"],[85,2,1,"","zero_grad"]],"darts.models.components.glu_variants":[[86,1,1,"","Bilinear"],[86,1,1,"","GEGLU"],[86,1,1,"","GELU"],[86,1,1,"","GLU"],[86,1,1,"","ReGLU"],[86,1,1,"","ReLU"],[86,1,1,"","SwiGLU"]],"darts.models.components.glu_variants.Bilinear":[[86,3,1,"","T_destination"],[86,2,1,"","add_module"],[86,2,1,"","apply"],[86,2,1,"","bfloat16"],[86,2,1,"","buffers"],[86,3,1,"","call_super_init"],[86,2,1,"","children"],[86,2,1,"","compile"],[86,2,1,"","cpu"],[86,2,1,"","cuda"],[86,2,1,"","double"],[86,3,1,"","dump_patches"],[86,2,1,"","eval"],[86,2,1,"","extra_repr"],[86,2,1,"","float"],[86,2,1,"","forward"],[86,2,1,"","get_buffer"],[86,2,1,"","get_extra_state"],[86,2,1,"","get_parameter"],[86,2,1,"","get_submodule"],[86,2,1,"","half"],[86,2,1,"","ipu"],[86,2,1,"","load_state_dict"],[86,2,1,"","modules"],[86,2,1,"","named_buffers"],[86,2,1,"","named_children"],[86,2,1,"","named_modules"],[86,2,1,"","named_parameters"],[86,2,1,"","parameters"],[86,2,1,"","register_backward_hook"],[86,2,1,"","register_buffer"],[86,2,1,"","register_forward_hook"],[86,2,1,"","register_forward_pre_hook"],[86,2,1,"","register_full_backward_hook"],[86,2,1,"","register_full_backward_pre_hook"],[86,2,1,"","register_load_state_dict_post_hook"],[86,2,1,"","register_module"],[86,2,1,"","register_parameter"],[86,2,1,"","register_state_dict_pre_hook"],[86,2,1,"","requires_grad_"],[86,2,1,"","set_extra_state"],[86,2,1,"","share_memory"],[86,2,1,"","state_dict"],[86,2,1,"","to"],[86,2,1,"","to_empty"],[86,2,1,"","train"],[86,3,1,"","training"],[86,2,1,"","type"],[86,2,1,"","xpu"],[86,2,1,"","zero_grad"]],"darts.models.components.glu_variants.GEGLU":[[86,3,1,"","T_destination"],[86,2,1,"","add_module"],[86,2,1,"","apply"],[86,2,1,"","bfloat16"],[86,2,1,"","buffers"],[86,3,1,"","call_super_init"],[86,2,1,"","children"],[86,2,1,"","compile"],[86,2,1,"","cpu"],[86,2,1,"","cuda"],[86,2,1,"","double"],[86,3,1,"","dump_patches"],[86,2,1,"","eval"],[86,2,1,"","extra_repr"],[86,2,1,"","float"],[86,2,1,"","forward"],[86,2,1,"","get_buffer"],[86,2,1,"","get_extra_state"],[86,2,1,"","get_parameter"],[86,2,1,"","get_submodule"],[86,2,1,"","half"],[86,2,1,"","ipu"],[86,2,1,"","load_state_dict"],[86,2,1,"","modules"],[86,2,1,"","named_buffers"],[86,2,1,"","named_children"],[86,2,1,"","named_modules"],[86,2,1,"","named_parameters"],[86,2,1,"","parameters"],[86,2,1,"","register_backward_hook"],[86,2,1,"","register_buffer"],[86,2,1,"","register_forward_hook"],[86,2,1,"","register_forward_pre_hook"],[86,2,1,"","register_full_backward_hook"],[86,2,1,"","register_full_backward_pre_hook"],[86,2,1,"","register_load_state_dict_post_hook"],[86,2,1,"","register_module"],[86,2,1,"","register_parameter"],[86,2,1,"","register_state_dict_pre_hook"],[86,2,1,"","requires_grad_"],[86,2,1,"","set_extra_state"],[86,2,1,"","share_memory"],[86,2,1,"","state_dict"],[86,2,1,"","to"],[86,2,1,"","to_empty"],[86,2,1,"","train"],[86,3,1,"","training"],[86,2,1,"","type"],[86,2,1,"","xpu"],[86,2,1,"","zero_grad"]],"darts.models.components.glu_variants.GELU":[[86,3,1,"","T_destination"],[86,2,1,"","add_module"],[86,2,1,"","apply"],[86,2,1,"","bfloat16"],[86,2,1,"","buffers"],[86,3,1,"","call_super_init"],[86,2,1,"","children"],[86,2,1,"","compile"],[86,2,1,"","cpu"],[86,2,1,"","cuda"],[86,2,1,"","double"],[86,3,1,"","dump_patches"],[86,2,1,"","eval"],[86,2,1,"","extra_repr"],[86,2,1,"","float"],[86,2,1,"","forward"],[86,2,1,"","get_buffer"],[86,2,1,"","get_extra_state"],[86,2,1,"","get_parameter"],[86,2,1,"","get_submodule"],[86,2,1,"","half"],[86,2,1,"","ipu"],[86,2,1,"","load_state_dict"],[86,2,1,"","modules"],[86,2,1,"","named_buffers"],[86,2,1,"","named_children"],[86,2,1,"","named_modules"],[86,2,1,"","named_parameters"],[86,2,1,"","parameters"],[86,2,1,"","register_backward_hook"],[86,2,1,"","register_buffer"],[86,2,1,"","register_forward_hook"],[86,2,1,"","register_forward_pre_hook"],[86,2,1,"","register_full_backward_hook"],[86,2,1,"","register_full_backward_pre_hook"],[86,2,1,"","register_load_state_dict_post_hook"],[86,2,1,"","register_module"],[86,2,1,"","register_parameter"],[86,2,1,"","register_state_dict_pre_hook"],[86,2,1,"","requires_grad_"],[86,2,1,"","set_extra_state"],[86,2,1,"","share_memory"],[86,2,1,"","state_dict"],[86,2,1,"","to"],[86,2,1,"","to_empty"],[86,2,1,"","train"],[86,3,1,"","training"],[86,2,1,"","type"],[86,2,1,"","xpu"],[86,2,1,"","zero_grad"]],"darts.models.components.glu_variants.GLU":[[86,3,1,"","T_destination"],[86,2,1,"","add_module"],[86,2,1,"","apply"],[86,2,1,"","bfloat16"],[86,2,1,"","buffers"],[86,3,1,"","call_super_init"],[86,2,1,"","children"],[86,2,1,"","compile"],[86,2,1,"","cpu"],[86,2,1,"","cuda"],[86,2,1,"","double"],[86,3,1,"","dump_patches"],[86,2,1,"","eval"],[86,2,1,"","extra_repr"],[86,2,1,"","float"],[86,2,1,"","forward"],[86,2,1,"","get_buffer"],[86,2,1,"","get_extra_state"],[86,2,1,"","get_parameter"],[86,2,1,"","get_submodule"],[86,2,1,"","half"],[86,2,1,"","ipu"],[86,2,1,"","load_state_dict"],[86,2,1,"","modules"],[86,2,1,"","named_buffers"],[86,2,1,"","named_children"],[86,2,1,"","named_modules"],[86,2,1,"","named_parameters"],[86,2,1,"","parameters"],[86,2,1,"","register_backward_hook"],[86,2,1,"","register_buffer"],[86,2,1,"","register_forward_hook"],[86,2,1,"","register_forward_pre_hook"],[86,2,1,"","register_full_backward_hook"],[86,2,1,"","register_full_backward_pre_hook"],[86,2,1,"","register_load_state_dict_post_hook"],[86,2,1,"","register_module"],[86,2,1,"","register_parameter"],[86,2,1,"","register_state_dict_pre_hook"],[86,2,1,"","requires_grad_"],[86,2,1,"","set_extra_state"],[86,2,1,"","share_memory"],[86,2,1,"","state_dict"],[86,2,1,"","to"],[86,2,1,"","to_empty"],[86,2,1,"","train"],[86,3,1,"","training"],[86,2,1,"","type"],[86,2,1,"","xpu"],[86,2,1,"","zero_grad"]],"darts.models.components.glu_variants.ReGLU":[[86,3,1,"","T_destination"],[86,2,1,"","add_module"],[86,2,1,"","apply"],[86,2,1,"","bfloat16"],[86,2,1,"","buffers"],[86,3,1,"","call_super_init"],[86,2,1,"","children"],[86,2,1,"","compile"],[86,2,1,"","cpu"],[86,2,1,"","cuda"],[86,2,1,"","double"],[86,3,1,"","dump_patches"],[86,2,1,"","eval"],[86,2,1,"","extra_repr"],[86,2,1,"","float"],[86,2,1,"","forward"],[86,2,1,"","get_buffer"],[86,2,1,"","get_extra_state"],[86,2,1,"","get_parameter"],[86,2,1,"","get_submodule"],[86,2,1,"","half"],[86,2,1,"","ipu"],[86,2,1,"","load_state_dict"],[86,2,1,"","modules"],[86,2,1,"","named_buffers"],[86,2,1,"","named_children"],[86,2,1,"","named_modules"],[86,2,1,"","named_parameters"],[86,2,1,"","parameters"],[86,2,1,"","register_backward_hook"],[86,2,1,"","register_buffer"],[86,2,1,"","register_forward_hook"],[86,2,1,"","register_forward_pre_hook"],[86,2,1,"","register_full_backward_hook"],[86,2,1,"","register_full_backward_pre_hook"],[86,2,1,"","register_load_state_dict_post_hook"],[86,2,1,"","register_module"],[86,2,1,"","register_parameter"],[86,2,1,"","register_state_dict_pre_hook"],[86,2,1,"","requires_grad_"],[86,2,1,"","set_extra_state"],[86,2,1,"","share_memory"],[86,2,1,"","state_dict"],[86,2,1,"","to"],[86,2,1,"","to_empty"],[86,2,1,"","train"],[86,3,1,"","training"],[86,2,1,"","type"],[86,2,1,"","xpu"],[86,2,1,"","zero_grad"]],"darts.models.components.glu_variants.ReLU":[[86,3,1,"","T_destination"],[86,2,1,"","add_module"],[86,2,1,"","apply"],[86,2,1,"","bfloat16"],[86,2,1,"","buffers"],[86,3,1,"","call_super_init"],[86,2,1,"","children"],[86,2,1,"","compile"],[86,2,1,"","cpu"],[86,2,1,"","cuda"],[86,2,1,"","double"],[86,3,1,"","dump_patches"],[86,2,1,"","eval"],[86,2,1,"","extra_repr"],[86,2,1,"","float"],[86,2,1,"","forward"],[86,2,1,"","get_buffer"],[86,2,1,"","get_extra_state"],[86,2,1,"","get_parameter"],[86,2,1,"","get_submodule"],[86,2,1,"","half"],[86,2,1,"","ipu"],[86,2,1,"","load_state_dict"],[86,2,1,"","modules"],[86,2,1,"","named_buffers"],[86,2,1,"","named_children"],[86,2,1,"","named_modules"],[86,2,1,"","named_parameters"],[86,2,1,"","parameters"],[86,2,1,"","register_backward_hook"],[86,2,1,"","register_buffer"],[86,2,1,"","register_forward_hook"],[86,2,1,"","register_forward_pre_hook"],[86,2,1,"","register_full_backward_hook"],[86,2,1,"","register_full_backward_pre_hook"],[86,2,1,"","register_load_state_dict_post_hook"],[86,2,1,"","register_module"],[86,2,1,"","register_parameter"],[86,2,1,"","register_state_dict_pre_hook"],[86,2,1,"","requires_grad_"],[86,2,1,"","set_extra_state"],[86,2,1,"","share_memory"],[86,2,1,"","state_dict"],[86,2,1,"","to"],[86,2,1,"","to_empty"],[86,2,1,"","train"],[86,3,1,"","training"],[86,2,1,"","type"],[86,2,1,"","xpu"],[86,2,1,"","zero_grad"]],"darts.models.components.glu_variants.SwiGLU":[[86,3,1,"","T_destination"],[86,2,1,"","add_module"],[86,2,1,"","apply"],[86,2,1,"","bfloat16"],[86,2,1,"","buffers"],[86,3,1,"","call_super_init"],[86,2,1,"","children"],[86,2,1,"","compile"],[86,2,1,"","cpu"],[86,2,1,"","cuda"],[86,2,1,"","double"],[86,3,1,"","dump_patches"],[86,2,1,"","eval"],[86,2,1,"","extra_repr"],[86,2,1,"","float"],[86,2,1,"","forward"],[86,2,1,"","get_buffer"],[86,2,1,"","get_extra_state"],[86,2,1,"","get_parameter"],[86,2,1,"","get_submodule"],[86,2,1,"","half"],[86,2,1,"","ipu"],[86,2,1,"","load_state_dict"],[86,2,1,"","modules"],[86,2,1,"","named_buffers"],[86,2,1,"","named_children"],[86,2,1,"","named_modules"],[86,2,1,"","named_parameters"],[86,2,1,"","parameters"],[86,2,1,"","register_backward_hook"],[86,2,1,"","register_buffer"],[86,2,1,"","register_forward_hook"],[86,2,1,"","register_forward_pre_hook"],[86,2,1,"","register_full_backward_hook"],[86,2,1,"","register_full_backward_pre_hook"],[86,2,1,"","register_load_state_dict_post_hook"],[86,2,1,"","register_module"],[86,2,1,"","register_parameter"],[86,2,1,"","register_state_dict_pre_hook"],[86,2,1,"","requires_grad_"],[86,2,1,"","set_extra_state"],[86,2,1,"","share_memory"],[86,2,1,"","state_dict"],[86,2,1,"","to"],[86,2,1,"","to_empty"],[86,2,1,"","train"],[86,3,1,"","training"],[86,2,1,"","type"],[86,2,1,"","xpu"],[86,2,1,"","zero_grad"]],"darts.models.components.layer_norm_variants":[[87,1,1,"","LayerNorm"],[87,1,1,"","LayerNormNoBias"],[87,1,1,"","RINorm"],[87,1,1,"","RMSNorm"]],"darts.models.components.layer_norm_variants.LayerNorm":[[87,3,1,"","T_destination"],[87,2,1,"","add_module"],[87,2,1,"","apply"],[87,2,1,"","bfloat16"],[87,2,1,"","buffers"],[87,3,1,"","call_super_init"],[87,2,1,"","children"],[87,2,1,"","compile"],[87,2,1,"","cpu"],[87,2,1,"","cuda"],[87,2,1,"","double"],[87,3,1,"","dump_patches"],[87,3,1,"","elementwise_affine"],[87,3,1,"","eps"],[87,2,1,"","eval"],[87,2,1,"","extra_repr"],[87,2,1,"","float"],[87,2,1,"","forward"],[87,2,1,"","get_buffer"],[87,2,1,"","get_extra_state"],[87,2,1,"","get_parameter"],[87,2,1,"","get_submodule"],[87,2,1,"","half"],[87,2,1,"","ipu"],[87,2,1,"","load_state_dict"],[87,2,1,"","modules"],[87,2,1,"","named_buffers"],[87,2,1,"","named_children"],[87,2,1,"","named_modules"],[87,2,1,"","named_parameters"],[87,3,1,"","normalized_shape"],[87,2,1,"","parameters"],[87,2,1,"","register_backward_hook"],[87,2,1,"","register_buffer"],[87,2,1,"","register_forward_hook"],[87,2,1,"","register_forward_pre_hook"],[87,2,1,"","register_full_backward_hook"],[87,2,1,"","register_full_backward_pre_hook"],[87,2,1,"","register_load_state_dict_post_hook"],[87,2,1,"","register_module"],[87,2,1,"","register_parameter"],[87,2,1,"","register_state_dict_pre_hook"],[87,2,1,"","requires_grad_"],[87,2,1,"","reset_parameters"],[87,2,1,"","set_extra_state"],[87,2,1,"","share_memory"],[87,2,1,"","state_dict"],[87,2,1,"","to"],[87,2,1,"","to_empty"],[87,2,1,"","train"],[87,3,1,"","training"],[87,2,1,"","type"],[87,2,1,"","xpu"],[87,2,1,"","zero_grad"]],"darts.models.components.layer_norm_variants.LayerNormNoBias":[[87,3,1,"","T_destination"],[87,2,1,"","add_module"],[87,2,1,"","apply"],[87,2,1,"","bfloat16"],[87,2,1,"","buffers"],[87,3,1,"","call_super_init"],[87,2,1,"","children"],[87,2,1,"","compile"],[87,2,1,"","cpu"],[87,2,1,"","cuda"],[87,2,1,"","double"],[87,3,1,"","dump_patches"],[87,3,1,"","elementwise_affine"],[87,3,1,"","eps"],[87,2,1,"","eval"],[87,2,1,"","extra_repr"],[87,2,1,"","float"],[87,2,1,"","forward"],[87,2,1,"","get_buffer"],[87,2,1,"","get_extra_state"],[87,2,1,"","get_parameter"],[87,2,1,"","get_submodule"],[87,2,1,"","half"],[87,2,1,"","ipu"],[87,2,1,"","load_state_dict"],[87,2,1,"","modules"],[87,2,1,"","named_buffers"],[87,2,1,"","named_children"],[87,2,1,"","named_modules"],[87,2,1,"","named_parameters"],[87,3,1,"","normalized_shape"],[87,2,1,"","parameters"],[87,2,1,"","register_backward_hook"],[87,2,1,"","register_buffer"],[87,2,1,"","register_forward_hook"],[87,2,1,"","register_forward_pre_hook"],[87,2,1,"","register_full_backward_hook"],[87,2,1,"","register_full_backward_pre_hook"],[87,2,1,"","register_load_state_dict_post_hook"],[87,2,1,"","register_module"],[87,2,1,"","register_parameter"],[87,2,1,"","register_state_dict_pre_hook"],[87,2,1,"","requires_grad_"],[87,2,1,"","reset_parameters"],[87,2,1,"","set_extra_state"],[87,2,1,"","share_memory"],[87,2,1,"","state_dict"],[87,2,1,"","to"],[87,2,1,"","to_empty"],[87,2,1,"","train"],[87,3,1,"","training"],[87,2,1,"","type"],[87,2,1,"","xpu"],[87,2,1,"","zero_grad"]],"darts.models.components.layer_norm_variants.RINorm":[[87,3,1,"","T_destination"],[87,2,1,"","add_module"],[87,2,1,"","apply"],[87,2,1,"","bfloat16"],[87,2,1,"","buffers"],[87,3,1,"","call_super_init"],[87,2,1,"","children"],[87,2,1,"","compile"],[87,2,1,"","cpu"],[87,2,1,"","cuda"],[87,2,1,"","double"],[87,3,1,"","dump_patches"],[87,2,1,"","eval"],[87,2,1,"","extra_repr"],[87,2,1,"","float"],[87,2,1,"","forward"],[87,2,1,"","get_buffer"],[87,2,1,"","get_extra_state"],[87,2,1,"","get_parameter"],[87,2,1,"","get_submodule"],[87,2,1,"","half"],[87,2,1,"","inverse"],[87,2,1,"","ipu"],[87,2,1,"","load_state_dict"],[87,2,1,"","modules"],[87,2,1,"","named_buffers"],[87,2,1,"","named_children"],[87,2,1,"","named_modules"],[87,2,1,"","named_parameters"],[87,2,1,"","parameters"],[87,2,1,"","register_backward_hook"],[87,2,1,"","register_buffer"],[87,2,1,"","register_forward_hook"],[87,2,1,"","register_forward_pre_hook"],[87,2,1,"","register_full_backward_hook"],[87,2,1,"","register_full_backward_pre_hook"],[87,2,1,"","register_load_state_dict_post_hook"],[87,2,1,"","register_module"],[87,2,1,"","register_parameter"],[87,2,1,"","register_state_dict_pre_hook"],[87,2,1,"","requires_grad_"],[87,2,1,"","set_extra_state"],[87,2,1,"","share_memory"],[87,2,1,"","state_dict"],[87,2,1,"","to"],[87,2,1,"","to_empty"],[87,2,1,"","train"],[87,3,1,"","training"],[87,2,1,"","type"],[87,2,1,"","xpu"],[87,2,1,"","zero_grad"]],"darts.models.components.layer_norm_variants.RMSNorm":[[87,3,1,"","T_destination"],[87,2,1,"","add_module"],[87,2,1,"","apply"],[87,2,1,"","bfloat16"],[87,2,1,"","buffers"],[87,3,1,"","call_super_init"],[87,2,1,"","children"],[87,2,1,"","compile"],[87,2,1,"","cpu"],[87,2,1,"","cuda"],[87,2,1,"","double"],[87,3,1,"","dump_patches"],[87,2,1,"","eval"],[87,2,1,"","extra_repr"],[87,2,1,"","float"],[87,2,1,"","forward"],[87,2,1,"","get_buffer"],[87,2,1,"","get_extra_state"],[87,2,1,"","get_parameter"],[87,2,1,"","get_submodule"],[87,2,1,"","half"],[87,2,1,"","ipu"],[87,2,1,"","load_state_dict"],[87,2,1,"","modules"],[87,2,1,"","named_buffers"],[87,2,1,"","named_children"],[87,2,1,"","named_modules"],[87,2,1,"","named_parameters"],[87,2,1,"","parameters"],[87,2,1,"","register_backward_hook"],[87,2,1,"","register_buffer"],[87,2,1,"","register_forward_hook"],[87,2,1,"","register_forward_pre_hook"],[87,2,1,"","register_full_backward_hook"],[87,2,1,"","register_full_backward_pre_hook"],[87,2,1,"","register_load_state_dict_post_hook"],[87,2,1,"","register_module"],[87,2,1,"","register_parameter"],[87,2,1,"","register_state_dict_pre_hook"],[87,2,1,"","requires_grad_"],[87,2,1,"","set_extra_state"],[87,2,1,"","share_memory"],[87,2,1,"","state_dict"],[87,2,1,"","to"],[87,2,1,"","to_empty"],[87,2,1,"","train"],[87,3,1,"","training"],[87,2,1,"","type"],[87,2,1,"","xpu"],[87,2,1,"","zero_grad"]],"darts.models.components.statsforecast_utils":[[88,5,1,"","create_normal_samples"],[88,5,1,"","unpack_sf_dict"]],"darts.models.components.transformer":[[89,1,1,"","CustomFeedForwardDecoderLayer"],[89,1,1,"","CustomFeedForwardEncoderLayer"]],"darts.models.components.transformer.CustomFeedForwardDecoderLayer":[[89,3,1,"","T_destination"],[89,2,1,"","add_module"],[89,2,1,"","apply"],[89,2,1,"","bfloat16"],[89,2,1,"","buffers"],[89,3,1,"","call_super_init"],[89,2,1,"","children"],[89,2,1,"","compile"],[89,2,1,"","cpu"],[89,2,1,"","cuda"],[89,2,1,"","double"],[89,3,1,"","dump_patches"],[89,2,1,"","eval"],[89,2,1,"","extra_repr"],[89,2,1,"","float"],[89,2,1,"","forward"],[89,2,1,"","get_buffer"],[89,2,1,"","get_extra_state"],[89,2,1,"","get_parameter"],[89,2,1,"","get_submodule"],[89,2,1,"","half"],[89,2,1,"","ipu"],[89,2,1,"","load_state_dict"],[89,2,1,"","modules"],[89,2,1,"","named_buffers"],[89,2,1,"","named_children"],[89,2,1,"","named_modules"],[89,2,1,"","named_parameters"],[89,2,1,"","parameters"],[89,2,1,"","register_backward_hook"],[89,2,1,"","register_buffer"],[89,2,1,"","register_forward_hook"],[89,2,1,"","register_forward_pre_hook"],[89,2,1,"","register_full_backward_hook"],[89,2,1,"","register_full_backward_pre_hook"],[89,2,1,"","register_load_state_dict_post_hook"],[89,2,1,"","register_module"],[89,2,1,"","register_parameter"],[89,2,1,"","register_state_dict_pre_hook"],[89,2,1,"","requires_grad_"],[89,2,1,"","set_extra_state"],[89,2,1,"","share_memory"],[89,2,1,"","state_dict"],[89,2,1,"","to"],[89,2,1,"","to_empty"],[89,2,1,"","train"],[89,3,1,"","training"],[89,2,1,"","type"],[89,2,1,"","xpu"],[89,2,1,"","zero_grad"]],"darts.models.components.transformer.CustomFeedForwardEncoderLayer":[[89,3,1,"","T_destination"],[89,2,1,"","add_module"],[89,2,1,"","apply"],[89,2,1,"","bfloat16"],[89,2,1,"","buffers"],[89,3,1,"","call_super_init"],[89,2,1,"","children"],[89,2,1,"","compile"],[89,2,1,"","cpu"],[89,2,1,"","cuda"],[89,2,1,"","double"],[89,3,1,"","dump_patches"],[89,2,1,"","eval"],[89,2,1,"","extra_repr"],[89,2,1,"","float"],[89,2,1,"","forward"],[89,2,1,"","get_buffer"],[89,2,1,"","get_extra_state"],[89,2,1,"","get_parameter"],[89,2,1,"","get_submodule"],[89,2,1,"","half"],[89,2,1,"","ipu"],[89,2,1,"","load_state_dict"],[89,2,1,"","modules"],[89,2,1,"","named_buffers"],[89,2,1,"","named_children"],[89,2,1,"","named_modules"],[89,2,1,"","named_parameters"],[89,2,1,"","parameters"],[89,2,1,"","register_backward_hook"],[89,2,1,"","register_buffer"],[89,2,1,"","register_forward_hook"],[89,2,1,"","register_forward_pre_hook"],[89,2,1,"","register_full_backward_hook"],[89,2,1,"","register_full_backward_pre_hook"],[89,2,1,"","register_load_state_dict_post_hook"],[89,2,1,"","register_module"],[89,2,1,"","register_parameter"],[89,2,1,"","register_state_dict_pre_hook"],[89,2,1,"","requires_grad_"],[89,2,1,"","set_extra_state"],[89,2,1,"","share_memory"],[89,2,1,"","state_dict"],[89,2,1,"","to"],[89,2,1,"","to_empty"],[89,2,1,"","train"],[89,3,1,"","training"],[89,2,1,"","type"],[89,2,1,"","xpu"],[89,2,1,"","zero_grad"]],"darts.models.filtering":[[91,0,0,"-","filtering_model"],[92,0,0,"-","gaussian_process_filter"],[93,0,0,"-","kalman_filter"],[94,0,0,"-","moving_average_filter"]],"darts.models.filtering.filtering_model":[[91,1,1,"","FilteringModel"]],"darts.models.filtering.filtering_model.FilteringModel":[[91,2,1,"","filter"]],"darts.models.filtering.gaussian_process_filter":[[92,1,1,"","GaussianProcessFilter"]],"darts.models.filtering.gaussian_process_filter.GaussianProcessFilter":[[92,2,1,"","filter"]],"darts.models.filtering.kalman_filter":[[93,1,1,"","KalmanFilter"]],"darts.models.filtering.kalman_filter.KalmanFilter":[[93,2,1,"","filter"],[93,2,1,"","fit"]],"darts.models.filtering.moving_average_filter":[[94,1,1,"","MovingAverageFilter"]],"darts.models.filtering.moving_average_filter.MovingAverageFilter":[[94,2,1,"","filter"]],"darts.models.forecasting":[[96,0,0,"-","arima"],[97,0,0,"-","auto_arima"],[98,0,0,"-","baselines"],[99,0,0,"-","block_rnn_model"],[100,0,0,"-","catboost_model"],[101,0,0,"-","croston"],[102,0,0,"-","dlinear"],[103,0,0,"-","ensemble_model"],[104,0,0,"-","exponential_smoothing"],[105,0,0,"-","fft"],[106,0,0,"-","forecasting_model"],[107,0,0,"-","kalman_forecaster"],[108,0,0,"-","lgbm"],[109,0,0,"-","linear_regression_model"],[110,0,0,"-","nbeats"],[111,0,0,"-","nhits"],[112,0,0,"-","nlinear"],[113,0,0,"-","pl_forecasting_module"],[114,0,0,"-","prophet_model"],[115,0,0,"-","random_forest"],[116,0,0,"-","regression_ensemble_model"],[117,0,0,"-","regression_model"],[118,0,0,"-","rnn_model"],[119,0,0,"-","sf_auto_arima"],[120,0,0,"-","sf_auto_ces"],[121,0,0,"-","sf_auto_ets"],[122,0,0,"-","sf_auto_theta"],[123,0,0,"-","tbats_model"],[124,0,0,"-","tcn_model"],[125,0,0,"-","tft_model"],[126,0,0,"-","tft_submodels"],[127,0,0,"-","theta"],[128,0,0,"-","tide_model"],[129,0,0,"-","torch_forecasting_model"],[130,0,0,"-","transformer_model"],[131,0,0,"-","varima"],[132,0,0,"-","xgboost"]],"darts.models.forecasting.arima":[[96,1,1,"","ARIMA"]],"darts.models.forecasting.arima.ARIMA":[[96,2,1,"","backtest"],[96,4,1,"","considers_static_covariates"],[96,4,1,"","extreme_lags"],[96,2,1,"","fit"],[96,2,1,"","generate_fit_encodings"],[96,2,1,"","generate_fit_predict_encodings"],[96,2,1,"","generate_predict_encodings"],[96,2,1,"","gridsearch"],[96,2,1,"","historical_forecasts"],[96,2,1,"","load"],[96,4,1,"","min_train_samples"],[96,4,1,"","model_params"],[96,4,1,"","output_chunk_length"],[96,2,1,"","predict"],[96,2,1,"","residuals"],[96,2,1,"","save"],[96,4,1,"","supports_future_covariates"],[96,4,1,"","supports_likelihood_parameter_prediction"],[96,4,1,"","supports_multivariate"],[96,4,1,"","supports_optimized_historical_forecasts"],[96,4,1,"","supports_past_covariates"],[96,4,1,"","supports_static_covariates"],[96,4,1,"","uses_future_covariates"],[96,4,1,"","uses_past_covariates"],[96,4,1,"","uses_static_covariates"]],"darts.models.forecasting.auto_arima":[[97,1,1,"","AutoARIMA"]],"darts.models.forecasting.auto_arima.AutoARIMA":[[97,2,1,"","backtest"],[97,4,1,"","considers_static_covariates"],[97,4,1,"","extreme_lags"],[97,2,1,"","fit"],[97,2,1,"","generate_fit_encodings"],[97,2,1,"","generate_fit_predict_encodings"],[97,2,1,"","generate_predict_encodings"],[97,2,1,"","gridsearch"],[97,2,1,"","historical_forecasts"],[97,2,1,"","load"],[97,4,1,"","min_train_samples"],[97,4,1,"","model_params"],[97,4,1,"","output_chunk_length"],[97,2,1,"","predict"],[97,2,1,"","residuals"],[97,2,1,"","save"],[97,4,1,"","supports_future_covariates"],[97,4,1,"","supports_likelihood_parameter_prediction"],[97,4,1,"","supports_multivariate"],[97,4,1,"","supports_optimized_historical_forecasts"],[97,4,1,"","supports_past_covariates"],[97,4,1,"","supports_static_covariates"],[97,4,1,"","uses_future_covariates"],[97,4,1,"","uses_past_covariates"],[97,4,1,"","uses_static_covariates"]],"darts.models.forecasting.baselines":[[98,1,1,"","NaiveDrift"],[98,1,1,"","NaiveEnsembleModel"],[98,1,1,"","NaiveMean"],[98,1,1,"","NaiveMovingAverage"],[98,1,1,"","NaiveSeasonal"]],"darts.models.forecasting.baselines.NaiveDrift":[[98,2,1,"","backtest"],[98,4,1,"","considers_static_covariates"],[98,4,1,"","extreme_lags"],[98,2,1,"","fit"],[98,2,1,"","generate_fit_encodings"],[98,2,1,"","generate_fit_predict_encodings"],[98,2,1,"","generate_predict_encodings"],[98,2,1,"","gridsearch"],[98,2,1,"","historical_forecasts"],[98,2,1,"","load"],[98,4,1,"","min_train_samples"],[98,4,1,"","model_params"],[98,4,1,"","output_chunk_length"],[98,2,1,"","predict"],[98,2,1,"","residuals"],[98,2,1,"","save"],[98,4,1,"","supports_future_covariates"],[98,4,1,"","supports_likelihood_parameter_prediction"],[98,4,1,"","supports_multivariate"],[98,4,1,"","supports_optimized_historical_forecasts"],[98,4,1,"","supports_past_covariates"],[98,4,1,"","supports_static_covariates"],[98,4,1,"","uses_future_covariates"],[98,4,1,"","uses_past_covariates"],[98,4,1,"","uses_static_covariates"]],"darts.models.forecasting.baselines.NaiveEnsembleModel":[[98,2,1,"","backtest"],[98,4,1,"","considers_static_covariates"],[98,2,1,"","ensemble"],[98,4,1,"","extreme_lags"],[98,2,1,"","fit"],[98,2,1,"","generate_fit_encodings"],[98,2,1,"","generate_fit_predict_encodings"],[98,2,1,"","generate_predict_encodings"],[98,2,1,"","gridsearch"],[98,2,1,"","historical_forecasts"],[98,2,1,"","load"],[98,4,1,"","min_train_samples"],[98,4,1,"","model_params"],[98,4,1,"","output_chunk_length"],[98,2,1,"","predict"],[98,2,1,"","residuals"],[98,2,1,"","save"],[98,4,1,"","supports_future_covariates"],[98,4,1,"","supports_likelihood_parameter_prediction"],[98,4,1,"","supports_multivariate"],[98,4,1,"","supports_optimized_historical_forecasts"],[98,4,1,"","supports_past_covariates"],[98,4,1,"","supports_static_covariates"],[98,4,1,"","uses_future_covariates"],[98,4,1,"","uses_past_covariates"],[98,4,1,"","uses_static_covariates"]],"darts.models.forecasting.baselines.NaiveMean":[[98,2,1,"","backtest"],[98,4,1,"","considers_static_covariates"],[98,4,1,"","extreme_lags"],[98,2,1,"","fit"],[98,2,1,"","generate_fit_encodings"],[98,2,1,"","generate_fit_predict_encodings"],[98,2,1,"","generate_predict_encodings"],[98,2,1,"","gridsearch"],[98,2,1,"","historical_forecasts"],[98,2,1,"","load"],[98,4,1,"","min_train_samples"],[98,4,1,"","model_params"],[98,4,1,"","output_chunk_length"],[98,2,1,"","predict"],[98,2,1,"","residuals"],[98,2,1,"","save"],[98,4,1,"","supports_future_covariates"],[98,4,1,"","supports_likelihood_parameter_prediction"],[98,4,1,"","supports_multivariate"],[98,4,1,"","supports_optimized_historical_forecasts"],[98,4,1,"","supports_past_covariates"],[98,4,1,"","supports_static_covariates"],[98,4,1,"","uses_future_covariates"],[98,4,1,"","uses_past_covariates"],[98,4,1,"","uses_static_covariates"]],"darts.models.forecasting.baselines.NaiveMovingAverage":[[98,2,1,"","backtest"],[98,4,1,"","considers_static_covariates"],[98,4,1,"","extreme_lags"],[98,2,1,"","fit"],[98,2,1,"","generate_fit_encodings"],[98,2,1,"","generate_fit_predict_encodings"],[98,2,1,"","generate_predict_encodings"],[98,2,1,"","gridsearch"],[98,2,1,"","historical_forecasts"],[98,2,1,"","load"],[98,4,1,"","min_train_samples"],[98,4,1,"","model_params"],[98,4,1,"","output_chunk_length"],[98,2,1,"","predict"],[98,2,1,"","residuals"],[98,2,1,"","save"],[98,4,1,"","supports_future_covariates"],[98,4,1,"","supports_likelihood_parameter_prediction"],[98,4,1,"","supports_multivariate"],[98,4,1,"","supports_optimized_historical_forecasts"],[98,4,1,"","supports_past_covariates"],[98,4,1,"","supports_static_covariates"],[98,4,1,"","uses_future_covariates"],[98,4,1,"","uses_past_covariates"],[98,4,1,"","uses_static_covariates"]],"darts.models.forecasting.baselines.NaiveSeasonal":[[98,2,1,"","backtest"],[98,4,1,"","considers_static_covariates"],[98,4,1,"","extreme_lags"],[98,2,1,"","fit"],[98,2,1,"","generate_fit_encodings"],[98,2,1,"","generate_fit_predict_encodings"],[98,2,1,"","generate_predict_encodings"],[98,2,1,"","gridsearch"],[98,2,1,"","historical_forecasts"],[98,2,1,"","load"],[98,4,1,"","min_train_samples"],[98,4,1,"","model_params"],[98,4,1,"","output_chunk_length"],[98,2,1,"","predict"],[98,2,1,"","residuals"],[98,2,1,"","save"],[98,4,1,"","supports_future_covariates"],[98,4,1,"","supports_likelihood_parameter_prediction"],[98,4,1,"","supports_multivariate"],[98,4,1,"","supports_optimized_historical_forecasts"],[98,4,1,"","supports_past_covariates"],[98,4,1,"","supports_static_covariates"],[98,4,1,"","uses_future_covariates"],[98,4,1,"","uses_past_covariates"],[98,4,1,"","uses_static_covariates"]],"darts.models.forecasting.block_rnn_model":[[99,1,1,"","BlockRNNModel"]],"darts.models.forecasting.block_rnn_model.BlockRNNModel":[[99,2,1,"","backtest"],[99,4,1,"","considers_static_covariates"],[99,4,1,"","epochs_trained"],[99,4,1,"","extreme_lags"],[99,2,1,"","fit"],[99,2,1,"","fit_from_dataset"],[99,2,1,"","generate_fit_encodings"],[99,2,1,"","generate_fit_predict_encodings"],[99,2,1,"","generate_predict_encodings"],[99,2,1,"","gridsearch"],[99,2,1,"","historical_forecasts"],[99,4,1,"","input_chunk_length"],[99,4,1,"","likelihood"],[99,2,1,"","load"],[99,2,1,"","load_from_checkpoint"],[99,2,1,"","load_weights"],[99,2,1,"","load_weights_from_checkpoint"],[99,2,1,"","lr_find"],[99,4,1,"","min_train_samples"],[99,4,1,"","model_created"],[99,4,1,"","model_params"],[99,4,1,"","output_chunk_length"],[99,2,1,"","predict"],[99,2,1,"","predict_from_dataset"],[99,2,1,"","reset_model"],[99,2,1,"","residuals"],[99,2,1,"","save"],[99,3,1,"","supports_future_covariates"],[99,4,1,"","supports_likelihood_parameter_prediction"],[99,4,1,"","supports_multivariate"],[99,4,1,"","supports_optimized_historical_forecasts"],[99,4,1,"","supports_past_covariates"],[99,4,1,"","supports_static_covariates"],[99,2,1,"","to_cpu"],[99,4,1,"","uses_future_covariates"],[99,4,1,"","uses_past_covariates"],[99,4,1,"","uses_static_covariates"]],"darts.models.forecasting.catboost_model":[[100,1,1,"","CatBoostModel"]],"darts.models.forecasting.catboost_model.CatBoostModel":[[100,2,1,"","backtest"],[100,4,1,"","considers_static_covariates"],[100,4,1,"","extreme_lags"],[100,2,1,"","fit"],[100,2,1,"","generate_fit_encodings"],[100,2,1,"","generate_fit_predict_encodings"],[100,2,1,"","generate_predict_encodings"],[100,2,1,"","get_multioutput_estimator"],[100,2,1,"","gridsearch"],[100,2,1,"","historical_forecasts"],[100,4,1,"","lagged_feature_names"],[100,2,1,"","load"],[100,4,1,"","min_train_samples"],[100,4,1,"","model_params"],[100,4,1,"","num_parameters"],[100,4,1,"","output_chunk_length"],[100,2,1,"","predict"],[100,2,1,"","residuals"],[100,2,1,"","save"],[100,4,1,"","supports_future_covariates"],[100,4,1,"","supports_likelihood_parameter_prediction"],[100,4,1,"","supports_multivariate"],[100,4,1,"","supports_optimized_historical_forecasts"],[100,4,1,"","supports_past_covariates"],[100,4,1,"","supports_static_covariates"],[100,4,1,"","uses_future_covariates"],[100,4,1,"","uses_past_covariates"],[100,4,1,"","uses_static_covariates"]],"darts.models.forecasting.croston":[[101,1,1,"","Croston"]],"darts.models.forecasting.croston.Croston":[[101,2,1,"","backtest"],[101,4,1,"","considers_static_covariates"],[101,4,1,"","extreme_lags"],[101,2,1,"","fit"],[101,2,1,"","generate_fit_encodings"],[101,2,1,"","generate_fit_predict_encodings"],[101,2,1,"","generate_predict_encodings"],[101,2,1,"","gridsearch"],[101,2,1,"","historical_forecasts"],[101,2,1,"","load"],[101,4,1,"","min_train_samples"],[101,4,1,"","model_params"],[101,4,1,"","output_chunk_length"],[101,2,1,"","predict"],[101,2,1,"","residuals"],[101,2,1,"","save"],[101,4,1,"","supports_future_covariates"],[101,4,1,"","supports_likelihood_parameter_prediction"],[101,4,1,"","supports_multivariate"],[101,4,1,"","supports_optimized_historical_forecasts"],[101,4,1,"","supports_past_covariates"],[101,4,1,"","supports_static_covariates"],[101,4,1,"","uses_future_covariates"],[101,4,1,"","uses_past_covariates"],[101,4,1,"","uses_static_covariates"]],"darts.models.forecasting.dlinear":[[102,1,1,"","DLinearModel"]],"darts.models.forecasting.dlinear.DLinearModel":[[102,2,1,"","backtest"],[102,4,1,"","considers_static_covariates"],[102,4,1,"","epochs_trained"],[102,4,1,"","extreme_lags"],[102,2,1,"","fit"],[102,2,1,"","fit_from_dataset"],[102,2,1,"","generate_fit_encodings"],[102,2,1,"","generate_fit_predict_encodings"],[102,2,1,"","generate_predict_encodings"],[102,2,1,"","gridsearch"],[102,2,1,"","historical_forecasts"],[102,4,1,"","input_chunk_length"],[102,4,1,"","likelihood"],[102,2,1,"","load"],[102,2,1,"","load_from_checkpoint"],[102,2,1,"","load_weights"],[102,2,1,"","load_weights_from_checkpoint"],[102,2,1,"","lr_find"],[102,4,1,"","min_train_samples"],[102,4,1,"","model_created"],[102,4,1,"","model_params"],[102,4,1,"","output_chunk_length"],[102,2,1,"","predict"],[102,2,1,"","predict_from_dataset"],[102,2,1,"","reset_model"],[102,2,1,"","residuals"],[102,2,1,"","save"],[102,4,1,"","supports_future_covariates"],[102,4,1,"","supports_likelihood_parameter_prediction"],[102,4,1,"","supports_multivariate"],[102,4,1,"","supports_optimized_historical_forecasts"],[102,4,1,"","supports_past_covariates"],[102,4,1,"","supports_static_covariates"],[102,2,1,"","to_cpu"],[102,4,1,"","uses_future_covariates"],[102,4,1,"","uses_past_covariates"],[102,4,1,"","uses_static_covariates"]],"darts.models.forecasting.ensemble_model":[[103,1,1,"","EnsembleModel"]],"darts.models.forecasting.ensemble_model.EnsembleModel":[[103,2,1,"","backtest"],[103,4,1,"","considers_static_covariates"],[103,2,1,"","ensemble"],[103,4,1,"","extreme_lags"],[103,2,1,"","fit"],[103,2,1,"","generate_fit_encodings"],[103,2,1,"","generate_fit_predict_encodings"],[103,2,1,"","generate_predict_encodings"],[103,2,1,"","gridsearch"],[103,2,1,"","historical_forecasts"],[103,2,1,"","load"],[103,4,1,"","min_train_samples"],[103,4,1,"","model_params"],[103,4,1,"","output_chunk_length"],[103,2,1,"","predict"],[103,2,1,"","residuals"],[103,2,1,"","save"],[103,4,1,"","supports_future_covariates"],[103,4,1,"","supports_likelihood_parameter_prediction"],[103,4,1,"","supports_multivariate"],[103,4,1,"","supports_optimized_historical_forecasts"],[103,4,1,"","supports_past_covariates"],[103,4,1,"","supports_static_covariates"],[103,4,1,"","uses_future_covariates"],[103,4,1,"","uses_past_covariates"],[103,4,1,"","uses_static_covariates"]],"darts.models.forecasting.exponential_smoothing":[[104,1,1,"","ExponentialSmoothing"]],"darts.models.forecasting.exponential_smoothing.ExponentialSmoothing":[[104,2,1,"","backtest"],[104,4,1,"","considers_static_covariates"],[104,4,1,"","extreme_lags"],[104,2,1,"","fit"],[104,2,1,"","generate_fit_encodings"],[104,2,1,"","generate_fit_predict_encodings"],[104,2,1,"","generate_predict_encodings"],[104,2,1,"","gridsearch"],[104,2,1,"","historical_forecasts"],[104,2,1,"","load"],[104,4,1,"","min_train_samples"],[104,4,1,"","model_params"],[104,4,1,"","output_chunk_length"],[104,2,1,"","predict"],[104,2,1,"","residuals"],[104,2,1,"","save"],[104,4,1,"","supports_future_covariates"],[104,4,1,"","supports_likelihood_parameter_prediction"],[104,4,1,"","supports_multivariate"],[104,4,1,"","supports_optimized_historical_forecasts"],[104,4,1,"","supports_past_covariates"],[104,4,1,"","supports_static_covariates"],[104,4,1,"","uses_future_covariates"],[104,4,1,"","uses_past_covariates"],[104,4,1,"","uses_static_covariates"]],"darts.models.forecasting.fft":[[105,1,1,"","FFT"]],"darts.models.forecasting.fft.FFT":[[105,2,1,"","backtest"],[105,4,1,"","considers_static_covariates"],[105,4,1,"","extreme_lags"],[105,2,1,"","fit"],[105,2,1,"","generate_fit_encodings"],[105,2,1,"","generate_fit_predict_encodings"],[105,2,1,"","generate_predict_encodings"],[105,2,1,"","gridsearch"],[105,2,1,"","historical_forecasts"],[105,2,1,"","load"],[105,4,1,"","min_train_samples"],[105,4,1,"","model_params"],[105,4,1,"","output_chunk_length"],[105,2,1,"","predict"],[105,2,1,"","residuals"],[105,2,1,"","save"],[105,4,1,"","supports_future_covariates"],[105,4,1,"","supports_likelihood_parameter_prediction"],[105,4,1,"","supports_multivariate"],[105,4,1,"","supports_optimized_historical_forecasts"],[105,4,1,"","supports_past_covariates"],[105,4,1,"","supports_static_covariates"],[105,4,1,"","uses_future_covariates"],[105,4,1,"","uses_past_covariates"],[105,4,1,"","uses_static_covariates"]],"darts.models.forecasting.forecasting_model":[[106,1,1,"","ModelMeta"]],"darts.models.forecasting.forecasting_model.ModelMeta":[[106,2,1,"","mro"],[106,2,1,"","register"]],"darts.models.forecasting.kalman_forecaster":[[107,1,1,"","KalmanForecaster"]],"darts.models.forecasting.kalman_forecaster.KalmanForecaster":[[107,2,1,"","backtest"],[107,4,1,"","considers_static_covariates"],[107,4,1,"","extreme_lags"],[107,2,1,"","fit"],[107,2,1,"","generate_fit_encodings"],[107,2,1,"","generate_fit_predict_encodings"],[107,2,1,"","generate_predict_encodings"],[107,2,1,"","gridsearch"],[107,2,1,"","historical_forecasts"],[107,2,1,"","load"],[107,4,1,"","min_train_samples"],[107,4,1,"","model_params"],[107,4,1,"","output_chunk_length"],[107,2,1,"","predict"],[107,2,1,"","residuals"],[107,2,1,"","save"],[107,4,1,"","supports_future_covariates"],[107,4,1,"","supports_likelihood_parameter_prediction"],[107,4,1,"","supports_multivariate"],[107,4,1,"","supports_optimized_historical_forecasts"],[107,4,1,"","supports_past_covariates"],[107,4,1,"","supports_static_covariates"],[107,4,1,"","uses_future_covariates"],[107,4,1,"","uses_past_covariates"],[107,4,1,"","uses_static_covariates"]],"darts.models.forecasting.lgbm":[[108,1,1,"","LightGBMModel"]],"darts.models.forecasting.lgbm.LightGBMModel":[[108,2,1,"","backtest"],[108,4,1,"","considers_static_covariates"],[108,4,1,"","extreme_lags"],[108,2,1,"","fit"],[108,2,1,"","generate_fit_encodings"],[108,2,1,"","generate_fit_predict_encodings"],[108,2,1,"","generate_predict_encodings"],[108,2,1,"","get_multioutput_estimator"],[108,2,1,"","gridsearch"],[108,2,1,"","historical_forecasts"],[108,4,1,"","lagged_feature_names"],[108,2,1,"","load"],[108,4,1,"","min_train_samples"],[108,4,1,"","model_params"],[108,4,1,"","num_parameters"],[108,4,1,"","output_chunk_length"],[108,2,1,"","predict"],[108,2,1,"","residuals"],[108,2,1,"","save"],[108,4,1,"","supports_future_covariates"],[108,4,1,"","supports_likelihood_parameter_prediction"],[108,4,1,"","supports_multivariate"],[108,4,1,"","supports_optimized_historical_forecasts"],[108,4,1,"","supports_past_covariates"],[108,4,1,"","supports_static_covariates"],[108,4,1,"","uses_future_covariates"],[108,4,1,"","uses_past_covariates"],[108,4,1,"","uses_static_covariates"]],"darts.models.forecasting.linear_regression_model":[[109,1,1,"","LinearRegressionModel"]],"darts.models.forecasting.linear_regression_model.LinearRegressionModel":[[109,2,1,"","backtest"],[109,4,1,"","considers_static_covariates"],[109,4,1,"","extreme_lags"],[109,2,1,"","fit"],[109,2,1,"","generate_fit_encodings"],[109,2,1,"","generate_fit_predict_encodings"],[109,2,1,"","generate_predict_encodings"],[109,2,1,"","get_multioutput_estimator"],[109,2,1,"","gridsearch"],[109,2,1,"","historical_forecasts"],[109,4,1,"","lagged_feature_names"],[109,2,1,"","load"],[109,4,1,"","min_train_samples"],[109,4,1,"","model_params"],[109,4,1,"","num_parameters"],[109,4,1,"","output_chunk_length"],[109,2,1,"","predict"],[109,2,1,"","residuals"],[109,2,1,"","save"],[109,4,1,"","supports_future_covariates"],[109,4,1,"","supports_likelihood_parameter_prediction"],[109,4,1,"","supports_multivariate"],[109,4,1,"","supports_optimized_historical_forecasts"],[109,4,1,"","supports_past_covariates"],[109,4,1,"","supports_static_covariates"],[109,4,1,"","uses_future_covariates"],[109,4,1,"","uses_past_covariates"],[109,4,1,"","uses_static_covariates"]],"darts.models.forecasting.nbeats":[[110,1,1,"","NBEATSModel"]],"darts.models.forecasting.nbeats.NBEATSModel":[[110,2,1,"","backtest"],[110,4,1,"","considers_static_covariates"],[110,4,1,"","epochs_trained"],[110,4,1,"","extreme_lags"],[110,2,1,"","fit"],[110,2,1,"","fit_from_dataset"],[110,2,1,"","generate_fit_encodings"],[110,2,1,"","generate_fit_predict_encodings"],[110,2,1,"","generate_predict_encodings"],[110,2,1,"","gridsearch"],[110,2,1,"","historical_forecasts"],[110,4,1,"","input_chunk_length"],[110,4,1,"","likelihood"],[110,2,1,"","load"],[110,2,1,"","load_from_checkpoint"],[110,2,1,"","load_weights"],[110,2,1,"","load_weights_from_checkpoint"],[110,2,1,"","lr_find"],[110,4,1,"","min_train_samples"],[110,4,1,"","model_created"],[110,4,1,"","model_params"],[110,4,1,"","output_chunk_length"],[110,2,1,"","predict"],[110,2,1,"","predict_from_dataset"],[110,2,1,"","reset_model"],[110,2,1,"","residuals"],[110,2,1,"","save"],[110,3,1,"","supports_future_covariates"],[110,4,1,"","supports_likelihood_parameter_prediction"],[110,4,1,"","supports_multivariate"],[110,4,1,"","supports_optimized_historical_forecasts"],[110,4,1,"","supports_past_covariates"],[110,4,1,"","supports_static_covariates"],[110,2,1,"","to_cpu"],[110,4,1,"","uses_future_covariates"],[110,4,1,"","uses_past_covariates"],[110,4,1,"","uses_static_covariates"]],"darts.models.forecasting.nhits":[[111,1,1,"","NHiTSModel"]],"darts.models.forecasting.nhits.NHiTSModel":[[111,2,1,"","backtest"],[111,4,1,"","considers_static_covariates"],[111,4,1,"","epochs_trained"],[111,4,1,"","extreme_lags"],[111,2,1,"","fit"],[111,2,1,"","fit_from_dataset"],[111,2,1,"","generate_fit_encodings"],[111,2,1,"","generate_fit_predict_encodings"],[111,2,1,"","generate_predict_encodings"],[111,2,1,"","gridsearch"],[111,2,1,"","historical_forecasts"],[111,4,1,"","input_chunk_length"],[111,4,1,"","likelihood"],[111,2,1,"","load"],[111,2,1,"","load_from_checkpoint"],[111,2,1,"","load_weights"],[111,2,1,"","load_weights_from_checkpoint"],[111,2,1,"","lr_find"],[111,4,1,"","min_train_samples"],[111,4,1,"","model_created"],[111,4,1,"","model_params"],[111,4,1,"","output_chunk_length"],[111,2,1,"","predict"],[111,2,1,"","predict_from_dataset"],[111,2,1,"","reset_model"],[111,2,1,"","residuals"],[111,2,1,"","save"],[111,3,1,"","supports_future_covariates"],[111,4,1,"","supports_likelihood_parameter_prediction"],[111,4,1,"","supports_multivariate"],[111,4,1,"","supports_optimized_historical_forecasts"],[111,4,1,"","supports_past_covariates"],[111,4,1,"","supports_static_covariates"],[111,2,1,"","to_cpu"],[111,4,1,"","uses_future_covariates"],[111,4,1,"","uses_past_covariates"],[111,4,1,"","uses_static_covariates"]],"darts.models.forecasting.nlinear":[[112,1,1,"","NLinearModel"]],"darts.models.forecasting.nlinear.NLinearModel":[[112,2,1,"","backtest"],[112,4,1,"","considers_static_covariates"],[112,4,1,"","epochs_trained"],[112,4,1,"","extreme_lags"],[112,2,1,"","fit"],[112,2,1,"","fit_from_dataset"],[112,2,1,"","generate_fit_encodings"],[112,2,1,"","generate_fit_predict_encodings"],[112,2,1,"","generate_predict_encodings"],[112,2,1,"","gridsearch"],[112,2,1,"","historical_forecasts"],[112,4,1,"","input_chunk_length"],[112,4,1,"","likelihood"],[112,2,1,"","load"],[112,2,1,"","load_from_checkpoint"],[112,2,1,"","load_weights"],[112,2,1,"","load_weights_from_checkpoint"],[112,2,1,"","lr_find"],[112,4,1,"","min_train_samples"],[112,4,1,"","model_created"],[112,4,1,"","model_params"],[112,4,1,"","output_chunk_length"],[112,2,1,"","predict"],[112,2,1,"","predict_from_dataset"],[112,2,1,"","reset_model"],[112,2,1,"","residuals"],[112,2,1,"","save"],[112,4,1,"","supports_future_covariates"],[112,4,1,"","supports_likelihood_parameter_prediction"],[112,4,1,"","supports_multivariate"],[112,4,1,"","supports_optimized_historical_forecasts"],[112,4,1,"","supports_past_covariates"],[112,4,1,"","supports_static_covariates"],[112,2,1,"","to_cpu"],[112,4,1,"","uses_future_covariates"],[112,4,1,"","uses_past_covariates"],[112,4,1,"","uses_static_covariates"]],"darts.models.forecasting.pl_forecasting_module":[[113,1,1,"","PLDualCovariatesModule"],[113,1,1,"","PLForecastingModule"],[113,1,1,"","PLFutureCovariatesModule"],[113,1,1,"","PLMixedCovariatesModule"],[113,1,1,"","PLPastCovariatesModule"],[113,1,1,"","PLSplitCovariatesModule"],[113,5,1,"","io_processor"]],"darts.models.forecasting.pl_forecasting_module.PLDualCovariatesModule":[[113,3,1,"","CHECKPOINT_HYPER_PARAMS_KEY"],[113,3,1,"","CHECKPOINT_HYPER_PARAMS_NAME"],[113,3,1,"","CHECKPOINT_HYPER_PARAMS_TYPE"],[113,3,1,"","T_destination"],[113,2,1,"","add_module"],[113,2,1,"","all_gather"],[113,2,1,"","apply"],[113,4,1,"","automatic_optimization"],[113,2,1,"","backward"],[113,2,1,"","bfloat16"],[113,2,1,"","buffers"],[113,3,1,"","call_super_init"],[113,2,1,"","children"],[113,2,1,"","clip_gradients"],[113,2,1,"","compile"],[113,2,1,"","configure_callbacks"],[113,2,1,"","configure_gradient_clipping"],[113,2,1,"","configure_model"],[113,2,1,"","configure_optimizers"],[113,2,1,"","configure_sharded_model"],[113,2,1,"","configure_torch_metrics"],[113,2,1,"","cpu"],[113,2,1,"","cuda"],[113,4,1,"","current_epoch"],[113,4,1,"","device"],[113,2,1,"","double"],[113,4,1,"","dtype"],[113,3,1,"","dump_patches"],[113,4,1,"","epochs_trained"],[113,2,1,"","eval"],[113,4,1,"","example_input_array"],[113,2,1,"","extra_repr"],[113,4,1,"","fabric"],[113,2,1,"","float"],[113,2,1,"","forward"],[113,2,1,"","freeze"],[113,2,1,"","get_buffer"],[113,2,1,"","get_extra_state"],[113,2,1,"","get_parameter"],[113,2,1,"","get_submodule"],[113,4,1,"","global_rank"],[113,4,1,"","global_step"],[113,2,1,"","half"],[113,4,1,"","hparams"],[113,4,1,"","hparams_initial"],[113,2,1,"","ipu"],[113,2,1,"","load_from_checkpoint"],[113,2,1,"","load_state_dict"],[113,4,1,"","local_rank"],[113,2,1,"","log"],[113,2,1,"","log_dict"],[113,4,1,"","logger"],[113,4,1,"","loggers"],[113,2,1,"","lr_scheduler_step"],[113,2,1,"","lr_schedulers"],[113,2,1,"","manual_backward"],[113,2,1,"","modules"],[113,2,1,"","named_buffers"],[113,2,1,"","named_children"],[113,2,1,"","named_modules"],[113,2,1,"","named_parameters"],[113,2,1,"","on_after_backward"],[113,2,1,"","on_after_batch_transfer"],[113,2,1,"","on_before_backward"],[113,2,1,"","on_before_batch_transfer"],[113,2,1,"","on_before_optimizer_step"],[113,2,1,"","on_before_zero_grad"],[113,2,1,"","on_fit_end"],[113,2,1,"","on_fit_start"],[113,4,1,"","on_gpu"],[113,2,1,"","on_load_checkpoint"],[113,2,1,"","on_predict_batch_end"],[113,2,1,"","on_predict_batch_start"],[113,2,1,"","on_predict_end"],[113,2,1,"","on_predict_epoch_end"],[113,2,1,"","on_predict_epoch_start"],[113,2,1,"","on_predict_model_eval"],[113,2,1,"","on_predict_start"],[113,2,1,"","on_save_checkpoint"],[113,2,1,"","on_test_batch_end"],[113,2,1,"","on_test_batch_start"],[113,2,1,"","on_test_end"],[113,2,1,"","on_test_epoch_end"],[113,2,1,"","on_test_epoch_start"],[113,2,1,"","on_test_model_eval"],[113,2,1,"","on_test_model_train"],[113,2,1,"","on_test_start"],[113,2,1,"","on_train_batch_end"],[113,2,1,"","on_train_batch_start"],[113,2,1,"","on_train_end"],[113,2,1,"","on_train_epoch_end"],[113,2,1,"","on_train_epoch_start"],[113,2,1,"","on_train_start"],[113,2,1,"","on_validation_batch_end"],[113,2,1,"","on_validation_batch_start"],[113,2,1,"","on_validation_end"],[113,2,1,"","on_validation_epoch_end"],[113,2,1,"","on_validation_epoch_start"],[113,2,1,"","on_validation_model_eval"],[113,2,1,"","on_validation_model_train"],[113,2,1,"","on_validation_model_zero_grad"],[113,2,1,"","on_validation_start"],[113,2,1,"","optimizer_step"],[113,2,1,"","optimizer_zero_grad"],[113,2,1,"","optimizers"],[113,4,1,"","output_chunk_length"],[113,2,1,"","parameters"],[113,2,1,"","predict_dataloader"],[113,2,1,"","predict_step"],[113,2,1,"","prepare_data"],[113,2,1,"","print"],[113,2,1,"","register_backward_hook"],[113,2,1,"","register_buffer"],[113,2,1,"","register_forward_hook"],[113,2,1,"","register_forward_pre_hook"],[113,2,1,"","register_full_backward_hook"],[113,2,1,"","register_full_backward_pre_hook"],[113,2,1,"","register_load_state_dict_post_hook"],[113,2,1,"","register_module"],[113,2,1,"","register_parameter"],[113,2,1,"","register_state_dict_pre_hook"],[113,2,1,"","requires_grad_"],[113,2,1,"","save_hyperparameters"],[113,2,1,"","set_extra_state"],[113,2,1,"","set_mc_dropout"],[113,2,1,"","set_predict_parameters"],[113,2,1,"","setup"],[113,2,1,"","share_memory"],[113,2,1,"","state_dict"],[113,2,1,"","teardown"],[113,2,1,"","test_dataloader"],[113,2,1,"","test_step"],[113,2,1,"","to"],[113,2,1,"","to_dtype"],[113,2,1,"","to_empty"],[113,2,1,"","to_onnx"],[113,2,1,"","to_torchscript"],[113,2,1,"","toggle_optimizer"],[113,2,1,"","train"],[113,2,1,"","train_dataloader"],[113,4,1,"","trainer"],[113,3,1,"","training"],[113,2,1,"","training_step"],[113,2,1,"","transfer_batch_to_device"],[113,2,1,"","type"],[113,2,1,"","unfreeze"],[113,2,1,"","untoggle_optimizer"],[113,2,1,"","val_dataloader"],[113,2,1,"","validation_step"],[113,2,1,"","xpu"],[113,2,1,"","zero_grad"]],"darts.models.forecasting.pl_forecasting_module.PLForecastingModule":[[113,3,1,"","CHECKPOINT_HYPER_PARAMS_KEY"],[113,3,1,"","CHECKPOINT_HYPER_PARAMS_NAME"],[113,3,1,"","CHECKPOINT_HYPER_PARAMS_TYPE"],[113,3,1,"","T_destination"],[113,2,1,"","add_module"],[113,2,1,"","all_gather"],[113,2,1,"","apply"],[113,4,1,"","automatic_optimization"],[113,2,1,"","backward"],[113,2,1,"","bfloat16"],[113,2,1,"","buffers"],[113,3,1,"","call_super_init"],[113,2,1,"","children"],[113,2,1,"","clip_gradients"],[113,2,1,"","compile"],[113,2,1,"","configure_callbacks"],[113,2,1,"","configure_gradient_clipping"],[113,2,1,"","configure_model"],[113,2,1,"","configure_optimizers"],[113,2,1,"","configure_sharded_model"],[113,2,1,"","configure_torch_metrics"],[113,2,1,"","cpu"],[113,2,1,"","cuda"],[113,4,1,"","current_epoch"],[113,4,1,"","device"],[113,2,1,"","double"],[113,4,1,"","dtype"],[113,3,1,"","dump_patches"],[113,4,1,"","epochs_trained"],[113,2,1,"","eval"],[113,4,1,"","example_input_array"],[113,2,1,"","extra_repr"],[113,4,1,"","fabric"],[113,2,1,"","float"],[113,2,1,"","forward"],[113,2,1,"","freeze"],[113,2,1,"","get_buffer"],[113,2,1,"","get_extra_state"],[113,2,1,"","get_parameter"],[113,2,1,"","get_submodule"],[113,4,1,"","global_rank"],[113,4,1,"","global_step"],[113,2,1,"","half"],[113,4,1,"","hparams"],[113,4,1,"","hparams_initial"],[113,2,1,"","ipu"],[113,2,1,"","load_from_checkpoint"],[113,2,1,"","load_state_dict"],[113,4,1,"","local_rank"],[113,2,1,"","log"],[113,2,1,"","log_dict"],[113,4,1,"","logger"],[113,4,1,"","loggers"],[113,2,1,"","lr_scheduler_step"],[113,2,1,"","lr_schedulers"],[113,2,1,"","manual_backward"],[113,2,1,"","modules"],[113,2,1,"","named_buffers"],[113,2,1,"","named_children"],[113,2,1,"","named_modules"],[113,2,1,"","named_parameters"],[113,2,1,"","on_after_backward"],[113,2,1,"","on_after_batch_transfer"],[113,2,1,"","on_before_backward"],[113,2,1,"","on_before_batch_transfer"],[113,2,1,"","on_before_optimizer_step"],[113,2,1,"","on_before_zero_grad"],[113,2,1,"","on_fit_end"],[113,2,1,"","on_fit_start"],[113,4,1,"","on_gpu"],[113,2,1,"","on_load_checkpoint"],[113,2,1,"","on_predict_batch_end"],[113,2,1,"","on_predict_batch_start"],[113,2,1,"","on_predict_end"],[113,2,1,"","on_predict_epoch_end"],[113,2,1,"","on_predict_epoch_start"],[113,2,1,"","on_predict_model_eval"],[113,2,1,"","on_predict_start"],[113,2,1,"","on_save_checkpoint"],[113,2,1,"","on_test_batch_end"],[113,2,1,"","on_test_batch_start"],[113,2,1,"","on_test_end"],[113,2,1,"","on_test_epoch_end"],[113,2,1,"","on_test_epoch_start"],[113,2,1,"","on_test_model_eval"],[113,2,1,"","on_test_model_train"],[113,2,1,"","on_test_start"],[113,2,1,"","on_train_batch_end"],[113,2,1,"","on_train_batch_start"],[113,2,1,"","on_train_end"],[113,2,1,"","on_train_epoch_end"],[113,2,1,"","on_train_epoch_start"],[113,2,1,"","on_train_start"],[113,2,1,"","on_validation_batch_end"],[113,2,1,"","on_validation_batch_start"],[113,2,1,"","on_validation_end"],[113,2,1,"","on_validation_epoch_end"],[113,2,1,"","on_validation_epoch_start"],[113,2,1,"","on_validation_model_eval"],[113,2,1,"","on_validation_model_train"],[113,2,1,"","on_validation_model_zero_grad"],[113,2,1,"","on_validation_start"],[113,2,1,"","optimizer_step"],[113,2,1,"","optimizer_zero_grad"],[113,2,1,"","optimizers"],[113,4,1,"","output_chunk_length"],[113,2,1,"","parameters"],[113,2,1,"","predict_dataloader"],[113,2,1,"","predict_step"],[113,2,1,"","prepare_data"],[113,2,1,"","print"],[113,2,1,"","register_backward_hook"],[113,2,1,"","register_buffer"],[113,2,1,"","register_forward_hook"],[113,2,1,"","register_forward_pre_hook"],[113,2,1,"","register_full_backward_hook"],[113,2,1,"","register_full_backward_pre_hook"],[113,2,1,"","register_load_state_dict_post_hook"],[113,2,1,"","register_module"],[113,2,1,"","register_parameter"],[113,2,1,"","register_state_dict_pre_hook"],[113,2,1,"","requires_grad_"],[113,2,1,"","save_hyperparameters"],[113,2,1,"","set_extra_state"],[113,2,1,"","set_mc_dropout"],[113,2,1,"","set_predict_parameters"],[113,2,1,"","setup"],[113,2,1,"","share_memory"],[113,2,1,"","state_dict"],[113,2,1,"","teardown"],[113,2,1,"","test_dataloader"],[113,2,1,"","test_step"],[113,2,1,"","to"],[113,2,1,"","to_dtype"],[113,2,1,"","to_empty"],[113,2,1,"","to_onnx"],[113,2,1,"","to_torchscript"],[113,2,1,"","toggle_optimizer"],[113,2,1,"","train"],[113,2,1,"","train_dataloader"],[113,4,1,"","trainer"],[113,3,1,"","training"],[113,2,1,"","training_step"],[113,2,1,"","transfer_batch_to_device"],[113,2,1,"","type"],[113,2,1,"","unfreeze"],[113,2,1,"","untoggle_optimizer"],[113,2,1,"","val_dataloader"],[113,2,1,"","validation_step"],[113,2,1,"","xpu"],[113,2,1,"","zero_grad"]],"darts.models.forecasting.pl_forecasting_module.PLFutureCovariatesModule":[[113,3,1,"","CHECKPOINT_HYPER_PARAMS_KEY"],[113,3,1,"","CHECKPOINT_HYPER_PARAMS_NAME"],[113,3,1,"","CHECKPOINT_HYPER_PARAMS_TYPE"],[113,3,1,"","T_destination"],[113,2,1,"","add_module"],[113,2,1,"","all_gather"],[113,3,1,"","allow_zero_length_dataloader_with_multiple_devices"],[113,2,1,"","apply"],[113,4,1,"","automatic_optimization"],[113,2,1,"","backward"],[113,2,1,"","bfloat16"],[113,2,1,"","buffers"],[113,3,1,"","call_super_init"],[113,2,1,"","children"],[113,2,1,"","clip_gradients"],[113,2,1,"","compile"],[113,2,1,"","configure_callbacks"],[113,2,1,"","configure_gradient_clipping"],[113,2,1,"","configure_model"],[113,2,1,"","configure_optimizers"],[113,2,1,"","configure_sharded_model"],[113,2,1,"","configure_torch_metrics"],[113,2,1,"","cpu"],[113,2,1,"","cuda"],[113,4,1,"","current_epoch"],[113,4,1,"","device"],[113,2,1,"","double"],[113,4,1,"","dtype"],[113,3,1,"","dump_patches"],[113,4,1,"","epochs_trained"],[113,2,1,"","eval"],[113,4,1,"","example_input_array"],[113,2,1,"","extra_repr"],[113,4,1,"","fabric"],[113,2,1,"","float"],[113,2,1,"","forward"],[113,2,1,"","freeze"],[113,2,1,"","get_buffer"],[113,2,1,"","get_extra_state"],[113,2,1,"","get_parameter"],[113,2,1,"","get_submodule"],[113,4,1,"","global_rank"],[113,4,1,"","global_step"],[113,2,1,"","half"],[113,4,1,"","hparams"],[113,4,1,"","hparams_initial"],[113,2,1,"","ipu"],[113,2,1,"","load_from_checkpoint"],[113,2,1,"","load_state_dict"],[113,4,1,"","local_rank"],[113,2,1,"","log"],[113,2,1,"","log_dict"],[113,4,1,"","logger"],[113,4,1,"","loggers"],[113,2,1,"","lr_scheduler_step"],[113,2,1,"","lr_schedulers"],[113,2,1,"","manual_backward"],[113,2,1,"","modules"],[113,2,1,"","named_buffers"],[113,2,1,"","named_children"],[113,2,1,"","named_modules"],[113,2,1,"","named_parameters"],[113,2,1,"","on_after_backward"],[113,2,1,"","on_after_batch_transfer"],[113,2,1,"","on_before_backward"],[113,2,1,"","on_before_batch_transfer"],[113,2,1,"","on_before_optimizer_step"],[113,2,1,"","on_before_zero_grad"],[113,2,1,"","on_fit_end"],[113,2,1,"","on_fit_start"],[113,4,1,"","on_gpu"],[113,2,1,"","on_load_checkpoint"],[113,2,1,"","on_predict_batch_end"],[113,2,1,"","on_predict_batch_start"],[113,2,1,"","on_predict_end"],[113,2,1,"","on_predict_epoch_end"],[113,2,1,"","on_predict_epoch_start"],[113,2,1,"","on_predict_model_eval"],[113,2,1,"","on_predict_start"],[113,2,1,"","on_save_checkpoint"],[113,2,1,"","on_test_batch_end"],[113,2,1,"","on_test_batch_start"],[113,2,1,"","on_test_end"],[113,2,1,"","on_test_epoch_end"],[113,2,1,"","on_test_epoch_start"],[113,2,1,"","on_test_model_eval"],[113,2,1,"","on_test_model_train"],[113,2,1,"","on_test_start"],[113,2,1,"","on_train_batch_end"],[113,2,1,"","on_train_batch_start"],[113,2,1,"","on_train_end"],[113,2,1,"","on_train_epoch_end"],[113,2,1,"","on_train_epoch_start"],[113,2,1,"","on_train_start"],[113,2,1,"","on_validation_batch_end"],[113,2,1,"","on_validation_batch_start"],[113,2,1,"","on_validation_end"],[113,2,1,"","on_validation_epoch_end"],[113,2,1,"","on_validation_epoch_start"],[113,2,1,"","on_validation_model_eval"],[113,2,1,"","on_validation_model_train"],[113,2,1,"","on_validation_model_zero_grad"],[113,2,1,"","on_validation_start"],[113,2,1,"","optimizer_step"],[113,2,1,"","optimizer_zero_grad"],[113,2,1,"","optimizers"],[113,4,1,"","output_chunk_length"],[113,2,1,"","parameters"],[113,3,1,"","pred_batch_size"],[113,3,1,"","pred_n"],[113,3,1,"","pred_n_jobs"],[113,3,1,"","pred_num_samples"],[113,3,1,"","pred_roll_size"],[113,2,1,"","predict_dataloader"],[113,3,1,"","predict_likelihood_parameters"],[113,2,1,"","predict_step"],[113,2,1,"","prepare_data"],[113,3,1,"","prepare_data_per_node"],[113,2,1,"","print"],[113,2,1,"","register_backward_hook"],[113,2,1,"","register_buffer"],[113,2,1,"","register_forward_hook"],[113,2,1,"","register_forward_pre_hook"],[113,2,1,"","register_full_backward_hook"],[113,2,1,"","register_full_backward_pre_hook"],[113,2,1,"","register_load_state_dict_post_hook"],[113,2,1,"","register_module"],[113,2,1,"","register_parameter"],[113,2,1,"","register_state_dict_pre_hook"],[113,2,1,"","requires_grad_"],[113,2,1,"","save_hyperparameters"],[113,2,1,"","set_extra_state"],[113,2,1,"","set_mc_dropout"],[113,2,1,"","set_predict_parameters"],[113,2,1,"","setup"],[113,2,1,"","share_memory"],[113,2,1,"","state_dict"],[113,2,1,"","teardown"],[113,2,1,"","test_dataloader"],[113,2,1,"","test_step"],[113,2,1,"","to"],[113,2,1,"","to_dtype"],[113,2,1,"","to_empty"],[113,2,1,"","to_onnx"],[113,2,1,"","to_torchscript"],[113,2,1,"","toggle_optimizer"],[113,2,1,"","train"],[113,2,1,"","train_dataloader"],[113,4,1,"","trainer"],[113,3,1,"","training"],[113,2,1,"","training_step"],[113,2,1,"","transfer_batch_to_device"],[113,2,1,"","type"],[113,2,1,"","unfreeze"],[113,2,1,"","untoggle_optimizer"],[113,2,1,"","val_dataloader"],[113,2,1,"","validation_step"],[113,2,1,"","xpu"],[113,2,1,"","zero_grad"]],"darts.models.forecasting.pl_forecasting_module.PLMixedCovariatesModule":[[113,3,1,"","CHECKPOINT_HYPER_PARAMS_KEY"],[113,3,1,"","CHECKPOINT_HYPER_PARAMS_NAME"],[113,3,1,"","CHECKPOINT_HYPER_PARAMS_TYPE"],[113,3,1,"","T_destination"],[113,2,1,"","add_module"],[113,2,1,"","all_gather"],[113,3,1,"","allow_zero_length_dataloader_with_multiple_devices"],[113,2,1,"","apply"],[113,4,1,"","automatic_optimization"],[113,2,1,"","backward"],[113,2,1,"","bfloat16"],[113,2,1,"","buffers"],[113,3,1,"","call_super_init"],[113,2,1,"","children"],[113,2,1,"","clip_gradients"],[113,2,1,"","compile"],[113,2,1,"","configure_callbacks"],[113,2,1,"","configure_gradient_clipping"],[113,2,1,"","configure_model"],[113,2,1,"","configure_optimizers"],[113,2,1,"","configure_sharded_model"],[113,2,1,"","configure_torch_metrics"],[113,2,1,"","cpu"],[113,2,1,"","cuda"],[113,4,1,"","current_epoch"],[113,4,1,"","device"],[113,2,1,"","double"],[113,4,1,"","dtype"],[113,3,1,"","dump_patches"],[113,4,1,"","epochs_trained"],[113,2,1,"","eval"],[113,4,1,"","example_input_array"],[113,2,1,"","extra_repr"],[113,4,1,"","fabric"],[113,2,1,"","float"],[113,2,1,"","forward"],[113,2,1,"","freeze"],[113,2,1,"","get_buffer"],[113,2,1,"","get_extra_state"],[113,2,1,"","get_parameter"],[113,2,1,"","get_submodule"],[113,4,1,"","global_rank"],[113,4,1,"","global_step"],[113,2,1,"","half"],[113,4,1,"","hparams"],[113,4,1,"","hparams_initial"],[113,2,1,"","ipu"],[113,2,1,"","load_from_checkpoint"],[113,2,1,"","load_state_dict"],[113,4,1,"","local_rank"],[113,2,1,"","log"],[113,2,1,"","log_dict"],[113,4,1,"","logger"],[113,4,1,"","loggers"],[113,2,1,"","lr_scheduler_step"],[113,2,1,"","lr_schedulers"],[113,2,1,"","manual_backward"],[113,2,1,"","modules"],[113,2,1,"","named_buffers"],[113,2,1,"","named_children"],[113,2,1,"","named_modules"],[113,2,1,"","named_parameters"],[113,2,1,"","on_after_backward"],[113,2,1,"","on_after_batch_transfer"],[113,2,1,"","on_before_backward"],[113,2,1,"","on_before_batch_transfer"],[113,2,1,"","on_before_optimizer_step"],[113,2,1,"","on_before_zero_grad"],[113,2,1,"","on_fit_end"],[113,2,1,"","on_fit_start"],[113,4,1,"","on_gpu"],[113,2,1,"","on_load_checkpoint"],[113,2,1,"","on_predict_batch_end"],[113,2,1,"","on_predict_batch_start"],[113,2,1,"","on_predict_end"],[113,2,1,"","on_predict_epoch_end"],[113,2,1,"","on_predict_epoch_start"],[113,2,1,"","on_predict_model_eval"],[113,2,1,"","on_predict_start"],[113,2,1,"","on_save_checkpoint"],[113,2,1,"","on_test_batch_end"],[113,2,1,"","on_test_batch_start"],[113,2,1,"","on_test_end"],[113,2,1,"","on_test_epoch_end"],[113,2,1,"","on_test_epoch_start"],[113,2,1,"","on_test_model_eval"],[113,2,1,"","on_test_model_train"],[113,2,1,"","on_test_start"],[113,2,1,"","on_train_batch_end"],[113,2,1,"","on_train_batch_start"],[113,2,1,"","on_train_end"],[113,2,1,"","on_train_epoch_end"],[113,2,1,"","on_train_epoch_start"],[113,2,1,"","on_train_start"],[113,2,1,"","on_validation_batch_end"],[113,2,1,"","on_validation_batch_start"],[113,2,1,"","on_validation_end"],[113,2,1,"","on_validation_epoch_end"],[113,2,1,"","on_validation_epoch_start"],[113,2,1,"","on_validation_model_eval"],[113,2,1,"","on_validation_model_train"],[113,2,1,"","on_validation_model_zero_grad"],[113,2,1,"","on_validation_start"],[113,2,1,"","optimizer_step"],[113,2,1,"","optimizer_zero_grad"],[113,2,1,"","optimizers"],[113,4,1,"","output_chunk_length"],[113,2,1,"","parameters"],[113,3,1,"","pred_batch_size"],[113,3,1,"","pred_n"],[113,3,1,"","pred_n_jobs"],[113,3,1,"","pred_num_samples"],[113,3,1,"","pred_roll_size"],[113,2,1,"","predict_dataloader"],[113,3,1,"","predict_likelihood_parameters"],[113,2,1,"","predict_step"],[113,2,1,"","prepare_data"],[113,3,1,"","prepare_data_per_node"],[113,2,1,"","print"],[113,2,1,"","register_backward_hook"],[113,2,1,"","register_buffer"],[113,2,1,"","register_forward_hook"],[113,2,1,"","register_forward_pre_hook"],[113,2,1,"","register_full_backward_hook"],[113,2,1,"","register_full_backward_pre_hook"],[113,2,1,"","register_load_state_dict_post_hook"],[113,2,1,"","register_module"],[113,2,1,"","register_parameter"],[113,2,1,"","register_state_dict_pre_hook"],[113,2,1,"","requires_grad_"],[113,2,1,"","save_hyperparameters"],[113,2,1,"","set_extra_state"],[113,2,1,"","set_mc_dropout"],[113,2,1,"","set_predict_parameters"],[113,2,1,"","setup"],[113,2,1,"","share_memory"],[113,2,1,"","state_dict"],[113,2,1,"","teardown"],[113,2,1,"","test_dataloader"],[113,2,1,"","test_step"],[113,2,1,"","to"],[113,2,1,"","to_dtype"],[113,2,1,"","to_empty"],[113,2,1,"","to_onnx"],[113,2,1,"","to_torchscript"],[113,2,1,"","toggle_optimizer"],[113,2,1,"","train"],[113,2,1,"","train_dataloader"],[113,4,1,"","trainer"],[113,3,1,"","training"],[113,2,1,"","training_step"],[113,2,1,"","transfer_batch_to_device"],[113,2,1,"","type"],[113,2,1,"","unfreeze"],[113,2,1,"","untoggle_optimizer"],[113,2,1,"","val_dataloader"],[113,2,1,"","validation_step"],[113,2,1,"","xpu"],[113,2,1,"","zero_grad"]],"darts.models.forecasting.pl_forecasting_module.PLPastCovariatesModule":[[113,3,1,"","CHECKPOINT_HYPER_PARAMS_KEY"],[113,3,1,"","CHECKPOINT_HYPER_PARAMS_NAME"],[113,3,1,"","CHECKPOINT_HYPER_PARAMS_TYPE"],[113,3,1,"","T_destination"],[113,2,1,"","add_module"],[113,2,1,"","all_gather"],[113,3,1,"","allow_zero_length_dataloader_with_multiple_devices"],[113,2,1,"","apply"],[113,4,1,"","automatic_optimization"],[113,2,1,"","backward"],[113,2,1,"","bfloat16"],[113,2,1,"","buffers"],[113,3,1,"","call_super_init"],[113,2,1,"","children"],[113,2,1,"","clip_gradients"],[113,2,1,"","compile"],[113,2,1,"","configure_callbacks"],[113,2,1,"","configure_gradient_clipping"],[113,2,1,"","configure_model"],[113,2,1,"","configure_optimizers"],[113,2,1,"","configure_sharded_model"],[113,2,1,"","configure_torch_metrics"],[113,2,1,"","cpu"],[113,2,1,"","cuda"],[113,4,1,"","current_epoch"],[113,4,1,"","device"],[113,2,1,"","double"],[113,4,1,"","dtype"],[113,3,1,"","dump_patches"],[113,4,1,"","epochs_trained"],[113,2,1,"","eval"],[113,4,1,"","example_input_array"],[113,2,1,"","extra_repr"],[113,4,1,"","fabric"],[113,2,1,"","float"],[113,2,1,"","forward"],[113,2,1,"","freeze"],[113,2,1,"","get_buffer"],[113,2,1,"","get_extra_state"],[113,2,1,"","get_parameter"],[113,2,1,"","get_submodule"],[113,4,1,"","global_rank"],[113,4,1,"","global_step"],[113,2,1,"","half"],[113,4,1,"","hparams"],[113,4,1,"","hparams_initial"],[113,2,1,"","ipu"],[113,2,1,"","load_from_checkpoint"],[113,2,1,"","load_state_dict"],[113,4,1,"","local_rank"],[113,2,1,"","log"],[113,2,1,"","log_dict"],[113,4,1,"","logger"],[113,4,1,"","loggers"],[113,2,1,"","lr_scheduler_step"],[113,2,1,"","lr_schedulers"],[113,2,1,"","manual_backward"],[113,2,1,"","modules"],[113,2,1,"","named_buffers"],[113,2,1,"","named_children"],[113,2,1,"","named_modules"],[113,2,1,"","named_parameters"],[113,2,1,"","on_after_backward"],[113,2,1,"","on_after_batch_transfer"],[113,2,1,"","on_before_backward"],[113,2,1,"","on_before_batch_transfer"],[113,2,1,"","on_before_optimizer_step"],[113,2,1,"","on_before_zero_grad"],[113,2,1,"","on_fit_end"],[113,2,1,"","on_fit_start"],[113,4,1,"","on_gpu"],[113,2,1,"","on_load_checkpoint"],[113,2,1,"","on_predict_batch_end"],[113,2,1,"","on_predict_batch_start"],[113,2,1,"","on_predict_end"],[113,2,1,"","on_predict_epoch_end"],[113,2,1,"","on_predict_epoch_start"],[113,2,1,"","on_predict_model_eval"],[113,2,1,"","on_predict_start"],[113,2,1,"","on_save_checkpoint"],[113,2,1,"","on_test_batch_end"],[113,2,1,"","on_test_batch_start"],[113,2,1,"","on_test_end"],[113,2,1,"","on_test_epoch_end"],[113,2,1,"","on_test_epoch_start"],[113,2,1,"","on_test_model_eval"],[113,2,1,"","on_test_model_train"],[113,2,1,"","on_test_start"],[113,2,1,"","on_train_batch_end"],[113,2,1,"","on_train_batch_start"],[113,2,1,"","on_train_end"],[113,2,1,"","on_train_epoch_end"],[113,2,1,"","on_train_epoch_start"],[113,2,1,"","on_train_start"],[113,2,1,"","on_validation_batch_end"],[113,2,1,"","on_validation_batch_start"],[113,2,1,"","on_validation_end"],[113,2,1,"","on_validation_epoch_end"],[113,2,1,"","on_validation_epoch_start"],[113,2,1,"","on_validation_model_eval"],[113,2,1,"","on_validation_model_train"],[113,2,1,"","on_validation_model_zero_grad"],[113,2,1,"","on_validation_start"],[113,2,1,"","optimizer_step"],[113,2,1,"","optimizer_zero_grad"],[113,2,1,"","optimizers"],[113,4,1,"","output_chunk_length"],[113,2,1,"","parameters"],[113,3,1,"","pred_batch_size"],[113,3,1,"","pred_n"],[113,3,1,"","pred_n_jobs"],[113,3,1,"","pred_num_samples"],[113,3,1,"","pred_roll_size"],[113,2,1,"","predict_dataloader"],[113,3,1,"","predict_likelihood_parameters"],[113,2,1,"","predict_step"],[113,2,1,"","prepare_data"],[113,3,1,"","prepare_data_per_node"],[113,2,1,"","print"],[113,2,1,"","register_backward_hook"],[113,2,1,"","register_buffer"],[113,2,1,"","register_forward_hook"],[113,2,1,"","register_forward_pre_hook"],[113,2,1,"","register_full_backward_hook"],[113,2,1,"","register_full_backward_pre_hook"],[113,2,1,"","register_load_state_dict_post_hook"],[113,2,1,"","register_module"],[113,2,1,"","register_parameter"],[113,2,1,"","register_state_dict_pre_hook"],[113,2,1,"","requires_grad_"],[113,2,1,"","save_hyperparameters"],[113,2,1,"","set_extra_state"],[113,2,1,"","set_mc_dropout"],[113,2,1,"","set_predict_parameters"],[113,2,1,"","setup"],[113,2,1,"","share_memory"],[113,2,1,"","state_dict"],[113,2,1,"","teardown"],[113,2,1,"","test_dataloader"],[113,2,1,"","test_step"],[113,2,1,"","to"],[113,2,1,"","to_dtype"],[113,2,1,"","to_empty"],[113,2,1,"","to_onnx"],[113,2,1,"","to_torchscript"],[113,2,1,"","toggle_optimizer"],[113,2,1,"","train"],[113,2,1,"","train_dataloader"],[113,4,1,"","trainer"],[113,3,1,"","training"],[113,2,1,"","training_step"],[113,2,1,"","transfer_batch_to_device"],[113,2,1,"","type"],[113,2,1,"","unfreeze"],[113,2,1,"","untoggle_optimizer"],[113,2,1,"","val_dataloader"],[113,2,1,"","validation_step"],[113,2,1,"","xpu"],[113,2,1,"","zero_grad"]],"darts.models.forecasting.pl_forecasting_module.PLSplitCovariatesModule":[[113,3,1,"","CHECKPOINT_HYPER_PARAMS_KEY"],[113,3,1,"","CHECKPOINT_HYPER_PARAMS_NAME"],[113,3,1,"","CHECKPOINT_HYPER_PARAMS_TYPE"],[113,3,1,"","T_destination"],[113,2,1,"","add_module"],[113,2,1,"","all_gather"],[113,3,1,"","allow_zero_length_dataloader_with_multiple_devices"],[113,2,1,"","apply"],[113,4,1,"","automatic_optimization"],[113,2,1,"","backward"],[113,2,1,"","bfloat16"],[113,2,1,"","buffers"],[113,3,1,"","call_super_init"],[113,2,1,"","children"],[113,2,1,"","clip_gradients"],[113,2,1,"","compile"],[113,2,1,"","configure_callbacks"],[113,2,1,"","configure_gradient_clipping"],[113,2,1,"","configure_model"],[113,2,1,"","configure_optimizers"],[113,2,1,"","configure_sharded_model"],[113,2,1,"","configure_torch_metrics"],[113,2,1,"","cpu"],[113,2,1,"","cuda"],[113,4,1,"","current_epoch"],[113,4,1,"","device"],[113,2,1,"","double"],[113,4,1,"","dtype"],[113,3,1,"","dump_patches"],[113,4,1,"","epochs_trained"],[113,2,1,"","eval"],[113,4,1,"","example_input_array"],[113,2,1,"","extra_repr"],[113,4,1,"","fabric"],[113,2,1,"","float"],[113,2,1,"","forward"],[113,2,1,"","freeze"],[113,2,1,"","get_buffer"],[113,2,1,"","get_extra_state"],[113,2,1,"","get_parameter"],[113,2,1,"","get_submodule"],[113,4,1,"","global_rank"],[113,4,1,"","global_step"],[113,2,1,"","half"],[113,4,1,"","hparams"],[113,4,1,"","hparams_initial"],[113,2,1,"","ipu"],[113,2,1,"","load_from_checkpoint"],[113,2,1,"","load_state_dict"],[113,4,1,"","local_rank"],[113,2,1,"","log"],[113,2,1,"","log_dict"],[113,4,1,"","logger"],[113,4,1,"","loggers"],[113,2,1,"","lr_scheduler_step"],[113,2,1,"","lr_schedulers"],[113,2,1,"","manual_backward"],[113,2,1,"","modules"],[113,2,1,"","named_buffers"],[113,2,1,"","named_children"],[113,2,1,"","named_modules"],[113,2,1,"","named_parameters"],[113,2,1,"","on_after_backward"],[113,2,1,"","on_after_batch_transfer"],[113,2,1,"","on_before_backward"],[113,2,1,"","on_before_batch_transfer"],[113,2,1,"","on_before_optimizer_step"],[113,2,1,"","on_before_zero_grad"],[113,2,1,"","on_fit_end"],[113,2,1,"","on_fit_start"],[113,4,1,"","on_gpu"],[113,2,1,"","on_load_checkpoint"],[113,2,1,"","on_predict_batch_end"],[113,2,1,"","on_predict_batch_start"],[113,2,1,"","on_predict_end"],[113,2,1,"","on_predict_epoch_end"],[113,2,1,"","on_predict_epoch_start"],[113,2,1,"","on_predict_model_eval"],[113,2,1,"","on_predict_start"],[113,2,1,"","on_save_checkpoint"],[113,2,1,"","on_test_batch_end"],[113,2,1,"","on_test_batch_start"],[113,2,1,"","on_test_end"],[113,2,1,"","on_test_epoch_end"],[113,2,1,"","on_test_epoch_start"],[113,2,1,"","on_test_model_eval"],[113,2,1,"","on_test_model_train"],[113,2,1,"","on_test_start"],[113,2,1,"","on_train_batch_end"],[113,2,1,"","on_train_batch_start"],[113,2,1,"","on_train_end"],[113,2,1,"","on_train_epoch_end"],[113,2,1,"","on_train_epoch_start"],[113,2,1,"","on_train_start"],[113,2,1,"","on_validation_batch_end"],[113,2,1,"","on_validation_batch_start"],[113,2,1,"","on_validation_end"],[113,2,1,"","on_validation_epoch_end"],[113,2,1,"","on_validation_epoch_start"],[113,2,1,"","on_validation_model_eval"],[113,2,1,"","on_validation_model_train"],[113,2,1,"","on_validation_model_zero_grad"],[113,2,1,"","on_validation_start"],[113,2,1,"","optimizer_step"],[113,2,1,"","optimizer_zero_grad"],[113,2,1,"","optimizers"],[113,4,1,"","output_chunk_length"],[113,2,1,"","parameters"],[113,3,1,"","pred_batch_size"],[113,3,1,"","pred_n"],[113,3,1,"","pred_n_jobs"],[113,3,1,"","pred_num_samples"],[113,3,1,"","pred_roll_size"],[113,2,1,"","predict_dataloader"],[113,3,1,"","predict_likelihood_parameters"],[113,2,1,"","predict_step"],[113,2,1,"","prepare_data"],[113,3,1,"","prepare_data_per_node"],[113,2,1,"","print"],[113,2,1,"","register_backward_hook"],[113,2,1,"","register_buffer"],[113,2,1,"","register_forward_hook"],[113,2,1,"","register_forward_pre_hook"],[113,2,1,"","register_full_backward_hook"],[113,2,1,"","register_full_backward_pre_hook"],[113,2,1,"","register_load_state_dict_post_hook"],[113,2,1,"","register_module"],[113,2,1,"","register_parameter"],[113,2,1,"","register_state_dict_pre_hook"],[113,2,1,"","requires_grad_"],[113,2,1,"","save_hyperparameters"],[113,2,1,"","set_extra_state"],[113,2,1,"","set_mc_dropout"],[113,2,1,"","set_predict_parameters"],[113,2,1,"","setup"],[113,2,1,"","share_memory"],[113,2,1,"","state_dict"],[113,2,1,"","teardown"],[113,2,1,"","test_dataloader"],[113,2,1,"","test_step"],[113,2,1,"","to"],[113,2,1,"","to_dtype"],[113,2,1,"","to_empty"],[113,2,1,"","to_onnx"],[113,2,1,"","to_torchscript"],[113,2,1,"","toggle_optimizer"],[113,2,1,"","train"],[113,2,1,"","train_dataloader"],[113,4,1,"","trainer"],[113,3,1,"","training"],[113,2,1,"","training_step"],[113,2,1,"","transfer_batch_to_device"],[113,2,1,"","type"],[113,2,1,"","unfreeze"],[113,2,1,"","untoggle_optimizer"],[113,2,1,"","val_dataloader"],[113,2,1,"","validation_step"],[113,2,1,"","xpu"],[113,2,1,"","zero_grad"]],"darts.models.forecasting.prophet_model":[[114,1,1,"","Prophet"]],"darts.models.forecasting.prophet_model.Prophet":[[114,2,1,"","add_seasonality"],[114,2,1,"","backtest"],[114,4,1,"","considers_static_covariates"],[114,4,1,"","extreme_lags"],[114,2,1,"","fit"],[114,2,1,"","generate_fit_encodings"],[114,2,1,"","generate_fit_predict_encodings"],[114,2,1,"","generate_predict_encodings"],[114,2,1,"","gridsearch"],[114,2,1,"","historical_forecasts"],[114,2,1,"","load"],[114,4,1,"","min_train_samples"],[114,4,1,"","model_params"],[114,4,1,"","output_chunk_length"],[114,2,1,"","predict"],[114,2,1,"","predict_raw"],[114,2,1,"","residuals"],[114,2,1,"","save"],[114,4,1,"","supports_future_covariates"],[114,4,1,"","supports_likelihood_parameter_prediction"],[114,4,1,"","supports_multivariate"],[114,4,1,"","supports_optimized_historical_forecasts"],[114,4,1,"","supports_past_covariates"],[114,4,1,"","supports_static_covariates"],[114,4,1,"","uses_future_covariates"],[114,4,1,"","uses_past_covariates"],[114,4,1,"","uses_static_covariates"]],"darts.models.forecasting.random_forest":[[115,1,1,"","RandomForest"]],"darts.models.forecasting.random_forest.RandomForest":[[115,2,1,"","backtest"],[115,4,1,"","considers_static_covariates"],[115,4,1,"","extreme_lags"],[115,2,1,"","fit"],[115,2,1,"","generate_fit_encodings"],[115,2,1,"","generate_fit_predict_encodings"],[115,2,1,"","generate_predict_encodings"],[115,2,1,"","get_multioutput_estimator"],[115,2,1,"","gridsearch"],[115,2,1,"","historical_forecasts"],[115,4,1,"","lagged_feature_names"],[115,2,1,"","load"],[115,4,1,"","min_train_samples"],[115,4,1,"","model_params"],[115,4,1,"","output_chunk_length"],[115,2,1,"","predict"],[115,2,1,"","residuals"],[115,2,1,"","save"],[115,4,1,"","supports_future_covariates"],[115,4,1,"","supports_likelihood_parameter_prediction"],[115,4,1,"","supports_multivariate"],[115,4,1,"","supports_optimized_historical_forecasts"],[115,4,1,"","supports_past_covariates"],[115,4,1,"","supports_static_covariates"],[115,4,1,"","uses_future_covariates"],[115,4,1,"","uses_past_covariates"],[115,4,1,"","uses_static_covariates"]],"darts.models.forecasting.regression_ensemble_model":[[116,1,1,"","RegressionEnsembleModel"]],"darts.models.forecasting.regression_ensemble_model.RegressionEnsembleModel":[[116,2,1,"","backtest"],[116,4,1,"","considers_static_covariates"],[116,2,1,"","ensemble"],[116,4,1,"","extreme_lags"],[116,2,1,"","fit"],[116,2,1,"","generate_fit_encodings"],[116,2,1,"","generate_fit_predict_encodings"],[116,2,1,"","generate_predict_encodings"],[116,2,1,"","gridsearch"],[116,2,1,"","historical_forecasts"],[116,2,1,"","load"],[116,4,1,"","min_train_samples"],[116,4,1,"","model_params"],[116,4,1,"","output_chunk_length"],[116,2,1,"","predict"],[116,2,1,"","residuals"],[116,2,1,"","save"],[116,4,1,"","supports_future_covariates"],[116,4,1,"","supports_likelihood_parameter_prediction"],[116,4,1,"","supports_multivariate"],[116,4,1,"","supports_optimized_historical_forecasts"],[116,4,1,"","supports_past_covariates"],[116,4,1,"","supports_static_covariates"],[116,4,1,"","uses_future_covariates"],[116,4,1,"","uses_past_covariates"],[116,4,1,"","uses_static_covariates"]],"darts.models.forecasting.regression_model":[[117,1,1,"","RegressionModel"],[117,1,1,"","RegressionModelWithCategoricalCovariates"]],"darts.models.forecasting.regression_model.RegressionModel":[[117,2,1,"","backtest"],[117,4,1,"","considers_static_covariates"],[117,4,1,"","extreme_lags"],[117,2,1,"","fit"],[117,2,1,"","generate_fit_encodings"],[117,2,1,"","generate_fit_predict_encodings"],[117,2,1,"","generate_predict_encodings"],[117,2,1,"","get_multioutput_estimator"],[117,2,1,"","gridsearch"],[117,2,1,"","historical_forecasts"],[117,4,1,"","lagged_feature_names"],[117,2,1,"","load"],[117,4,1,"","min_train_samples"],[117,4,1,"","model_params"],[117,4,1,"","output_chunk_length"],[117,2,1,"","predict"],[117,2,1,"","residuals"],[117,2,1,"","save"],[117,4,1,"","supports_future_covariates"],[117,4,1,"","supports_likelihood_parameter_prediction"],[117,4,1,"","supports_multivariate"],[117,4,1,"","supports_optimized_historical_forecasts"],[117,4,1,"","supports_past_covariates"],[117,4,1,"","supports_static_covariates"],[117,4,1,"","uses_future_covariates"],[117,4,1,"","uses_past_covariates"],[117,4,1,"","uses_static_covariates"]],"darts.models.forecasting.regression_model.RegressionModelWithCategoricalCovariates":[[117,2,1,"","backtest"],[117,4,1,"","considers_static_covariates"],[117,4,1,"","extreme_lags"],[117,2,1,"","fit"],[117,2,1,"","generate_fit_encodings"],[117,2,1,"","generate_fit_predict_encodings"],[117,2,1,"","generate_predict_encodings"],[117,2,1,"","get_multioutput_estimator"],[117,2,1,"","gridsearch"],[117,2,1,"","historical_forecasts"],[117,4,1,"","lagged_feature_names"],[117,2,1,"","load"],[117,4,1,"","min_train_samples"],[117,4,1,"","model_params"],[117,4,1,"","output_chunk_length"],[117,2,1,"","predict"],[117,2,1,"","residuals"],[117,2,1,"","save"],[117,4,1,"","supports_future_covariates"],[117,4,1,"","supports_likelihood_parameter_prediction"],[117,4,1,"","supports_multivariate"],[117,4,1,"","supports_optimized_historical_forecasts"],[117,4,1,"","supports_past_covariates"],[117,4,1,"","supports_static_covariates"],[117,4,1,"","uses_future_covariates"],[117,4,1,"","uses_past_covariates"],[117,4,1,"","uses_static_covariates"]],"darts.models.forecasting.rnn_model":[[118,1,1,"","RNNModel"]],"darts.models.forecasting.rnn_model.RNNModel":[[118,2,1,"","backtest"],[118,4,1,"","considers_static_covariates"],[118,4,1,"","epochs_trained"],[118,4,1,"","extreme_lags"],[118,2,1,"","fit"],[118,2,1,"","fit_from_dataset"],[118,2,1,"","generate_fit_encodings"],[118,2,1,"","generate_fit_predict_encodings"],[118,2,1,"","generate_predict_encodings"],[118,2,1,"","gridsearch"],[118,2,1,"","historical_forecasts"],[118,4,1,"","input_chunk_length"],[118,4,1,"","likelihood"],[118,2,1,"","load"],[118,2,1,"","load_from_checkpoint"],[118,2,1,"","load_weights"],[118,2,1,"","load_weights_from_checkpoint"],[118,2,1,"","lr_find"],[118,4,1,"","min_train_samples"],[118,4,1,"","model_created"],[118,4,1,"","model_params"],[118,4,1,"","output_chunk_length"],[118,2,1,"","predict"],[118,2,1,"","predict_from_dataset"],[118,2,1,"","reset_model"],[118,2,1,"","residuals"],[118,2,1,"","save"],[118,4,1,"","supports_future_covariates"],[118,4,1,"","supports_likelihood_parameter_prediction"],[118,4,1,"","supports_multivariate"],[118,4,1,"","supports_optimized_historical_forecasts"],[118,3,1,"","supports_past_covariates"],[118,4,1,"","supports_static_covariates"],[118,2,1,"","to_cpu"],[118,4,1,"","uses_future_covariates"],[118,4,1,"","uses_past_covariates"],[118,4,1,"","uses_static_covariates"]],"darts.models.forecasting.sf_auto_arima":[[119,1,1,"","StatsForecastAutoARIMA"]],"darts.models.forecasting.sf_auto_arima.StatsForecastAutoARIMA":[[119,2,1,"","backtest"],[119,4,1,"","considers_static_covariates"],[119,4,1,"","extreme_lags"],[119,2,1,"","fit"],[119,2,1,"","generate_fit_encodings"],[119,2,1,"","generate_fit_predict_encodings"],[119,2,1,"","generate_predict_encodings"],[119,2,1,"","gridsearch"],[119,2,1,"","historical_forecasts"],[119,2,1,"","load"],[119,4,1,"","min_train_samples"],[119,4,1,"","model_params"],[119,4,1,"","output_chunk_length"],[119,2,1,"","predict"],[119,2,1,"","residuals"],[119,2,1,"","save"],[119,4,1,"","supports_future_covariates"],[119,4,1,"","supports_likelihood_parameter_prediction"],[119,4,1,"","supports_multivariate"],[119,4,1,"","supports_optimized_historical_forecasts"],[119,4,1,"","supports_past_covariates"],[119,4,1,"","supports_static_covariates"],[119,4,1,"","uses_future_covariates"],[119,4,1,"","uses_past_covariates"],[119,4,1,"","uses_static_covariates"]],"darts.models.forecasting.sf_auto_ces":[[120,1,1,"","StatsForecastAutoCES"]],"darts.models.forecasting.sf_auto_ces.StatsForecastAutoCES":[[120,2,1,"","backtest"],[120,4,1,"","considers_static_covariates"],[120,4,1,"","extreme_lags"],[120,2,1,"","fit"],[120,2,1,"","generate_fit_encodings"],[120,2,1,"","generate_fit_predict_encodings"],[120,2,1,"","generate_predict_encodings"],[120,2,1,"","gridsearch"],[120,2,1,"","historical_forecasts"],[120,2,1,"","load"],[120,4,1,"","min_train_samples"],[120,4,1,"","model_params"],[120,4,1,"","output_chunk_length"],[120,2,1,"","predict"],[120,2,1,"","residuals"],[120,2,1,"","save"],[120,4,1,"","supports_future_covariates"],[120,4,1,"","supports_likelihood_parameter_prediction"],[120,4,1,"","supports_multivariate"],[120,4,1,"","supports_optimized_historical_forecasts"],[120,4,1,"","supports_past_covariates"],[120,4,1,"","supports_static_covariates"],[120,4,1,"","uses_future_covariates"],[120,4,1,"","uses_past_covariates"],[120,4,1,"","uses_static_covariates"]],"darts.models.forecasting.sf_auto_ets":[[121,1,1,"","StatsForecastAutoETS"]],"darts.models.forecasting.sf_auto_ets.StatsForecastAutoETS":[[121,2,1,"","backtest"],[121,4,1,"","considers_static_covariates"],[121,4,1,"","extreme_lags"],[121,2,1,"","fit"],[121,2,1,"","generate_fit_encodings"],[121,2,1,"","generate_fit_predict_encodings"],[121,2,1,"","generate_predict_encodings"],[121,2,1,"","gridsearch"],[121,2,1,"","historical_forecasts"],[121,2,1,"","load"],[121,4,1,"","min_train_samples"],[121,4,1,"","model_params"],[121,4,1,"","output_chunk_length"],[121,2,1,"","predict"],[121,2,1,"","residuals"],[121,2,1,"","save"],[121,4,1,"","supports_future_covariates"],[121,4,1,"","supports_likelihood_parameter_prediction"],[121,4,1,"","supports_multivariate"],[121,4,1,"","supports_optimized_historical_forecasts"],[121,4,1,"","supports_past_covariates"],[121,4,1,"","supports_static_covariates"],[121,4,1,"","uses_future_covariates"],[121,4,1,"","uses_past_covariates"],[121,4,1,"","uses_static_covariates"]],"darts.models.forecasting.sf_auto_theta":[[122,1,1,"","StatsForecastAutoTheta"]],"darts.models.forecasting.sf_auto_theta.StatsForecastAutoTheta":[[122,2,1,"","backtest"],[122,4,1,"","considers_static_covariates"],[122,4,1,"","extreme_lags"],[122,2,1,"","fit"],[122,2,1,"","generate_fit_encodings"],[122,2,1,"","generate_fit_predict_encodings"],[122,2,1,"","generate_predict_encodings"],[122,2,1,"","gridsearch"],[122,2,1,"","historical_forecasts"],[122,2,1,"","load"],[122,4,1,"","min_train_samples"],[122,4,1,"","model_params"],[122,4,1,"","output_chunk_length"],[122,2,1,"","predict"],[122,2,1,"","residuals"],[122,2,1,"","save"],[122,4,1,"","supports_future_covariates"],[122,4,1,"","supports_likelihood_parameter_prediction"],[122,4,1,"","supports_multivariate"],[122,4,1,"","supports_optimized_historical_forecasts"],[122,4,1,"","supports_past_covariates"],[122,4,1,"","supports_static_covariates"],[122,4,1,"","uses_future_covariates"],[122,4,1,"","uses_past_covariates"],[122,4,1,"","uses_static_covariates"]],"darts.models.forecasting.tbats_model":[[123,1,1,"","BATS"],[123,1,1,"","TBATS"]],"darts.models.forecasting.tbats_model.BATS":[[123,2,1,"","backtest"],[123,4,1,"","considers_static_covariates"],[123,4,1,"","extreme_lags"],[123,2,1,"","fit"],[123,2,1,"","generate_fit_encodings"],[123,2,1,"","generate_fit_predict_encodings"],[123,2,1,"","generate_predict_encodings"],[123,2,1,"","gridsearch"],[123,2,1,"","historical_forecasts"],[123,2,1,"","load"],[123,4,1,"","min_train_samples"],[123,4,1,"","model_params"],[123,4,1,"","output_chunk_length"],[123,2,1,"","predict"],[123,2,1,"","residuals"],[123,2,1,"","save"],[123,4,1,"","supports_future_covariates"],[123,4,1,"","supports_likelihood_parameter_prediction"],[123,4,1,"","supports_multivariate"],[123,4,1,"","supports_optimized_historical_forecasts"],[123,4,1,"","supports_past_covariates"],[123,4,1,"","supports_static_covariates"],[123,4,1,"","uses_future_covariates"],[123,4,1,"","uses_past_covariates"],[123,4,1,"","uses_static_covariates"]],"darts.models.forecasting.tbats_model.TBATS":[[123,2,1,"","backtest"],[123,4,1,"","considers_static_covariates"],[123,4,1,"","extreme_lags"],[123,2,1,"","fit"],[123,2,1,"","generate_fit_encodings"],[123,2,1,"","generate_fit_predict_encodings"],[123,2,1,"","generate_predict_encodings"],[123,2,1,"","gridsearch"],[123,2,1,"","historical_forecasts"],[123,2,1,"","load"],[123,4,1,"","min_train_samples"],[123,4,1,"","model_params"],[123,4,1,"","output_chunk_length"],[123,2,1,"","predict"],[123,2,1,"","residuals"],[123,2,1,"","save"],[123,4,1,"","supports_future_covariates"],[123,4,1,"","supports_likelihood_parameter_prediction"],[123,4,1,"","supports_multivariate"],[123,4,1,"","supports_optimized_historical_forecasts"],[123,4,1,"","supports_past_covariates"],[123,4,1,"","supports_static_covariates"],[123,4,1,"","uses_future_covariates"],[123,4,1,"","uses_past_covariates"],[123,4,1,"","uses_static_covariates"]],"darts.models.forecasting.tcn_model":[[124,1,1,"","TCNModel"]],"darts.models.forecasting.tcn_model.TCNModel":[[124,2,1,"","backtest"],[124,4,1,"","considers_static_covariates"],[124,4,1,"","epochs_trained"],[124,4,1,"","extreme_lags"],[124,2,1,"","fit"],[124,2,1,"","fit_from_dataset"],[124,2,1,"","generate_fit_encodings"],[124,2,1,"","generate_fit_predict_encodings"],[124,2,1,"","generate_predict_encodings"],[124,2,1,"","gridsearch"],[124,2,1,"","historical_forecasts"],[124,4,1,"","input_chunk_length"],[124,4,1,"","likelihood"],[124,2,1,"","load"],[124,2,1,"","load_from_checkpoint"],[124,2,1,"","load_weights"],[124,2,1,"","load_weights_from_checkpoint"],[124,2,1,"","lr_find"],[124,4,1,"","min_train_samples"],[124,4,1,"","model_created"],[124,4,1,"","model_params"],[124,4,1,"","output_chunk_length"],[124,2,1,"","predict"],[124,2,1,"","predict_from_dataset"],[124,2,1,"","reset_model"],[124,2,1,"","residuals"],[124,2,1,"","save"],[124,3,1,"","supports_future_covariates"],[124,4,1,"","supports_likelihood_parameter_prediction"],[124,4,1,"","supports_multivariate"],[124,4,1,"","supports_optimized_historical_forecasts"],[124,4,1,"","supports_past_covariates"],[124,4,1,"","supports_static_covariates"],[124,2,1,"","to_cpu"],[124,4,1,"","uses_future_covariates"],[124,4,1,"","uses_past_covariates"],[124,4,1,"","uses_static_covariates"]],"darts.models.forecasting.tft_model":[[125,1,1,"","TFTModel"]],"darts.models.forecasting.tft_model.TFTModel":[[125,2,1,"","backtest"],[125,4,1,"","considers_static_covariates"],[125,4,1,"","epochs_trained"],[125,4,1,"","extreme_lags"],[125,2,1,"","fit"],[125,2,1,"","fit_from_dataset"],[125,2,1,"","generate_fit_encodings"],[125,2,1,"","generate_fit_predict_encodings"],[125,2,1,"","generate_predict_encodings"],[125,2,1,"","gridsearch"],[125,2,1,"","historical_forecasts"],[125,4,1,"","input_chunk_length"],[125,4,1,"","likelihood"],[125,2,1,"","load"],[125,2,1,"","load_from_checkpoint"],[125,2,1,"","load_weights"],[125,2,1,"","load_weights_from_checkpoint"],[125,2,1,"","lr_find"],[125,4,1,"","min_train_samples"],[125,4,1,"","model_created"],[125,4,1,"","model_params"],[125,4,1,"","output_chunk_length"],[125,2,1,"","predict"],[125,2,1,"","predict_from_dataset"],[125,2,1,"","reset_model"],[125,2,1,"","residuals"],[125,2,1,"","save"],[125,4,1,"","supports_future_covariates"],[125,4,1,"","supports_likelihood_parameter_prediction"],[125,4,1,"","supports_multivariate"],[125,4,1,"","supports_optimized_historical_forecasts"],[125,4,1,"","supports_past_covariates"],[125,4,1,"","supports_static_covariates"],[125,2,1,"","to_cpu"],[125,4,1,"","uses_future_covariates"],[125,4,1,"","uses_past_covariates"],[125,4,1,"","uses_static_covariates"]],"darts.models.forecasting.tft_submodels":[[126,5,1,"","get_embedding_size"]],"darts.models.forecasting.theta":[[127,1,1,"","FourTheta"],[127,1,1,"","Theta"]],"darts.models.forecasting.theta.FourTheta":[[127,2,1,"","backtest"],[127,4,1,"","considers_static_covariates"],[127,4,1,"","extreme_lags"],[127,2,1,"","fit"],[127,2,1,"","generate_fit_encodings"],[127,2,1,"","generate_fit_predict_encodings"],[127,2,1,"","generate_predict_encodings"],[127,2,1,"","gridsearch"],[127,2,1,"","historical_forecasts"],[127,2,1,"","load"],[127,4,1,"","min_train_samples"],[127,4,1,"","model_params"],[127,4,1,"","output_chunk_length"],[127,2,1,"","predict"],[127,2,1,"","residuals"],[127,2,1,"","save"],[127,2,1,"","select_best_model"],[127,4,1,"","supports_future_covariates"],[127,4,1,"","supports_likelihood_parameter_prediction"],[127,4,1,"","supports_multivariate"],[127,4,1,"","supports_optimized_historical_forecasts"],[127,4,1,"","supports_past_covariates"],[127,4,1,"","supports_static_covariates"],[127,4,1,"","uses_future_covariates"],[127,4,1,"","uses_past_covariates"],[127,4,1,"","uses_static_covariates"]],"darts.models.forecasting.theta.Theta":[[127,2,1,"","backtest"],[127,4,1,"","considers_static_covariates"],[127,4,1,"","extreme_lags"],[127,2,1,"","fit"],[127,2,1,"","generate_fit_encodings"],[127,2,1,"","generate_fit_predict_encodings"],[127,2,1,"","generate_predict_encodings"],[127,2,1,"","gridsearch"],[127,2,1,"","historical_forecasts"],[127,2,1,"","load"],[127,4,1,"","min_train_samples"],[127,4,1,"","model_params"],[127,4,1,"","output_chunk_length"],[127,2,1,"","predict"],[127,2,1,"","residuals"],[127,2,1,"","save"],[127,4,1,"","supports_future_covariates"],[127,4,1,"","supports_likelihood_parameter_prediction"],[127,4,1,"","supports_multivariate"],[127,4,1,"","supports_optimized_historical_forecasts"],[127,4,1,"","supports_past_covariates"],[127,4,1,"","supports_static_covariates"],[127,4,1,"","uses_future_covariates"],[127,4,1,"","uses_past_covariates"],[127,4,1,"","uses_static_covariates"]],"darts.models.forecasting.tide_model":[[128,1,1,"","TiDEModel"]],"darts.models.forecasting.tide_model.TiDEModel":[[128,2,1,"","backtest"],[128,4,1,"","considers_static_covariates"],[128,4,1,"","epochs_trained"],[128,4,1,"","extreme_lags"],[128,2,1,"","fit"],[128,2,1,"","fit_from_dataset"],[128,2,1,"","generate_fit_encodings"],[128,2,1,"","generate_fit_predict_encodings"],[128,2,1,"","generate_predict_encodings"],[128,2,1,"","gridsearch"],[128,2,1,"","historical_forecasts"],[128,4,1,"","input_chunk_length"],[128,4,1,"","likelihood"],[128,2,1,"","load"],[128,2,1,"","load_from_checkpoint"],[128,2,1,"","load_weights"],[128,2,1,"","load_weights_from_checkpoint"],[128,2,1,"","lr_find"],[128,4,1,"","min_train_samples"],[128,4,1,"","model_created"],[128,4,1,"","model_params"],[128,4,1,"","output_chunk_length"],[128,2,1,"","predict"],[128,2,1,"","predict_from_dataset"],[128,2,1,"","reset_model"],[128,2,1,"","residuals"],[128,2,1,"","save"],[128,4,1,"","supports_future_covariates"],[128,4,1,"","supports_likelihood_parameter_prediction"],[128,4,1,"","supports_multivariate"],[128,4,1,"","supports_optimized_historical_forecasts"],[128,4,1,"","supports_past_covariates"],[128,4,1,"","supports_static_covariates"],[128,2,1,"","to_cpu"],[128,4,1,"","uses_future_covariates"],[128,4,1,"","uses_past_covariates"],[128,4,1,"","uses_static_covariates"]],"darts.models.forecasting.transformer_model":[[130,1,1,"","TransformerModel"]],"darts.models.forecasting.transformer_model.TransformerModel":[[130,2,1,"","backtest"],[130,4,1,"","considers_static_covariates"],[130,4,1,"","epochs_trained"],[130,4,1,"","extreme_lags"],[130,2,1,"","fit"],[130,2,1,"","fit_from_dataset"],[130,2,1,"","generate_fit_encodings"],[130,2,1,"","generate_fit_predict_encodings"],[130,2,1,"","generate_predict_encodings"],[130,2,1,"","gridsearch"],[130,2,1,"","historical_forecasts"],[130,4,1,"","input_chunk_length"],[130,4,1,"","likelihood"],[130,2,1,"","load"],[130,2,1,"","load_from_checkpoint"],[130,2,1,"","load_weights"],[130,2,1,"","load_weights_from_checkpoint"],[130,2,1,"","lr_find"],[130,4,1,"","min_train_samples"],[130,4,1,"","model_created"],[130,4,1,"","model_params"],[130,4,1,"","output_chunk_length"],[130,2,1,"","predict"],[130,2,1,"","predict_from_dataset"],[130,2,1,"","reset_model"],[130,2,1,"","residuals"],[130,2,1,"","save"],[130,3,1,"","supports_future_covariates"],[130,4,1,"","supports_likelihood_parameter_prediction"],[130,4,1,"","supports_multivariate"],[130,4,1,"","supports_optimized_historical_forecasts"],[130,4,1,"","supports_past_covariates"],[130,4,1,"","supports_static_covariates"],[130,2,1,"","to_cpu"],[130,4,1,"","uses_future_covariates"],[130,4,1,"","uses_past_covariates"],[130,4,1,"","uses_static_covariates"]],"darts.models.forecasting.varima":[[131,1,1,"","VARIMA"]],"darts.models.forecasting.varima.VARIMA":[[131,2,1,"","backtest"],[131,4,1,"","considers_static_covariates"],[131,4,1,"","extreme_lags"],[131,2,1,"","fit"],[131,2,1,"","generate_fit_encodings"],[131,2,1,"","generate_fit_predict_encodings"],[131,2,1,"","generate_predict_encodings"],[131,2,1,"","gridsearch"],[131,2,1,"","historical_forecasts"],[131,2,1,"","load"],[131,4,1,"","min_train_samples"],[131,4,1,"","model_params"],[131,4,1,"","output_chunk_length"],[131,2,1,"","predict"],[131,2,1,"","residuals"],[131,2,1,"","save"],[131,4,1,"","supports_future_covariates"],[131,4,1,"","supports_likelihood_parameter_prediction"],[131,4,1,"","supports_multivariate"],[131,4,1,"","supports_optimized_historical_forecasts"],[131,4,1,"","supports_past_covariates"],[131,4,1,"","supports_static_covariates"],[131,4,1,"","uses_future_covariates"],[131,4,1,"","uses_past_covariates"],[131,4,1,"","uses_static_covariates"]],"darts.models.forecasting.xgboost":[[132,1,1,"","XGBModel"],[132,5,1,"","xgb_quantile_loss"]],"darts.models.forecasting.xgboost.XGBModel":[[132,2,1,"","backtest"],[132,4,1,"","considers_static_covariates"],[132,4,1,"","extreme_lags"],[132,2,1,"","fit"],[132,2,1,"","generate_fit_encodings"],[132,2,1,"","generate_fit_predict_encodings"],[132,2,1,"","generate_predict_encodings"],[132,2,1,"","get_multioutput_estimator"],[132,2,1,"","gridsearch"],[132,2,1,"","historical_forecasts"],[132,4,1,"","lagged_feature_names"],[132,2,1,"","load"],[132,4,1,"","min_train_samples"],[132,4,1,"","model_params"],[132,4,1,"","num_parameters"],[132,4,1,"","output_chunk_length"],[132,2,1,"","predict"],[132,2,1,"","residuals"],[132,2,1,"","save"],[132,4,1,"","supports_future_covariates"],[132,4,1,"","supports_likelihood_parameter_prediction"],[132,4,1,"","supports_multivariate"],[132,4,1,"","supports_optimized_historical_forecasts"],[132,4,1,"","supports_past_covariates"],[132,4,1,"","supports_static_covariates"],[132,4,1,"","uses_future_covariates"],[132,4,1,"","uses_past_covariates"],[132,4,1,"","uses_static_covariates"]],"darts.models.utils":[[133,1,1,"","NotImportedModule"]],"darts.models.utils.NotImportedModule":[[133,3,1,"","usable"]],"darts.timeseries":[[134,1,1,"","TimeSeries"],[134,5,1,"","concatenate"]],"darts.timeseries.TimeSeries":[[134,2,1,"","add_datetime_attribute"],[134,2,1,"","add_holidays"],[134,2,1,"","all_values"],[134,2,1,"","append"],[134,2,1,"","append_values"],[134,2,1,"","astype"],[134,4,1,"","bottom_level_components"],[134,4,1,"","bottom_level_series"],[134,4,1,"","columns"],[134,4,1,"","components"],[134,2,1,"","concatenate"],[134,2,1,"","copy"],[134,2,1,"","cumsum"],[134,2,1,"","data_array"],[134,2,1,"","diff"],[134,2,1,"","drop_after"],[134,2,1,"","drop_before"],[134,2,1,"","drop_columns"],[134,4,1,"","dtype"],[134,4,1,"","duration"],[134,2,1,"","end_time"],[134,2,1,"","first_value"],[134,2,1,"","first_values"],[134,4,1,"","freq"],[134,4,1,"","freq_str"],[134,2,1,"","from_csv"],[134,2,1,"","from_dataframe"],[134,2,1,"","from_group_dataframe"],[134,2,1,"","from_json"],[134,2,1,"","from_pickle"],[134,2,1,"","from_series"],[134,2,1,"","from_times_and_values"],[134,2,1,"","from_values"],[134,2,1,"","from_xarray"],[134,2,1,"","gaps"],[134,2,1,"","get_index_at_point"],[134,2,1,"","get_timestamp_at_point"],[134,4,1,"","has_datetime_index"],[134,4,1,"","has_hierarchy"],[134,4,1,"","has_range_index"],[134,2,1,"","has_same_time_as"],[134,4,1,"","has_static_covariates"],[134,2,1,"","head"],[134,4,1,"","hierarchy"],[134,4,1,"","is_deterministic"],[134,4,1,"","is_probabilistic"],[134,4,1,"","is_stochastic"],[134,4,1,"","is_univariate"],[134,2,1,"","is_within_range"],[134,2,1,"","kurtosis"],[134,2,1,"","last_value"],[134,2,1,"","last_values"],[134,2,1,"","longest_contiguous_slice"],[134,2,1,"","map"],[134,2,1,"","max"],[134,2,1,"","mean"],[134,2,1,"","median"],[134,2,1,"","min"],[134,4,1,"","n_components"],[134,4,1,"","n_samples"],[134,4,1,"","n_timesteps"],[134,2,1,"","pd_dataframe"],[134,2,1,"","pd_series"],[134,2,1,"","plot"],[134,2,1,"","prepend"],[134,2,1,"","prepend_values"],[134,2,1,"","quantile"],[134,2,1,"","quantile_df"],[134,2,1,"","quantile_timeseries"],[134,2,1,"","quantiles_df"],[134,2,1,"","random_component_values"],[134,2,1,"","resample"],[134,2,1,"","rescale_with_value"],[134,2,1,"","shift"],[134,2,1,"","skew"],[134,2,1,"","slice"],[134,2,1,"","slice_intersect"],[134,2,1,"","slice_n_points_after"],[134,2,1,"","slice_n_points_before"],[134,2,1,"","split_after"],[134,2,1,"","split_before"],[134,2,1,"","stack"],[134,2,1,"","start_time"],[134,4,1,"","static_covariates"],[134,2,1,"","static_covariates_values"],[134,2,1,"","std"],[134,2,1,"","strip"],[134,2,1,"","sum"],[134,2,1,"","tail"],[134,4,1,"","time_dim"],[134,4,1,"","time_index"],[134,2,1,"","to_csv"],[134,2,1,"","to_json"],[134,2,1,"","to_pickle"],[134,4,1,"","top_level_component"],[134,4,1,"","top_level_series"],[134,2,1,"","univariate_component"],[134,2,1,"","univariate_values"],[134,2,1,"","values"],[134,2,1,"","var"],[134,4,1,"","width"],[134,2,1,"","window_transform"],[134,2,1,"","with_columns_renamed"],[134,2,1,"","with_hierarchy"],[134,2,1,"","with_static_covariates"],[134,2,1,"","with_values"]],"darts.utils":[[136,0,0,"-","callbacks"],[137,0,0,"-","data"],[145,0,0,"-","historical_forecasts"],[149,0,0,"-","likelihood_models"],[150,0,0,"-","losses"],[151,0,0,"-","missing_values"],[152,0,0,"-","model_selection"],[153,0,0,"-","multioutput"],[154,0,0,"-","statistics"],[155,0,0,"-","timeseries_generation"],[156,0,0,"-","torch"],[157,0,0,"-","utils"]],"darts.utils.callbacks":[[136,1,1,"","TFMProgressBar"]],"darts.utils.callbacks.TFMProgressBar":[[136,3,1,"","BAR_FORMAT"],[136,2,1,"","disable"],[136,2,1,"","enable"],[136,2,1,"","get_metrics"],[136,2,1,"","has_dataloader_changed"],[136,2,1,"","init_predict_tqdm"],[136,2,1,"","init_sanity_tqdm"],[136,2,1,"","init_test_tqdm"],[136,2,1,"","init_train_tqdm"],[136,2,1,"","init_validation_tqdm"],[136,4,1,"","is_disabled"],[136,4,1,"","is_enabled"],[136,2,1,"","load_state_dict"],[136,2,1,"","on_after_backward"],[136,2,1,"","on_before_backward"],[136,2,1,"","on_before_optimizer_step"],[136,2,1,"","on_before_zero_grad"],[136,2,1,"","on_exception"],[136,2,1,"","on_fit_end"],[136,2,1,"","on_fit_start"],[136,2,1,"","on_load_checkpoint"],[136,2,1,"","on_predict_batch_end"],[136,2,1,"","on_predict_batch_start"],[136,2,1,"","on_predict_end"],[136,2,1,"","on_predict_epoch_end"],[136,2,1,"","on_predict_epoch_start"],[136,2,1,"","on_predict_start"],[136,2,1,"","on_sanity_check_end"],[136,2,1,"","on_sanity_check_start"],[136,2,1,"","on_save_checkpoint"],[136,2,1,"","on_test_batch_end"],[136,2,1,"","on_test_batch_start"],[136,2,1,"","on_test_end"],[136,2,1,"","on_test_epoch_end"],[136,2,1,"","on_test_epoch_start"],[136,2,1,"","on_test_start"],[136,2,1,"","on_train_batch_end"],[136,2,1,"","on_train_batch_start"],[136,2,1,"","on_train_end"],[136,2,1,"","on_train_epoch_end"],[136,2,1,"","on_train_epoch_start"],[136,2,1,"","on_train_start"],[136,2,1,"","on_validation_batch_end"],[136,2,1,"","on_validation_batch_start"],[136,2,1,"","on_validation_end"],[136,2,1,"","on_validation_epoch_end"],[136,2,1,"","on_validation_epoch_start"],[136,2,1,"","on_validation_start"],[136,4,1,"","predict_description"],[136,4,1,"","predict_progress_bar"],[136,2,1,"","print"],[136,4,1,"","process_position"],[136,4,1,"","refresh_rate"],[136,2,1,"","reset_dataloader_idx_tracker"],[136,4,1,"","sanity_check_description"],[136,2,1,"","setup"],[136,2,1,"","state_dict"],[136,4,1,"","state_key"],[136,2,1,"","teardown"],[136,4,1,"","test_description"],[136,4,1,"","test_progress_bar"],[136,4,1,"","total_predict_batches_current_dataloader"],[136,4,1,"","total_test_batches_current_dataloader"],[136,4,1,"","total_train_batches"],[136,4,1,"","total_val_batches"],[136,4,1,"","total_val_batches_current_dataloader"],[136,4,1,"","train_description"],[136,4,1,"","train_progress_bar"],[136,4,1,"","trainer"],[136,4,1,"","val_progress_bar"],[136,4,1,"","validation_description"]],"darts.utils.data":[[138,0,0,"-","horizon_based_dataset"],[139,0,0,"-","inference_dataset"],[140,0,0,"-","sequential_dataset"],[141,0,0,"-","shifted_dataset"],[142,0,0,"-","tabularization"],[143,0,0,"-","training_dataset"],[144,0,0,"-","utils"]],"darts.utils.data.horizon_based_dataset":[[138,1,1,"","HorizonBasedDataset"]],"darts.utils.data.inference_dataset":[[139,1,1,"","DualCovariatesInferenceDataset"],[139,1,1,"","FutureCovariatesInferenceDataset"],[139,1,1,"","GenericInferenceDataset"],[139,1,1,"","InferenceDataset"],[139,1,1,"","MixedCovariatesInferenceDataset"],[139,1,1,"","PastCovariatesInferenceDataset"],[139,1,1,"","SplitCovariatesInferenceDataset"]],"darts.utils.data.inference_dataset.GenericInferenceDataset":[[139,2,1,"","find_list_index"]],"darts.utils.data.sequential_dataset":[[140,1,1,"","DualCovariatesSequentialDataset"],[140,1,1,"","FutureCovariatesSequentialDataset"],[140,1,1,"","MixedCovariatesSequentialDataset"],[140,1,1,"","PastCovariatesSequentialDataset"],[140,1,1,"","SplitCovariatesSequentialDataset"]],"darts.utils.data.shifted_dataset":[[141,1,1,"","DualCovariatesShiftedDataset"],[141,1,1,"","FutureCovariatesShiftedDataset"],[141,1,1,"","GenericShiftedDataset"],[141,1,1,"","MixedCovariatesShiftedDataset"],[141,1,1,"","PastCovariatesShiftedDataset"],[141,1,1,"","SplitCovariatesShiftedDataset"]],"darts.utils.data.tabularization":[[142,5,1,"","add_static_covariates_to_lagged_data"],[142,5,1,"","create_lagged_component_names"],[142,5,1,"","create_lagged_data"],[142,5,1,"","create_lagged_prediction_data"],[142,5,1,"","create_lagged_training_data"],[142,5,1,"","get_shared_times"],[142,5,1,"","get_shared_times_bounds"],[142,5,1,"","strided_moving_window"]],"darts.utils.data.training_dataset":[[143,1,1,"","DualCovariatesTrainingDataset"],[143,1,1,"","FutureCovariatesTrainingDataset"],[143,1,1,"","MixedCovariatesTrainingDataset"],[143,1,1,"","PastCovariatesTrainingDataset"],[143,1,1,"","SplitCovariatesTrainingDataset"],[143,1,1,"","TrainingDataset"]],"darts.utils.data.utils":[[144,1,1,"","CovariateType"]],"darts.utils.data.utils.CovariateType":[[144,3,1,"","FUTURE"],[144,3,1,"","FUTURE_PAST"],[144,3,1,"","HISTORIC_FUTURE"],[144,3,1,"","NONE"],[144,3,1,"","PAST"]],"darts.utils.historical_forecasts":[[146,0,0,"-","optimized_historical_forecasts_regression"],[147,0,0,"-","optimized_historical_forecasts_torch"],[148,0,0,"-","utils"]],"darts.utils.likelihood_models":[[149,1,1,"","BernoulliLikelihood"],[149,1,1,"","BetaLikelihood"],[149,1,1,"","CauchyLikelihood"],[149,1,1,"","ContinuousBernoulliLikelihood"],[149,1,1,"","DirichletLikelihood"],[149,1,1,"","ExponentialLikelihood"],[149,1,1,"","GammaLikelihood"],[149,1,1,"","GaussianLikelihood"],[149,1,1,"","GeometricLikelihood"],[149,1,1,"","GumbelLikelihood"],[149,1,1,"","HalfNormalLikelihood"],[149,1,1,"","LaplaceLikelihood"],[149,1,1,"","Likelihood"],[149,1,1,"","LogNormalLikelihood"],[149,1,1,"","NegativeBinomialLikelihood"],[149,1,1,"","PoissonLikelihood"],[149,1,1,"","QuantileRegression"],[149,1,1,"","WeibullLikelihood"]],"darts.utils.likelihood_models.BernoulliLikelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.BetaLikelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.CauchyLikelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.ContinuousBernoulliLikelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.DirichletLikelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.ExponentialLikelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.GammaLikelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.GaussianLikelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.GeometricLikelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.GumbelLikelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.HalfNormalLikelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.LaplaceLikelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.Likelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.LogNormalLikelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.NegativeBinomialLikelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.PoissonLikelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.QuantileRegression":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.WeibullLikelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.losses":[[150,1,1,"","MAELoss"],[150,1,1,"","MapeLoss"],[150,1,1,"","SmapeLoss"]],"darts.utils.losses.MAELoss":[[150,3,1,"","T_destination"],[150,2,1,"","add_module"],[150,2,1,"","apply"],[150,2,1,"","bfloat16"],[150,2,1,"","buffers"],[150,3,1,"","call_super_init"],[150,2,1,"","children"],[150,2,1,"","compile"],[150,2,1,"","cpu"],[150,2,1,"","cuda"],[150,2,1,"","double"],[150,3,1,"","dump_patches"],[150,2,1,"","eval"],[150,2,1,"","extra_repr"],[150,2,1,"","float"],[150,2,1,"","forward"],[150,2,1,"","get_buffer"],[150,2,1,"","get_extra_state"],[150,2,1,"","get_parameter"],[150,2,1,"","get_submodule"],[150,2,1,"","half"],[150,2,1,"","ipu"],[150,2,1,"","load_state_dict"],[150,2,1,"","modules"],[150,2,1,"","named_buffers"],[150,2,1,"","named_children"],[150,2,1,"","named_modules"],[150,2,1,"","named_parameters"],[150,2,1,"","parameters"],[150,2,1,"","register_backward_hook"],[150,2,1,"","register_buffer"],[150,2,1,"","register_forward_hook"],[150,2,1,"","register_forward_pre_hook"],[150,2,1,"","register_full_backward_hook"],[150,2,1,"","register_full_backward_pre_hook"],[150,2,1,"","register_load_state_dict_post_hook"],[150,2,1,"","register_module"],[150,2,1,"","register_parameter"],[150,2,1,"","register_state_dict_pre_hook"],[150,2,1,"","requires_grad_"],[150,2,1,"","set_extra_state"],[150,2,1,"","share_memory"],[150,2,1,"","state_dict"],[150,2,1,"","to"],[150,2,1,"","to_empty"],[150,2,1,"","train"],[150,3,1,"","training"],[150,2,1,"","type"],[150,2,1,"","xpu"],[150,2,1,"","zero_grad"]],"darts.utils.losses.MapeLoss":[[150,3,1,"","T_destination"],[150,2,1,"","add_module"],[150,2,1,"","apply"],[150,2,1,"","bfloat16"],[150,2,1,"","buffers"],[150,3,1,"","call_super_init"],[150,2,1,"","children"],[150,2,1,"","compile"],[150,2,1,"","cpu"],[150,2,1,"","cuda"],[150,2,1,"","double"],[150,3,1,"","dump_patches"],[150,2,1,"","eval"],[150,2,1,"","extra_repr"],[150,2,1,"","float"],[150,2,1,"","forward"],[150,2,1,"","get_buffer"],[150,2,1,"","get_extra_state"],[150,2,1,"","get_parameter"],[150,2,1,"","get_submodule"],[150,2,1,"","half"],[150,2,1,"","ipu"],[150,2,1,"","load_state_dict"],[150,2,1,"","modules"],[150,2,1,"","named_buffers"],[150,2,1,"","named_children"],[150,2,1,"","named_modules"],[150,2,1,"","named_parameters"],[150,2,1,"","parameters"],[150,2,1,"","register_backward_hook"],[150,2,1,"","register_buffer"],[150,2,1,"","register_forward_hook"],[150,2,1,"","register_forward_pre_hook"],[150,2,1,"","register_full_backward_hook"],[150,2,1,"","register_full_backward_pre_hook"],[150,2,1,"","register_load_state_dict_post_hook"],[150,2,1,"","register_module"],[150,2,1,"","register_parameter"],[150,2,1,"","register_state_dict_pre_hook"],[150,2,1,"","requires_grad_"],[150,2,1,"","set_extra_state"],[150,2,1,"","share_memory"],[150,2,1,"","state_dict"],[150,2,1,"","to"],[150,2,1,"","to_empty"],[150,2,1,"","train"],[150,3,1,"","training"],[150,2,1,"","type"],[150,2,1,"","xpu"],[150,2,1,"","zero_grad"]],"darts.utils.losses.SmapeLoss":[[150,3,1,"","T_destination"],[150,2,1,"","add_module"],[150,2,1,"","apply"],[150,2,1,"","bfloat16"],[150,2,1,"","buffers"],[150,3,1,"","call_super_init"],[150,2,1,"","children"],[150,2,1,"","compile"],[150,2,1,"","cpu"],[150,2,1,"","cuda"],[150,2,1,"","double"],[150,3,1,"","dump_patches"],[150,2,1,"","eval"],[150,2,1,"","extra_repr"],[150,2,1,"","float"],[150,2,1,"","forward"],[150,2,1,"","get_buffer"],[150,2,1,"","get_extra_state"],[150,2,1,"","get_parameter"],[150,2,1,"","get_submodule"],[150,2,1,"","half"],[150,2,1,"","ipu"],[150,2,1,"","load_state_dict"],[150,2,1,"","modules"],[150,2,1,"","named_buffers"],[150,2,1,"","named_children"],[150,2,1,"","named_modules"],[150,2,1,"","named_parameters"],[150,2,1,"","parameters"],[150,2,1,"","register_backward_hook"],[150,2,1,"","register_buffer"],[150,2,1,"","register_forward_hook"],[150,2,1,"","register_forward_pre_hook"],[150,2,1,"","register_full_backward_hook"],[150,2,1,"","register_full_backward_pre_hook"],[150,2,1,"","register_load_state_dict_post_hook"],[150,2,1,"","register_module"],[150,2,1,"","register_parameter"],[150,2,1,"","register_state_dict_pre_hook"],[150,2,1,"","requires_grad_"],[150,2,1,"","set_extra_state"],[150,2,1,"","share_memory"],[150,2,1,"","state_dict"],[150,2,1,"","to"],[150,2,1,"","to_empty"],[150,2,1,"","train"],[150,3,1,"","training"],[150,2,1,"","type"],[150,2,1,"","xpu"],[150,2,1,"","zero_grad"]],"darts.utils.missing_values":[[151,5,1,"","extract_subseries"],[151,5,1,"","fill_missing_values"],[151,5,1,"","missing_values_ratio"]],"darts.utils.model_selection":[[152,5,1,"","train_test_split"]],"darts.utils.multioutput":[[153,1,1,"","MultiOutputRegressor"]],"darts.utils.multioutput.MultiOutputRegressor":[[153,2,1,"","fit"],[153,2,1,"","get_metadata_routing"],[153,2,1,"","get_params"],[153,2,1,"","partial_fit"],[153,2,1,"","predict"],[153,2,1,"","score"],[153,2,1,"","set_fit_request"],[153,2,1,"","set_params"],[153,2,1,"","set_partial_fit_request"],[153,2,1,"","set_score_request"]],"darts.utils.statistics":[[154,5,1,"","check_seasonality"],[154,5,1,"","extract_trend_and_seasonality"],[154,5,1,"","granger_causality_tests"],[154,5,1,"","plot_acf"],[154,5,1,"","plot_hist"],[154,5,1,"","plot_pacf"],[154,5,1,"","plot_residuals_analysis"],[154,5,1,"","remove_from_series"],[154,5,1,"","remove_seasonality"],[154,5,1,"","remove_trend"],[154,5,1,"","stationarity_test_adf"],[154,5,1,"","stationarity_test_kpss"],[154,5,1,"","stationarity_tests"]],"darts.utils.timeseries_generation":[[155,5,1,"","autoregressive_timeseries"],[155,5,1,"","constant_timeseries"],[155,5,1,"","datetime_attribute_timeseries"],[155,5,1,"","gaussian_timeseries"],[155,5,1,"","generate_index"],[155,5,1,"","holidays_timeseries"],[155,5,1,"","linear_timeseries"],[155,5,1,"","random_walk_timeseries"],[155,5,1,"","sine_timeseries"]],"darts.utils.torch":[[156,1,1,"","MonteCarloDropout"],[156,5,1,"","random_method"]],"darts.utils.torch.MonteCarloDropout":[[156,3,1,"","T_destination"],[156,2,1,"","add_module"],[156,2,1,"","apply"],[156,2,1,"","bfloat16"],[156,2,1,"","buffers"],[156,3,1,"","call_super_init"],[156,2,1,"","children"],[156,2,1,"","compile"],[156,2,1,"","cpu"],[156,2,1,"","cuda"],[156,2,1,"","double"],[156,3,1,"","dump_patches"],[156,2,1,"","eval"],[156,2,1,"","extra_repr"],[156,2,1,"","float"],[156,2,1,"","forward"],[156,2,1,"","get_buffer"],[156,2,1,"","get_extra_state"],[156,2,1,"","get_parameter"],[156,2,1,"","get_submodule"],[156,2,1,"","half"],[156,3,1,"","inplace"],[156,2,1,"","ipu"],[156,2,1,"","load_state_dict"],[156,3,1,"","mc_dropout_enabled"],[156,2,1,"","modules"],[156,2,1,"","named_buffers"],[156,2,1,"","named_children"],[156,2,1,"","named_modules"],[156,2,1,"","named_parameters"],[156,3,1,"","p"],[156,2,1,"","parameters"],[156,2,1,"","register_backward_hook"],[156,2,1,"","register_buffer"],[156,2,1,"","register_forward_hook"],[156,2,1,"","register_forward_pre_hook"],[156,2,1,"","register_full_backward_hook"],[156,2,1,"","register_full_backward_pre_hook"],[156,2,1,"","register_load_state_dict_post_hook"],[156,2,1,"","register_module"],[156,2,1,"","register_parameter"],[156,2,1,"","register_state_dict_pre_hook"],[156,2,1,"","requires_grad_"],[156,2,1,"","set_extra_state"],[156,2,1,"","share_memory"],[156,2,1,"","state_dict"],[156,2,1,"","to"],[156,2,1,"","to_empty"],[156,2,1,"","train"],[156,3,1,"","training"],[156,2,1,"","type"],[156,2,1,"","xpu"],[156,2,1,"","zero_grad"]],"darts.utils.utils":[[157,1,1,"","ModelMode"],[157,1,1,"","SeasonalityMode"],[157,1,1,"","TrendMode"],[157,5,1,"","drop_after_index"],[157,5,1,"","drop_before_index"],[157,5,1,"","get_single_series"],[157,5,1,"","retain_period_common_to_all"],[157,5,1,"","seq2series"],[157,5,1,"","series2seq"],[157,5,1,"","slice_index"]],"darts.utils.utils.ModelMode":[[157,3,1,"","ADDITIVE"],[157,3,1,"","MULTIPLICATIVE"],[157,3,1,"","NONE"]],"darts.utils.utils.SeasonalityMode":[[157,3,1,"","ADDITIVE"],[157,3,1,"","MULTIPLICATIVE"],[157,3,1,"","NONE"]],"darts.utils.utils.TrendMode":[[157,3,1,"","EXPONENTIAL"],[157,3,1,"","LINEAR"]],darts:[[23,0,0,"-","ad"],[51,0,0,"-","dataprocessing"],[73,0,0,"-","datasets"],[75,0,0,"-","explainability"],[81,0,0,"-","metrics"],[83,0,0,"-","models"],[134,0,0,"-","timeseries"],[135,0,0,"-","utils"]]},objnames:{"0":["py","module","Python module"],"1":["py","class","Python class"],"2":["py","method","Python method"],"3":["py","attribute","Python attribute"],"4":["py","property","Python property"],"5":["py","function","Python function"],"6":["py","exception","Python exception"]},objtypes:{"0":"py:module","1":"py:class","2":"py:method","3":"py:attribute","4":"py:property","5":"py:function","6":"py:exception"},terms:{"0":[0,2,3,5,6,7,8,9,10,11,12,13,14,17,18,19,20,21,25,26,27,28,31,32,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,58,59,61,62,64,65,66,68,69,70,71,72,73,77,78,79,80,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,139,142,149,150,152,153,154,155,156,157,158,159,161,163,164,165,166,167],"00":[15,16,73,134,155,159,163,164],"000":[15,53],"0008841998396117885":18,"0008842":18,"001":[9,10,14,15,18,159,165,167],"002":164,"00285":164,"00325481":112,"003476":15,"0038491197353":4,"004":164,"0046":7,"004819":15,"005325414282057739":21,"00597806":119,"00872598":131,"00874069":131,"01":[3,4,9,14,16,18,21,61,62,63,64,65,67,69,73,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,154,155,159,163],"01166578":131,"0120":7,"0126":7,"01271":124,"01368849":159,"01625545":125,"01829086":118,"01837606837607":13,"01923077":3,"01_12":163,"01_12_00_00":[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],"02":[2,3,9,10,16,61,62,63,64,65,67,69,73,134,159,163,165],"02142":156,"02264":20,"025":12,"02523252":118,"0261":7,"0273":7,"02887":15,"02928407":125,"03":[15,16,18,63,67,159],"03417969":120,"03605769":3,"03751671":123,"03762":130,"039188":16,"04":[67,73],"04110":9,"042527":16,"04297":20,"04397":10,"04749318":62,"05":[0,9,10,14,17,20,21,50,61,62,63,64,65,69,87,99,102,110,111,112,118,124,125,128,130,134,154,158,159,163,165,167],"050242":16,"05202":[85,125,130],"05465":115,"05769231":3,"06":[63,99,102,110,111,112,118,124,125,128,130],"06414202":125,"06463942":119,"06505":115,"06625381":102,"06675142":127,"06769d701c1d9c9acb9a66f2f9d7a6c7":132,"06863863":125,"06938775510204":15,"07":[4,18,67,73],"07436":73,"07502":20,"07718156729165897":18,"0772":18,"07892911":96,"08":[73,87,99,102,110,111,112,118,124,125,128,130],"08337201":128,"08424":[19,128],"08653846":3,"08962991":127,"09":[2,167],"09168":149,"09229632":119,"09363":125,"09583093":111,"096098":16,"097101":16,"097573":15,"09781534":110,"0980105":159,"09871431":121,"0995766932270916":4,"0_comp_1_target":142,"0_comp_2_target":142,"0_fut_cov_lag_0":[77,78],"0_past_cov_lag":[77,78],"0d":53,"0e":53,"0j":53,"0th":159,"0x1":53,"0x100":53,"0x103d1a710":2,"0x166b2eca0":12,"0x166c993a0":12,"0x166db4a00":12,"0x176bcc790":6,"0x2233":53,"0x288b5d720":6,"0x2a9c067a0":10,"0x2a9ef6470":10,"0x2acf4d4e0":10,"0x2af20d5d0":2,"0x2af748f10":2,"0x2b00e2a40":6,"0x2b3386350":9,"0x2b3d98fd0":8,"0x2b3fc0790":8,"0x2b56bb640":2,"0x2b56bb9d0":2,"0x2b69cb9d0":2,"0x2b6abd4b0":2,"0x2b6ba5540":2,"0x2bc3c3970":6,"0x2bc722440":6,"0x2c0581de0":9,"0x2c1c97a00":9,"0x3322":53,"0x7f800691edc0":5,"0x7f80095963d0":5,"0x7f92e0d64c70":14,"0x7fc581075190":11,"0x7fc58144a950":11,"0x7fc594431ed0":11,"0x7fc75901cb10":164,"0x7ff1b5e4d4d0":164,"0x7ff2fc1fc200":53,"0x7ff2fc1fce60":53,"0x7ff2fc1ff320":53,"0x7ff5e3826c10":3,"0x7ff5e3bcc790":3,"0x7ff5e3dd1ac0":3,"0x7ff5e3fbb280":3,"1":[0,2,3,5,6,7,8,9,10,11,13,14,17,18,19,20,21,25,26,27,28,31,32,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,79,80,82,85,86,87,89,92,93,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,136,138,139,140,141,142,149,150,151,152,153,154,155,156,158,159,161,162,163,164,165,166,167],"10":[2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,49,53,66,68,71,73,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,154,159,163,164,165,167],"100":[0,2,5,6,8,10,12,14,15,18,20,66,73,82,85,86,87,89,99,100,102,108,109,110,111,112,113,115,117,118,124,125,126,128,130,132,150,154,156,158,159,163,164,165],"1000":[0,5,11,18,66,142,158,165],"10000":[0,3,11,158],"1000x":15,"1002":120,"1005":[109,117,128,132],"1006":[100,108,115],"1008":128,"1013":110,"10138":20,"1017":128,"102":15,"1024":[15,18,167],"10295":115,"10437":[8,138],"10520391":96,"10568429":114,"106":[100,102,108,109,112,115,117,118,125,128,132],"10790392":128,"108":13,"10900k":167,"10m":15,"10th":[5,134],"11":[2,3,4,5,6,7,8,9,13,14,15,16,17,19,20,21,53,159],"110375":16,"11057692":3,"112":67,"11286509":96,"115":[13,167],"1150":[85,86,87,89,150,156],"116":5,"117":167,"11716811":114,"1177":[0,158],"118":67,"11817462":121,"11846185":131,"11885377506043901":21,"1194":17,"12":[2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,19,20,21,53,58,59,63,73,78,79,96,97,98,99,100,102,107,108,109,110,111,112,115,116,117,118,119,120,121,122,123,124,125,128,130,132,134,138,139,140,141,154,159,161,163,165,167],"120":5,"12017":20,"120197":16,"1207":17,"121":[13,67],"123":53,"123046875":21,"124":[0,158],"125":[5,7,167],"1275":17,"128":[7,113,128,165],"1284":53,"1288":17,"12886":111,"12892167797527437":21,"129":67,"13":[2,3,4,5,6,7,8,9,13,14,15,16,17,18,20,21,53,73,159,167],"13090":53,"131":13,"13154426":112,"132":67,"13277921":118,"1344":53,"135":67,"13504":[73,102,112],"136":[15,67],"138":13,"138122":16,"138183":16,"138631":16,"1399":15,"14":[2,3,4,5,6,7,8,13,14,15,16,17,18,20,21,53,63,73,113,159,164],"140":2,"144":7,"14674087":131,"148":67,"14_09_53_32_torch_model_run_44607":[99,102,110,111,112,118,124,125,128,130],"15":[2,3,4,5,6,7,8,11,13,14,15,16,17,18,19,20,21,53,73,134,159,161,167],"150":[0,11,15,16,18,158],"1506":156,"15071":20,"154":15,"158970":16,"15t":134,"16":[2,3,4,5,6,7,9,13,14,15,16,17,18,20,21,53,85,86,87,89,113,125,128,150,156,159,164,165],"16145791":131,"16352":16,"166":159,"16604194":98,"16666667":98,"1667":4,"1667634":128,"168":[2,3],"17":[2,3,4,6,13,14,15,16,17,18,20,21,53,159,164],"1704":9,"1706":130,"1716k":15,"173":15,"17325":115,"174":13,"1747k":15,"1749":[5,73],"17791019":118,"1798":53,"18":[2,3,6,13,14,15,16,17,18,20,53,99,102,110,111,112,118,124,125,128,130,159],"180":13,"1800":73,"1803":124,"188":17,"18881119":98,"189":17,"18922903":118,"19":[2,3,6,14,15,16,17,18,53,159,165],"19010018398568":5,"1905":[8,138],"1906":10,"1912":125,"1913":[85,86,87,89,150,156],"1914":[85,86,87,89,150,156],"192":17,"19401001":[5,6,7],"1948":159,"1949":[62,63,67,73],"1950":[58,96,97,99,100,101,102,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132,159],"1953089418552":4,"19551201":4,"1956":73,"1957":[165,167],"19571201":14,"1958":159,"19580":21,"19580101":159,"19580801":6,"1959":[5,7],"19590101":[5,7,164],"1960":73,"1962":[3,73,159],"19623":21,"1965":73,"19650033":125,"196582":16,"19697244":99,"1973":3,"1975":[3,73],"198":17,"1980":73,"1981":73,"1983":73,"19850701":4,"1989":154,"1990":[73,166],"1991":[73,154],"1992":[116,154],"1994":[73,154],"1997":73,"1998":154,"1_comp_1_":142,"1_comp_2_":142,"1_past_cov_lag":[77,78],"1_t":82,"1d":53,"1e":[5,7,9,10,14,15,18,19,87,99,102,110,111,112,113,118,124,125,128,130,134,164,165],"1e0":66,"1e1":66,"1e2":66,"1e3":66,"1h":[2,134],"1j":53,"1l":[85,86,87,89,113,150,156],"1s":167,"2":[0,2,3,5,6,7,8,9,10,11,12,13,14,17,18,19,20,21,53,54,55,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,139,142,150,153,154,155,156,158,159,161,163,164,165,166,167],"20":[2,3,4,5,6,7,9,10,11,13,14,15,16,17,18,21,53,102,105,112,116,118,124,128,130,142,154,159,161,164],"200":[2,7,11,12,13,14,15,19,21,82,85,86,87,89,113,115,150,156,159],"2000":[15,61,64,65,69,73,155,166],"2001":15,"2002":[15,85,125,130],"2003":73,"2004":[14,73,150],"2005":101,"2008":73,"201":15,"2010":[15,154],"20100101":14,"2011":101,"2012":73,"2013":134,"2014":73,"2015":73,"2016":73,"2017":[4,21,130],"20170901":[6,8,9,10],"2018":[21,73],"2019":[15,21,87],"2020":[15,16,73,85,87,125,126,130,134],"20200101233000":134,"2021":[73,99,102,110,111,112,118,124,125,126,128,130],"2022":[0,15,16,73,87,102,112,158],"2023":165,"20418":21,"208":159,"2080":167,"20913462":3,"20957388":102,"20gb":18,"20l":[85,86,87,89,113,150,156],"21":[0,2,3,14,15,16,18,21,53,73,99,101,158,159,164],"214":101,"2142k":15,"21563229":62,"21607546":100,"218":13,"22":[2,3,14,15,18,21,53,63,73,159,167],"2201":111,"2203":149,"2205":[73,102,112],"22074":120,"220885":121,"22224366":98,"223":13,"22355514":100,"224":53,"22497681":99,"22618932":104,"22936898":122,"23":[0,2,13,14,15,21,53,73,134,153,158,159,167],"2304":[19,128],"2312":53,"23152974":98,"23201079":111,"2324":[85,86,87,89,150,156],"2325":[85,86,87,89,150,156],"2354389":111,"23675":115,"23776224":98,"2382":[85,86,87,89,150,156],"24":[2,13,14,15,18,20,21,58,73,114,118,134,154,159,163,165,167],"240":[5,7],"24050364":116,"241":116,"24147138":125,"24283838":104,"24334385":116,"245":15,"24759615":3,"25":[0,2,10,14,15,18,21,59,61,65,69,73,99,102,113,114,118,152,158,159,163],"250":[6,16,18,20],"252":13,"25202285131778":15,"256":[2,19,53,110],"25780816":125,"258":13,"259":116,"26":[2,5,7,14,15,159],"262":73,"26720705":105,"2682070257112743":21,"26891239":114,"26993332":97,"27":[2,13,14,15,73,159,167],"27121314":97,"2765364":62,"27869295":99,"27991":167,"28":[2,15,73,113,159,167],"280":98,"28005229":97,"28050":167,"282":167,"2820":7,"2826":53,"282807":16,"282935127615929":159,"283":167,"28318784":125,"28424783":99,"285":167,"28614154":100,"28886231":127,"289051":16,"28955078":120,"29":[15,17,159],"2941917142812893":4,"296":73,"29805":115,"29856017":123,"29861111":98,"2987822":125,"299":164,"2_comp_1_":142,"2_comp_2_":142,"2_past_cov_lag":[77,78],"2_t":82,"2d":[53,61,62,63,64,65,66,67,68,69,70,71,72],"2f":[2,3,5,7,14,17,18,159],"2m":15,"3":[0,2,3,5,6,7,8,9,10,11,12,13,14,17,18,19,20,21,32,53,59,61,63,64,65,66,67,68,69,71,73,77,78,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,138,142,143,150,153,154,156,158,159,163,164,165,166,167],"30":[2,8,9,10,13,15,18,53,73,110,134,159,163],"300":[5,9,10,14,15,164],"30092923516797":15,"302734375":21,"303":101,"30397":15,"30609727":122,"30625563":122,"30647185":107,"30872957":100,"309":17,"30t":134,"31":[15,21,73,159,167],"31180633":97,"312":17,"31305075":104,"314":[101,159],"315":17,"31519186":104,"3195560563281926":21,"31962608":53,"32":[5,7,10,14,15,53,87,99,102,110,111,112,113,118,124,125,128,130,159,165],"323":53,"3243":17,"3294":17,"33":[13,15,85,86,87,89,113,150,156,159],"332":17,"3340":53,"337489093281":4,"34":[7,13,15,159],"34039307":120,"3420":[85,86,87,89,150,156],"34615385":3,"35":[2,13,15,17,159],"350":18,"350149072706699":159,"35210616":112,"35256055":116,"36":[0,2,3,5,6,7,14,15,73,78,158,159,163,165],"360":11,"360166":125,"36111111":98,"36489334":96,"365":[6,114,167],"36561899":130,"368725":16,"36937856":127,"37":[15,73,159],"370":[2,18,73],"373275454432286":21,"3741":[85,86,87,89,150,156],"37621876784175745":21,"37965429":110,"38":[15,17,159,167],"3854":53,"38584654":121,"3869697":116,"39":[2,3,6,7,8,9,10,14,15,17,20,21,159,164,167],"391":98,"3949283":127,"39550065":108,"39769555":127,"39992814":118,"3_comp_1_target":142,"3_comp_2_target":142,"3f":15,"3m":15,"3rd":16,"3s":167,"4":[0,2,3,4,5,6,7,8,9,10,11,12,13,14,17,18,19,20,21,53,59,61,64,65,66,67,68,69,71,73,77,78,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,143,154,158,159,162,163,164,165,167],"40":[13,15,16,53,159,167],"400":[9,10,15,159,163],"40323676":121,"40498034":130,"40680728":107,"4079":17,"40817901":98,"40867163":125,"41":[15,124,159,167],"41161602":98,"41209025":111,"4141":17,"415":[119,121],"4153701":100,"416":[96,97],"4168":17,"417":98,"41736301779747":159,"418":104,"41826923":3,"419":98,"41907237":100,"42":[5,7,8,11,12,14,15,16,18,19,99,102,110,111,112,118,124,125,128,130,159,164,165],"42090089":107,"42215052":123,"4233k":15,"424526892430279":4,"42657343":98,"427":112,"428":112,"429":[112,120],"4294967296":53,"43":[15,17,18,159],"431":98,"432":122,"433":127,"434":[98,127],"436":98,"4368":53,"438":98,"439":[98,123],"44":[15,159,167],"440":[98,107],"441":121,"442":[122,127],"44242919":131,"443":[96,98,127],"4443":[85,86,87,89,150,156],"445":[97,98,104],"448":[121,123],"44874":20,"449":97,"45":[0,15,134,158,159,167],"450":119,"451":96,"453":[98,120],"454":[98,119],"455":98,"46":[15,159,167],"460":164,"461":[98,101,107],"462":98,"464":116,"465":[98,104],"467":114,"46803":20,"468651":16,"47":[15,131,159],"47087":15,"471":105,"472":[98,114],"47230467":114,"474":107,"47503662":120,"47552448":98,"47620885":98,"4770514":104,"47896667":124,"48":[2,15,21,53,73,114,131,159,167],"480":[53,127],"481":[96,127,164],"481005":15,"482":122,"483":98,"48476824":124,"485":[97,98],"486":119,"48695488":130,"487":122,"488":120,"4882":53,"49":[73,131,159],"491":121,"493":[114,121,123],"49312172":122,"494":[104,105,107,114,116,127],"495":[122,127],"496":116,"497":114,"498":123,"49it":164,"4d":[85,86,87,89,150,156],"4m":15,"4s":167,"4th":[16,20],"4theta":127,"5":[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,32,53,59,61,62,63,64,65,68,69,71,72,73,77,78,79,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,143,149,154,156,158,159,162,163,164,165,167],"50":[2,6,9,10,11,12,15,16,17,18,21,58,73,96,97,99,100,101,102,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132,159,163,167],"500":[2,6,9,10,20,113,120,131,159,163,165,167],"5000":15,"50153984":96,"502":96,"503":98,"504":[105,119],"505":104,"507":[97,123],"50859694":125,"51":[18,131,159],"5102040816326543":159,"5112":[85,86,87,89,150,156],"5113":[85,86,87,89,150,156],"512":[7,8,111,130],"51218795":119,"513":53,"51425784":111,"515":105,"5150k":15,"5163k":15,"51801726":107,"519":120,"52":[131,159],"520":105,"52290556":108,"523":15,"525":15,"52541292":125,"528":107,"52it":164,"53":[131,159],"53180506":116,"535":98,"5364068635935895":21,"539":114,"5396":53,"54":[73,159],"541":15,"543":15,"544":116,"545":127,"54534585":127,"546":127,"54686113":114,"547":105,"549":121,"55":[13,159],"55179949":119,"5539":20,"555":[96,119,122],"557":116,"5593":[85,86,87,89,150,156],"56":[15,17,125,159],"561":[3,97],"56117169":112,"564":123,"5659999":105,"568":3,"56955721":114,"57":[159,167],"57201255":108,"573":104,"577":3,"57902659":122,"58":[2,159,167],"586":120,"58653846":3,"589":3,"59":[18,159,167],"590":107,"5910":53,"59404623":105,"599":3,"5e":[18,53,165],"5l":[85,86,87,89,113,150,156],"5s":167,"5th":[0,158,159],"6":[0,2,3,4,5,6,7,8,9,10,11,13,14,15,17,18,19,20,21,53,63,68,73,77,78,79,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,158,159,163,167],"60":[16,159],"6000":130,"6010":130,"604846":16,"606":101,"61":16,"6122":[85,86,87,89,150,156],"61353249":119,"61463773":127,"615":101,"61749":20,"61787454":97,"62":167,"63":167,"630":116,"63158655":130,"63334":20,"63461538":3,"63584309419007":5,"6381425":105,"63884831":108,"64":[7,14,73,113,125,130,165,167],"640":3,"64008":20,"643":4,"6436328":107,"64471436":120,"64871897":123,"65":[9,10,13,17,73,159,167],"650":20,"653":4,"65403772":109,"65417736":130,"6548696":109,"656":3,"656330":16,"65865385":3,"66":159,"66032082":110,"66339481":110,"665":102,"666":102,"667":102,"67":18,"67733306":102,"6846175":109,"688":18,"6899k":15,"69":17,"69213369":125,"6949k":15,"697":3,"69711538":3,"6s":167,"6th":159,"7":[2,3,4,5,6,7,8,9,10,12,13,14,15,16,17,18,19,20,21,53,62,68,73,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,159,167],"70":[159,167],"7016":20,"70180806":98,"70491":20,"70710678":53,"70ghz":167,"71":5,"71159051":117,"71328671":98,"7188093":125,"72":[17,159,167],"7200":18,"72035839":128,"720555851487694":18,"72085839":109,"722222":15,"7256909":127,"72626":132,"727":3,"72888401":98,"73":[5,167],"7322616":117,"73317308":3,"73340676":117,"73465028":123,"739264":16,"74":17,"7421875":21,"74381763":127,"7475":132,"75":[10,14,16,59,61,65,69,159,163],"75320573":102,"75753605":109,"76":18,"76074":132,"76158729":124,"76314504":117,"7649":15,"7650":15,"7666":101,"76854107":124,"76986848":102,"770":53,"771293":15,"77135603":124,"77252372":125,"776":17,"78":167,"781":17,"78166819":124,"78509085":110,"78610361":127,"787":159,"7878":132,"79323146":105,"797":3,"79716178":97,"799":[17,73],"79962158":120,"8":[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,39,53,62,63,68,73,97,125,158,159,163,164,165],"80":[9,10,16,17,18,124,159,167],"800":8,"80068173":127,"805":73,"805755244887":4,"80616883":130,"8063744":15,"80th":159,"81":159,"811":17,"813":53,"81490385":3,"817":3,"81830675":109,"81it":164,"820993":16,"82204348":117,"82269341":116,"82451923":3,"82463265":105,"827":3,"82837":20,"83076568":125,"8315":132,"837945":16,"83998586":108,"84":14,"84134615":3,"843":3,"84735157":62,"85":[14,17,159],"85142":20,"8529289":102,"85314633":131,"85376674":108,"858":3,"85885374":123,"862":73,"8682864837639":4,"87":[15,159],"8755":53,"87818":20,"88":159,"8843893":110,"88729152":131,"88972829":96,"88974472":121,"89":[14,17],"89100967":117,"892":[3,110],"8925":15,"896":3,"8s":167,"9":[2,3,4,5,6,7,8,9,10,13,14,15,16,17,19,20,21,53,63,68,126,134,159,163,164],"90":[12,13,14,159],"900x600":14,"903":3,"90537286":128,"90785391":121,"90th":134,"91311":20,"91356":15,"915":17,"91534452":128,"9185":132,"919":111,"921":110,"9212963":98,"92307692":3,"925":111,"929":110,"93264096":112,"937":3,"938":111,"939":111,"94":18,"94078295":122,"94272629":131,"944":4,"94512461":107,"95":[0,9,10,14,20,21,50,134,158,159,163],"950":110,"95104895":98,"95129261":104,"956":4,"95625528":111,"958":111,"9586113":125,"95th":[0,158,159],"96":[17,159],"966":3,"96757177":98,"97":13,"9707572":99,"976459":16,"976761":16,"97713346":131,"97979827":99,"98":17,"98214351":62,"987":111,"98781641":112,"99":[0,9,14,17,113,158,159,163],"99278846":3,"997":128,"998":128,"99804203":131,"999":[19,110],"99th":159,"9s":167,"abstract":[2,25,48,53,55,57,61,64,65,69,91,103,113,129,139,143,149],"boolean":[23,31,32,37,39,47,49,53,54,57,61,62,63,64,65,66,67,68,69,70,71,72,100,110,114,124,134,154,155],"break":[17,53,85,86,87,89,113,136,150,156],"byte":53,"case":[0,2,3,4,11,12,14,15,17,18,19,20,29,32,35,36,37,53,58,61,62,63,64,65,66,67,68,69,70,71,72,77,78,79,80,82,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,149,155,157,158,159,161,163,164,165,166,167],"catch":14,"class":[2,5,20,21,23,25,26,27,28,30,31,32,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56,58,59,60,62,63,66,67,68,69,70,71,72,73,74,76,77,78,79,85,86,87,89,91,92,93,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,136,137,138,139,140,141,142,144,149,150,153,155,156,157,159,166,167],"d\u00e3":[0,158],"default":[2,3,4,7,13,14,15,16,19,21,25,26,27,28,31,32,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,59,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,79,82,85,86,87,89,92,93,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,136,149,150,151,152,153,154,155,156,159,163,164,167],"do":[2,3,4,13,14,15,16,17,18,20,21,25,48,53,58,85,87,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,136,142,159,161,162,163,166],"enum":[104,127,144,154,157],"export":[20,113,160],"final":[2,15,18,19,24,29,53,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,159,163,164,167],"float":[10,15,18,25,26,27,28,31,32,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,62,68,72,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,149,150,151,152,153,154,155,156,159,165,167],"fr\u00e3":[0,158],"function":[0,2,3,7,12,13,14,16,18,20,21,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,58,61,62,63,64,65,66,67,68,69,70,71,72,80,82,85,86,87,89,91,92,93,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,135,142,149,154,155,156,158,159,162,163,165,166,167],"ga\u00e3":[0,158],"ga\u00ebl":15,"import":[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,53,58,59,61,62,63,64,65,66,67,68,69,70,71,77,78,79,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,133,134,136,154,158,159,161,162,163,164,165,166,167],"int":[13,14,15,16,21,25,26,27,28,32,34,35,36,39,47,49,50,53,54,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,77,78,79,80,82,85,86,87,89,92,93,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,136,138,139,140,141,142,149,150,151,152,154,155,156,157],"ko\u00e5":[0,158],"l\u00e3":[0,158],"long":[2,3,14,15,18,21,53,99,102,110,111,112,118,124,125,128,130,134,138,140,141,161,167],"new":[0,1,2,3,5,7,8,13,14,15,16,17,19,20,21,37,53,54,57,58,61,62,63,64,65,66,67,68,69,70,71,72,73,79,85,86,87,89,93,94,96,99,102,107,110,111,112,113,118,124,125,128,130,131,134,150,151,153,154,155,156,157,158,159,162,164,166,167],"null":154,"public":[18,53,73],"return":[2,3,6,8,9,10,13,15,16,18,19,21,24,25,26,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,77,78,79,80,82,85,86,87,88,89,91,92,93,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,136,142,143,149,150,151,152,153,154,155,156,157,159,163,165,166],"short":[2,14,15,53,73,104,125,142],"static":[0,14,15,60,61,62,63,64,65,66,67,68,69,70,72,77,79,80,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,140,141,142,158,160,161],"super":[61,62,63,64,65,66,68,69,70,71,72,113,129,136,143],"switch":113,"throw":[85,86,87,89,113,150,156],"true":[2,3,5,6,7,8,9,10,12,13,14,15,18,19,20,21,25,26,27,28,31,32,34,35,36,37,39,46,47,49,50,53,54,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,79,80,82,85,86,87,89,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,133,134,136,138,139,140,141,142,150,153,154,155,156,159,163,164,165,167],"try":[2,4,5,6,12,14,18,21,99,102,110,111,112,118,123,124,125,128,130,131,140,141,142,162,165,166,167],"var":[53,85,86,87,89,113,134,150,156],"void":53,"while":[3,4,13,16,18,37,53,61,62,63,64,65,66,67,68,69,70,71,72,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,141,150,156,159],A:[0,1,5,8,11,19,21,23,31,32,37,39,47,49,53,54,55,57,58,59,62,63,66,67,68,69,70,71,72,73,74,76,78,79,80,85,86,87,89,91,92,93,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,140,141,142,150,151,153,154,155,156,157,158,166,167],AND:[24,85,87],AS:[85,87],And:[2,15,21,38,39,40,41,42,43,44,45,46,47,48,49,58,85,86,87,89,113,150,152,156,159],As:[2,3,9,14,15,16,17,18,19,20,21,37,53,159,164,167],At:[2,18,21,113,134,161,163,167],BE:[85,87],BUT:[85,87],Be:[20,134],But:[3,4,159,167],By:[2,16,21,39,47,48,49,53,71,72,78,79,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,149,155,159,164,167],FOR:[85,87],For:[0,2,4,5,8,12,13,14,15,16,17,18,21,31,32,33,39,47,49,53,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,79,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,142,149,150,153,154,156,158,159,161,162,163,165,166,167],IN:[85,87,114],IS:[85,87,154],If:[0,2,3,5,6,7,8,13,14,15,16,18,20,21,25,27,31,32,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,77,78,79,80,82,85,86,87,89,92,93,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,140,141,142,149,150,151,152,153,154,155,156,157,158,159,161,162,163,164,166,167],In:[0,2,3,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,31,32,35,36,37,49,53,58,61,62,63,64,65,66,67,68,69,70,71,72,77,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,149,150,155,156,158,159,160,161,162,163,164,166],Is:[130,162],It:[0,2,3,8,13,14,15,17,18,19,21,24,31,32,33,38,39,40,41,42,43,44,45,46,47,48,49,53,57,58,69,70,71,72,73,77,78,82,85,86,87,89,91,92,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,140,141,143,149,150,154,156,158,159,161,163,166,167],Its:[7,85,86,87,89,150,156],NO:[85,87],NOT:[85,87,98,103,113,154],No:[16,21,134,162],Not:[3,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,159],OF:[73,85,87],OR:[24,85,87],Of:[2,130,167],On:[14,15,99,102,110,111,112,118,124,125,128,130,149,163],One:[17,21,31,32,53,58,78,79,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,140,141],Or:[15,66],Such:[15,159],THE:[85,87,126],TO:[85,87],That:[2,14,16,19,85,159,161,163,167],The:[0,2,4,7,8,9,11,12,13,14,15,16,18,19,20,21,24,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,79,80,82,85,86,87,89,91,92,93,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,136,138,139,140,141,142,143,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167],Then:[2,7,13,21,53,59,77,78,159],There:[2,10,15,16,18,21,53,58,85,113,159,161,164,165],These:[0,2,12,16,17,23,49,53,57,69,85,86,87,89,99,102,110,111,112,113,118,124,125,128,130,134,143,150,156,158,159,163,167],To:[3,5,8,9,14,15,18,19,20,21,53,63,73,85,86,87,89,99,102,108,110,111,112,113,114,118,124,125,128,130,136,142,150,156,159,161,163,167],WITH:[85,87],Will:[18,80,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134],With:[2,15,16,21,57,99,102,110,111,112,118,124,125,128,130,134,163,167],_0:149,_:[27,47,57,58,67,77,78,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,142,149,154,163],__:153,__call__:[85,86,87,89,113,150,156],__getitem__:143,__init__:[21,61,62,63,64,65,66,67,68,69,70,71,72,106,113,136,142,167],__main__:[53,164,165],__name__:[164,165],__traceback__:74,_a:[61,65,69],_and_regressor:114,_array_interface_:53,_as_parameter_:53,_basebatstbatsmodel:123,_blockrnnmodul:99,_covari:[58,80,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,141,161,167],_ctype:53,_diff_seri:[39,47,49],_encod:[57,58],_encode_sequ:57,_explainabilityresult:77,_fabricoptim:113,_fill_missing_d:134,_fit_iter:[62,63,64,69,70],_fitted_param:[62,63,64,67,69,70,71],_forecastingmodelexplain:[76,77,78,79,80],_freq_to_dai:114,_get_batch_predict:113,_holiday_effect:114,_intern:53,_lag:[100,108,109,115,117,132,142],_lag_:[77,78,142],_lib:134,_likelihoodmixin:[21,100,108,109,132],_loss:113,_lrfinder:[99,102,110,111,112,118,124,125,128,130],_lrschedul:113,_my_fixed_param:[61,62,63,64,65,66,68,69,70,71,72],_my_param:[61,69],_n:134,_number_:117,_posit:[64,69],_produce_train_output:113,_random_inst:156,_rnnmodul:118,_scale:[64,69],_seri:142,_statcov_target_:[100,108,109,115,117,132,142],_t:[63,82,150],_target_comp0:142,_target_comp1:142,_window_adjustment_anomali:[25,26,27,28,50],_x:134,a_list:53,a_tolist:53,ab:[9,10,13,15,19,54,57,58,73,85,111,124,125,128,130,138,149],abbrevi:167,abc:[25,34,48,53,55,57,61,74,91,93,106,113,139,143,149],abcmeta:106,abil:[0,100,108,132,158],abl:[0,2,16,20,21,31,32,67,99,102,110,111,112,118,124,125,128,130,158,159,163,164],about:[2,5,12,14,15,16,17,18,19,21,53,61,62,63,64,65,66,67,68,69,70,71,72,82,96,97,99,100,101,102,107,108,109,110,111,112,113,114,115,117,118,119,121,124,125,128,130,131,132,142,149,156,159,160,161,162,163,164,166,167],abov:[2,3,11,13,15,17,18,20,21,35,36,53,58,73,85,86,87,89,113,126,150,151,155,156,159,164],abs_diff:[39,47,48,49],absenc:[31,32],absolut:[0,13,15,39,46,47,48,49,57,58,82,152,158,159,162],absolute_error:115,acc:113,acceler:[2,6,8,9,10,15,18,19,99,102,110,111,112,113,118,124,125,128,130,164,165,167],accept:[20,53,57,58,61,62,63,64,65,66,68,69,70,71,72,85,86,87,89,107,113,123,134,142,149,150,156,159,161,163,166,167],accept_transform:[57,58],access:[20,21,53,61,62,63,64,65,66,68,69,70,71,72,77,85,86,87,89,99,102,104,110,111,112,113,114,118,124,125,126,127,128,130,136,140,141,150,156,161,164,167],accommod:167,accompani:[23,37],accomplish:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],accord:[5,7,53,54,92,93,99,102,103,110,111,112,118,124,125,127,128,130,151,164],accordingli:[4,62,63,64,69,70,130,134],account:[0,2,3,11,14,114,131,134,158,159],accumul:113,accumulate_grad_batch:[113,136],accur:[15,18,19,20,32,87,99,102,110,111,112,113,124,125,128,130],accuraci:[2,13,15,16,17,18,20,21,25,26,27,28,31,32,33,34,35,36,50,54,82,101,113,159],acf:[82,154,159],acf_max_lag:154,achiev:[3,4,21,85,86,87,89,113,150,156,163,167],acknowledg:[0,158,162],acovf:154,across:[5,15,16,21,35,36,70,93,107,113,125,142,153,161,163,166],act:[53,71,91,100,108,109,115,117,132,142],action:[85,87],activ:[2,7,8,15,20,21,55,85,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,163,167],actual:[0,2,3,4,5,6,7,8,9,10,11,13,14,15,18,20,21,23,29,31,32,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,69,79,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,149,150,157,158,159,163,167],actual_anomali:[25,26,27,28,31,32,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50],actual_seri:[14,38,39,40,41,42,43,44,45,46,47,48,49,82],ad:[0,4,20,21,25,26,27,28,31,32,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,53,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,82,85,86,87,89,96,97,99,100,101,102,107,108,109,110,111,112,113,114,115,117,118,119,121,124,125,128,130,131,132,134,142,149,150,156,158,159,166],adam:[99,102,110,111,112,113,118,124,125,128,130,167],adapt:[11,15,82,130,134],add:[0,6,9,10,11,12,14,15,17,18,21,31,32,38,39,40,41,42,43,44,45,46,47,48,49,50,55,58,61,62,63,64,65,66,67,68,69,70,71,72,85,86,87,89,99,102,110,111,112,113,114,118,124,125,128,130,134,142,150,155,156,158,159,165,166,167],add_cyclic_encod:167,add_dataloader_idx:113,add_datetime_attribut:[134,159],add_encod:[14,16,18,21,58,79,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,159,165],add_histogram:113,add_holidai:[134,159],add_imag:113,add_length:[20,96,97,107,114,119,121,131,155],add_modul:[85,86,87,89,113,150,156],add_rang:55,add_relative_index:[14,125],add_season:114,add_static_covariates_to_lagged_data:142,addconst:154,addit:[0,2,8,14,15,16,20,21,31,32,39,58,61,62,63,64,65,66,67,68,69,70,71,72,77,78,85,86,87,89,92,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,135,150,154,156,158,159,161,162,163,166,167],addition:[6,14,53,54,61,62,63,64,65,66,67,68,69,70,71,72,96,97,99,100,101,102,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132,142,167],adequ:31,adf:154,adful:154,adition:2,adjac:[134,155],adjust:[67,101,113,154],adopt:125,advanc:[2,5,15,20,21,87,100,108,109,115,117,130,132,140,141,159,160,161],advantag:[18,159,163],advic:20,advis:164,afect:[99,118],affect:[11,15,53,85,86,87,89,113,125,130,150,156,167],affin:87,afraid:15,after:[7,13,16,17,18,19,20,21,53,54,57,58,61,62,63,64,65,66,67,68,69,70,71,72,78,85,86,87,89,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,139,141,142,150,156,157,159,161,167],afterward:[85,86,87,150,156,159],ag:73,again:[2,4,13,14,15,18,53,67,98,103,116,159,163],against:[14,19,25,26,27,28,34,35,36,50,62,63,64,69,70,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,150,156],aggreg:[0,14,15,17,23,25,50,79,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,158],agnost:[29,31,32,37,38,39,40,41,42,43,44,45,46,47,48,49,57],ago:[21,98,159],ahead:[7,9,10,142,159,167],ai:[85,164],aic:[123,154],aidan:130,aim:3,air:[73,159,164],air_cov:159,air_covari:2,air_month:2,air_rnn:[5,164],air_test:15,air_test_sc:15,air_train:15,air_train_covari:2,air_train_sc:15,air_transform:7,air_val_covari:2,air_year:2,airlin:159,airpasseng:[0,20,158],airpassengersdataset:[2,4,5,6,7,9,14,20,59,62,63,67,70,73,78,79,96,97,98,99,101,102,104,105,107,110,111,112,114,116,118,119,120,121,122,123,124,125,127,128,130,159,163,164,165,167],aka:142,al:[15,87,99,102,110,111,112,113,124,125,128,130,149,154],aleator:[100,163],algorithm:[4,11,13,15,39,47,49,53,54,93,107,108,113,127,159],alia:[53,67,85,86,87,89,113,134,150,153,155,156],alias:134,alig:13,align:[2,4,53,54,55,138,140,141,159],all:[0,1,2,3,4,5,6,8,9,10,13,14,15,16,17,18,19,20,21,26,34,35,36,37,39,47,48,49,50,53,54,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,77,78,79,80,82,85,86,87,89,91,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,134,136,138,139,140,141,142,143,149,150,151,152,153,154,155,156,157,158,159,161,163,164,166],all_air_seri:15,all_gath:113,all_param:106,all_past_covari:161,all_seri:18,all_series_fp32:18,all_target:161,all_valu:[64,69,125,134,166],alloc:[53,71],allow:[0,3,4,13,19,20,37,39,47,49,53,55,61,62,63,64,65,66,67,68,69,70,71,72,85,86,87,89,99,100,102,106,108,109,110,111,112,113,115,117,118,124,125,128,130,132,134,136,140,141,142,150,152,153,154,156,158,159,161,164,165,166,167],allow_filter_train:31,allow_model_train:[31,32],allow_zero_length_dataloader_with_multiple_devic:113,almost:[9,53,163],alon:[58,91],along:[31,32,53,61,62,63,64,65,66,67,68,69,70,71,72,78,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,152,155,159,166],alongsid:[61,69,85,86,87,89,113,150,156],alpha:[12,17,101,134,149,154,159],alpha_1:149,alpha_d:101,alpha_i:149,alpha_k:149,alpha_p:101,alreadi:[2,13,14,15,16,18,19,20,31,32,53,73,74,85,86,87,89,113,116,130,134,142,150,156,159,164,167],also:[0,1,2,3,4,5,9,11,13,14,15,16,17,18,19,20,21,29,31,32,53,58,61,62,63,64,65,66,68,69,70,71,72,77,78,79,82,85,86,87,89,93,96,97,98,99,101,102,103,107,110,111,112,113,114,116,117,118,119,121,123,124,125,128,130,131,134,139,142,149,150,153,154,156,158,159,161,162,163,164,165,166,167],alter:[53,113],altern:[39,47,49,53,71,87,113,114,134,142,155],although:[14,15,18,53,85,86,87,107,150,156,159],alwai:[15,18,19,53,67,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,149,150,153,156,159,161,162,167],always_cal:[85,86,87,89,113,150,156],amax:53,ambient:167,amin:53,among:[0,53,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,154,158],amount:[13,18,46,59,61,62,63,64,65,66,67,68,69,70,71,72,99,102,110,111,112,118,123,124,125,128,130,159,167],amp:113,amplitud:155,an:[0,1,2,3,5,6,7,8,9,10,11,12,13,14,18,19,20,21,24,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,57,58,61,62,63,64,65,66,67,68,69,70,71,72,73,78,79,80,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,139,140,141,142,144,149,150,152,153,154,155,156,157,158,159,161,162,163,164,165,166,167],analysi:[98,110,123,159,165],anaomli:23,anchor:67,and_aggreg:26,andaggreg:26,andrew:154,andrzej:[0,158],angl:15,ani:[0,2,11,14,15,16,18,19,20,21,23,28,29,31,32,37,46,48,53,55,58,61,62,63,64,65,66,67,68,69,70,71,72,77,78,80,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,136,138,139,140,141,142,149,150,151,155,156,158,159,161,164,165,166,167],anom_scor:[0,158],anomal:[19,26,28,36,37,39,47,49],anomali:[0,22,25,26,27,28,30,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,158],anomaly_model:[31,32,50],anomaly_scor:[34,35,36,50],anomalymodel:[31,32],anomalyscor:[31,32,48],anomoul:[34,35,36,50],anoth:[2,6,14,15,21,53,71,93,107,113,134,159,165,166,167],answer:162,any_seri:2,anymor:[2,19,159],anyon:[0,158],anyth:[77,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,136],apart:[21,114],api:[0,1,11,15,17,21,37,53,58,114,134,155,158,159,163,166],appear:[0,17,53,134,158],append:[13,14,15,17,20,58,113,117,134,136,142,167],append_valu:134,appendix:1,appl:15,appli:[0,3,13,14,16,18,21,23,31,32,33,35,36,37,39,47,48,49,53,54,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,78,79,80,82,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,149,150,156,158,159,161,167],applic:[3,15,31,32,67,134,159,164],apply_component_mask:[61,62,63,64,65,66,67,68,69,70,71,72],apply_to_collect:113,appreci:[0,158],approach:[2,4,8,11,16,18,21,53,67,69,121,149,159,161,162,163],appropri:[12,17,31,32,53,78,98,99,102,103,110,111,112,118,123,124,125,128,130,149,162,167],approxim:[15,54,99,101,102,110,111,112,118,124,125,128,130,154,156,163],april:15,ar:[0,1,2,3,4,5,7,8,11,12,13,14,15,16,17,18,19,20,21,23,26,29,31,32,33,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,79,80,82,85,86,87,89,91,92,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,139,140,141,142,143,149,150,152,153,154,155,156,157,158,159,160,162,163,164,166,167],arang:[13,14,21,53,59,68,159],arbitrari:[2,16,20,53,113,134,159,161,163,166],arbitrarili:[53,153],architectur:[2,7,14,15,18,19,110,125,130,167],archiv:[53,73],area:[14,53,73,161],aren:142,arg1:113,arg2:113,arg3:113,arg:[14,25,34,53,61,62,63,64,65,66,67,68,69,70,71,72,74,85,86,87,89,98,106,113,120,122,125,128,134,136,150,156],argmax:[53,113],argmin:53,argpartit:53,argrelextrema:13,args_cost:54,args_lin:54,args_path:54,args_series1:54,args_series2:54,argsort:53,argument:[2,3,4,5,12,14,19,20,21,39,53,54,61,62,63,64,65,66,67,68,69,70,71,72,78,82,85,86,87,89,92,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,139,150,151,154,156,159,162,163,167],ari:101,arima:[0,4,15,95,97,119,154,158,159,161,163],arima_smap:15,arima_smapes_m3:15,arima_tim:15,arima_time_m3:15,aris:[85,87,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],arithmet:[53,159],arma:[98,123],around:[0,3,12,15,18,21,27,31,32,47,49,53,85,96,97,99,102,104,110,111,112,113,114,115,117,118,123,124,125,128,130,131,134,142,149,154,158,159,162,164,166],arr:53,arr_t:53,arrai:[3,21,39,47,49,53,54,55,59,61,62,63,64,65,66,67,68,69,70,71,72,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,141,142,149,153,154,155,159,166,167],array_valu:[61,62,63,64,65,66,67,68,69,70,71,72],art:[8,21,130,162],articl:[2,18,122,163],arvix:[125,130],arxiv:[8,9,10,15,19,73,85,102,111,112,124,125,128,130,138,149,156],as_paramet:53,as_strid:[53,142],ashaschedul:165,ashish:130,ashx:73,asic:164,asid:[0,18,20,158,159],ask:[0,15,18,158,160],aspect:113,assert:16,assess:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],assign:[53,85,86,87,89,113,150,156],assimakopoulo:159,associ:[61,62,63,64,65,66,67,68,69,70,71,72,85,86,87,89,113,126,150,156],assum:[18,21,32,39,47,48,49,61,64,65,69,74,88,105,113,134,142,155,161,164,167],assumpt:[12,31,32,39,47,48,49,78,154,163],astronom:73,astyp:[6,7,8,9,10,14,15,18,53,134,159,164,165,167],asymmetr:102,asynchron:[85,86,87,89,150,156,165],asyncio:136,athanasopoulo:3,atmospher:[99,100,102,108,109,110,111,112,115,117,118,124,125,128,130,132],attach:[113,134],attempt:[4,12,18,53,78,111,128,161],attend:[14,125],attent:[7,14,18,77,79,125,128,130,167],attentd:14,attn:79,attribut:[2,4,5,6,9,10,14,20,21,37,38,39,40,41,42,43,44,45,46,47,48,49,53,57,58,61,62,63,64,65,66,67,68,69,70,71,72,74,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,149,150,155,156,159,161,166],attributedict:113,attributeerror:[53,85,86,87,89,113,150,156],auc:[29,37],auc_pr:[31,32,38,39,40,41,42,43,44,45,46,47,48,49,50],auc_roc:[31,32,38,39,40,41,42,43,44,45,46,47,48,49,50],aug:73,augment:[73,113,154],august:73,ausbeer:73,ausbeerdataset:[19,73],australia:73,australian:[1,19,73],australiantourismdataset:[17,73],author:[0,15,85,87,158],auto:[2,4,6,9,10,14,15,19,20,21,68,82,97,98,99,100,102,103,108,109,110,111,112,113,115,116,117,118,119,120,122,124,125,128,130,132,142,151,154,159,161,165,167],auto_arima:97,auto_select_gpu:[18,99,102,110,111,112,118,124,125,128,130,164],autoarima:[0,4,95,119,158,159,161],autoarima_arg:[97,119],autoarima_kwarg:[97,119],autoc:120,autoces_arg:120,autoces_kwarg:120,autoet:121,autoets_arg:121,autoets_kwarg:121,autograd:[85,86,87,89,113,150,156],autolag:154,autom:167,automat:[2,4,6,16,58,61,62,63,64,65,66,67,68,69,70,71,72,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,154,159,163,164,165],automatic_optim:113,automaticargsmodel:113,autonom:58,autonotebook:21,autoregress:[9,96,131,155],autoregressive_integrated_moving_averag:96,autoregressive_timeseri:155,autoreload:[3,4,5,7,9,11,12,13,14,16,19,20,21],autotheta:122,autotheta_arg:122,autotheta_kwarg:122,avail:[1,2,3,8,14,15,17,18,20,53,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,80,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,152,153,155,156,159,163,164,165,167],averag:[3,11,13,14,15,17,20,21,53,69,82,85,86,87,89,90,96,98,102,113,116,131,150,154,156,159,161,167],average_error:159,avgpool1d:111,avoid:[2,5,7,14,19,53,72,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,150,156,159,164,165,167],awai:142,awar:[18,113,134,149,152,165],awesom:162,ax:[2,6,9,10,13,14,15,19,20,21,53,56,79,99,102,110,111,112,118,124,125,128,130,134,138,140,141,142,154,163,166,167],axi:[2,9,10,13,14,15,17,51,53,54,55,61,62,63,64,65,66,67,68,69,70,71,72,79,87,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,139,142,152,154,155,159,161,166,167],axis1:53,axis2:53,ay:134,azz:121,b:[16,53,55,57,61,65,69,71,134,149,161,166],b_1:85,b_2:85,babai:101,back:[2,3,20,53,54,61,62,63,64,65,66,67,68,69,70,71,72,80,82,99,102,110,111,112,113,118,124,125,128,130,134,159,166,167],backfil:[72,134],background:[14,77,78,79,80],background_future_covari:[78,79],background_num_sampl:78,background_past_covari:[78,79],background_seri:[78,79],backpropag:19,backtest:[0,6,7,9,10,20,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,158],backtest_en:[6,9,10],backtest_futcov:2,backtest_hist_fct:20,backtest_model:20,backtest_pastcov:2,backtest_seri:[5,7,14],backtest_series_ic:14,backtest_sp:6,backward:[53,67,85,86,87,89,100,113,117,134,136,150,156,167],backward_pr:[85,86,87,89,113,150,156],bad:[4,113,162],bader:[0,158],bai:73,balanc:18,band:13,bangladesh:114,bar:[2,3,6,8,9,10,13,16,19,78,82,113,136],bar_format:136,bare:159,barebon:21,bartlett:154,bartlett_confint:154,base:[0,2,3,5,13,15,18,19,20,25,26,27,28,30,31,32,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,53,54,55,56,58,59,60,62,63,66,67,68,69,70,71,72,73,74,76,77,78,79,85,86,87,89,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,133,134,136,137,139,140,141,144,149,150,153,154,156,157,158,159,161,163,164,165,166,167],base_component_nam:[57,58],base_data_transform:[61,64,65,66,68,69,72],basedatatransform:[59,61,62,63,64,65,66,67,68,69,70,71,72],basedetector:47,baseexcept:74,baselin:[0,16,18,95,158,159,161],basesianridg:21,basetyp:53,basi:[110,134,155],basic:[3,21,29,114,159,165,167],bat:[0,95,158,159,161,163],batch:[2,19,89,99,102,110,111,112,113,118,124,125,128,130,136,149,163],batch_idx:[113,136],batch_siz:[2,5,7,8,9,10,14,15,18,19,99,102,110,111,112,113,118,124,125,128,130,149,164,165],batchnorm:[85,86,87,89,113,150,156],bayes_ridge_model:159,bayesian:[18,21,99,102,110,111,112,118,124,125,128,130,149,156,159,163],bayesianridg:[21,159],bbox_to_anchor:15,bd:114,bear:12,beat:[0,2,73,95,111,138,158,162],becaus:[2,4,12,14,15,18,21,53,118,119,121,130,131,142,143,152,153,154,159,161,164,167],becom:[2,13,18,53,134],bee:2,been:[1,2,15,17,19,21,31,32,39,47,48,49,57,58,62,63,64,67,69,70,71,78,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,159,167],beer:[19,73],befor:[0,2,3,4,8,12,14,15,16,17,18,19,20,21,32,39,47,48,49,53,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,142,150,155,156,157,158,159,162,167],beforehand:166,began:16,begin:[2,9,10,13,20,53,72,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,167],behav:[37,39,47,49,53],behavior:[4,9,11,21,53,85,86,87,89,91,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,150,156,167],behaviour:[13,53,113],behind:[53,117,149,159,161,163,166],being:[0,11,15,19,20,31,32,39,47,49,53,57,61,62,63,64,65,66,67,68,69,70,71,72,78,80,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,142,150,156,158,159,163],beitner:126,belief:[149,159],believ:15,belong:[50,113,134,140,141],below:[0,2,4,15,16,17,18,20,21,35,36,53,54,57,58,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,150,156,158,159,161,163,165,167],benchmark:[19,98],benefici:163,benefit:[20,58,61,62,63,64,65,66,68,69,70,71,72,113,159,164],benheddi:[0,158],bernoulli:149,bernoulli_distribut:149,bernoullilikelihood:149,besid:18,best:[2,5,6,7,8,9,10,13,15,17,19,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,153,159,161,162,165,167],best_config:165,best_loss:[99,102,110,111,112,118,124,125,128,130],best_map:159,best_model:[5,7,18,167],best_model_sp:7,best_pr:18,best_preds_test:18,best_theta:159,best_theta_model:159,best_trial:[18,165],best_valu:[18,165],beta:149,beta_distribut:149,beta_nl:[9,10,149],betalikelihood:[149,159],better:[2,3,4,11,13,15,16,18,20,21,102,111,123,125,128,130,134,159,167],between:[2,3,13,15,18,21,29,33,35,37,38,39,40,41,42,43,44,45,46,47,48,49,53,54,55,58,61,64,65,69,70,71,73,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,142,149,150,152,155,156,157,159,163,165,167],bewar:53,beyond:[33,35,36,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,142,164],bfill:[72,134],bfloat16:[85,86,87,89,113,150,156],bgc:73,bia:[20,85,86,87,89,113,150,154,156],biao:87,bias1:85,bias2:85,bias:159,bias_gat:85,bibtex:[0,158],bic:154,big:[15,53,100,108,109,115,117,132,140,141,143,167],bigger:[1,6],bigger_s:13,bilinear:[86,125,130],bin:[15,16,154,159],binari:[0,23,24,25,26,27,28,29,33,34,35,36,50,53,114,134,155,158,159],binary_anom:[0,158],binary_pred_anomali:50,binaryio:[96,97,98,100,101,103,104,105,107,108,109,114,115,116,117,119,120,121,122,123,127,131,132],binomi:149,bit:[21,53,159],black:12,blindli:15,blob:[108,114,126],block:[2,5,53,93,95,110,111,118,128,142],block_denom_grad:150,block_rnn_model:[5,99],blockrnn:2,blockrnn_test:2,blockrnnmodel:[0,2,5,9,95,99,118,158,161],blog:[0,158],blood:166,blue:[4,11,12,15,17,21,159],boilerpl:19,book:17,bool:[21,31,32,38,39,40,41,42,43,44,45,46,47,48,49,53,54,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,79,80,82,85,86,87,89,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,139,140,141,142,150,152,153,154,155,156],boost:108,border:94,borrow:53,both:[0,3,5,11,14,15,16,17,18,19,20,21,39,47,49,53,55,57,58,61,69,71,72,73,80,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,134,138,140,141,142,150,154,156,158,159,161,163,164,165,167],bottl:73,bottleneck:[61,62,63,64,65,66,68,69,70,71,72,164],bottom:[17,69,134],bottom_level_compon:134,bottom_level_seri:134,bottomupreconcili:[17,69],bound:[35,36,50,85,86,87,89,92,99,100,102,108,109,110,111,112,113,115,117,118,124,125,128,130,132,134,139,140,141,142,150,156,167],boundari:[97,139,154],box:[15,18,20,21,60,113,123,159],box_cox_bound:123,boxcox:[0,58,62,158],boxcox_normmax:62,boylan:101,br:114,brazil:114,breakdown:[0,158],brief:[4,20],bring:[0,54,158],british:73,broadli:[161,167],broken:73,bt:15,bu:[17,73],buf:[85,86,87,89,113,150,156],buffer:[53,85,86,87,89,113,150,156],buffer_callback:163,bug:[0,53,158],build:[0,5,6,14,17,21,58,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,141,150,156,158,163,165],build_fit_tcn_model:18,built:[2,18,53,99,102,110,111,112,113,118,124,125,128,130,134,159,163],builtin:[53,72,134],bulk:18,bunch:[4,15],busi:[17,73],bx:134,bypass:[53,128],byteord:53,bytesio:53,byteswap:53,c:[0,13,16,17,21,53,55,57,71,73,85,87,96,111,131,134,154,158,159,161],c_contigu:53,c_doubl:53,c_int:53,c_intp:53,c_long:53,c_long_array_2:53,c_longlong:53,c_name:21,c_short:53,c_uint32:53,c_uint64:53,c_uint:53,c_ulong:53,c_val:21,c_void_p:53,ca:[53,73],cach:[74,113,136],calcul:[15,53,73,98,113,134,152,154,155],calendar:[18,21,123,159,163],calibr:37,california:73,call:[2,3,13,15,17,18,20,21,29,31,32,33,39,47,48,49,53,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,77,80,82,85,86,87,89,93,98,99,102,103,104,106,107,110,111,112,113,114,116,118,119,121,124,125,127,128,130,136,142,150,153,156,159,161,162,163,166,167],call_super_init:[85,86,87,89,113,150,156],callabl:[54,57,58,66,72,74,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,150,156],callableindexencod:58,callback:[0,2,6,8,9,10,16,18,19,99,102,110,111,112,113,118,124,125,128,130,136,158,165],callback_metr:167,caller:[85,86,87,89,113,150,156],camila:[0,158],can:[0,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,20,21,23,24,29,33,37,39,47,49,50,53,54,55,57,58,61,62,63,64,65,66,67,68,69,70,71,72,73,74,77,78,79,82,85,86,87,89,92,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,139,140,141,142,143,149,150,152,153,154,155,156,157,158,159,161,162,163,164,165,166,167],canada:73,candid:[11,20,159],candidates_model:20,cannot:[20,21,37,53,63,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,142,152,159,162],canon:127,cap:114,capab:13,capabl:[0,158,161,163,164],capac:[114,163],capit:164,captur:[2,14,15,18,20,21,37,78,100,106,159,161,166],care:[3,18,20,61,62,63,64,65,66,67,68,69,70,71,72,85,86,87,113,150,156,163,167],carlo:[21,85,99,102,110,111,112,118,124,125,128,130,156,159,166],carrai:53,carri:[18,57,58,77,93,107,114],carrier:15,carrier_passeng:15,cast:[18,53,85,86,87,89,113,134,150,156,159,167],cat:[16,71],catageor:79,catboost:[21,95],catboost_model:[21,100],catboostmodel:[0,21,95,100,158,161],catboostregressor:[21,100],categor:[71,77,79,108,117,125,161],categori:[15,16,71,125,161],categorical_embedding_s:[14,16,125],categorical_future_covari:[108,117],categorical_past_covari:[108,117],categorical_static_covari:[108,117],cauchi:[37,149],cauchy_distribut:149,cauchylikelihood:149,cauchynllscor:40,caus:[20,53,134,149,154,162],causal:[89,154],caution:164,cavari:139,cdc:73,cdot:82,cdoubl:[85,86,87,89,150,156],ce:120,ceg:53,ceil:13,cell:[6,15,18,53,55,159],center:[14,72,73,87,94,134,149,159],centr:159,central:134,central_quantil:134,centroid:39,certain:[17,18,53,55,85,86,87,89,113,150,156,159,163],certainli:18,cet:[21,58,73,96,97,99,100,101,102,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132],cgdakqo1c0p:[99,102,110,111,112,113,124,125,128,130],ch:73,chain:59,challeng:5,challu:111,chanc:[113,136,138,167],chang:[0,7,11,12,15,16,18,53,61,62,63,64,65,66,67,68,69,70,71,72,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,150,153,156,158,164,167],changelog:162,channels_last:[85,86,87,89,150,156],character:2,characterist:[16,161],charg:[85,87,126],check:[0,5,14,17,20,21,39,47,48,49,50,53,58,80,85,86,87,89,99,102,110,111,112,113,118,124,125,128,130,134,136,142,150,152,153,154,156,158,159,161,167],check_component_nam:80,check_if_fit_cal:[39,47,48,49],check_input:142,check_season:[3,5,7,9,14,154,159],checkout:[97,118],checkpoint:[2,6,8,19,99,102,110,111,112,113,118,124,125,128,130,136,163],checkpoint_hyper_params_kei:113,checkpoint_hyper_params_nam:113,checkpoint_hyper_params_typ:113,checkpoint_path:113,checksum:[73,74],chen:[102,112,150],chiba:13,child:[17,61,62,63,64,65,66,68,69,70,71,72,85,86,87,89,113,150,156],children:[17,85,86,87,89,113,150,156],china:[73,114],choic:[5,15,18,21,53,154,161,165],choos:[15,53,113,167],chose:2,chosen:[4,6,70,78,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,154],christma:18,chronolog:78,chunk:[2,14,57,58,79,99,100,102,108,109,110,111,112,113,115,117,124,125,128,130,132,141,160,161,165],circuit:164,circumst:53,cisz:[0,158],citi:[17,73,161],city_label:17,ckpt:[99,102,110,111,112,113,118,124,125,128,130],claim:[85,87],classic:[0,15,20,101,158,162],classif:[0,23,33,158],classmethod:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134],clean:[0,158],clear:[13,53,85,86,87,89,113,131,136,150,156,166],clearli:4,client:[2,18,73,164],clip:[19,53,113],clip_gradi:113,clireport:165,clongdoubl:53,close:[2,3,10,11,12,13,15,21,53,54,72,113,134],closer:[4,18,130,159],closest:[39,53,149,157,167],closur:113,cloud:164,cluster:[37,39],cn:[114,131],co2:73,co:[0,11,58,134,155,158,159],code:[15,17,19,21,53,73,114,134,155,162,163,164,167],coef:155,coef_:[21,159],coef_nam:21,coef_valu:21,coeffici:[21,82,110,150,153,154,155,159],coefficient_of_vari:82,coeffs_dim:15,coincidentali:2,col:[14,15],col_nam:134,col_names_new:134,colab:[15,162,164],collaps:53,collat:71,collect:[0,73,98,113,136,158,159],collis:[99,102,110,111,112,118,124,125,128,130],color:[2,11,12,13,15,17],colormap:[21,54],cols_cat:71,cols_num:71,column:[0,14,15,16,17,21,53,55,58,61,62,63,64,65,66,67,68,69,70,71,72,73,114,125,134,142,151,155,158,163,166],column_index:55,column_length:55,column_nam:[16,155],column_rang:55,com:[15,62,63,69,73,108,114,120,121,122,123,126,127,132,142,150,164],combin:[0,12,18,20,21,23,24,37,57,58,59,73,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,136,158,159,163,165,167],combined_forecast:159,come:[2,3,17,18,21,24,37,53,73,99,100,102,108,110,111,112,118,124,125,128,130,132,138,140,141,165],command:[15,18,167],commensur:37,comment:14,common:[0,3,11,19,50,82,99,102,110,111,112,118,124,125,128,130,134,142,154,157,158,159],common_model_arg:19,commonli:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],commun:[113,162],comp0:142,comp0_:142,comp0_s0:134,comp0_s1:134,comp0_target_lag0:142,comp0_target_lag3:142,comp1:[16,71,142],comp1_:142,comp1_s0:134,comp1_s1:134,comp1_series_:16,comp1_target_lag0:142,comp1_target_lag3:142,comp2:[16,71],comp3:[16,71],comp:[21,72,100,108,109,115,117,132,134,142],comp_0:134,comp_1:134,comp_2:134,compani:[15,18],compar:[0,2,16,17,19,20,21,23,29,31,32,36,37,46,49,53,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,149,158,159,167],comparison:[5,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,150,156,165],compat:[0,2,15,20,53,85,86,87,89,110,111,113,123,124,125,128,134,150,154,156,158,159,167],competit:[8,15,20,127,159],compil:[53,85,86,87,89,113,119,121,150,156],complain:[2,99,102,110,111,112,118,124,125,128,130],complet:[2,4,19,104,160,165,166,167],complex128:[53,85,86,87,89,150,156],complex:[6,7,13,15,18,21,53,85,86,87,89,120,123,150,156],complexseason:123,complexwarn:53,complic:53,compon:[0,2,3,5,8,9,11,14,15,16,18,24,25,26,27,28,35,36,39,46,47,49,50,54,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,80,82,85,86,87,88,89,96,98,100,102,104,108,109,112,114,115,117,118,123,125,128,132,134,142,149,153,154,155,158,159,163,166],component_:134,component_i_sample_1:[61,62,63,64,65,66,67,68,69,70,71,72],component_i_sample_2:[61,62,63,64,65,66,67,68,69,70,71,72],component_i_sample_n:[61,62,63,64,65,66,67,68,69,70,71,72],component_mask:[61,62,63,64,65,66,67,68,69,70,71,72],component_wis:[31,32,37,39,46,47,49],componentbasedexplainabilityresult:77,componentn:134,components_max:134,components_mean:134,components_median:134,components_min:134,components_sum:134,components_to_show:17,compos:[13,21,31,32,38,39,40,41,42,43,44,45,46,47,48,49,50,69,85,86,87,89,113,114,134,150,156,159],compress:[53,55],compris:142,compromis:15,comput:[0,2,3,5,7,13,14,15,17,18,19,21,31,32,35,37,38,39,40,41,42,43,44,45,46,47,48,49,58,62,63,69,70,72,73,78,79,82,85,86,87,89,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,142,149,150,151,154,155,156,158,163,167],computation:[13,21,163],compute_loss:149,comsumpt:2,con:18,concaten:[2,6,8,9,10,14,17,39,47,48,49,61,62,63,64,65,66,67,68,69,70,71,72,134,142,159,161,166,167],concentr:149,concept:18,concern:[73,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],cond:82,conda:[0,158,159],condit:[16,19,53,85,87,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,140,141],condition_nam:114,confer:[15,87],confid:[0,12,18,20,134,154,158,159,166],confidence_low_quantil:134,config:165,configur:[1,8,59,72,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,163,167],configure_callback:113,configure_gradient_clip:113,configure_model:113,configure_optim:113,configure_sharded_model:113,configure_torch_metr:113,confirm:159,confus:[85,86,87,89,113,150,156],conj:53,conjug:53,connect:[2,5,85,87,99,110,111,125,128,130],consecut:[2,53,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,139,140,142,167],consequ:[5,64,69],consid:[8,13,14,15,16,18,19,20,34,35,36,37,39,47,49,50,54,55,58,61,62,63,64,65,66,67,68,69,70,71,72,78,82,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,140,141,142,150,151,154,156,157,159],consider:[9,20,21,117],considers_static_covari:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],consist:[2,3,4,8,14,18,85,86,87,89,110,112,113,114,134,138,150,153,156,166,167],consol:21,const_init:[102,112],constant:[14,15,16,96,99,102,110,111,112,113,114,118,124,125,128,130,131,153,154,155,161],constant_timeseri:[9,10,155],constantli:[0,158,162],constitu:[98,103],constitut:[15,21,134],constrain:[13,54,159],constraint:[2,54,118,140,141],constrast:2,construct:[13,17,53,55,62,70,78,85,86,87,89,99,102,110,111,112,113,118,124,125,128,130,134,139,142,150,156,160],constructor:[3,4,12,64,69,99,102,110,111,112,118,124,125,128,130,136],consult:[159,162],consum:[0,2,15,17,18,21,53,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,142,158,159,161,163,166],consumpt:[21,73,167],cont:16,contact:162,contain:[0,1,2,3,4,11,13,14,15,16,17,18,20,31,32,33,38,40,41,42,43,44,45,46,48,50,53,61,62,63,64,65,66,67,68,69,70,71,72,73,74,77,78,79,82,85,86,87,89,91,92,93,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,134,136,138,139,140,141,142,143,149,150,153,154,155,156,157,158,159,161,163,164,165,166,167],contamin:[72,134],content:[53,113,160,164],context:[2,8,19,85,86,87,89,113,123,150,156,161,164,167],contigu:[15,53,55,134,142,151],continu:[2,9,10,15,16,19,20,73,125,149],continuous_bernoulli_distribut:149,continuousbernoullilikelihood:149,contract:[85,87],contrast:[2,154,159],contribut:162,contributor:[0,158,162],control:[2,11,13,53,55,58,73,93,96,99,100,102,105,107,108,109,110,111,112,118,124,125,128,130,131,132,134,149,159,167],conv2d:[85,86,87,89,113,150,156],conv4:[85,86,87,89,113,150,156],conv5:[85,86,87,89,113,150,156],conv:[85,86,87,89,113,150,156],conveni:[3,15,21,23,37,53,77,123,159,165],convent:[16,58,77,78,100,108,109,115,117,132,134,142,166],converg:[11,17,167],convergencewarn:17,convers:[53,58,61,62,63,64,65,66,67,68,69,70,71,72,73,142],convert:[9,14,15,21,53,58,67,71,73,85,86,87,89,113,134,150,154,155,156,162],converted_seri:14,convincingli:162,convolut:[0,2,18,95,158,159],cookbook:12,coordin:[3,59,61,62,63,64,65,66,68,69,134,166],copi:[20,21,53,57,59,61,62,63,64,65,66,68,69,70,71,72,85,86,87,89,93,107,113,126,134,150,156,164],copyright:[85,87,126],copyto:53,core:[3,15,18,21,23,37,53,57,58,61,62,63,64,65,66,67,68,69,70,71,72,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,159,164,167],correct:[53,58,64,69,99,102,110,111,112,113,118,124,125,128,130,154],correctli:[2,9,15,64,69,85,86,87,89,99,102,110,111,112,113,118,124,125,128,130,150,153,156],correl:[21,82,154,159,166],correspond:[2,3,15,35,36,37,39,47,49,53,54,55,57,58,61,62,63,64,65,66,67,68,69,70,71,72,77,78,79,80,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,149,150,154,155,156,157,159,161,166,167],corrupt:[12,113],cosin:[58,96,97,107,114,119,121,155],cost:[13,15,53,54,111,128,142,167],cost_cmap:54,cost_matrix:[53,54],costmatrix:[53,54],cough:73,could:[3,4,13,15,17,18,21,37,53,59,61,62,63,64,65,66,67,68,69,70,71,142,159,161],count:[13,15,53,101,113,149,154,159],counter:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,162],countri:[73,114,134,155,161],country_cod:[134,155],country_holidai:114,coupl:[18,21,100,159],cours:[2,18,20,130,159,165,167],cov0_:142,cov1_:142,cov:16,cov_heat_train:14,cov_heat_v:14,cov_train:[5,14],cov_val:[5,14],covari:[0,5,6,9,10,11,15,18,32,57,58,60,62,67,69,70,77,78,79,80,92,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,134,138,139,140,141,142,143,155,158,160,162,165],covariate_index_gener:57,covariate_typ:[139,141],covariates_heat:14,covariates_heat_transform:14,covariates_temp:[57,58],covariates_transform:14,covariatesindexgener:[57,58],covariatesmodel:167,covariatetyp:[139,141,144],covarit:16,cover:[2,20,53,55,57,167],coverag:6,cow:[2,3,73,159],cox:[60,123],cp37:164,cp37m:164,cpu:[2,3,6,8,9,10,15,18,85,86,87,89,99,102,110,111,112,113,118,123,124,125,128,130,150,156,160,165],cran:73,crash:53,cream:[73,167],creat:[0,5,6,7,9,12,13,15,16,18,19,20,21,39,47,53,58,59,61,62,63,64,65,66,67,68,69,70,71,72,79,82,85,86,87,89,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,150,155,156,158,160,161,163,164,165,167],create_lagged_component_nam:142,create_lagged_data:142,create_lagged_prediction_data:142,create_lagged_training_data:142,create_normal_sampl:88,create_studi:[18,165],creation:[3,14,16,21,53,57,58,79,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,140,141,159,161,167],crest:12,crit:154,criterion:[13,15,115,120,154,159,164],critic:[2,3,4,5,6,7,8,9,10,14,16,19,20,21,154],crop:105,croston:[0,95,158,161],crwindow:55,csv:[0,3,4,13,15,113,134,158,159],ct:[96,131,154],ctt:154,ctype:53,ctypeslib:53,cu111:164,cu:[57,58],cuda:[18,85,86,87,89,113,150,156,165,167],cuda_visible_devic:[18,164],cumprod:53,cumsum:[53,134],cumul:[53,134],cumulative_length:139,curios:20,curl:15,current:[0,5,7,14,15,17,18,53,55,58,72,78,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,142,150,156,158,159,163,164,165,167],current_epoch:113,curv:[12,16],curve_typ:16,custom:[0,14,19,57,58,66,85,86,87,89,96,97,99,100,101,102,107,108,109,110,111,112,113,114,115,117,118,119,121,124,125,128,130,131,132,136,149,150,156,158,159],custom_decod:130,custom_encod:130,custombatch:113,customfeedforwarddecoderlay:89,customfeedforwardencoderlay:89,customm:14,customregressionmodel:21,cut:[134,157],cutoff:14,cyc:[57,58],cycl:[104,114],cyclic:[14,18,21,57,58,79,96,97,99,100,101,102,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132,134,155,159],cyclic_past:58,cyclicencod:58,cyclictemporalencod:58,d1:134,d1r1:134,d1r2:134,d2:134,d2r1:134,d2r2:134,d:[2,15,16,39,47,49,53,55,57,61,62,63,64,65,66,67,68,69,70,71,72,95,96,110,111,113,131,134,155,159,161,166],d_:85,d_ff:[85,86],d_model:[7,85,86,130],da:128,dai:[2,3,4,6,8,9,10,15,18,21,58,67,105,114,134,155,159,161,165,167],daili:[2,3,4,14,73,104,114,134,155,161,167],dailyaverag:3,dailyavg_forecast:3,dailyavg_train:3,dailyavg_v:3,damag:[85,87],damp:[104,123,159],dangl:113,dark:13,darkviolet:2,dart:[0,1,2,3,4,5,6,7,8,9,10,12,13,14,16,17,18,19,20,23,25,26,27,28,29,31,32,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,77,78,79,80,82,85,86,87,88,89,91,92,93,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,136,138,139,140,141,142,143,144,149,150,151,152,153,154,155,156,157,158,160,162,163,164,166,167],darts_enc_:[57,58],darts_enc_fc_cyc_month_co:14,darts_enc_fc_cyc_month_sin:14,darts_log:[99,102,110,111,112,118,124,125,128,130,167],dash:14,data:[0,5,6,7,8,9,10,11,13,20,22,32,35,37,39,47,49,53,54,57,58,59,62,63,66,68,69,70,71,72,73,78,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,140,141,142,143,144,152,153,154,158,160,161,162,163,164,165],data_a:53,data_arrai:[134,166],data_dt:15,data_sampl:67,data_split:113,dataarrai:[3,59,61,62,63,64,65,66,68,69,134,159,166],datafram:[0,15,17,19,67,68,71,72,77,114,134,151,158,159,162,166,167],dataload:[99,102,110,111,112,113,118,124,125,128,130,136,139,164,167],dataloader_idx:[113,136],datalod:164,datapoint:[3,152],dataprocess:[2,3,5,6,7,8,9,10,13,14,15,16,17,18,19,20,53,54,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,82,125,159,163,164,165,167],dataset:[0,1,2,3,4,5,7,8,9,10,11,13,14,18,19,20,22,54,57,58,59,62,63,67,70,74,78,79,96,97,98,99,100,101,102,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,135,152,158,159,163,164,165],dataset_load:[73,74],datasetload:74,datasetloadercsv:[73,74],datasetloadermetadata:74,datasetloadingexcept:[73,74],datatimeindex:[58,134,155],datatransform:1,datatyp:[53,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,150,156],date:[13,15,16,67,73,99,102,110,111,112,118,124,125,128,130,134,155,162,167],date_rang:[5,13,15,16,134],dateoffset:[67,134,155],dateset:13,datetim:[14,15,57,58,134,155,159,166],datetime64:[3,61,62,63,64,65,67,69,134],datetime_attribut:[16,58,96,97,99,100,101,102,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132,159,165],datetime_attribute_timeseri:[2,5,6,9,10,14,20,58,96,97,107,114,119,121,155,159],datetimeattributeencod:58,datetimeindex:[57,58,67,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,155,157,159,166],day_dur:18,day_of_week:58,day_of_year:58,day_seri:[6,9,10],dayofweek:[18,21,58,96,97,99,100,101,102,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132,159],dayofyear:58,days_in:18,days_in_month:[3,14,134,159],days_out:18,dd_hh:163,dd_hh_mm_ss:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],dd_hh_mm_ss_torch_model_run_pid:[99,102,110,111,112,118,124,125,128,130],ddof:[53,134],ddp:[113,164],ddp_spawn:164,de:[12,73,127],deadlock:113,deal:[3,15,16,85,87,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132],dealloc:53,decai:11,decemb:73,decent:159,decid:[113,154],decim:53,decis:20,decod:[5,14,19,77,79,89,110,111,125,128,130],decoder_import:77,decoder_output_dim:128,decompos:[17,127,154],decomposit:[4,154],decor:[82,106,113,156],decreas:[16,17,19,20,99,102,110,111,112,118,124,125,128,130],dedic:[2,21,58,161,166,167],deduct:152,deep:[0,1,14,18,20,21,53,59,70,78,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,153,158,161,163,165,167],deepar:[0,9,158,159,161],deeper:2,deepspe:113,deeptcn:[0,124,158],def:[2,5,6,7,8,9,10,14,15,16,17,18,21,61,64,65,69,85,86,87,89,96,97,99,100,101,102,107,108,109,110,111,112,113,114,115,117,118,119,121,124,125,128,130,131,132,136,150,156,159,165,167],default_format:[134,154],default_lag:[21,108,109,115,117,132],defin:[2,14,15,18,20,21,39,47,49,53,57,58,61,62,63,64,65,66,68,69,70,71,72,73,78,85,86,87,89,91,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,149,150,153,154,156,159,163,165,166,167],definit:[15,78,79,125,134,142,151,161],degc:[100,102,108,109,112,115,117,118,125,128,132],degre:[85,86,87,89,105,110,113,134,150,154,156,159],delimit:[0,158],delta:134,demand:[18,73,101],demonstr:[3,4,13,17,18,20,21],denni:[0,158],denois:11,denomin:[150,154],denot:[2,82,117,134,142,161,167],dens:[19,53,95],densecostmatrix:53,densiti:154,depart:73,depend:[0,2,3,4,5,6,14,15,20,21,37,53,58,61,62,63,64,65,66,67,68,69,70,71,72,77,80,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,133,142,154,158,159,161,163,166,167],deprec:[17,53,85,86,87,89,113,150,156,163],depth:[21,53,115,159,160],deriv:[57,58,61,62,63,64,65,66,68,69,70,71,72,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,155],derive:58,descend:[85,86,87,89,113,150,156],describ:[10,29,53,57,58,73,77,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,141,159,163],descript:[19,53,73,79,164],descriptor:53,design:[8,13,61,62,63,64,65,66,68,69,70,71,72,85,86,87,89,113,125,130,150,156],desir:[4,13,21,53,85,86,87,89,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,150,154,155,156,159],despit:[13,53],destin:[85,86,87,89,113,150,156],detach:[85,86,87,89,113,150,156],detail:[0,8,17,20,37,53,61,62,63,64,65,66,67,68,69,70,71,72,82,85,86,87,89,99,102,108,110,111,112,113,114,118,124,125,128,130,142,150,156,158,159,160,161,167],detect:[0,18,22,24,29,31,32,33,34,35,36,37,39,47,48,49,99,102,105,110,111,112,118,124,125,128,130,158,165],detector:[0,23,24,34,50,158],deterior:20,determin:[5,14,15,16,19,32,53,54,55,69,82,99,102,110,111,112,113,118,124,125,126,128,130,153,154,159,163],determinist:[20,32,37,68,69,82,85,86,87,89,92,93,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,150,154,156,160,163],detrend:105,dev:154,devel:154,develop:[0,158,164,167],deviat:[13,31,32,53,134,149,155],devic:[85,86,87,89,99,102,110,111,112,113,118,124,125,128,130,150,156,164,167],df3:[6,9,10],df3_day_avg:[6,9,10],df:[0,8,15,16,17,134,158],df_day_avg:8,df_m3:15,df_m4:15,df_meta:15,dft:[4,105],diag:[53,69],diagon:[53,55],diagram:[85,86,87,89,113,150,156],dickei:154,dict:[15,17,19,21,31,32,54,58,67,69,71,72,77,85,86,87,89,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,142,150,153,154,156],dictionari:[16,17,19,21,31,32,53,58,61,62,63,64,65,66,68,69,70,71,72,78,85,86,87,88,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,142,150,154,156,159,164,166],did:[18,99,102,110,111,112,118,124,125,128,130,159],didn:[2,15],diff:[13,39,47,49,63,134,159],diff_fn:[37,39,47,48,49],differ:[0,2,3,4,9,11,15,16,17,18,21,29,31,32,37,39,46,47,48,49,50,53,54,59,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,140,141,142,149,150,155,156,158,159,161,163,164,165,166,167],differenc:[0,60,82,134,158,159],difference_scor:38,differencescor:38,differenti:[2,96,131],dilat:[18,124],dilation_bas:[6,10,18,20,124,165],dim:[53,87,113],dim_feedforward:[7,130],dim_x:[11,15,20,93,107,159,163],dimens:[0,2,3,6,13,17,20,31,32,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,59,61,62,63,64,65,66,67,68,69,70,71,72,78,85,87,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,149,155,158,159,161,163,166,167],dimension:[2,7,15,35,36,53,93,100,102,107,108,109,110,112,115,117,125,128,132,134,142,149,166],direct:[18,53,73,85,86,87,89,96,97,98,99,100,101,102,104,105,107,108,109,110,111,112,113,114,115,117,118,119,120,121,122,123,124,125,127,128,130,131,132,149,150,154,156,163,165],directli:[1,2,14,16,18,20,32,37,53,58,80,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,142,159,163,167],directori:[99,102,110,111,112,118,124,125,128,130,167],dirichlet:149,dirichlet_distribut:149,dirichletlikelihood:149,disabl:[2,3,4,5,6,7,8,9,10,14,16,19,20,85,86,87,89,99,102,110,111,112,113,118,124,125,128,130,136,150,152,156],disaggr:17,disambigu:134,discard:[4,73,99,102,110,111,112,118,124,125,128,130,134],disclaim:[20,130],discourag:53,discret:[18,149,159],discuss:[0,73,142,158],diseas:73,disk:[73,74,167],displai:[14,15,54,78,100,134,136,154],display_forecast:8,dispos:17,disregard:153,distanc:[13,39,49,53,54],distant:37,distinct:[16,53,134,159],distinguish:[2,161,163,166,167],distort:13,distribut:[0,11,12,21,40,41,42,43,44,45,49,82,85,87,88,93,99,102,110,111,112,113,123,124,125,126,128,130,134,149,154,155,158,163,164,166,167],dive:2,diverg:[149,159,162,163],divers:20,divid:[3,73,113],divis:[134,150],divisor:134,dl:[8,19],dlinear:[0,102,158],dlinearmodel:[0,95,102,158,161],dload:15,dnav:73,doc:[14,15,16,21,46,58,67,85,86,87,89,113,114,123,134,142,150,155,156,159,164],docstr:[67,85,86,87,89,113,150,156],document:[14,15,17,18,21,37,53,61,62,65,69,70,72,85,86,87,89,93,97,99,102,104,108,110,111,112,113,118,119,120,121,122,123,124,125,126,128,130,134,149,150,151,156,160,162,163,164,167],doe:[11,13,14,15,18,20,21,53,61,62,63,64,65,66,67,68,69,70,71,72,77,78,98,99,102,103,110,111,112,116,118,121,124,125,128,130,131,134,142,149,159,164,167],doesn:[2,9,53,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,142,159,164],doi:120,domain:[4,149,159],domest:1,don:[2,3,4,6,14,15,17,21,98,99,100,102,103,108,109,110,111,112,113,115,116,117,124,125,128,130,132,134,136,142,161,162,167],done:[2,3,4,12,15,17,18,19,53,62,70,96,97,99,100,101,102,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132,134,159,165],dot:[53,73,78],dotm:122,doubl:[2,13,73,85,86,87,89,113,150,154,156],down:[13,17,69,73,134,154],download:[15,18,73,74,113,164],download_data:113,downsampl:[67,111],downstream:80,dpi:15,dr:[114,160],dramat:164,drastic:[19,167],draw:[130,166],drawback:18,drawn:142,drift:[98,159],drift_forecast:159,drift_model:159,drop:[13,63,72,134,150,154,156,157],drop_aft:[13,134],drop_after_index:157,drop_befor:[8,134],drop_before_index:157,drop_column:134,drop_hierarchi:134,drop_prob:113,drop_static_covari:67,dropna:[15,63,72,134],dropout:[2,5,6,7,8,9,10,14,15,18,20,85,86,87,89,99,102,110,111,112,113,118,124,125,128,130,150,156,159,164,165],dst_type:[85,86,87,89,113,150,156],dstm:122,dt_attr:[20,159],dta:[57,58],dtw:[51,53,82],dtw_metric:[13,82],dtwalign:54,dtype:[9,17,53,67,85,86,87,89,113,134,150,155,156,159,167],dual:[118,123],dualcovari:143,dualcovariatesinferencedataset:139,dualcovariatessequentialdataset:140,dualcovariatesshifteddataset:141,dualcovariatestorchmodel:[99,102,110,111,112,118,124,125,128,129,130,143],dualcovariatestrainingdataset:[140,141,143],due:[2,4,15,18,21,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,149],dumon:[0,158],dump:[53,96,97,98,100,101,103,104,105,107,108,109,113,114,115,116,117,119,120,121,122,123,127,131,132,163],dump_patch:[85,86,87,89,113,150,156],duplic:[85,86,87,89,113,150,156],durat:[0,2,15,21,37,72,73,134,158],durbin:154,dure:[1,2,3,14,15,16,18,19,20,21,33,37,39,47,49,57,58,62,63,64,69,70,92,96,97,98,99,101,102,103,107,110,111,112,113,114,116,118,119,121,124,125,128,130,131,139,149,152,161,163,165,167],dynam:[11,18,51,82,93,113,122,163,167],e:[0,2,3,4,5,6,7,12,14,15,17,18,20,21,23,37,50,53,58,61,62,63,64,65,66,68,69,70,71,72,74,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,140,141,142,149,150,152,153,154,155,156,158,159,161,162,163,164,166,167],each:[0,2,3,7,9,10,13,14,15,16,17,18,19,20,21,24,25,26,27,28,29,31,32,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,79,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,139,140,141,142,149,150,152,153,154,155,156,157,158,159,161,164,165,166,167],eagerli:58,ealier:2,earli:[18,19,99,102,110,111,112,118,124,125,128,130,165],earlier:[2,3,19,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],earliest:142,early_stop:[19,99,102,110,111,112,113,118,124,125,128,130],early_stop_threshold:[99,102,110,111,112,118,124,125,128,130],early_stopp:[18,165],early_stopping_arg:19,earlystop:[18,19,99,102,110,111,112,113,118,124,125,128,130,165,167],earth:3,eas:54,easi:[2,15,17,18,20,58,159],easier:[13,15,53,159],easili:[0,2,3,20,21,61,62,63,64,65,66,67,68,69,70,71,72,142,158,159],ecg:73,edit:20,edu:73,effect:[5,9,13,14,19,46,54,62,63,70,79,85,86,87,89,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,149,150,153,156],effici:[4,55,61,62,63,64,65,66,68,69,70,71,72,152,167],eg:[114,164],egypt:114,eia:73,eight:73,either:[3,4,16,17,18,21,23,31,32,35,36,37,53,54,58,61,62,63,64,65,66,67,68,69,70,71,72,73,79,80,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,139,142,149,150,152,154,155,156,157,159,161,162,166,167],elaps:[15,136],elapsed_tim:15,elapsed_times_2:15,elapsed_times_3:15,elapsed_times_4:15,electr:[1,2,21,73],electricityconsumptionzurichdataset:[21,73],electricitydataset:[2,18,73],electricityloaddiagrams20112014:73,elem:55,element:[13,20,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,57,58,63,72,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,139,142,154,157,159,167],elementwis:[3,38,46],elementwise_affin:87,elif:113,elimin:[13,67],els:[14,18,57,82,113,134,136,155,157,165],elsewher:[12,163],email:[0,158],emb:[16,17],embed:[7,16,85,125,126,161],embedding_s:16,emit:[29,33,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,138,139,140,141],empir:[69,126,163],emploi:[18,61,62,63,64,65,66,67,68,69,70,71,72],empti:[53,71,79,106,123],en:[39,46,47,49,67,93,99,102,110,111,112,113,115,118,124,125,128,130,131,134,149,150],enabl:[13,54,61,62,63,64,65,66,67,68,69,70,71,72,82,99,102,108,110,111,112,113,118,124,125,128,130,131,134,136,152,155,167],enable_graph:113,enable_metadata_rout:153,enable_optim:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],enable_prediction_bar:136,enable_progress_bar:[15,165],enable_sanity_check_bar:136,enable_train_bar:136,enable_train_bar_onli:[2,6,8,9,10,136],enable_validation_bar:136,encapsul:[3,153],encod:[5,6,9,10,12,14,18,20,21,51,71,77,79,80,89,95,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,130,131,132,134,155,165],encode_futur:58,encode_infer:[57,58],encode_past:58,encode_train:[57,58],encode_train_infer:[57,58],encode_year:[96,97,99,100,101,102,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132],encoder_bas:[57,58],encoder_id:58,encoder_import:77,encoder_kw:58,encoder_map:58,encoding_n_compon:[57,58],end:[5,7,9,10,13,14,15,19,20,21,55,58,59,61,62,63,64,65,66,67,68,69,70,71,72,77,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,139,142,150,152,155,156,157,159,161,167],end_column0:55,end_dat:21,end_t:134,end_tim:[13,14,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142],end_valu:[3,9,10,64,69,155],endian:53,energi:[18,21,73,167],energydataset:[4,6,8,9,10,73,167],enforc:[72,80,85,86,87,89,99,100,102,106,108,109,110,111,112,113,115,117,118,124,125,128,130,132,134,142,150,156],engin:8,england:73,enhanc:134,enjoi:164,enlarg:53,enough:[2,15,53,99,100,102,108,109,110,111,112,113,115,117,118,124,125,128,130,132,138,140,141,161,163,167],ensembl:[0,24,95,98,103,115,158,161],ensemble_hist_fct:20,ensemble_model:[20,98,103,116,159],ensemble_probabilist:20,ensemble_sklearn_aggreg:27,ensemblemodel:[20,98,103,116,161],ensemblesklearnaggreg:27,ensur:[6,13,21,31,32,57,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,140,141,150,156,167],enter:113,entir:[2,14,15,21,39,47,49,53,55,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,159,161,167],entiti:166,entri:[0,6,53,85,86,87,89,110,111,113,134,150,155,156,158,159],enumer:[13,15,16,21,85,86,87,89,113,117,144,150,156,157,159],env:[17,85,86,87,89,150,156],environ:[0,15,113,158,159,161,164],ep:87,epistem:163,epoch:[2,9,15,19,99,102,110,111,112,113,118,124,125,128,130,136,159,163,164,167],epoch_mean:[113,136],epochs_train:[99,102,110,111,112,113,118,124,125,128,130],epsilon:87,equal:[16,31,32,39,47,49,50,53,55,57,58,61,63,64,65,69,78,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,153,155,159],equilibrium:11,equiv:53,equival:[0,53,63,85,86,87,89,113,127,149,150,156,158,161],error:[0,2,4,11,13,15,17,20,21,53,59,67,69,80,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,133,134,140,141,142,149,150,153,156,158,161,165],es:142,esp:15,especi:[4,14,18,19,78,142,159,163],essenti:[15,149],establish:[8,19],estim:[0,11,12,15,21,40,41,42,43,44,45,69,93,101,110,111,124,125,128,149,153,154,158,159,163,164],estimators_:21,et:[5,7,15,87,99,102,110,111,112,113,121,124,125,128,130,149,154,161],etc:[2,4,15,17,18,53,85,86,87,89,99,102,105,110,111,112,113,118,124,125,128,130,142,150,156,159,163,164,166,167],etdataset:73,ets_smap:15,ets_smapes_m3:15,ets_tim:15,ets_time_m3:15,etth1dataset:73,etth2dataset:[0,73,131,158],ettm1dataset:73,ettm2dataset:73,european:101,eval:[17,85,86,87,89,113,150,156],eval_accuraci:[25,26,27,28,29,31,32,33,34,35,36,39,47,48,49],eval_accuracy_from_binary_predict:50,eval_accuracy_from_predict:[37,38,39,40,41,42,43,44,45,46,47,48,49],eval_accuracy_from_scor:50,eval_backtest:14,eval_forecast:15,eval_global_model:15,eval_local_model:15,eval_model:[5,7,14,18,159],eval_set:153,evalu:[0,2,5,7,13,16,18,19,25,26,27,28,31,32,53,54,58,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,150,156,158,165,167],even:[2,12,14,15,20,21,33,53,59,102,127,134,142,149,159,161,164,166],evenli:73,event:[85,87,149],everi:[5,6,13,16,31,32,33,50,55,61,62,63,64,65,66,67,68,69,70,71,72,73,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,149,150,155,156,159,167],everyth:[0,3,15,134,157,158,167],evid:162,ewm:[72,134],ewm_mean_comp_1:134,ewz_stromabgabe_netzebenen_stadt_zuerich:73,exact:[13,21,54,61,62,63,64,65,66,67,68,69,70,71,72,142,152,163],exact_align:13,exactli:[12,13,14,53,73,85,86,87,89,113,134,138,150,156,159,163],examnpl:21,exampl:[6,9,10,11,15,19,20,37,53,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,77,78,79,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,142,149,150,154,156,160,163,164,165,166],example_imag:113,example_input:113,example_input_arrai:113,exce:155,except:[2,3,6,8,9,10,15,17,19,53,72,74,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,142,143,150,152,153,156,159,161,163],exchang:73,exchangeratedataset:73,exclud:[3,72,134,157,159],exclus:[116,134],execut:[15,18,54,85,86,87,89,113,136,150,156,159,164,167],exercis:159,exhaust:[119,120,121,122],exhibit:[2,8,53],exist:[2,3,53,85,86,87,89,99,102,110,111,112,113,118,124,125,128,130,134,142,150,153,155,156,157,162,164,165,166,167],exit:167,exlainability_result:14,exlained_fc:77,exogen:[96,142],exp:[4,11,105,159],expand:[8,72,85,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134],expand_dim:16,expanding_sum_3_comp_2:134,expans:110,expansion_coefficient_dim:[2,8,15,110],expect:[14,16,17,20,37,38,39,40,41,42,43,44,45,46,47,48,49,53,65,71,72,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,150,153,155,156,159,161,163,166],expens:[13,53,100,108,109,115,117,132,140,141],experi:[17,18,113,165,166],experiment:[0,12,158,164,166],expl_result:79,explain:[0,2,22,76,80,158],explain_result:[77,78,79],explainability_result:[14,77],explained_compon:77,explained_forecast:77,explan:[14,53,76,77,78,79,85,86,87,89,113,150,156,161,163],explicit:159,explicitli:[4,15,57,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],explod:19,exploit:[0,15,18,158,159,166],explor:[15,18],expon:124,exponenti:[0,4,5,11,15,18,37,73,95,99,102,105,110,111,112,118,120,124,125,127,128,130,134,149,157,158,159,163],exponential_distribut:149,exponential_smooth:104,exponentiallikelihood:[149,159],exponentiallr:[19,167],exponentialnllscor:41,exponentialsmooth:[0,3,4,5,7,9,15,20,95,104,121,158,159,161,163],export_param:113,expos:[53,163,166],express:[9,55,85,87,138,164],expsinesquar:12,extend:[13,55,77,98,99,100,102,108,109,110,111,112,113,115,117,118,124,125,128,130,132,134,155,161],extens:[0,21,96,97,113,117,158],extent:[130,159],extern:[0,2,16,21,134,142,158,161,163],extra:[18,72,85,86,87,89,99,102,110,111,112,113,118,124,125,128,130,134,150,156,159,161],extra_repr:[85,86,87,89,113,150,156],extract:[2,3,13,14,15,57,58,61,62,63,64,65,66,67,68,69,70,71,72,79,80,106,134,142,149,154,159,161,167],extract_subseri:151,extract_trend_and_season:154,extract_year:159,extreme_lag:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],ey:53,f1:[25,26,27,28,33,34,35,36,50],f:[2,3,14,16,17,18,20,21,53,66,73,106,164,165],f_contigu:53,f_test:154,fa:53,fabric:113,fac:53,facebook:95,facilit:67,fact:[2,3,15,18,159,166],factor:[111,114,167],factori:[17,134,159,166],fail:[4,15,17,20,53,73,74,82],failur:[18,149],fairli:[11,159],fall:[80,82,167],fallback:80,fallback_future_covari:80,fallback_horizon:80,fallback_past_covari:80,fallback_seri:80,fallback_target_compon:80,falmanforecast:20,fals:[2,5,6,7,8,9,10,13,14,15,18,19,20,21,31,32,37,39,46,47,49,53,54,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,80,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,133,134,136,141,142,150,152,153,154,155,156,159,164,165],fame:162,famili:[163,164],familiar:1,far:[20,99,100,102,108,109,110,111,112,113,115,117,118,124,125,128,130,132,159,161],farrai:53,fashion:[2,9,15,99,102,110,111,112,118,124,125,128,130,167],fast:[0,18,95,158,161],fastai:126,faster:[0,3,15,53,78,97,119,121,142,158,163],fat:149,favor:[2,20,85,86,87,89,113,150,156],favorit:[0,158],fc:[57,58,110,111],featur:[2,8,14,15,16,20,21,58,71,72,73,77,78,79,85,96,97,99,100,101,102,107,108,109,110,111,112,113,114,115,117,118,119,121,124,125,128,130,131,132,134,142,153,155,159,162,163,167],feature_rang:[3,70,71],feature_valu:[77,78],features_cols_nam:142,fed:[8,61,62,63,64,65,66,67,68,69,70,71,72,96,97,99,101,102,107,110,111,112,114,118,119,121,124,125,128,130,131],feder:73,feed:[2,3,4,85,89,99,102,110,111,112,118,124,125,128,130],feed_forward:[14,85,125],feedforward:[85,125,130],feel:[0,158,162],fetaur:14,fever:73,few:[15,17,18,19,21,73,155,159,161,165,166],ff:85,ffn:[85,89,125,130],fft:[0,1,95,105,158,161],fid:53,field:[53,73,85,86,87,89,113,150,156],fifth:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],fig:[2,19],fig_siz:[13,79,154],fig_width:13,figsiz:[2,5,6,7,8,9,10,11,12,13,14,15,17,18,19,20,159,163],figur:[0,2,5,6,7,8,9,10,11,12,13,14,15,17,18,20,31,32,38,39,40,41,42,43,44,45,46,47,48,49,50,54,79,134,154,158,159,161,163,166,167],file:[4,13,15,21,53,74,85,87,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,134,159,163],file_nam:[99,102,110,111,112,118,124,125,128,130],file_path:113,filenam:53,fileno:53,filepath_or_buff:134,filesystem:163,fill:[0,3,8,17,53,67,68,72,73,92,105,134,135,154,158,159],fill_:[85,86,87,89,113,150,156],fill_missing_d:134,fill_missing_valu:[4,6,9,10,13,105,151,159],fill_nan:154,filler:[3,8,60],fillna_valu:134,filter:[0,13,15,18,20,23,29,37,83,91,92,94,95,105,124,158,162],filter_fit_kwarg:31,filter_kwarg:31,filtered_i:11,filtered_seri:159,filtered_t:11,filtered_x:[11,12],filtered_x_missing_sampl:12,filtered_x_sampl:12,filtering_am:31,filtering_model:[91,92,93,94],filteringanomalymodel:[23,29,31],filteringmodel:[11,12,91,92,93,94],filterwarn:[2,3,4,5,6,7,8,9,10,14,15,16,19,20],find:[1,4,14,15,16,18,20,21,39,53,62,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,142,159,160,161,163],find_list_index:139,find_shared_tim:142,find_time_overlap_bound:142,finder:136,fine:[15,19,53,99,102,110,111,112,118,124,125,128,130,159],finetun:[85,86,87,89,113,150,156],finish:73,fire:[85,86,87,89,113,150,156],first:[0,2,3,4,5,7,8,13,14,15,16,17,18,21,32,38,39,40,41,42,43,44,45,46,47,48,49,53,57,59,61,62,63,64,65,66,68,69,70,71,72,78,79,80,82,85,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,142,152,154,155,157,158,159,163,164,165],first_order_diff:63,first_seri:16,first_valu:134,fit:[0,2,3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21,25,27,29,31,32,33,34,35,37,39,47,48,49,53,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,76,78,79,80,85,87,92,93,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,136,142,143,149,151,153,154,158,161,162,163,164,165,166,167],fit_and_pr:2,fit_cal:[57,58],fit_detect:[34,35],fit_from_dataset:[2,99,102,110,111,112,113,118,124,125,128,130,143,167],fit_from_predict:[37,39,47,48,49],fit_intercept:[116,159],fit_kwarg:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],fit_param:[64,69,153],fit_transform:[2,3,5,6,7,8,9,10,14,15,16,18,19,20,57,59,61,62,63,64,65,67,69,70,71,159,163,164,165,167],fittabl:[31,32,59,60,61,69],fittable_data_transform:[62,63,64,67,69,70,71],fittableaggreg:[25,27],fittableanomalyscor:[39,47,48,49],fittabledatatransform:[57,58,61,62,63,64,65,66,67,68,69,70,71,72],fittabledetector:[34,35],fitted_valu:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],fivethirtyeight:73,fix:[0,2,3,4,5,6,7,8,9,13,14,16,18,19,20,21,53,61,62,63,64,65,66,68,69,70,71,72,92,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,158,161,165,167],fix_import:163,fix_param:[64,69],fix_pythonpath_if_working_loc:[2,3,4,5,6,7,8,9,10,13,14,16,19,20,21],flag:[26,28,35,36,53,99,102,110,111,112,113,118,124,125,128,130,152],flat:53,flatit:53,flatten:[2,20,53,67,110,111],flavour:[0,158,159],fledg:[0,158],flew:15,flexibl:[72,134,159],float16:[85,86,87,89,150,156],float32:[7,8,9,14,15,18,53,113,134,155,159,164,165,167],float64:[53,85,86,87,89,134,150,155,156],float_:53,floor:114,florian:15,flu:73,fluctuat:13,fluportaldashboard:73,fluview:73,fluviewphase2quickreferenceguid:73,fn:[3,66,85,86,87,89,113,134,150,156],fnc:53,focu:161,foil:73,folder:[99,102,110,111,112,118,124,125,128,130,167],follow:[0,2,4,5,6,7,8,9,13,14,15,17,18,20,21,31,32,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,57,58,71,72,73,77,78,85,86,87,89,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,138,140,141,142,150,152,156,158,159,161,163,164,166,167],font:13,fontsiz:13,forc:[21,53,78,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],force_col_wis:15,force_plot:78,force_plot_from_t:[21,78],force_reset:[2,5,6,7,8,9,10,18,19,99,102,110,111,112,118,124,125,128,130,164,165],force_row_wis:15,forecast:[1,3,5,6,7,8,9,10,19,23,29,37,57,58,67,69,72,73,76,77,78,79,80,82,83,87,96,97,98,99,100,101,102,103,104,105,106,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,134,138,139,142,152,155,160,162,164,165,166],forecast_dict:88,forecast_horizon:[2,5,6,7,8,9,10,14,20,32,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,159],forecast_horizon_ic:14,forecast_rnn:2,forecast_typ:8,forecast_varima:2,forecasting_am:32,forecasting_model:[20,96,97,98,101,103,104,105,106,107,114,116,117,119,120,121,122,127,131,159,163],forecasting_saf:[72,134],forecastinganomalymodel:[23,29,32],forecastingmodel:[11,12,32,58,80,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,163],foreground:[14,77,78,79,80],foreground_future_cov:21,foreground_future_covari:[21,77,78,79],foreground_past_covari:[77,78,79],foreground_seri:[21,77,78,79],foreground_target:21,foreign:73,forest:[15,95,117],forev:113,forg:159,forget:2,fork:[110,111],form:[2,13,23,24,39,53,55,61,62,63,64,65,66,67,68,69,70,71,72,85,86,87,89,113,114,134,142,150,153,156,159,162,166],format:[1,2,3,5,7,8,14,15,17,18,53,57,58,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,150,156,159,166],format_tim:74,former:[53,65,85,86,87,134,150,156],formula:[126,152,154],fortran:53,fortun:[3,13,18,159],forum:[99,102,110,111,112,113,124,125,128,130],forward:[85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,141,150,156,159,167],forward_pr:[85,86,87,89,113,150,156],forwardref:134,found:[12,13,37,53,72,85,86,87,89,93,99,102,110,111,112,113,118,124,125,128,130,134,150,155,156,165,167],four:[53,69,85,134,154,164],fourier:[0,95,114,158,161],fourier_ord:114,fourth:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],fourtheta:[0,95,122,127,158,161],fpp2:[62,63,142],fpp3:69,fpp:73,frac:[82,98,150,153],fraction:[89,99,118,125,130,134,159,167],frame:[17,113,134],frameon:[15,17],framework:[15,18],francesco:[0,158],francisco:73,free:[0,21,32,37,39,47,48,49,53,85,87,113,126,136,158,162],freedom:[134,154,159],freewai:73,freez:[85,86,87,89,113,150,156],freeze_support:164,freq:[2,5,13,14,15,16,21,67,74,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,154,155,162],freq_str:[5,134],frequenc:[2,4,9,13,18,21,67,73,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,154,155,166,167],frequent:[159,160],friendli:[0,158,166],from:[0,2,3,4,5,6,7,8,9,10,11,13,14,15,17,18,19,20,21,23,24,29,31,32,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,77,78,79,80,82,85,86,87,89,92,93,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,136,138,139,140,141,142,143,149,150,152,153,154,155,156,157,158,159,160,161,162,163,164,165,167],from_:16,from_csv:[134,159],from_datafram:[0,6,8,9,10,17,134,158,159,166],from_dict:19,from_group_datafram:[15,134],from_json:134,from_pickl:134,from_seri:[13,14,134,159],from_times_and_valu:[14,15,16,134,159,166],from_valu:[11,12,16,59,64,66,68,69,71,134,159,166],from_xarrai:[134,159],frombuff:53,fromfil:53,frozen:113,frustrat:3,fsdp:113,fulfil:161,full:[2,6,15,53,67,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,136,159,166],full_attent:[14,125],fuller:154,fulli:[0,2,5,16,21,59,85,86,87,89,99,110,111,113,118,125,128,130,150,156,158],fun:[15,19,99,102,110,111,112,118,124,125,128,130],func:[61,69,82,125],function_nam:[72,134],functionn:[20,160],funtion:4,furnish:[85,87,126],further:[2,13,15,18,20,21,53,61,62,63,64,65,66,67,68,69,70,71,72,82,114,142,161],furthermor:[2,3,4,78,110,111,159,162,163,166,167],fusion:[0,75,95,126,158,159],futcov:[100,108,109,115,117,132,142],futur:[0,5,6,9,16,17,18,20,21,32,53,57,58,72,77,78,79,80,85,86,87,89,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,134,138,139,140,141,142,144,150,156,158,159,160,163,167],future_compon:58,future_cov:[20,77,78,96,97,100,102,107,108,109,112,114,115,117,118,119,121,125,128,131,132],future_covari:[2,5,9,14,16,20,21,32,58,80,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,139,140,141,142,143,159,161,163,167],future_covariates_pr:161,future_covariates_train:161,future_covariates_v:167,future_encod:58,future_past:144,future_past_covari:[113,139],future_target:[138,140,141,143],future_transform:58,futurecallableindexencod:58,futurecovari:143,futurecovariatesindexgener:[57,58],futurecovariatesinferencedataset:139,futurecovariateslocalforecastingmodel:[97,101,114,119,121],futurecovariatesmodel:141,futurecovariatessequentialdataset:140,futurecovariatesshifteddataset:141,futurecovariatestorchmodel:[129,143,167],futurecovariatestrainingdataset:[140,141,143],futurecyclicencod:58,futuredatetimeattributeencod:58,futureintegerindexencod:58,futuretarget:141,futurewarn:17,g:[2,3,12,15,17,18,21,23,37,53,58,61,69,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,142,150,152,153,154,155,156,161,162,163,166,167],ga:73,gain:[13,20,143,167],gal:163,game:21,gamma:[19,37,149,167],gamma_distribut:149,gammalikelihood:149,gammanllscor:42,gan:[85,86,87,89,113,150,156],gap:[20,21,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,151],gasolin:73,gasrateco2dataset:73,gate:[14,85],gatedresidualnetwork:[14,125],gather:113,gaussian:[9,11,18,37,85,90,100,149,155,156,163],gaussian_process:[12,92,159],gaussian_process_filt:92,gaussian_timeseri:[2,9,10,11,12,155,163],gaussianlikelihood:[9,10,18,149,165],gaussiannllscor:43,gaussianprocessfilt:[0,12,92,158,159],gaussianprocessregressor:[12,92],gb:167,gca:13,gcp:164,geglu:[86,125,130],gelu:[85,86,125,130],gener:[0,6,9,10,11,12,15,16,17,20,21,31,32,37,39,46,47,48,49,50,53,57,58,67,70,71,73,76,77,78,79,85,88,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,135,136,141,142,149,152,153,154,158,159,160,161,162,164,166],generate_fit_encod:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],generate_fit_predict_encod:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],generate_index:155,generate_inference_idx:[57,58],generate_predict_encod:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],generate_torch_kwarg:[2,6,8,9,10],generate_train_idx:[57,58],generate_train_inference_idx:57,generic_architectur:[2,8,15,110],genericinferencedataset:139,genericshifteddataset:141,geometr:149,geometric_distribut:149,geometriclikelihood:149,geq:82,germani:73,get:[0,1,2,4,6,9,10,14,15,16,17,18,19,20,21,53,54,67,77,106,113,125,130,143,153,158,159,162,164,167],get_attent:[14,77,79],get_buff:[85,86,87,89,113,150,156],get_component_nam:80,get_decoder_import:[14,77],get_embedding_s:126,get_encoder_import:[14,77],get_explan:[77,78],get_extra_st:[85,86,87,89,113,150,156],get_feature_import:[77,79],get_feature_valu:[77,78],get_fram:17,get_index_at_point:134,get_legend:13,get_matric:69,get_metadata_rout:153,get_metr:136,get_model_param:16,get_multioutput_estim:[100,108,109,115,117,132],get_param:[21,153],get_paramet:[85,86,87,89,113,150,156],get_projection_matrix:69,get_shap_explanation_object:[77,78],get_shared_tim:142,get_shared_times_bound:142,get_single_seri:157,get_standard_metr:136,get_static_covariates_import:[14,77],get_submodul:[85,86,87,89,113,150,156],get_timestamp_at_point:134,getfield:53,getsizeof:53,getter:53,ghahramani:163,gi:73,gist:132,github:[0,1,20,21,73,108,114,126,132,158,162],githubusercont:15,gitter:[0,158],giuliano:[0,158],give:[2,14,15,21,31,32,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,57,78,79,99,102,110,111,112,113,118,124,125,128,130,136,142,159,161,162,163,167],given:[2,3,7,13,14,15,20,21,25,26,27,28,31,32,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,57,58,61,62,63,64,65,66,67,68,69,70,71,72,77,78,79,82,85,86,87,89,91,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,139,149,150,151,153,155,156,159,161,163,167],global:[0,4,16,18,20,64,69,71,73,85,86,87,89,100,105,108,109,113,115,117,132,134,142,150,156,158,160],global_compon:16,global_fit:[62,63,64,67,69,70,71],global_rank:113,global_step:113,globalforecastingmodel:[0,20,95,98,103,116,117,158,163],glu:[85,86,125,130],glu_vari:[86,89],go:[2,15,72,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,141,152,154,159,161,164,166,167],goal:[7,15],goe:[19,61,62,63,64,65,66,68,69,70,71,72,113,141],gomez:130,good:[0,1,2,11,15,17,18,20,21,53,99,102,110,111,112,113,118,124,125,126,128,130,158,159,161,162,163,165,167],googl:[162,164],googleapi:164,got:[18,136],gov:[15,73],gpf:[12,159],gpf_miss:12,gpu1:[85,86,87,89,150,156],gpu:[0,15,18,85,86,87,89,99,102,110,111,112,113,118,124,125,128,130,150,156,158,159,160,165],gpu_bas:[99,102,110,111,112,118,124,125,128,130],gpu_transform:113,grace_period:165,grad:[85,86,87,89,113,150,156],grad_input:[85,86,87,89,113,150,156],grad_output:[85,86,87,89,113,150,156],gradient:[13,19,78,85,86,87,89,108,113,132,149,150,156],gradient_clip_algorithm:113,gradient_clip_v:[19,113],grai:11,grain:159,granger:154,granger_causality_test:154,grangercausalitytest:154,grant:[4,9,85,87,126],granular:17,graph:[113,161],grasp:73,great:[2,15,16,18,113,159,165],greater:[13,20,53,73,116,134,142],greedi:152,green:[13,15,21],grei:17,grid:[18,21,54,55,73,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],gridsearch:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,160],grosch:[0,15,158],ground:[19,20,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,149,156],group:[15,17,69,73,113,134,142,166],group_col:[15,16,134],groupbi:[6,8,9,10,15],grow:130,growth:114,gru:[0,5,99,118,158,161],gt:[2,3,5,6,8,9,10,11,12,14,15,17,19,20,21],gtz:55,guarante:[19,72,85,86,87,89,113,134,150,156,166],guesswork:[99,102,110,111,112,118,124,125,128,130],guid:[0,21,53,134,153,158,159,163,164],guidelin:[0,158,162],guillaum:[0,15,158],gumbel:149,gumbel_distribut:149,gumbellikelihood:149,gusset:[0,158],gzipfil:53,h:[6,16,21,98,101,114,134,138],h_0:154,h_n:[99,118],ha:[0,2,4,5,6,7,9,11,13,14,15,16,18,19,21,31,32,39,47,48,49,50,53,57,58,62,70,73,77,78,85,86,87,89,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,140,141,142,150,153,154,156,158,159,161,163,164,166,167],had:[11,16,18,21,53,96,131,159],half:[2,73,85,86,87,89,113,149,150,156],halfnormallikelihood:149,halv:16,hand:[15,17,163,166],handi:15,handl:[2,3,14,16,21,37,58,67,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,133,150,156,160,164,166],hankel:93,happen:[2,15,21,61,62,63,64,65,66,67,68,69,70,71,72,96,97,99,100,101,102,107,108,109,110,111,112,113,114,115,117,118,119,121,124,125,128,130,131,132,139,149,159,164],happi:[159,162],hard:[7,159],harder:[3,18,149],hardwar:[53,113,164],has_dataloader_chang:136,has_datetime_index:134,has_hierarchi:134,has_range_index:134,has_same_time_a:134,has_static_covari:[16,134],hash:74,hat:[82,98,150],have:[0,1,2,3,4,6,8,9,10,12,13,14,15,16,17,18,20,21,25,27,32,35,36,37,39,47,49,50,53,55,57,58,61,62,63,64,65,67,69,70,71,72,77,78,80,82,85,86,87,89,91,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,140,141,142,143,149,150,152,153,154,155,156,157,158,159,161,162,163,164,165,166,167],haven:[15,18],head:[7,14,62,63,79,125,130,134,167],header_tim:74,healthcar:73,heapsort:53,hear:159,heart:[73,166],heartratedataset:73,heat:[14,79],heater:[14,73],heatmap:[14,54,79],heavili:[2,20],heavisid:11,height:55,help:[3,14,15,16,18,19,21,85,86,87,89,113,134,142,150,152,156,159,161,162,167],helper:[13,15,16,54,61,62,63,64,65,66,68,69,70,71,72,80,133,142],henc:[61,62,63,64,65,66,68,69,70,71,72,149,159],here:[0,1,2,3,4,12,13,14,15,16,17,18,19,21,69,79,93,96,97,98,99,101,102,103,107,110,111,112,113,114,116,118,119,121,123,124,125,128,130,131,134,136,142,155,158,159,160,161,163,164,165,167],herebi:[85,87,126],herzen:[0,15,158],heteroscedast:149,hex:53,hi:19,hidden:[5,85,93,99,118,125,161],hidden_continuous_s:[14,125],hidden_dim:[2,5,9,99,118,164],hidden_fc_s:[2,99],hidden_s:[14,99,125,128],hierarch:[0,60,73,111,113,134,158,160],hierarchi:[0,61,64,65,69,134,158,166],high:[7,13,14,18,67,73,123,131,159,164,167],high_q:14,high_quantil:[0,9,10,14,35,134,158,159],high_threshold:[35,36],higher:[9,14,15,37,53,67,118,142],highest:[4,134],highest_q:14,highli:[4,5,14,130],highlight:[14,134,154,159],hint:89,hist:[15,73],hist_fct:20,histogram:[154,159],histor:[0,2,5,6,8,9,10,14,17,32,35,37,69,77,79,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,139,158,161,167],histori:[2,6,14,15,18,21,33,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,159,163],historic_futur:144,historic_future_covari:[113,139,140,141,143],historical_fcast_:159,historical_fcast_theta:159,historical_forecast:[2,5,6,7,8,9,10,14,20,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,159],hit:[0,95,158],hobijn:154,hol:[17,73],hold:[20,53,113,161,166,167],holder:[85,87],hole:[134,159],holidai:[2,17,18,114,131,134,155,159,163],holidays_timeseri:[97,131,155],holt:104,holtwint:[17,104],hood:[20,21,58,96,97,99,100,101,102,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132,163,167],hook:[85,86,87,89,113,136,150,156,167],hope:[15,16,18],hopefulli:[7,159],horizon:[2,5,7,8,14,15,18,21,32,57,58,77,78,79,80,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,137,139,152,159,161,163,167],horizon_based_dataset:138,horizonbaseddataset:[2,138],horizonbasedexplainabilityresult:77,host:[85,86,87,89,150,156],hot:[6,9,10,16,134,155],hour:[2,16,18,21,58,73,79,96,97,99,100,101,102,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132,155,159,167],hourli:[8,21,58,73,114],household:[21,73],how:[1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,21,29,31,32,34,35,36,37,39,47,49,50,53,54,58,61,62,63,64,65,66,67,68,69,70,71,72,79,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,150,153,156,159,160,162,163,165,166],howev:[2,4,13,18,20,35,36,53,67,85,86,87,89,99,102,110,111,112,113,114,118,124,125,128,130,142,149,150,156,161,162,167],hpa:73,hparam:113,hparams_fil:113,hparams_initi:113,hparams_nam:113,hparams_typ:113,hpu:[15,159],hr:73,htm:73,html:[0,27,46,58,62,63,67,69,73,93,99,102,110,111,112,114,118,123,124,125,128,130,134,142,154,155,158,164],http:[0,8,9,10,15,19,27,39,46,47,49,58,62,63,67,69,73,85,93,96,99,102,108,110,111,112,113,114,115,118,120,121,122,123,124,125,126,127,128,130,131,132,134,138,142,149,150,154,155,156,158,164],hufl:[73,131],huge:[3,113],huge_number_of_seri:3,huguenin:[0,158],hull:73,humid:73,hydro:[6,8,9,10],hyndman:[3,17],hyndsight:150,hyper:[1,15,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,163,167],hyper_paramet:113,hyperband:165,hyperparamet:[2,7,18,92,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,160,167],hyperparametersmixin:113,hypothesi:154,i0:54,i1:[53,54],i2:[53,54],i8:53,i9:167,i:[0,4,5,6,7,13,14,15,16,17,18,20,50,53,54,55,61,62,63,64,65,66,67,68,69,70,71,72,74,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,140,141,142,149,150,152,154,156,158,159,162,163,164],i_:82,ic:[73,167],icbest:154,ice_cream_sal:167,ice_cream_sales_train:167,ice_cream_sales_v:167,icecreamheaterdataset:[14,73],id:[16,99,102,110,111,112,113,114,118,124,125,128,130,161,166],idea:[2,3,9,15,18,20,29,159,162,167],ideal:[11,167],idempot:113,ident:[9,13,16,49,57,65,82,134,142,167],identif:[0,15,107,154,158,159],identifi:[16,20,26,28,36,58,136,161],idx:[15,21,58,77,78,80,85,86,87,89,96,97,99,100,101,102,107,108,109,110,111,112,113,114,115,117,118,119,121,124,125,128,130,131,132,150,156,159],ie:[66,164],ignor:[2,3,4,5,6,7,8,9,10,14,15,16,19,20,21,53,54,55,57,62,69,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,150,153,156],ignore_static_covari:134,ignore_time_axi:134,ignore_w:[85,86,87,89,150,156],iid:49,ili:73,ilinetdataset:73,ilitot:73,ill:73,illia:130,illustr:[2,58,159],imag:[53,113],imagin:[53,161,167],imaginari:53,immedi:[85,86,87,89,113,140,150,156],immut:[113,166],impact:[18,21,150,167],implemenet:[61,62,63,64,65,66,67,68,69,70,71,72],implement:[0,2,3,12,21,39,49,53,57,61,62,63,64,65,66,67,68,69,70,71,72,85,86,87,89,93,96,97,98,99,100,101,102,107,108,110,111,112,113,115,116,118,119,121,123,124,125,126,127,128,130,131,132,136,143,150,156,158,159,160,162,167],impli:[61,62,63,64,65,66,68,69,70,71,72,85,87,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],implicit:[99,102,110,111,112,118,124,125,128,130],importantli:[2,142,159],impos:12,impract:18,impress:20,improv:[2,11,16,18,19,20,21,99,102,105,107,110,111,112,113,118,123,124,125,127,128,130,134,156,159,161,164,167],imshow:54,in_featur:[85,86,87,89,113,150,156],in_len:[15,18,102,112,165],inbetween:16,incl:[0,140,158],includ:[2,4,5,14,16,18,19,21,53,58,61,62,63,64,65,66,68,69,70,71,72,73,77,79,85,86,87,89,96,99,100,102,105,110,111,112,113,114,117,118,123,124,125,126,128,130,131,134,138,139,140,141,143,149,150,154,156,157,161,164,167],include_curr:[72,134],include_dayofweek:18,include_year:165,inclus:[100,117,134],incompat:53,incompatible_kei:[85,86,87,89,113,150,156],incomplet:3,incomplete_seri:3,inconsist:73,incorpor:[4,14],incorrect:89,incorrectli:[154,162],increas:[2,7,11,12,13,17,21,53,54,59,61,62,63,64,65,66,67,68,69,70,71,99,102,105,107,110,111,112,118,124,125,128,130,134,155,167],increment:153,incur:[18,99,102,110,111,112,118,124,125,128,130,167],inde:11,independ:[21,31,32,37,38,39,40,41,42,43,44,45,46,47,48,49,53,62,63,64,69,70,78,142,149,155,159,161],index:[2,5,6,8,9,10,13,14,15,16,17,19,32,53,54,55,57,58,67,73,77,78,79,80,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,140,141,142,152,155,157,158,159,166],index_gener:[57,58],indexerror:15,india:114,indic:[13,14,18,25,26,27,28,29,31,32,33,34,35,36,37,39,47,49,50,53,54,71,73,79,82,96,97,101,105,107,110,114,119,121,123,124,131,134,142,153,154,155,157,159,163],indirect:[53,78],individu:[14,15,16,20,53,58,62,63,64,67,69,70,71,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,140,141,149,150,156,159,164],indiviu:164,indonesia:114,induc:149,industri:[18,162],ineffici:[152,154],inf:[18,53,58,136,150,159,165],infer:[0,11,15,18,53,57,58,61,62,63,64,65,66,67,68,69,70,71,72,82,85,92,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,137,154,158,167],inference_dataset:139,inferencedataset:[99,102,110,111,112,113,118,124,125,128,130,139],infin:53,infinit:136,influenc:[78,153],influenzalik:73,info:[0,15,99,102,110,111,112,118,124,125,128,130,134,158,163],inform:[2,3,9,11,12,16,17,18,19,21,53,58,61,62,63,64,65,66,67,68,69,70,71,72,77,79,85,86,87,89,93,99,100,102,108,109,110,111,112,113,114,115,117,118,120,124,125,128,130,132,134,150,153,154,155,156,159,160,161,163,165,167],ing:[61,62,63,64,65,66,67,68,69,70,71,72],inherit:[2,21,53,61,62,63,64,65,66,68,69,70,71,72,98,103,113,143,167],init:[85,86,87,89,113,150,156,163],init_modul:113,init_predict_tqdm:136,init_s:55,init_sanity_tqdm:136,init_test_tqdm:136,init_train_tqdm:136,init_validation_tqdm:136,init_weight:[85,86,87,89,113,150,156],initi:[6,13,15,18,20,53,55,61,64,65,69,78,85,86,87,89,93,99,102,110,111,112,113,118,123,124,125,128,130,150,156],initialize_distribut:113,initj:21,inlin:[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,159],inner:[20,31,32,38,39,40,41,42,43,44,45,46,47,48,49,50,58,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,159],inplac:[53,85,86,87,89,113,150,156],inpt:150,input:[0,2,3,5,6,7,8,9,10,11,14,15,16,19,20,24,25,26,27,28,29,31,32,33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,76,77,78,79,80,82,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,140,141,142,143,150,152,153,156,157,158,159,160,161,163,165,166],input_chunk:139,input_chunk_length:[2,5,6,7,8,9,10,14,15,16,18,19,20,57,58,77,79,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,139,140,141,159,161,163,164,165,167],input_chunk_length_ic:14,input_covari:141,input_dim:87,input_s:[87,152],input_sampl:113,input_seri:149,input_series_dataset:[99,102,110,111,112,118,124,125,128,130],input_timeseri:113,input_typ:80,inquiri:[0,158],insampl:82,insert:[3,53,61,62,63,64,65,66,67,68,69,70,71,72,113],insid:[53,99,102,110,111,112,118,124,125,128,130,142,153],insight:[18,21],insignific:159,inspect:[4,18,113],inspir:[2,9,20,121,124,132,138],instal:[15,18,21,108,113,162,164,167],instanc:[0,2,6,15,16,17,18,19,20,32,33,49,53,54,57,58,61,62,63,64,65,66,68,69,70,71,72,77,78,82,85,86,87,89,92,93,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,141,143,149,150,153,154,155,156,158,159,161,162,163,166,167],instanci:20,instantan:73,instanti:[2,14,58,61,62,63,64,65,66,67,68,69,70,71,72,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,167],instantli:113,instead:[0,2,3,4,5,12,13,14,15,17,18,20,21,53,61,62,63,64,65,66,68,69,70,71,72,78,79,85,86,87,89,92,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,149,150,152,153,156,157,158,159,165,166,167],instruct:[0,108,158,164],int16:53,int32:53,int64:[59,64,66,68,69,134],int64index:17,int8:53,int_:53,int_typ:53,integ:[2,14,15,16,20,25,26,27,28,32,34,35,36,37,50,53,57,58,71,72,73,78,80,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,154,155,157,159,166],integerindexencod:58,integr:[18,21,85,86,87,89,96,131,150,156,159,163,164,165],intel:167,intellig:161,intend:[53,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,166],intens:[3,9,21],inter:130,inter_reduct:[17,82,159],interact:[2,4,53,164],interchang:53,interest:[2,9,12,13,14,15,19,21,82,113,159,163],interestingli:20,interfac:[53,159],intermedi:[110,111,130],intermitt:101,intern:[2,6,8,21,39,61,69,78,86,87,99,100,101,102,108,109,110,111,112,113,115,117,124,125,128,130,132,156,167],internet:18,interpol:[3,68,73,111,149,151,154],interpolate_kwarg:151,interpret:[21,37,53,110,113,125,142,155,156,157,163],interrupt:[99,102,110,111,112,118,124,125,128,130,136,167],intersect:[14,82,134,142],interv:[0,12,14,18,20,21,73,82,113,134,138,149,154,157,158,159,166],intra:130,intract:18,introduc:[20,61,62,63,64,65,66,67,68,69,70,71,72,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,161,162],introduct:160,introductori:[0,18,158],introselect:53,invalid:[73,74,85,86,87,89,113,150,156],invari:134,inventori:101,invers:[3,15,53,59,62,63,65,66,67,70,71,87,105],inverse_fn:[3,66],inverse_transform:[2,3,5,7,14,20,59,61,62,63,64,65,66,67,69,70,71,159],inversed_quaterli:67,invert:[3,59,60,61,64,69],invertible_data_transform:[62,63,65,66,67,70,71],invertibledatatransform:[3,59,61,62,63,64,65,66,67,69,70,71],invertiblemapp:60,investig:[99,102,110,111,112,118,124,125,128,130],invok:[53,85,86,87,89,113,150,156],involv:[64,69,162,167],io:[47,73,93,99,102,110,111,112,113,114,118,124,125,128,130,134],io_processor:113,ipu:[15,18,85,86,87,89,113,150,156,159,164],ipynb:1,irrad:21,irradi:[21,73],irregular:16,irregular_seri:16,irregular_series_st_bin:16,irregular_series_st_cat:16,irrelev:164,irrespect:[18,54,99,102,110,111,112,118,124,125,128,130],is_avail:[18,165],is_caus:89,is_determinist:134,is_dis:136,is_en:136,is_gat:85,is_probabilist:[38,39,40,41,42,43,44,45,46,47,48,49,134],is_season:159,is_stochast:134,is_train:142,is_univari:134,is_within_rang:134,isinst:[14,17,113],isn:2,iso:[134,155],isol:[15,46,156,163],issu:[0,15,18,58,99,102,110,111,112,118,124,125,128,130,134,149,158,159,162,167],issubclass:163,itakura:[54,55],itakura_align:13,item:[19,20,21,53,72,85,86,87,89,113,134,136,150,156],items:53,itemset:53,iter:[5,14,19,53,55,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,136,150,154,156],iterrow:15,itertool:[15,17],its:[0,2,3,4,5,6,7,9,11,14,15,17,19,20,21,31,32,37,38,39,40,41,42,43,44,45,46,47,48,49,53,66,78,85,86,87,89,92,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,135,142,149,150,158,159,161,163,165,166,167],itself:[0,4,9,13,14,17,18,31,32,37,39,47,48,49,50,53,61,62,63,64,65,66,68,69,70,71,72,85,86,87,89,113,134,140,141,149,150,156,158,166,167],j0:54,j1:54,j2:54,j:[13,53,54,55,73,85,86,87,89,150,156],jakob:130,jame:73,jan:[0,5,7,15,67,73,116,126,134,158],januari:[73,159],japan:73,javascript:21,jayasiri:85,jdb78:126,jena:73,jit:[113,119,121],jmlr:[0,158],job:[11,59,61,62,63,64,65,66,67,68,69,70,71,72,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],john:101,join:[0,158],joint:[138,140,141,159,163,166],jointli:[2,15,37,46,62,149,166],jone:130,journal:[0,73,101,158],json:134,json_str:134,julien:[0,15,17,158],jump:[18,53],june:73,jupyt:[21,164],jupyterlab:21,just:[2,3,4,5,12,13,14,15,18,19,21,53,159,161,162,167],k:[0,2,15,20,37,53,98,113,116,149,158,159,162,163],kaggl:[73,164],kaiser:130,kalman:[0,11,12,15,90,95,158],kalman_filt:[93,107],kalman_forecast:107,kalmanfilt:[0,11,93,107,158,159],kalmanforecast:[0,15,20,95,107,158,161,163],keep:[0,2,4,9,10,15,17,18,19,20,21,53,59,73,99,102,110,111,112,118,124,125,128,130,153,154,158,159,162,167],keep_non_transform:[72,134],keep_var:[85,86,87,89,113,150,156],keepdim:53,kei:[15,17,20,21,24,29,31,32,53,58,61,62,63,64,65,66,68,69,70,71,72,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,150,154,156,159,165],kept:[4,49,53,61,62,63,64,65,66,67,68,69,70,71,72,134,142],kernel:[18,78,92,102,111,124,153,159],kernel_s:[6,10,18,20,85,86,87,89,102,113,124,150,156,165],keyword:[39,53,54,58,61,62,63,64,65,66,67,68,69,70,71,72,78,85,86,87,89,92,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,150,151,154,156,163],kf:[11,93,107,159],kf_smape:15,kf_smapes_m3:15,kf_time:15,kf_time_m3:15,kim:[87,99,102,110,111,112,113,124,125,128,130],kind:[11,15,53,85,87,105,159,161,163,164,167],kindli:73,kl:149,kmean:39,kmeans_scor:39,kmeansscor:[0,23,37,39,47,158],know:[2,3,5,9,12,13,14,100,108,109,113,115,117,132,134,140,141,159,161,163,164,167],knowledg:8,known:[0,2,5,9,13,14,20,21,29,32,33,37,53,78,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,139,140,141,142,156,158,159,161,163],kolassa:121,kosinski:[0,158],kpss:154,kpss_stat:154,kth:53,kullback:[159,163],kurtosi:134,kw:[2,73],kwarg:[14,15,25,34,39,53,57,58,61,62,63,64,65,66,67,68,69,70,71,72,78,82,85,86,87,89,92,96,97,98,99,100,101,102,104,106,107,108,109,110,111,112,113,114,115,117,118,119,120,121,122,124,125,128,130,131,132,134,136,150,154,156,159],kwh:[21,73],kwiatkowski:154,l1:113,l1loss:150,l:[0,15,39,47,49,85,86,87,89,102,112,113,136,150,156,158],l_:82,l_bar:136,label:[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,158,159,163],label_q_inn:14,label_q_out:14,labels:13,labels_cols_nam:142,labels_hat:113,labml:85,lag:[0,2,15,17,18,20,57,58,63,77,78,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,142,154,155,158,159,161,163],lag_:142,lagged_:142,lagged_feature_nam:[21,100,108,109,115,117,132],lagged_future_covari:142,lagged_past_covari:142,lagged_target:142,lags_:142,lags_covari:[57,58],lags_future_covari:[20,21,57,58,77,78,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,142,159],lags_past:21,lags_past_covari:[21,57,58,77,78,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,142],laiguokun:73,lambda:[3,17,58,62,66,82,134,149,159],languag:130,laplac:[37,149,159,163],laplace_distribut:149,laplacelikelihood:[149,159,163],laplacenllscor:44,larg:[0,1,2,13,15,16,18,54,96,97,99,100,101,102,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132,134,138,140,141,142,149,152,158,159,164,167],larger:[2,3,11,12,15,53,78,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,149,163,166,167],largest:[15,18,134,157],last:[0,2,5,14,15,16,17,18,20,21,53,72,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,142,149,152,154,155,158,159,163],last_m:13,last_points_onli:[2,5,6,8,9,10,14,20,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],last_shap:142,last_static_covariates_shap:142,last_valu:[134,159],later:[2,6,18,19,21,62,63,64,69,70,134,161,163,164,167],latest:[2,9,20,47,93,99,102,110,111,112,113,118,124,125,128,130,142,167],latter:[35,36,37,65,67,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,150,153,156],lausann:15,layer:[2,85,87,89,99,110,111,116,118,124,125,128,130,159,167],layer_norm_vari:87,layer_width:[2,8,15,110,111],layernorm:[14,87,125,130],layernormnobia:[87,125,130],layout:[16,53,78],lazi:[2,58,152],lazili:[152,167],lb:142,ld:154,ldadjust:154,ldb:154,ldbias:154,le:85,lead:[4,13,16,19,104,113,162],leafhandl:73,leak:19,leakag:2,leakyrelu:[110,111],learn:[0,3,7,12,14,16,17,18,19,21,24,37,39,70,71,87,92,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,136,158,161,162,163,164,165,166,167],learnabl:85,learning_r:113,least:[2,4,6,18,21,35,36,53,67,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,138,140,141,161,167],leav:[59,72,79,99,102,110,111,112,115,118,124,125,128,130,134,163],left:[2,15,17,18,32,53,54,72,82,96,97,98,99,101,102,103,104,105,107,110,111,112,114,116,118,119,120,121,122,123,124,125,127,128,130,131,134,139,150,161],legaci:154,legend:[0,2,3,5,6,7,8,9,10,11,12,13,14,15,17,158,159],leibler:[159,163],len:[0,2,4,7,13,14,15,16,17,20,54,58,63,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,139,155,158,159],length:[2,3,5,9,10,11,12,13,15,16,18,31,32,35,36,37,39,47,49,50,53,54,55,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,82,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,140,141,142,150,154,155,161,163,165,167],leq:149,less:[4,15,18,115,142,154],let:[2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,20,21,85,86,87,89,113,150,156,159,161,167],letter:53,levarag:20,level:[8,12,17,21,53,73,103,124,134,154,159,160,161],leverag:[3,20,116,163,167],levinson:154,lexsort:53,lgbm:[15,21,108],lgbm_m4_elapsed_time_m3:15,lgbm_m4_smapes_m3:15,lgbm_model:21,lgbm_model_m4:15,lgbm_smape:15,lgbm_smapes_m3:15,lgbm_smapes_transf:15,lgbm_time:15,lgbm_time_m3:15,lgbm_time_transf:15,lgbregressor:108,lh:138,li:[12,155,167],liabil:[85,87],liabl:[85,87],lib:[17,53,142],librari:[0,1,3,15,18,20,21,53,78,123,158,159,162,167],licens:[85,87,126],lie:[12,32,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,149],life:15,lightbm:159,lightgbm:[15,21,95],lightgbmmodel:[0,15,21,95,108,158,159,161,163],lightgbmregressor:[21,108],lightn:[0,18,19,95,99,102,110,111,112,113,118,124,125,128,130,136,158,163,164,165,167],lightning_fabr:113,lightningdatamodul:113,lightningmodul:[99,102,110,111,112,113,118,124,125,128,130,136,167],lightningoptim:113,ligthn:[18,99,102,110,111,112,118,124,125,128,130],like:[2,4,11,12,14,15,16,18,20,21,53,85,86,87,89,113,117,136,142,149,150,153,154,156,159,161,162,164,167],likelihood:[9,10,14,18,19,20,21,40,41,42,43,44,45,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,135,159,163,165],likelihood_components_nam:149,likelihood_model:[9,10,14,18,99,102,110,111,112,118,124,125,128,130,149,159,163,165],likelihoodmixin_:149,likelihoodscor:48,limit:[15,18,19,20,21,53,78,85,87,113,126,130,164,165,167],lin_seri:3,linalg:46,line:[12,14,15,17,21,53,54,85,86,87,89,98,113,127,134,150,156,167],linear:[11,13,15,20,54,61,64,65,69,78,85,86,87,89,93,95,96,99,110,111,113,117,118,124,125,127,128,130,131,134,149,150,154,155,156,157,159,164],linear_1:134,linear_increas:14,linear_match:13,linear_model:[15,18,20,21,109,117,159],linear_regression_model:109,linear_timeseri:[2,3,9,10,61,64,65,69,134,155],linear_v:16,linearli:[69,99,102,110,111,112,118,124,125,128,130,155,167],linearregress:[18,20,109,117,159],linearregressionmodel:[0,15,17,18,20,21,78,95,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,158,159,161,163],linewidth:11,link:[99,101,102,104,110,111,112,118,124,125,128,130,164],linreg_model:20,linspac:[11,13,16,159],linux_x86_64:164,list:[2,10,14,15,17,18,20,21,25,27,31,32,39,46,47,49,50,53,57,58,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,79,80,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,149,150,151,152,153,154,155,156,157,159,163,165,166,167],litdatamodul:113,liter:[62,79,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134],litmodel:113,litr:73,littl:[8,11,53],live:[85,86,87,89,113,150,156],ll:[2,6,11,12,15,16,18,21,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,161,164,165],llion:130,lmbda:62,load:[0,1,2,3,4,5,6,7,8,9,10,13,14,20,21,53,58,62,63,67,70,73,74,78,79,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,152,158,159,160,164,165],load_air:15,load_data:113,load_encod:[99,102,110,111,112,118,124,125,128,130],load_ext:[3,4,5,7,9,13,14,16,19,20,21],load_from_checkpoint:[2,5,6,7,8,9,10,18,19,99,102,110,111,112,113,118,124,125,128,130,163,165,167],load_m3:15,load_m4:15,load_model:163,load_state_dict:[85,86,87,89,113,136,150,156],load_weight:[99,102,110,111,112,118,124,125,128,130,167],load_weights_from_checkpoint:[99,102,110,111,112,118,124,125,128,130,167],loaded_model:167,loader:[99,102,110,111,112,118,124,125,128,130],loc:[2,15,17],local:[2,3,4,5,6,7,8,9,13,14,16,17,19,20,21,53,74,85,86,87,89,91,99,102,103,110,111,112,113,116,118,124,125,128,130,150,156,160],local_rank:[18,113,164],localforecastingmodel:[0,57,95,98,104,105,120,122,127,158],locat:[53,99,102,110,111,112,113,118,124,125,128,130,149,161,163,166],locationid:73,lock:53,loess:154,log10:66,log:[0,2,3,4,5,6,7,8,9,10,14,16,18,19,20,40,41,42,43,44,45,82,99,102,110,111,112,113,114,118,124,125,128,130,134,136,149,158,159,163,164,165,167],log_dict:113,log_dir:167,log_tensorboad:167,log_tensorboard:[5,99,102,110,111,112,118,124,125,128,130,164],logarithm:82,logger:[99,102,110,111,112,113,118,124,125,128,130],logic:[21,23,26,28,57,58,113,149],logical_and:13,logist:114,lognormallikelihood:149,lone:142,longdoubl:53,longer:[2,11,13,15,18,96,97,99,101,102,107,110,111,112,114,118,119,121,124,125,128,130,131,159,165],longest:15,longest_contiguous_slic:[15,134],look:[2,3,4,7,11,12,13,15,16,17,18,20,21,37,53,69,85,86,87,89,113,150,156,159,160,161,162,163,165],lookahead:19,lookback:[2,15,18,19,138,159],lookforward:[15,18],loop:[15,53,113,127,136],loos:162,lose:53,loss:[5,7,13,14,15,16,18,19,82,99,100,102,110,111,112,113,118,124,125,128,130,132,135,136,149,163,164,165],loss_fn:[14,15,99,102,110,111,112,113,118,124,125,128,130],loss_logg:167,losslogg:167,lost:[53,63],lot:[5,14,15,16,18],love:3,low:[7,53,67,73],low_freq:67,low_q:14,low_quantil:[0,9,10,14,35,134,158,159],low_threshold:[35,36],lower:[7,13,15,16,17,18,35,36,50,67,111,128,134,142,159],lowercas:53,lowest:163,lowest_q:14,lp:37,lp_c_uint:53,lr:[5,7,9,10,14,15,18,19,99,102,110,111,112,113,118,124,125,128,130,164,165,167],lr_find:[99,102,110,111,112,118,124,125,128,130],lr_finder:[99,102,110,111,112,118,124,125,128,130],lr_m4_elapsed_time_m3:15,lr_m4_smapes_m3:15,lr_model:18,lr_model_m4:15,lr_pred:18,lr_preds_test:18,lr_scale:113,lr_schedul:[19,113,167],lr_scheduler_cl:[19,99,102,110,111,112,113,118,124,125,128,130,167],lr_scheduler_kwarg:[19,99,102,110,111,112,113,118,124,125,128,130,167],lr_scheduler_step:113,lr_smape:15,lr_smapes_m3:15,lr_smapes_transf:15,lr_time:15,lr_time_m3:15,lr_time_transf:15,lrschedul:113,lstm:[0,2,5,9,14,99,118,125,158,161],lstm_layer:[14,125],lstm_test:9,lt:[2,3,5,6,8,9,10,11,12,14,15,19,20,21],lucki:15,lufl:73,lukasz:130,lull:[0,73,158],lw:[0,7,17,18,158,163],lysenko:132,m1:15,m2:[15,21,73],m3:[8,159],m3_dataset:15,m3_seri:15,m3_test:15,m3_test_scal:15,m3_train:15,m3_train_scal:15,m3c:15,m3comp:15,m3month:15,m4:[8,127,138],m4_metadata:15,m4_monthli:15,m4_test:15,m4_test_scal:15,m4_train:15,m4_train_scal:15,m4id:15,m:[2,13,15,53,54,55,63,69,73,82,85,86,87,89,101,102,112,113,127,134,138,150,154,156,159,162],ma:[96,131],machin:[0,3,15,21,53,158,161,164,166,167],machineri:2,mackinnon:154,made:[4,46,53,65,78,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,150,156,159,163,167],mae:[2,4,13,17,19,82,115,127,150],maeloss:150,magnitud:[2,150,159],mai:[2,3,8,18,31,32,53,61,62,63,64,65,66,68,69,70,71,72,78,85,86,87,89,113,134,136,140,141,149,150,152,153,156,162,166],main:[14,20,33,37,58,106,125,134,159,164,165,166,167],mainli:[18,159],maintain:[18,53,136],major:[19,53,164],make:[0,2,3,6,9,11,12,13,14,15,17,18,20,21,29,53,59,63,85,86,87,89,103,110,111,113,116,117,125,130,134,150,152,156,158,161,162,163,167],make_grid:113,maker:73,makridaki:20,malaysia:114,man:73,manag:113,mandatori:[2,14,15,72,78,79,114,125,134],mani:[0,2,15,16,18,53,58,99,102,110,111,112,118,123,124,125,128,130,142,152,156,158,159,167],manipul:166,manner:21,manual:[4,15,58,61,62,63,64,65,66,67,68,69,70,71,72,99,102,104,110,111,112,113,118,124,125,128,130,159,164],manual_backward:113,manual_se:[2,15,18,165],manuallyargsmodel:113,map:[3,11,14,16,17,53,58,61,62,63,64,65,66,68,69,70,72,78,79,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,153,159,166],map_loc:[99,102,110,111,112,113,118,124,125,128,130,167],mape:[2,3,5,6,7,8,9,13,14,15,20,21,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,150,159,164,165],mapeloss:150,mapper:60,mar:73,march:[15,134],marek:[0,158],margin:[134,159,163,166],mark:[2,20,55,92,134],markers:15,market:161,marr:82,mase:82,mask:[57,61,62,63,64,65,66,67,68,69,70,71,72,89],mask_cat:71,mask_compon:[61,62,63,64,65,66,67,68,69,70,71,72],mask_num:71,master:[15,108,114,126],match:[2,4,15,16,35,36,50,53,54,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,140,141,150,155,156,163,166],match_begin:13,match_end:13,match_len:13,match_min_length:13,matched_rang:13,matej:[0,158],math:53,mathbb:149,mathcal:85,mathemat:[46,62,156],matplotlib:[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,134,158,159,163,164],matric:[93,142],matrix:[13,53,54,69,142,153,154,155,159],matter:[0,2,158],max:[53,64,69,70,72,85,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,159],max_depth:115,max_epoch:[15,19,159],max_gap_s:134,max_lag:[5,7,14,154],max_lh:138,max_lr:[99,102,110,111,112,118,124,125,128,130],max_n_epoch:18,max_nr_compon:[14,134],max_nr_seri:79,max_number_seri:15,max_p:97,max_samples_per_t:[15,18,99,100,102,108,109,110,111,112,115,117,118,124,125,128,130,132,140,141,142,167],max_siz:126,max_slop:[13,55],max_t:[82,165],maxabsscal:[15,18,165],maxim:[0,123,134,154,158],maxima:13,maximum:[14,53,55,79,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,142,149,154,155],maxlag:154,maxpool1d:111,maxpool:111,mayb:[15,159],mb:[15,18,159,164],mbar:[99,100,102,108,109,110,111,112,115,117,118,124,125,128,130,132],mc_dropout:[18,99,102,110,111,112,118,124,125,128,130,163],mc_dropout_en:156,mcompetit:15,md5:[73,74],md:108,mean:[0,6,7,8,9,10,13,14,15,17,18,20,21,37,50,53,54,55,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,78,79,82,87,91,92,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,143,149,153,155,158,159,162,163,164,165,166,167],mean_absolute_error:150,mean_absolute_percentage_error:150,mean_attent:14,mean_dist:54,meanabsoluteerror:165,meanabsolutepercentageerror:[165,167],meaning:[14,125],means_clust:39,meant:[58,113,141,143],measur:[2,11,18,21,73,93,159,161,163,166,167],measure_ma:17,mechan:[7,14,85,86,87,89,113,130,150,153,156],median:[0,3,15,20,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,158,159],medium:73,medium_s:13,meet:[58,167],megalit:19,megalitr:73,megawatt:73,melbourn:73,member:[85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,150,154,156],memo:[85,86,87,89,113,150,156],memori:[2,14,15,18,21,49,53,58,73,74,85,86,87,89,99,102,110,111,112,113,118,124,125,128,130,136,142,150,152,156,164],memory_format:[85,86,87,89,150,156],memory_is_caus:89,memory_key_padding_mask:89,memory_mask:89,mention:[163,167],merchant:[85,87],mere:142,merg:[57,58,62,70,85,87,113,126,134],merge_covari:[57,58],mergesort:53,met:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],meta:[15,106,153,159],metadata:[15,74,153],metadata_rout:153,metadatarout:153,method:[0,2,3,11,16,17,18,20,21,23,24,25,26,27,28,29,31,32,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,53,54,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,77,78,79,80,85,86,87,88,89,91,92,93,94,95,96,97,98,99,100,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,128,130,131,132,133,134,136,139,142,143,149,150,151,153,154,156,158,161,163,164,165,166],method_to_elapsed_tim:15,method_to_smap:15,methodolog:161,metric:[0,2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,22,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,136,149,158,164,165,167],metric_attribut:113,metric_column:165,metric_n:113,metriccollect:[15,99,102,110,111,112,113,118,124,125,128,130,159,165],michal:[0,158],microsecond:58,mid:163,mida:60,might:[2,4,14,15,16,18,20,21,72,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,140,141,154,161,164,166,167],migth:67,mileag:149,milk:[3,15,73,159],milk_cov:159,milk_covari:2,milk_month:2,milk_train_covari:2,milk_val_covari:2,milk_year:2,million:73,mimic:[100,108,109,118,132],min:[15,19,21,53,57,58,64,69,70,72,73,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,165,167],min_delta:[18,19,99,102,110,111,112,118,124,125,128,130,165,167],min_gap_s:151,min_lh:138,min_lr:[99,102,110,111,112,118,124,125,128,130],min_period:[72,134],min_samples_split:115,min_t:82,min_train_sampl:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],min_train_series_length:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],mind:[12,19],mini:2,miniconda3:17,minim:[13,16,18,54,69,91,123,154,159,165,167],minimis:[20,159,163],minimum:[6,13,21,53,57,58,72,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,151,159,167],minmaxscal:[3,5,7,9,16,19,70,71],mint:69,mint_cov:69,mintreconcili:[17,69],minut:[0,2,15,18,21,58,73,155,158],misalign:13,misconfigurationexcept:113,miss:[0,3,8,21,53,60,72,73,85,86,87,89,92,93,105,107,108,109,113,115,117,132,134,135,150,154,156,158,162],missing_kei:[85,86,87,89,113,150,156],missing_valu:[4,6,9,10,13,105,151,159],missing_values_fil:68,missing_values_ratio:151,missingvaluesfil:[8,59,68],mit:[73,85,87,126],mitig:[19,149],mix:[60,113,116],mixedcovari:143,mixedcovariatesinferencedataset:139,mixedcovariatesmodel:167,mixedcovariatessequentialdataset:140,mixedcovariatesshifteddataset:141,mixedcovariatestorchmodel:[99,102,110,111,112,118,124,125,128,129,130,143],mixedcovariatestrainingdataset:[140,141,143],mixin:113,mixtur:16,ml:[0,15,73,158,159],mle:62,mle_retv:17,mlp:128,mm:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,163],mode:[18,19,21,53,72,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,150,151,156,161,165,167],model:[3,6,9,11,12,13,16,22,23,24,27,30,37,39,47,49,50,57,58,72,76,77,78,79,80,85,86,87,88,89,91,92,93,94,96,97,99,101,102,103,104,105,106,107,110,111,112,113,114,115,118,119,120,121,122,123,124,125,126,127,128,129,131,133,134,135,136,138,139,142,143,150,153,154,156,160,162,165,166],model_:159,model_air:[2,6],model_air_milk:2,model_arg:165,model_auto_regress:21,model_cl:[15,20],model_class:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],model_cr:[99,102,110,111,112,118,124,125,128,130],model_en:[6,9],model_finetun:167,model_fit_kwarg:32,model_futcov:2,model_futurecov:2,model_gru:2,model_kwarg:[20,167],model_load:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,163],model_mod:127,model_nam:[2,5,6,7,8,9,10,18,19,20,99,102,110,111,112,118,124,125,128,130,164,165,167],model_nbeat:8,model_nhit:19,model_output:[50,149],model_param:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],model_pastcov:2,model_select:152,model_single_shot:21,model_sun:6,model_tid:19,model_tide_rin:19,model_trac:113,model_val_set:[18,165],model_varima:2,modelcheckpoint:113,modelclass:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,163],modelmeta:106,modelmod:[15,104,127,154,157,159],modern:[0,158],modest:167,modif:[53,85,86,87,89,113,150,156,164],modifi:[21,53,72,85,86,87,89,113,126,134,150,153,154,156],modul:[0,2,9,13,23,27,37,53,85,86,87,89,99,102,110,111,112,113,118,124,125,126,128,130,150,156,158,164],module_nam:133,modulelist:[15,159],moment:[2,15,37,134],mon1:167,mon2:167,mondai:[73,167],monitor:[18,19,99,102,110,111,112,113,118,124,125,128,130,165,167],monoton:[54,134],mont:[21,85,99,102,110,111,112,118,124,125,128,130,156,159,166],montecarlodropout:[156,159],month:[0,2,3,4,5,6,7,14,15,17,20,21,57,58,62,63,67,73,96,97,98,99,100,101,102,105,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132,134,155,158,159,161,165,167],month_co:[57,58],month_seri:[5,6,20],month_sin:[57,58],monthli:[2,3,4,15,17,67,73,105,123,159],monthly_seri:67,monthlymilkdataset:[2,3,15,73,159],monthlymilkincompletedataset:[3,73],more:[0,1,4,5,6,7,8,9,12,15,16,17,18,19,20,21,37,50,53,58,61,62,63,64,65,66,67,68,69,70,71,72,82,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,140,141,142,150,152,155,156,158,159,160,161,162,163,164,165,167],moreov:[138,140,141],most:[4,14,15,16,37,53,61,62,63,64,65,66,68,69,70,71,72,78,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,140,141,142,149,159,161,162,163,166,167],mostli:[11,13,15],motor:73,mounir:[0,158],move:[0,4,11,13,15,20,39,47,49,53,72,85,86,87,89,90,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,150,154,156,158,166,167],move_data_to_devic:113,moving_average_filt:94,movingaveragefilt:[0,13,94,158],mp:15,mpg:73,mro:106,ms:[15,21,67],mse:[19,82,122,149,163],mseloss:[14,99,102,110,111,112,113,118,124,128,130,159,164],mstl:154,mt_002:2,mt_008:2,mt_009:2,mu:[88,149],much:[2,4,6,12,13,14,15,16,159],mufl:[0,73,158],mull:73,multi:[2,7,14,15,16,54,85,86,87,89,103,109,111,113,115,117,125,130,134,150,153,156],multi_grid_radiu:[13,54],multi_model:[21,100,108,109,115,117,132,142],multi_serie_elec:2,multi_ts_support:82,multicollinear:16,multidimension:[163,166],multigrid_align:13,multilabel:153,multilay:128,multioutput:[100,108,109,115,117,132,153],multioutputregressor:[100,108,109,115,117,132,153],multipl:[0,14,15,17,18,19,20,21,23,24,29,31,32,33,37,39,47,49,50,53,58,59,61,62,63,64,65,66,67,68,69,70,71,72,77,78,79,80,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,142,153,154,157,158,159,160,161,164,167],multiple_t:3,multipli:[15,114],multiprocess:[123,164],multiprocessing_start_method:123,multivari:[0,11,14,16,18,21,23,24,25,26,27,28,37,38,39,40,41,42,43,44,45,46,47,48,49,50,67,70,73,74,77,78,79,82,96,97,100,101,102,107,108,109,110,111,112,114,115,117,119,121,131,132,134,142,149,151,154,155,158,159,160,161,162,167],multivariate_seri:163,multivariate_support:82,multivati:2,must:[2,15,16,20,21,25,26,27,28,31,32,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,53,55,57,58,61,62,63,64,65,66,67,68,69,70,71,72,78,80,85,86,87,89,92,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,140,141,142,149,150,154,155,156,161,163,167],mutabl:113,mutablemap:113,my:[114,162],my_cool_pickable_object:113,my_model:[5,7,9,14,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,163,164,167],my_model_ic:14,my_model_sp:7,my_model_sun:5,my_multivariate_seri:166,my_seri:[134,167],my_series32:167,my_stopp:[99,102,110,111,112,118,124,125,128,130,165,167],mycallback:136,mylightningmodul:[113,136],mylikelihood:14,mymodel:113,mymodelclass:[99,102,110,111,112,118,124,125,128,130],mytransform:[64,69],n4sid:[0,15,93,107,158,159],n9bw:15,n:[0,2,5,7,13,14,16,17,18,19,21,31,32,39,47,49,53,54,55,57,58,63,64,69,73,82,85,86,87,88,89,95,96,97,98,99,100,101,102,103,104,105,107,108,109,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,138,139,140,141,149,150,154,156,158,161,162,163,164,165,167],n_cat_col:71,n_categori:16,n_compon:[61,62,63,64,65,66,67,68,69,70,71,72,134,142,149],n_epoch:[2,5,6,7,8,9,10,14,16,18,20,99,102,110,111,112,118,124,125,128,130,164,165,167],n_estim:115,n_featur:153,n_fmt:136,n_freq_downsampl:111,n_job:[3,18,59,61,62,63,64,65,66,67,68,69,70,71,72,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,153,159,165],n_jobs_multioutput_wrapp:[109,115,117],n_lagged_featur:142,n_lagged_label:142,n_observ:142,n_output:153,n_quantil:[14,149],n_random_sampl:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],n_restarts_optim:12,n_rnn_layer:[2,5,9,99,118],n_sampl:[61,62,63,64,65,66,67,68,69,70,71,72,103,134,142,149,153],n_samples_fit:153,n_target_vari:149,n_timestep:[61,62,63,64,65,66,67,68,69,70,71,72,134,149],n_trial:[18,165],naiv:[15,18,58,82,98,123,127,154,161],naive12_smap:15,naive12_smapes_m3:15,naive12_tim:15,naive12_time_m3:15,naive1_smap:15,naive1_smapes_m3:15,naive1_tim:15,naive1_time_m3:15,naive_ensembl:20,naive_forecast:[159,163],naive_model:[159,163],naivedrift:[0,20,95,98,158,159,161],naiveensembl:20,naiveensemblemodel:[0,20,95,98,158,159,161],naivemean:[0,95,98,158,161],naivemovingaverag:[0,95,98,158,161],naiveseason:[0,15,20,95,98,116,158,159,161,163],name:[2,3,7,13,15,16,17,18,19,21,31,32,38,39,40,41,42,43,44,45,46,47,48,49,50,53,57,58,61,62,63,64,65,66,67,68,69,70,71,72,74,77,78,80,85,86,87,89,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,149,150,153,155,156,159,161,164,165,166,167],named_buff:[85,86,87,89,113,150,156],named_children:[85,86,87,89,113,150,156],named_modul:[85,86,87,89,113,150,156],named_paramet:[85,86,87,89,113,150,156],namedtupl:[85,86,87,89,113,150,156],names_of_scor:[31,32,50],namespac:[106,113],nan:[12,18,59,63,67,68,72,73,92,105,134,150,151,154,159,162,165],nanosecond:58,nativ:[21,53,100,108,109,113,115,117,132],natur:[2,4,31,32,82,149,161,166],nav:120,nb_pred:15,nbeat:[8,15,110],nbeats_elapsed_tim:15,nbeats_interpretable_run:8,nbeats_m4_elapsed_tim:15,nbeats_m4_elapsed_time_m3:15,nbeats_m4_smap:15,nbeats_m4_smapes_m3:15,nbeats_model_air:15,nbeats_model_m4:15,nbeats_run:8,nbeats_smap:15,nbeatsmodel:[0,2,8,15,95,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,136,158,159,161,163,165,167],nbyte:53,nd:[53,142],ndarrai:[21,53,54,55,58,61,62,63,64,65,66,67,68,69,70,71,72,82,88,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,139,142,143,154,155],ndarray_subclass:53,ndim:[53,142],nearest:53,necessari:[2,13,15,18,53,62,63,64,69,70,93,96,97,101,107,113,114,119,121,131,157,159,163,164,167],necessarili:[2,159],need:[2,5,8,12,14,15,16,18,19,20,25,31,32,34,39,47,48,49,53,61,62,63,64,65,66,67,68,69,70,71,72,77,78,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,139,142,149,150,156,159,161,162,163,164,165,166,167],neg:[40,41,42,43,44,45,117,134,142,149,153,163],negative_binomial_distribut:149,negativebinomiallikelihood:149,neglig:[61,62,63,64,65,66,68,69,70,71,72],neither:[72,134],nest:[53,78,85,86,87,89,113,150,153,156,164],net:[5,85,86,87,89,99,102,110,111,112,113,124,125,128,130,150,156],net_b:[85,86,87,89,113,150,156],net_c:[85,86,87,89,113,150,156],network:[0,2,3,14,18,85,86,87,89,95,102,110,111,112,113,116,125,128,130,149,150,156,158,162,164],neuer:[0,158],neural:[0,2,3,87,95,102,110,111,112,116,124,125,128,130,149,158,162,164],neuron:[89,99,110,111,118,125,130,156],never:[2,15,53,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,159],nevertheless:166,new_arr:53,new_ord:53,new_path:113,new_plot:[54,134],new_shap:53,new_valu:3,newbyteord:53,newbytord:53,newei:154,newli:[53,134],next:[2,9,10,12,14,15,19,21,53,58,59,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,155,159,161,164,167],nfoursid:[93,107,159],nhead:[7,130],nhit:[19,111],nhitsmodel:[0,19,95,111,158,161],nice:[4,14,16,18],nicholasjhana:73,nicola:[0,158],niki:130,nikolai:132,nikolopoulo:159,nixtla:[0,158],nlag:154,nlinear:[0,112,158],nlinearmodel:[0,95,112,158,161],nll:[37,149],nll_cauchy_scor:40,nll_exponential_scor:41,nll_gamma_scor:42,nll_gaussian_scor:43,nll_laplace_scor:44,nll_poisson_scor:45,nllscorer:[40,41,42,43,44,45,48],nmulti:16,nn:[5,7,9,14,15,85,86,87,89,99,102,110,111,112,113,118,124,125,126,128,130,150,156],no_grad:[85,86,87,89,113,150,156],noam:[125,130],nob:154,nobodi:3,node:[113,115],nois:[4,11,13,93,155,159],noise_dist:[11,12],noise_modul:[9,10],noiseless:11,noisi:[4,11,12,93],non:[2,15,16,17,18,53,57,61,62,63,64,65,66,68,69,70,71,72,82,85,86,87,89,113,123,131,134,142,150,154,156,159,163,164],non_block:[85,86,87,89,150,156],non_smooth:16,nonciti:[17,73],none:[2,4,6,8,9,10,14,15,16,18,19,20,21,31,32,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,74,77,78,79,80,82,85,86,87,89,92,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,139,140,141,142,143,144,149,150,152,153,154,155,156,157,159,165,167],nonfittableaggreg:[25,26,28],nonfittableanomalyscor:[38,46,48],noninfring:[85,87],nonzero:53,nor:[113,142],norm:[37,113],norm_:46,norm_coef:21,norm_scor:46,norm_typ:[14,125,130],normal:[2,5,7,8,11,14,18,19,33,37,53,87,88,99,102,110,111,112,113,123,124,125,127,128,130,136,149,159,163,164,165,167],normal_distribut:149,normalis:[2,20],normalize_i:159,normalized_shap:87,normscor:[23,37,46],notabl:[2,20,134,161,164,167],note:[0,2,3,5,7,11,14,15,16,18,20,21,37,46,53,55,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,82,85,86,87,89,92,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,149,150,152,153,154,156,158,159,160,161,162,163,164,165,167],notebook:[1,2,3,5,6,7,8,9,11,12,14,15,17,18,19,20,21,79,99,105,107,110,118,124,125,128,130,159,161,164,165],noteworthi:164,noth:[18,61,62,63,64,65,66,67,68,69,70,71,72,161,165],notic:[2,13,20,85,87,114,126,134,167],notimportedmodul:133,novemb:126,now:[2,3,4,5,7,9,10,13,14,15,16,17,18,20,21,53,61,62,63,64,65,66,67,68,69,70,71,72,113,159,163,164,167],nowindow:[54,55],np:[2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,21,53,54,55,58,59,61,62,63,64,65,66,67,68,69,70,71,72,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,143,155,159,164,165,167],nr:114,nr_dai:18,nr_epochs_val_period:[5,6,7,8,18,99,102,110,111,112,118,124,125,128,130,165,167],nr_freqs_to_keep:[4,105],ns:[3,61,62,63,64,65,67,69,134],nstatic:16,nsw:[17,73],nt:[17,73],nthere:15,nuanc:161,nullifi:[61,62,63,64,65,66,68,69,70,71,72],num:[16,71,73,167],num_attention_head:[14,125],num_bin:154,num_block:[2,8,15,110,111,165],num_block_row:[11,93],num_class:113,num_decoder_lay:[7,128,130],num_encoder_lay:[7,128,130],num_epoch:15,num_featur:[85,86,87,89,113,150,156],num_filt:[6,10,18,20,124,165],num_lay:[2,6,8,10,15,20,110,111,113,124],num_loader_work:[15,18,99,102,110,111,112,118,124,125,128,130,165],num_paramet:[100,108,109,132,149],num_sampl:[0,9,10,11,12,14,16,18,20,21,32,78,88,92,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,149,158,159,163,165],num_stack:[2,8,15,110,111,165],num_train:[99,102,110,111,112,118,124,125,128,130],num_window:142,num_work:[18,99,102,110,111,112,118,124,125,128,130,164,165,167],numba:[119,121],number:[0,2,3,4,5,6,7,14,15,16,17,18,20,21,25,26,27,28,31,32,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,53,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,78,79,82,85,86,87,89,92,93,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,136,138,139,140,141,142,149,150,151,152,153,154,155,156,158,159,161,163,164,165,167],numer:[53,71,77,79,87,125,134,161,162],numpi:[2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,21,46,53,59,66,68,71,72,109,134,139,142,143,155,159,164,165,166],nvidia:167,nxm:54,o:[0,15,53,54,85,86,87,89,113,150,156,158],obj:53,object:[0,2,3,6,8,9,10,14,15,16,17,18,19,29,53,54,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,77,79,85,86,87,89,99,100,102,107,108,109,110,111,112,113,115,116,117,118,124,125,128,130,132,133,134,142,149,150,152,153,154,155,156,158,159,161,163,165,166],observ:[0,2,11,13,20,21,23,29,32,33,61,62,63,64,65,66,67,68,69,70,71,72,78,92,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,134,138,139,140,141,142,154,158,159,163,166],observatori:73,obsolesc:101,obtain:[0,2,5,7,11,15,17,18,20,31,32,33,53,73,77,82,85,87,92,93,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,139,155,158,159,161,163,166,167],obviou:[13,159],obvious:159,occup:73,occur:[21,37,53,62,63,64,67,69,70,71,73,159,163],off:[8,18,134,157,159],offer:[0,8,13,15,18,21,23,158,165,166,167],offici:[99,102,110,111,112,118,124,125,128,130],offset:[53,54,67,72,134,142,155,159],often:[2,3,15,18,19,131,134,140,141,156,159,162,163,166,167],oil:[73,131],ok:[15,159],ol:[69,154],older:167,omegaconf:113,omiss:53,omit:[21,53],on_after_backward:[113,136],on_after_batch_transf:113,on_before_backward:[113,136],on_before_batch_transf:113,on_before_optimizer_step:[113,136],on_before_zero_grad:[113,136],on_epoch:113,on_except:136,on_fit_end:[113,136],on_fit_start:[113,136],on_gpu:113,on_load_checkpoint:[113,136],on_predict_batch_end:[113,136],on_predict_batch_start:[113,136],on_predict_end:[113,136],on_predict_epoch_end:[113,136],on_predict_epoch_start:[113,136],on_predict_model_ev:113,on_predict_start:[113,136],on_sanity_check_end:136,on_sanity_check_start:136,on_save_checkpoint:[113,136],on_step:113,on_test_batch_end:[113,136],on_test_batch_start:[113,136],on_test_end:[113,136],on_test_epoch_end:[113,136],on_test_epoch_start:[113,136],on_test_model_ev:113,on_test_model_train:113,on_test_start:[113,136],on_train_batch_end:[113,136],on_train_batch_start:[113,136],on_train_end:[113,136],on_train_epoch_end:[113,136,167],on_train_epoch_start:[113,136],on_train_start:[113,136],on_validation_batch_end:[113,136],on_validation_batch_start:[113,136],on_validation_end:[113,136],on_validation_epoch_end:[113,136,167],on_validation_epoch_start:[113,136],on_validation_model_ev:113,on_validation_model_train:113,on_validation_model_zero_grad:113,on_validation_start:[113,136],onc:[0,2,13,15,18,19,20,21,32,53,58,61,62,63,64,65,66,68,69,70,71,72,77,78,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,150,156,158,159,161,163,167],one:[3,6,7,8,9,10,13,14,15,16,17,18,20,21,23,24,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,55,58,62,63,64,67,69,70,71,72,73,77,78,79,80,82,85,86,87,91,92,93,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,140,141,142,149,150,152,154,155,156,159,161,162,163,166,167],one_hot:[5,6,9,10,14,20,134,155],ones:[16,20,37,63,72,85,86,87,89,113,116,117,134,150,156],ongo:[0,158],onli:[2,4,5,7,12,13,14,15,16,18,19,20,31,32,37,39,47,50,53,54,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,78,79,80,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,134,136,139,140,141,142,143,150,151,152,153,154,155,156,157,159,161,162,163,164,165,166,167],onlinelibrari:120,onnx:113,onto:[53,99,102,110,111,112,118,124,125,128,130],op:82,open:[18,53,149],openreview:[99,102,110,111,112,113,124,125,128,130],oper:[53,59,61,62,63,64,65,66,67,68,69,70,71,72,73,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,150,156,166,167],opportun:166,oppos:142,opposit:[53,154],opt:113,optim:[5,7,9,13,17,19,20,53,54,62,69,85,86,87,89,92,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,136,150,156,160,167],optim_method:62,optimis:167,optimizer_cl:[99,102,110,111,112,113,118,124,125,128,130,167],optimizer_closur:113,optimizer_kwarg:[5,7,9,10,14,15,18,19,99,102,110,111,112,113,118,124,125,128,130,164,165,167],optimizer_step:113,optimizer_zero_grad:113,option:[0,4,10,14,15,16,20,21,31,32,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,74,77,78,79,80,82,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,133,134,138,139,140,141,142,143,149,150,151,152,153,154,155,156,158,159,161,163,165,166,167],optional_past_covari:58,optuna:[1,160],or_aggreg:28,oraggreg:28,orang:[0,15,17,21,158],ord:46,order:[2,5,14,15,17,18,20,21,31,32,46,53,54,59,61,62,63,64,65,66,67,68,69,70,71,72,78,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,139,140,141,142,149,150,154,156,159,166],ordereddict:[85,86,87,89,113,150,156],ordinalencod:[16,71],oreshkin:15,org:[0,8,9,10,15,19,27,39,46,49,58,67,73,85,96,111,115,123,124,125,128,130,131,134,138,142,149,150,154,155,156,158,164],orgin:12,orient:19,origin:[2,3,11,12,13,14,16,17,19,39,47,49,59,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,152,153,162,167],original_comp_nam:134,original_ma:13,os:15,oscil:9,oscillatori:9,ot:[73,131],otext:[62,63,69,142],oth:[17,73],other:[0,3,4,5,13,14,16,17,18,20,21,37,53,54,63,64,69,72,78,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,140,141,142,149,150,153,154,156,158,159,161,162,163,164,165,166],other_past_covari:161,otherwis:[2,21,53,59,61,62,63,64,65,66,67,68,69,70,71,72,79,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,141,142,149,150,152,153,155,156,157],otm:122,our:[0,2,3,4,5,6,7,12,13,14,15,16,17,18,20,21,53,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,158,159,161,162,164,167],ourselv:159,out:[2,3,9,10,14,15,16,18,20,21,53,54,58,85,86,87,89,96,97,99,100,101,102,107,108,109,110,111,112,113,114,115,117,118,119,121,124,125,128,130,131,132,140,141,150,156,161,163,167],out_featur:[85,86,87,89,113,150,156],out_len:[15,18,165],outcom:[62,63,64,67,69,70,71],outer:[2,31,32,38,39,40,41,42,43,44,45,46,47,48,49,50,58,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],outlin:[14,110,125,154],outpati:73,outperform:[2,4,8,20],output:[2,5,6,8,11,14,15,20,29,31,32,50,53,57,58,61,62,63,64,65,66,67,68,69,70,71,72,77,78,79,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,139,140,141,142,143,149,150,153,155,156,159,161,163,164,165,167],output_chunk_length:[2,5,6,7,8,10,14,15,16,18,19,20,21,57,58,77,78,79,80,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,138,139,140,141,142,159,161,163,165,167],outsid:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,154],over:[0,2,5,7,14,15,16,17,18,21,31,32,33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,61,62,63,64,65,66,67,68,69,70,71,72,73,77,79,82,85,86,87,89,93,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,140,141,142,150,152,156,158,159,161,163,164,165,166,167],overal:[17,18,82],overcom:53,overfit:[2,18,19,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,159,165,167],overflow:53,overhead:[15,59,61,62,63,64,65,66,67,68,69,70,71,99,102,110,111,112,113,118,124,125,128,130,167],overlap:[16,82,142,152],overlap_end:[14,20,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],overrid:[98,99,102,103,110,111,112,113,118,124,125,128,130,136],overridden:[85,86,87,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,150,156],overview:[73,160,167],overwrit:[59,89,100,108,132,149],own:[2,20,21,53,85,86,87,89,113,130,149,150,156,159,162,167],owndata:53,owner:53,p1:113,p2:113,p3:113,p:[2,15,53,73,85,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,149,154,156],p_valu:154,p_value_threshold_adful:154,p_value_threshold_kpss:154,pacf:154,packag:[2,15,17,18,21,73,93,101,119,120,121,122,164],pad:[102,117,134],page:[0,21,82,130,158,159],pai:18,pair:[2,13,17,21,38,40,41,42,43,44,45,46,48,54,73,82,113,140,141,159],pairwis:[39,47,48,49,82],pakistan:114,panda:[0,2,3,4,5,6,7,8,9,10,13,14,15,16,17,19,21,32,57,58,67,71,72,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,151,155,158,159,164,165,166,167],panel:166,paper:[0,2,14,15,19,85,110,111,112,123,127,156,158,162],par:18,parallel:[3,59,61,62,63,64,65,66,67,68,69,70,71,72,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,159,164,167],parallel_param:[61,64,65,69],parallelis:[59,61,62,63,64,65,66,67,68,69,70,71,72,82],paralleliz:130,parallelogram:55,param:[15,18,61,62,63,64,65,66,67,68,69,70,71,72,85,86,87,89,113,126,150,153,156,159,164,165],param_group:113,param_requires_grad_st:113,paramet:[0,1,2,3,4,6,11,13,14,15,16,20,21,23,25,26,27,28,29,31,32,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,79,80,82,85,86,87,89,91,92,93,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,139,140,141,142,149,150,151,152,153,154,155,156,157,158,161,163,164,166,167],parameter:149,parameter_column:165,parametr:[0,21,155,158,159,163,166],paramref:113,parent:[17,48,53,69,134,149,166],parmar:130,pars:113,part:[14,17,18,53,72,77,79,85,86,87,89,99,102,110,111,112,113,118,124,125,128,130,134,150,152,156,162,167],partial:[3,8,20,53,59,152,154],partial_fit:153,partial_fit_param:153,particular:[2,18,53,77,85,86,87,89,113,140,141,150,156,163],particularli:[2,11,113,159],particuliar:20,partit:[39,47,49,53,78,151],pasieka:[0,158],pass:[2,4,13,14,16,20,21,31,32,35,36,39,47,48,49,53,54,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,78,79,82,85,86,87,89,92,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,142,150,153,154,155,156,159,167],passeng:[0,2,62,63,73,158,159,164],past:[0,13,14,15,16,18,19,21,25,26,27,28,32,34,35,36,50,57,58,72,77,78,79,80,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,134,138,139,140,141,142,144,158,159,160,162,163,165,167],past_compon:58,past_cov:[77,78,99,100,102,108,109,110,111,112,115,117,124,125,128,130,132],past_covari:[2,6,10,14,20,21,32,58,80,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,138,139,140,141,142,143,159,161,163,167],past_covariates1:161,past_covariates2:[161,167],past_covariates_2:161,past_covariates_inf:58,past_covariates_pr:161,past_covariates_train:[58,161],past_covariates_train_inf:58,past_covariates_v:167,past_encod:58,past_target:[113,138,139,140,141,143],past_transform:58,pastcallableindexencod:58,pastcov:[100,108,109,115,117,132,142],pastcovari:143,pastcovariatesindexgener:[57,58],pastcovariatesinferencedataset:139,pastcovariatesmodel:141,pastcovariatessequentialdataset:[2,140],pastcovariatesshifteddataset:141,pastcovariatestorchmodel:[99,102,110,111,112,118,124,125,128,129,130,143,167],pastcovariatestrainingdataset:[99,102,110,111,112,118,124,125,128,130,138,140,141,143],pastcyclicencod:58,pastdatetimeattributeencod:58,pastintegerindexencod:58,path:[2,3,4,5,6,7,8,9,13,14,16,19,20,21,53,54,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,150,156,163,167],pathlib:53,pathlik:[96,97,98,100,101,103,104,105,107,108,109,114,115,116,117,119,120,121,122,123,127,131,132],patienc:[18,19,99,102,110,111,112,118,124,125,128,130,165,167],patient:[73,166],pattern:[14,15,21,58,113,161,163,164,167],pc:[57,58],pd:[0,2,3,4,5,6,7,8,9,10,13,14,15,16,17,19,21,54,58,67,68,71,77,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,155,157,158,159,162,164,165,167],pd_datafram:[6,8,9,10,134,166],pd_seri:134,pdf:[8,73,123,125,127,156],peak:[20,53],pearsonr:62,pem:73,penalti:134,per:[2,3,14,15,17,21,31,32,38,39,40,41,42,43,44,45,46,47,48,49,50,53,57,58,62,67,70,73,77,79,89,99,100,102,108,109,110,111,112,113,115,116,117,118,124,125,128,130,132,134,138,139,140,141,142,149,159,161,163,164,166,167],percentag:[82,159],percentil:[0,14,134,158,159],perceptron:128,perfectli:[12,37],perform:[0,2,3,4,5,6,7,8,9,10,13,14,15,16,17,18,19,20,21,23,31,32,54,57,61,62,63,64,65,66,67,68,69,70,71,72,78,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,143,149,150,156,158,159,160,161,163,164],perhap:[53,159],period:[2,5,13,14,15,16,18,21,37,55,63,67,72,82,96,99,100,102,104,105,108,109,110,111,112,114,118,123,124,125,127,128,130,132,134,154,155,159],periodindex:67,permiss:[85,87,126],permit:[85,87,126],permut:[53,78],perserv:18,persist:[85,86,87,89,113,150,156,162],person:[31,32,38,39,40,41,42,43,44,45,46,47,48,49,50,85,87,126],perturb:159,pet:73,petrik:[0,158],pg:113,ph:114,phase:[37,39,47,49,54,82,105,113,155],phenomenon:15,phi:85,phil:87,philippin:114,phillip:154,piazzetta:[0,158],pick:[15,78,99,102,110,111,112,118,124,125,128,130],pickabl:159,pickl:[15,53,85,86,87,89,96,97,98,100,101,103,104,105,107,108,109,113,114,115,116,117,119,120,121,122,123,127,131,132,134,150,156,163],picklabl:[85,86,87,89,113,150,156],pickup:73,pid:[99,102,110,111,112,118,124,125,128,130],pii:122,pin:[85,86,87,89,150,156],pinbal:[82,132,163],pip:[0,15,18,158,159,162,164],pipelin:[1,51,153],pitfal:149,pk:114,pkl:[96,97,98,100,101,103,104,105,107,108,109,114,115,116,117,119,120,121,122,123,127,131,132,163],pkl_kwarg:[96,97,98,100,101,103,104,105,107,108,109,114,115,116,117,119,120,121,122,123,127,131,132],pl:[99,102,110,111,112,118,124,125,128,130,167],pl_forecasting_modul:113,pl_modul:[136,167],pl_trainer_arg:164,pl_trainer_kwarg:[2,6,8,9,10,15,16,18,19,99,102,110,111,112,118,124,125,128,130,136,164,165,167],place:[20,53,85,86,87,89,113,150,155,156,159,162],plai:[2,15],plan:2,plant:8,platform:53,pldualcovariatesmodul:113,pleas:[61,62,63,64,65,66,67,68,69,70,71,72,82,85,86,87,89,99,102,104,110,111,112,113,118,124,125,128,130,142,150,153,154,156,163,167],plforecastingmodul:113,plforecastinmodul:113,plfuturecovariatesmodul:113,plmixedcovariatesmodul:113,plot:[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,31,32,38,39,40,41,42,43,44,45,46,47,48,49,50,54,78,79,99,102,110,111,112,118,124,125,128,130,134,154,158,159,163],plot_acf:[3,5,7,9,14,154,159],plot_align:[13,54],plot_attent:[14,79],plot_compon:114,plot_contour:18,plot_forecast_sum:17,plot_hist:[154,159],plot_model:15,plot_optimization_histori:18,plot_pacf:154,plot_param_import:18,plot_residuals_analysi:[3,154,159],plot_typ:[14,78,79],plot_variable_select:[14,79],plotli:4,plpastcovariatesmodul:113,plsplitcovariatesmodul:113,plt:[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,158,159,163,164],pltorchforecastingmodel:113,plu:[2,96,107,131,161],plug:[0,158],pmdarima:97,po:[57,58],point:[2,3,7,9,10,11,14,15,18,19,20,21,25,26,27,28,32,34,35,36,37,50,53,58,78,79,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,142,150,154,155,156,159,161,163,167],pointer:53,pointwis:[61,62,63,64,65,66,68,69,70,71,72],poisit:[61,62,63,64,65,66,68,69,70,71,72],poisson:[21,37,100,108,109,132,149,163],poisson_distribut:149,poissonlikelihood:[149,159],poissonnllscor:45,poissonregressor:109,poli:[4,105],polosukhin:130,polynomi:[4,105,110],pool:111,pooling_kernel_s:111,poor:[102,163],poorli:149,pop:[61,65,69,136],popul:[73,161],popular:[0,73,158],portion:[85,87,126],portugues:18,posit:[14,21,53,57,58,61,62,63,64,65,66,67,68,69,70,71,72,85,86,87,89,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,139,141,142,149,150,154,155,156,159],possess:53,possibl:[0,2,3,8,13,14,15,18,20,21,29,31,32,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,64,65,69,72,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,150,152,153,156,158,159,161,162,163,164,166],post:[0,85,86,87,89,113,121,150,156,158],postfix:136,posthoc:[17,69,166],potenti:[0,8,15,18,20,29,78,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,158,159,163,166,167],pottelbergh:[0,158],pound:[2,3,73,159],poundag:[6,8,9,10],power:[2,8,15,18,20,73,161,167],pp:116,pprint:17,pr:[29,37],practic:[3,12,15,20,49,159,163,164,165],pre:[15,17,18,73,78,85,86,87,89,96,97,99,100,101,102,107,108,109,110,111,112,113,114,115,116,117,118,119,121,124,125,128,130,131,132,136,149,150,156,166],pre_process_csv_fn:74,pre_process_zipped_csv_fn:74,preced:[110,111,138,163],precipit:73,precis:[25,26,27,28,33,34,35,36,50,53,113,159],precomput:153,pred:[2,9,10,15,16,17,18,21,82,96,97,98,99,100,101,102,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,159,161,163,165],pred_air:159,pred_anomali:50,pred_auto_regress:21,pred_batch_s:113,pred_best_theta:159,pred_catboost:21,pred_cov:2,pred_en:20,pred_ens_resc:20,pred_input:19,pred_lgbm:21,pred_linreg:20,pred_linreg_resc:20,pred_list:2,pred_milk:159,pred_multi_model:21,pred_n:113,pred_n_job:113,pred_naiv:20,pred_naive_resc:20,pred_num_sampl:113,pred_param:21,pred_roll_s:113,pred_sampl:21,pred_seri:[5,7,8,14,15,17,19,38,39,40,41,42,43,44,45,46,47,48,49,82],pred_series_et:[5,7],pred_single_model:21,pred_single_shot:21,pred_step:19,pred_tcn:20,pred_tcn_resc:20,pred_theta:159,pred_tim:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],pred_val:4,pred_xgboost:21,predefin:167,prediciton:[16,34,35,36],predict:[0,1,3,4,6,7,9,10,15,16,17,18,19,21,23,24,25,26,27,28,29,31,32,33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,57,58,77,78,79,80,82,88,92,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,139,142,143,149,150,153,158,160,161,162,163,164,165],predict_dataload:113,predict_descript:136,predict_from_dataset:[99,102,110,111,112,118,124,125,128,130],predict_kwarg:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],predict_likelihood_paramet:[21,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,149],predict_progress_bar:136,predict_raw:114,predict_seri:16,predict_step:113,predictor:[16,153],preds_st_bin:16,preds_st_cat:16,prefer:[5,53],prefix:[85,86,87,89,113,134,150,156],preliminari:123,prelu:[110,111],prepar:[1,11,12,113],prepare_data:113,prepare_data_per_nod:113,prepend:[85,86,87,89,113,134,150,156],prepend_valu:134,preprint:[102,112],preprocess:[3,5,7,9,15,18,70,71,165],presenc:[29,33,151],present:[2,8,17,69,73,74,99,102,105,107,110,111,112,113,117,118,124,125,128,130,134,142,159,161,167],preserv:[53,67,85,86,87,89,113,150,156],preset:[99,102,110,111,112,118,124,125,128,130],pressur:[73,99,100,102,108,109,110,111,112,115,117,118,124,125,128,130,132,166],pretend:[99,100,102,108,109,110,111,112,115,117,118,124,125,128,130,132],pretrain:[98,103,116],pretrain_ensembl:20,pretrained_ckpt_path:113,pretrained_model:113,pretti:4,prevent:[53,73,99,100,102,108,109,110,111,112,113,115,117,118,124,125,128,130,132,161],previou:[2,4,5,13,21,39,47,49,53,118,125,134,142,159],previous:[53,61,62,63,64,65,66,67,68,69,70,71,72,99,102,110,111,112,118,124,125,128,130,159],price:73,primari:113,prime_t:63,principl:3,print:[2,3,4,5,7,14,15,16,17,18,20,21,53,59,61,62,63,64,65,66,67,68,69,70,71,72,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,150,156,159,165],print_callback:[18,165],print_mae_on_subset:17,prior:[8,61,62,63,64,65,66,68,69,70,71,72,98,99,102,110,111,112,114,118,124,125,128,130,149,159,163],prior_alpha:149,prior_b:[149,159,163],prior_beta:149,prior_gamma:149,prior_lambda:149,prior_mu:[9,10,149],prior_p:149,prior_scal:114,prior_sigma:[9,10,149],prior_strength:[9,10,149],prior_xzero:149,prioriti:113,privat:[53,163],pro:18,probabalist:11,probabilist:[0,1,10,12,18,19,32,37,38,39,40,41,42,43,44,45,46,47,48,49,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,134,149,156,158,160,161,162],probabilistic_forecast:159,probabl:[2,11,14,18,49,85,101,110,111,128,140,141,149,154,159,163,165,166],probablist:21,problem:[2,4,5,15,16,20,21,53,159,162],problemat:2,procedur:[5,7,14,100,108,132],process:[0,15,18,21,22,61,62,63,64,65,66,67,68,69,70,71,72,80,85,86,87,89,90,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,150,156,158,161,164,167],process_horizons_and_target:80,process_input:80,process_posit:136,processor:[59,61,62,63,64,65,66,67,68,69,70,71,72,82,99,102,110,111,112,118,124,125,128,130,159],prod:53,prodigi:114,produc:[0,3,5,8,11,13,14,15,18,20,23,29,37,53,64,69,78,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,140,141,142,158,159,163,166,167],product:[3,15,17,53,73,134,159,161,166],profil:113,prog_bar:[113,136],program:113,programat:163,programmat:17,progress:[2,3,6,8,9,10,15,16,59,61,62,63,64,65,66,67,68,69,70,71,72,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,136,155],progress_report:165,progressbar:[99,102,110,111,112,118,124,125,128,130],prohibit:[99,100,102,108,109,110,111,112,113,115,117,124,125,128,130,132],project:[0,128,158,162],promis:[16,18],propag:134,proper:[14,15,57,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,140,141,159,166],properi:113,properli:[2,53,113,139,162,163],properti:[17,19,21,38,39,40,41,42,43,44,45,46,47,48,49,53,57,58,61,62,63,64,65,66,67,68,69,70,71,72,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,149,150,156],prophet:[0,4,95,158,161],prophet_kwarg:114,prophet_model:114,proport:[17,32,69,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,152],propos:[0,101,112,158,165],protocol:[134,163],prov:[134,155],prove:[15,61,62,63,64,65,66,68,69,70,71,72],provid:[2,3,5,11,14,15,17,18,20,21,29,31,32,33,35,36,38,39,40,41,42,43,44,45,46,47,48,49,53,58,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,79,80,82,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,139,140,141,142,143,149,150,151,152,153,154,156,157,159,161,162,163,166,167],provinc:[134,155],prune:[18,165,167],pruner:165,ps:16,ps_no_st:16,ps_st_bin:16,ps_st_cat:16,pt:[99,102,110,111,112,113,118,124,125,128,130,163,167],ptl:163,ptp:53,publicli:74,publish:[85,87,126],pull:[0,158],pure:[8,19,21,115,149,167],purpl:[4,15],purpos:[21,53,85,87,155,159],push:163,put:[14,53,113],pvalu:154,py:[17,50,57,114,164],pyarray_resolvewritebackifcopi:53,pydata:[58,67,134,155],pyod:[0,47,49,158],pyod_scor:47,pyodscor:[0,37,158],pypi:53,pyplot:[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,158,159,163,164],python3:17,python:[2,3,4,5,6,7,8,9,13,14,15,16,19,20,21,53,113,114,123,163,166,167],pytorch:[0,14,15,18,19,85,89,95,99,102,110,111,112,113,118,124,125,126,128,130,135,136,158,159,161,163,164,165,167],pytorch_lightn:[6,16,18,19,99,102,110,111,112,113,118,124,125,128,130,136,165,167],pytorchlightningpruningcallback:[18,165],pyyaml:[162,164],q0:[9,10],q1:73,q3:73,q:[2,15,96,102,112,121,131,149],qld:[17,73],qs:67,quadrat:[3,13,54,154],qualifi:[85,86,87,89,113,150,156],qualiti:[2,11,18,20,99,105,107,110,118,124,125,128,130,159],quantifi:[82,159],quantil:[0,10,14,16,20,21,33,50,82,100,103,108,109,116,132,134,149,158,163,166],quantile_detector:35,quantile_df:134,quantile_loss:82,quantile_timeseri:134,quantiledetector:[0,33,35,158],quantileregress:[10,14,125,149,159,163],quantileregressor:109,quantiles_df:134,quarter:[21,58,67,73],quarterli:[19,67,73,104],quarterly_season:114,quarterly_seri:67,queri:[85,86,87,89,113,125,150,156],question:[0,15,158,160],quick:[5,7,8,14,53,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,160],quickli:[13,15,18,113],quicksort:53,quickstart:[0,20,158,166],quit:[3,4,15,17,18,20,159],r1:134,r1ecqn4ywb:110,r2:[0,8,134,158],r2_score:[6,8,82,153],r55d9314a45a:130,r:[11,13,17,69,82,97,136,149,153,159],radian:[11,155],radiu:54,rai:160,raill:[0,15,158],rain:[21,99,100,102,108,109,110,111,112,115,117,124,125,128,130,132],raindur:[21,73],rainfal:[99,100,102,108,109,110,111,112,115,117,124,125,128,130,132],rais:[3,53,58,59,67,73,74,80,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,140,141,142,149,150,152,153,156,157,161,165],ram:[18,167],ramp:16,rand:11,randint:53,randn:[113,159],random:[2,4,11,12,15,16,18,21,53,71,95,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,154,155,156,159],random_component_valu:134,random_forest:115,random_method:156,random_st:[2,5,6,7,8,9,10,14,16,19,20,96,99,100,102,104,108,109,110,111,112,118,123,124,125,128,130,132,159,164],random_walk:155,random_walk_timeseri:155,randomforest:[0,15,20,21,95,115,117,158,159,161],randomforestregressor:[115,159],randomli:[78,167],rang:[2,13,14,15,21,55,58,73,77,79,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,155,159],rangeindex:[13,54,57,58,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,155,157,159,166],rank:113,rank_zero_onli:113,rapid:[0,158],rare:[12,53],rate:[2,18,19,67,73,99,102,110,111,112,113,118,124,125,128,130,136,149,162,163,166,167],rate_noinv_fmt:136,rather:[14,17,61,62,63,64,65,66,67,68,69,70,71,72,99,102,110,111,112,118,124,125,128,130],ratio:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,151],ravasi:15,ravel:53,raw:[15,17,23,33,47,53,72,73,78,128,134,149,159],raw_error:159,rbf:[12,159],rc:13,rdocument:73,rdrr:73,re:[3,15,18,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,142,149,150,156,159,162,164],reach:[15,159,167],read:[0,5,6,7,14,15,53,58,73,74,96,97,99,100,101,102,107,108,109,110,111,112,113,114,115,117,118,119,121,124,125,128,130,131,132,134,140,141,142,158,161,164,165,167],read_csv:[0,15,134,158],read_excel:15,readi:[159,164],readili:[18,23,163],readm:[20,159,163],readthedoc:[47,93,99,102,110,111,112,113,118,124,125,128,130],real:[12,15,53,159,163],realist:11,realiz:82,realli:[2,14,15,16,18,154],realloc:53,reappli:[62,70],rearrang:53,reason:[15,17,18,31,32,73,85,86,87,89,113,139,150,154,156,159,161,167],recal:[3,15,25,26,27,28,33,34,35,36,50],recap:167,recarrai:53,receiv:[15,21,72,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,150,156,159,162],recent:[14,53,99,100,102,108,109,110,111,112,115,117,118,124,125,128,130,132,140,141,142,162,167],recip:[85,86,87,150,156],reclaim:152,recogn:[4,16],recommend:[0,5,7,8,14,18,31,32,99,102,108,110,111,112,113,116,118,124,125,128,130,134,142,158,159,160,164],recomput:123,reconcil:[1,69,134],reconcili:[0,60,134,158,166],reconcilied_pr:17,record:[21,73,85,86,87,89,113,134,150,156],recov:53,recreat:53,rectifi:85,recurr:[2,95,164],recurs:[13,53,85,86,87,89,113,150,154,156,159],red:[11,12,13,15,159],redefin:[62,63,64,69,70,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],reduc:[13,15,19,20,21,47,49,72,78,99,102,103,110,111,112,113,116,118,124,125,128,130,134,142,162,167],reduce_fx:113,reducelronplateau:113,reduct:[13,39,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,159],reduction_factor:165,refactor:113,refcheck:53,refer:[0,15,17,18,21,39,46,49,53,58,61,62,63,64,65,66,67,68,69,70,71,72,73,85,86,87,89,96,99,101,102,104,110,111,112,113,115,116,119,120,121,122,123,124,125,127,128,130,131,134,142,149,150,154,155,156,158,159,161,162,163,166,167],referenc:[53,72,85,86,87,89,113,134,150,156],refin:13,reflect:[53,159],refresh_r:[16,136],reg:15,regard:[18,35,59,61,62,63,64,65,66,67,68,69,70,71,72,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],regardless:[39,46,47,49,62,63,64,69,70,85,86,87,89,113,150,156],region:[17,18,73,134,149,161],regions_reasons_city_comp:17,regions_reasons_comp:17,regist:[85,86,87,89,106,113,150,156],register_backward_hook:[85,86,87,89,113,150,156],register_buff:[85,86,87,89,113,150,156],register_forward_hook:[85,86,87,89,113,150,156],register_forward_pre_hook:[85,86,87,89,113,150,156],register_full_backward_hook:[85,86,87,89,113,150,156],register_full_backward_pre_hook:[85,86,87,89,113,150,156],register_load_state_dict_post_hook:[85,86,87,89,113,150,156],register_modul:[85,86,87,89,113,150,156],register_module_forward_hook:[85,86,87,89,113,150,156],register_module_forward_pre_hook:[85,86,87,89,113,150,156],register_module_full_backward_hook:[85,86,87,89,113,150,156],register_module_full_backward_pre_hook:[85,86,87,89,113,150,156],register_paramet:[85,86,87,89,113,150,156],register_state_dict_pre_hook:[85,86,87,89,113,150,156],reglu:[86,125,130],regress:[0,2,14,15,57,77,78,95,98,99,100,102,103,108,110,111,112,113,115,118,121,124,125,127,128,130,132,142,149,154,158,161,167],regression_ensemble_model:116,regression_model:[20,78,100,108,109,115,116,117,132,159],regression_train_n_point:[20,116,159],regression_train_num_sampl:[20,116],regression_train_samples_reduct:[20,116],regressionensembl:20,regressionensemblemodel:[0,20,95,116,158,159,161],regressionmodel:[0,20,57,58,75,95,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,142,158,159,161,163],regressionmodel_2020:[96,97,98,100,101,103,104,105,107,108,109,114,115,116,117,119,120,121,122,123,127,131,132,163],regressionmodelwithcategoricalcovari:[108,117],regressor:[21,116,117,153],regular:[2,20,53,156,159,163],regularis:149,reindex:134,reinterpret:53,reject:154,rel:[12,13,14,21,57,58,73,79,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,141,155,159,161],relat:[0,21,37,67,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,158,159,166],relationship:[21,37,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],releas:[85,86,87,89,113,150,156],relev:[2,4,14,15,21,53,105,134,153,154,167],reli:[2,12,20,21,67,99,101,102,110,111,112,118,119,121,124,125,128,130,138,139,140,141,159,163,166],reliabl:53,reload:[18,99,102,110,111,112,113,118,124,125,128,130,136,165],reload_dataloaders_every_n_epoch:113,reload_ext:[11,12],relu:[2,7,8,15,85,86,110,111,113,125,130],remain:[14,20,21,53,61,62,63,64,65,66,67,68,69,70,71,72,134,136,152],remark:15,rememb:2,remind:2,remov:[8,13,15,17,53,61,62,63,64,65,66,67,68,69,70,71,72,85,86,87,89,99,102,106,110,111,112,113,118,124,125,128,130,134,150,154,156,166],removablehandl:[85,86,87,89,113,150,156],remove_dupl:[85,86,87,89,113,150,156],remove_from_seri:154,remove_season:154,remove_trend:154,renam:134,render:21,reparameter:149,repeat:[4,14,15,16,17,53,98,114,159,167],repeatedli:[2,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134],replac:[5,20,53,67,68,72,106,113,134,150,151],replic:159,repo:[0,73,158],report:[18,61,62,63,64,65,66,67,68,69,70,71,72,73,123,165],repositori:20,repres:[0,2,3,4,15,16,17,24,25,26,27,28,32,34,35,36,39,47,49,50,58,63,69,72,77,78,80,99,100,102,106,108,109,110,111,112,113,115,117,118,124,125,128,130,132,134,139,143,149,154,158,159,161,163,166,167],represent:[7,53,55,85,86,87,89,113,134,150,156,166],reproduc:[0,2,15,18,21,158,159,165],reproject:13,request:[0,113,142,152,153,158],requir:[2,3,5,6,9,10,15,16,17,18,21,39,47,49,53,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,77,78,79,80,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,140,141,142,143,149,150,156,159,160,163,164,166],required_match:[4,105],requires_covariates_encod:80,requires_fit:[57,58],requires_grad:[85,86,87,89,113,150,156],requires_grad_:[85,86,87,89,113,150,156],requires_input:80,res_block:159,resampl:[2,13,21,67,73,134],resampled_nokwargs_t:134,resampled_t:134,rescal:[13,64,69],rescale_with_valu:134,research:[0,73,101,158],reset:[17,19,85,86,87,89,99,102,110,111,112,113,118,124,125,128,130,150,156],reset_dataloader_idx_track:136,reset_index:[6,8,9,10,15],reset_model:[99,102,110,111,112,118,124,125,128,130],reset_paramet:87,reshap:[13,53,61,62,63,64,65,66,67,68,69,70,71,72,110,111],residu:[37,39,47,49,69,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,153,154,159],resiz:[11,53],resize_nois:11,resolut:[13,106],resolv:[85,86,87,89,113,150,156],resourc:142,resources_per_tri:165,resp:163,respect:[0,2,5,15,31,32,35,36,39,47,49,53,57,58,61,62,63,64,65,66,68,69,70,71,72,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,140,141,142,150,156,158,159,162,163],respons:[73,113,159],rest:[13,53,113,159,164],restor:[19,99,102,110,111,112,113,118,124,125,128,130],restrict:[5,53,85,87,126,127,154],result:[1,2,3,4,11,13,14,15,16,20,21,25,26,27,28,31,32,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,72,73,75,78,79,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,150,152,154,155,156,159,162,163,167],result_accumul:19,results_df:19,resum:[18,99,102,110,111,112,118,124,125,128,130,167],retain:[2,53,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,153],retain_period_common_to_al:157,retained_compon:2,retrain:[2,5,6,7,8,9,10,14,73,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],retrain_forecasting_model:[20,103],retriev:[11,19,67,78,99,102,110,111,112,118,124,125,128,130,134,136,142,163],return_model_predict:[31,32],return_t:[61,62,63,64,65,66,67,68,69,70,71,72],reus:[15,72,78,134,162],reusabl:85,revers:[19,53,59,87,99,102,110,111,112,113,124,125,128,130],reverse_transform:67,revert:[0,158],revisit:2,rf_smape:15,rf_time:15,rg:124,rho:[82,159],rho_risk:[82,159],rich:[0,18,158,159,163],rick:[0,158],rico:87,ridg:[15,20,21,117,159],right:[3,15,17,72,82,85,87,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,139,142,143,150,159,163,166],rin:19,rinorm:[19,87,99,102,110,111,112,113,124,125,128,130],risk:[18,82,159],river:[6,8,9,10],rmse:[16,82],rmsewithuncertainti:100,rmsle:82,rmsnorm:[87,125,130],rng:156,rnn:[1,2,5,99,118,159,163,164],rnn_model:[5,118,164],rnn_test:2,rnnmodel:[0,2,5,6,9,95,99,102,110,111,112,118,124,125,128,130,158,159,161,164,167],rnnmodel_2020:[99,102,110,111,112,118,124,125,128,130],road:73,rob:17,robjhyndman:[73,123,127,150],robust:20,roc:[29,37],roll:[39,47,49,67,72,134],roll_siz:[99,102,110,111,112,113,118,124,125,128,130],rolling_sum_3_comp_0:134,rolling_udf_5_comp:[72,134],room:[0,158],root:[82,87,154,164],root_path:74,roughli:[2,18,159],round:[15,20,21,53,125],rout:153,routin:136,row:[15,16,17,21,53,55,67,72,93,134,166],rr:159,rrelu:[110,111],rst:53,rtx:167,ru:114,rule:[67,103,151,161],run:[2,3,4,6,8,9,10,13,15,18,21,54,59,61,62,63,64,65,66,67,68,69,70,71,72,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,136,150,156,159,164,165,167],running_mean:[85,86,87,89,113,150,156],running_var:[85,86,87,89,113,150,156],runtim:[13,85,86,87,89,113,150,156],runtimeerror:[53,85,86,87,89,113,150,156],russia:114,ruud:101,s0169207016300243:122,s1:[53,69],s3:53,s:[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,29,31,32,33,39,53,59,61,62,63,64,65,66,67,68,69,70,71,72,73,80,85,86,87,89,96,97,99,100,102,104,106,108,109,110,111,112,113,114,115,117,118,121,124,125,128,130,132,134,136,141,142,143,149,150,153,154,155,156,158,159,161,163,164,165,166,167],sa:[17,73],safe:[53,72,113,134],safer:53,sai:[2,77,78,85,86,87,89,113,150,156,159,161,166],said:19,sake:[2,5,17,78,159,165],sako:13,sakoechiba:[54,55],sakoechiba_align:13,sale:[19,73,167],salt:159,same:[0,2,3,4,5,11,12,13,14,16,18,20,21,25,27,29,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,58,61,62,63,64,65,66,67,68,69,70,71,72,79,80,82,85,86,87,89,93,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,140,141,142,149,150,154,155,156,157,158,159,161,163,166,167],same_kind:53,sampl:[0,2,3,15,18,19,20,21,25,26,27,28,29,32,34,35,36,39,47,49,50,59,60,61,62,63,64,65,66,68,69,70,71,72,73,78,82,88,92,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,140,141,142,149,152,153,154,155,156,158,159,161,163,166,167],sample_freq:73,sample_img:113,sample_s:[11,12],sample_weight:153,sampler:113,samuel:[0,158],san:73,saniti:[17,20,99,102,110,111,112,113,118,124,125,128,130,136,152,167],sanity_check_descript:136,satisfactori:[31,32,99,102,110,111,112,118,124,125,128,130],satisfi:[53,140,141,152,167],saturating_forecast:114,save:[19,20,80,85,86,87,89,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,150,156,160],save_checkpoint:[2,5,6,7,8,9,10,18,19,99,102,110,111,112,118,124,125,128,130,163,165,167],save_hyperparamet:113,save_model:163,saw:167,sba:101,scalabl:164,scalar:[0,2,53,58,73,82,149,158,166],scale:[0,2,3,6,8,9,10,14,15,18,19,20,37,62,64,69,70,71,82,111,113,114,134,149,158,159,162,163,164,165],scaled_valu:13,scaler:[2,5,6,7,8,9,10,14,15,16,18,19,20,58,59,60,61,62,63,64,65,66,67,68,69,71,72,96,97,99,100,101,102,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132,159,163,164,165,167],scaler_air:[2,15],scaler_cov:14,scaler_covari:2,scaler_dataset:2,scaler_en:[6,9,10],scaler_m3:15,scaler_m4:15,scaler_milk:2,scaler_month:20,scaler_sunspot:7,scenario:[20,21,57],scene:[117,149,159,161,163,166],schedul:[19,99,102,110,111,112,113,118,124,125,128,130,165,167],scheme:[134,154],schmidt:154,schwert:154,scienc:[21,122,162],sciencedirect:122,scientif:[0,158,159],scientist:159,scikit:[0,3,12,15,24,39,70,71,92,116,117,158,159],scipi:[13,49,62,72,134],score:[0,15,20,23,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,153,158,159],score_from_predict:[23,37,38,39,40,41,42,43,44,45,46,47,48,49],score_kwarg:31,scorer:[0,23,29,31,32,47,48,49,50,158],scorer_nam:[38,39,40,41,42,43,44,45,46,47,48,49],scov_1_comp_1:142,scov_1_comp_2:142,scov_2_comp_1:142,scov_2_comp_2:142,scratch:[3,98],screen:20,script:[113,164],scriptmodul:[86,87,113,156],se:[127,149],seamlessli:[2,18],search:[13,18,54,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,158,165],searchsort:53,season1:[9,10],season:[2,4,5,8,14,15,21,63,73,82,96,98,104,105,110,114,123,127,154,161],season_length:[119,120,121,122],season_mod:127,seasonal_decompos:154,seasonal_forecast:159,seasonal_model:159,seasonal_ord:96,seasonal_period:[5,104,114,123,159],seasonality_period:127,seasonalitymod:[15,104,127,154,157,159],second:[11,15,53,58,61,62,63,64,65,66,68,69,70,71,72,73,85,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,152,154,155,167],second_order_diff:63,second_seri:16,section:[15,16,20,58,113,159,161,163,164,167],secur:21,see:[0,2,3,4,5,6,8,9,11,12,14,15,16,17,18,19,20,21,53,54,57,58,61,62,63,64,65,66,67,68,69,70,71,72,82,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,149,150,151,153,154,155,156,158,159,161,163,164,166,167],seed:[2,11,12,15,16,21,53,109,123],seem:[2,16,17,18,154,159],seemlessli:14,seen:[1,2,11,15,18,37,73,113,161,163,167],segment:53,seitzer:149,select:[2,4,14,53,54,78,79,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,135,138,155,164,165,167],select_best_model:127,self:[1,15,21,31,32,34,35,39,47,48,49,53,57,58,61,62,63,64,65,67,69,70,71,74,77,85,86,87,89,93,96,97,98,99,101,102,104,105,107,110,111,112,113,114,118,119,120,121,122,123,124,125,127,128,130,131,134,136,150,153,156,167],sell:[85,87,126],selu:[110,111],semilogx:15,send:[0,113,158],sennrich:87,sens:[5,14,15,103,116,118,152,162],sensit:18,sensor:[11,73,166],sep:[53,73,136],separ:[3,8,21,31,32,37,50,53,100,108,109,113,115,117,132,134,142,153,159,164],seq2seri:157,sequenc:[2,3,25,26,27,28,31,32,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,58,59,61,62,63,64,65,66,67,68,69,70,71,72,78,79,80,82,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,140,141,142,151,152,154,155,157,159,163,166,167],sequencedataset:141,sequenti:[2,3,14,59,61,62,63,64,65,66,67,68,69,70,71,82,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,137,150,156,159,166,167],sequential_dataset:140,sequentialencod:[56,57,96,97,99,100,101,102,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132],sequentialencodertransform:[57,58],seri:[4,5,6,7,8,11,12,14,17,18,19,21,23,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,79,80,82,87,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,130,131,132,134,135,138,139,140,141,142,149,150,151,152,157,160,161,162,164,165],serial:[85,86,87,89,113,150,156],series1:[16,53,54,55,73,159,163,166],series1_y_offset:54,series2:[16,53,54,55,159,163,166],series2_y_offset:[13,54],series2seq:157,series3:163,series4:163,series_:[142,159],series_air:[2,159],series_air_sc:2,series_en:[6,9,10],series_en_transform:[6,9,10],series_fil:68,series_hol:159,series_ic:14,series_ice_heat:14,series_ice_transform:14,series_milk:[2,159],series_milk_sc:2,series_multi:[16,134],series_new1:134,series_new2:134,series_nois:159,series_or_tim:142,series_restaur:66,series_sc:[7,8],series_singl:16,series_sp_sc:7,series_sp_transform:[5,6],series_sunspot:[5,6,7],series_transform:[5,14,16,59,62,66,70,71,164],seriou:18,serv:[2,18,82,99,102,110,111,112,118,124,125,128,130,134,155],servic:73,set:[0,2,6,7,8,10,12,15,17,18,19,20,21,31,32,35,36,37,39,46,47,49,53,54,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,74,78,82,85,86,87,89,92,93,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,140,141,142,150,151,152,153,154,155,156,158,159,162,163,164,165,167],set_config:153,set_extra_st:[85,86,87,89,113,150,156],set_facecolor:17,set_fit_request:153,set_mc_dropout:113,set_n_job:[61,62,63,64,65,66,67,68,69,70,71,72],set_param:153,set_partial_fit_request:153,set_predict_paramet:113,set_score_request:153,set_titl:[2,13,15,20],set_to_non:[85,86,87,89,113,150,156],set_verbos:[61,62,63,64,65,66,67,68,69,70,71,72],set_ylim:[2,20],setfield:53,setflag:53,setpoint:11,setup:[0,1,18,21,113,136,158,164,167],sever:[0,2,9,17,18,20,31,32,77,78,82,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,150,156,158,161,163,166,167],sf_auto_arima:119,sf_auto_c:120,sf_auto_et:121,sf_auto_theta:122,sgd:[18,167],shall:[85,87,123,126],shallow:[85,86,87,89,113,150,156],shap:[0,21,75,77,158],shap_explain:[21,78],shap_explanation_object:77,shap_method:78,shap_object:[77,78],shap_valu:21,shape:[11,12,13,14,15,21,50,53,54,55,58,61,62,63,64,65,66,67,68,69,70,71,72,82,89,113,125,134,139,142,149,153],shape_a:53,shapexplain:[21,77,78],shapexplainabilityresult:[77,78],shaps_:78,shard:113,share:[2,19,53,86,87,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,142,156,166],share_memori:[85,86,87,89,113,150,156],share_memory_:[85,86,87,89,113,150,156],shared_tim:142,shared_weight:[102,112],sharp:13,shazeer:[125,130],shift:[0,13,21,55,67,87,99,102,110,111,112,113,124,125,128,130,134,137,155,158,159],shift_covari:141,shifted_dataset:141,shifteddataset:[118,141],shin:154,ship:21,shop:167,shorten:2,shorter:[4,13,18,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,140,141],shortest:15,shot:[14,15,21,99,100,102,108,109,110,111,112,113,115,117,124,125,128,130,132],should:[2,15,16,31,32,37,39,47,49,53,58,61,62,63,64,65,66,67,68,69,70,71,72,80,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,142,150,153,154,155,156,159,162,164,167],show:[2,4,5,6,7,8,9,11,12,14,15,16,17,20,21,31,32,38,39,40,41,42,43,44,45,46,47,48,49,50,53,79,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,136,142,150,156,159,161,165,167],show_anomali:[29,31,32,39,47,48,49],show_anomalies_from_predict:[38,39,40,41,42,43,44,45,46,47,48,49],show_anomalies_from_scor:50,show_cost:54,show_index_a:[14,79],show_plot:79,show_seri:[13,54],show_warn:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],showcas:[1,161],shown:[2,15,21,79,99,102,110,111,112,113,123,124,125,128,130,134,162,163,164,167],shrink:53,shutil:[5,7,9,19],side:[13,53,55,102,161,167],sigma:149,sigmoid:[110,111],signal:[4,11,12,13,72,93,107,134,163],signatur:[82,85,86,87,89,106,113,142,150,156],signific:[11,18,19,105,113,151,154,159],significantli:[4,13,18,142,167],silent:[85,86,87,150,156],silicon:15,sim:85,similar:[0,2,3,13,15,20,35,53,66,82,85,86,87,89,97,111,113,114,128,134,142,150,156,158,159,166,167],similarli:[2,15,17,19,53,66,72,85,86,87,89,109,111,113,128,134,142,149,150,156,159,161,167],simpl:[2,3,4,9,11,12,13,17,20,21,31,32,53,85,86,87,89,94,98,99,102,103,105,107,110,112,113,116,118,124,125,127,128,130,139,150,152,153,156,159,161,165,166,167],simplemodel:113,simpler:[159,161],simplerangescal:[64,69],simpletransform:[61,65,69],simplex:149,simpli:[2,4,13,17,20,37,38,53,57,61,62,63,64,65,66,67,68,69,70,71,72,98,103,116,130,134,142,159,163,167],simplic:[17,18,21,159],simplifi:[8,13,21,53,73,149],simplified_nam:149,simul:[0,5,6,158],simultan:[15,53],sin:[11,58,134,155,159],sinc:[2,3,4,5,6,7,13,14,15,20,21,53,63,85,86,87,89,103,113,116,142,149,150,152,156,159,164],sine:[2,9,16,58,96,97,107,114,119,121,155],sine_seri:16,sine_series_st_bin:16,sine_series_st_cat:16,sine_timeseri:[2,9,10,12,16,155,163],sine_v:16,singapor:73,singl:[0,2,9,10,12,14,16,17,18,20,23,24,35,36,49,53,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,78,79,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,134,142,149,150,152,154,156,157,158,159,161,163,165,166,167],single_model:21,singleargmodel:113,singleencod:[56,57],sinusoid:155,site:17,situat:[162,166],sixth:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],size:[2,7,13,14,15,16,18,21,34,35,36,37,39,47,49,50,53,54,55,58,69,72,79,82,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,136,140,141,142,150,152,154,155,156,159,164,166],skew:134,skip:[3,8,14,18,53,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,150,156],skip_check:[99,102,110,111,112,118,124,125,128,130],sklearn:[0,3,5,7,9,12,15,18,19,20,21,27,70,71,92,100,108,109,115,117,132,142,153,158,159,165],skrodzki:[0,158],slice:[2,5,13,14,15,37,39,53,99,102,110,111,112,118,124,125,128,130,134,138,140,141,143,153,157,159,161,163,167],slice_index:157,slice_intersect:[9,10,134],slice_n_points_aft:134,slice_n_points_befor:134,slide:[49,98],sliding_window_view:142,slightli:[13,15,17,18,159,161,165],slope:[55,159],slow:[15,164],slower:[15,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],small:[15,18,20,59,61,62,63,64,65,66,67,68,69,70,71,142,152,159],small_siz:13,smaller:[13,53,55,124,134,142,159],smallest:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,142],smape:[2,15,18,82,150,165],smape_v:[18,165],smapeloss:[15,150],smapes_2:15,smapes_3:15,smapes_4:15,smapes_m3:15,smart:159,sme:73,smooth:[0,4,5,11,12,15,16,73,95,101,120,127,158,159,163],snapshot:163,snip:167,snippet:163,so:[2,3,8,9,12,13,16,17,18,21,53,61,62,63,64,65,66,68,69,70,71,72,73,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,141,143,149,150,152,153,156,157,159,163,164,166,167],societi:73,softplu:[110,111],softwar:[85,87,126],solar:[21,73],solut:[54,58,127],solv:[4,134,159,162],solver:[13,54],some:[0,1,2,3,4,9,13,15,16,17,18,20,21,23,29,33,35,37,53,54,57,58,61,62,63,64,65,66,68,69,70,71,72,73,78,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,134,138,139,140,141,149,150,152,153,156,158,160,161,162,163,164,165,166,167],some_column:125,some_compon:77,some_dtyp:53,some_other_st:113,some_sklearn_model:15,some_st:113,somecomponentbasedexplain:77,someforecastingmodel:[58,161],somehorizonbasedexplain:77,someon:3,someth:[53,85,86,87,89,113,136,150,156],something_cool_i_want_to_sav:113,sometim:[2,3,21,53,85,99,102,104,110,111,112,118,124,125,128,130,159,163,166],sometorchforecastingmodel:[58,167],somewhat:[13,15],somewher:[15,16],soon:2,sore:73,sort:[2,53,142,159,166],sorter:53,sourc:[0,18,25,26,27,28,31,32,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,77,78,79,80,82,85,86,87,88,89,91,92,93,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,133,134,136,138,139,140,141,142,143,144,149,150,151,152,153,154,155,156,157,158],south:17,sp:15,space:[11,18,39,53,58,73,93,156,165],span:[2,57,82,99,102,110,111,112,118,124,125,128,130,134,138,140,141,157,159,160,163,166],spars:153,sparsecostmatrix:53,spawn:[54,99,102,110,111,112,118,123,124,125,128,130,134],speak:[118,161,167],special:[2,19,161,165],specif:[4,8,15,16,53,57,58,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,82,99,102,110,111,112,113,118,124,125,128,130,134,142,149,159,161,163,164,166],specifi:[0,2,3,6,15,16,17,18,20,21,53,57,58,61,62,63,64,65,66,67,68,69,70,71,72,77,78,85,86,87,89,92,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,139,142,149,150,154,155,156,158,159,161,163,166,167],specifici:15,specifii:114,speed:[2,3,5,13,15,18,53,54,73,167],speedup:[159,167],spelt:53,spend:15,spent:15,spike:159,split:[0,4,6,8,9,10,14,15,17,18,19,21,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,140,141,152,158,159,165,166,167],split_aft:[3,4,5,6,7,8,9,10,14,19,20,21,134,164,165,167],split_befor:[0,3,14,134,158,159],split_point:[134,157],splitcovari:143,splitcovariatesinferencedataset:139,splitcovariatesmodel:167,splitcovariatessequentialdataset:140,splitcovariatesshifteddataset:141,splitcovariatestorchmodel:[129,143],splitcovariatestrainingdataset:[140,141,143],splitter:152,spot:[0,158],sqrt:[53,82],squar:[3,82,87,153],squarer:3,squeez:53,src:[89,130],src_key_padding_mask:89,src_mask:89,ss:163,ssig:[0,158],st:16,stabil:87,stabl:[27,46,53,58,67,99,102,110,111,112,118,124,125,128,130,131,134,142,155],stack:[2,5,8,11,14,15,16,20,21,61,62,63,64,65,66,67,68,69,70,71,72,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,142,159,161,163],stack_sampl:[61,62,63,64,65,66,67,68,69,70,71,72],stackexchang:121,stadt:73,stage:[2,5,6,8,9,10,113,136,154,163,167],stai:161,stall:113,stamp:[2,18,32,73,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,163,166],stand:[16,58,71,123,167],standard:[4,7,53,122,134,136,149,155],standardis:2,start:[2,5,6,7,8,9,10,11,13,14,15,16,18,20,32,53,55,58,59,63,67,68,72,77,78,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,139,141,152,154,155,157,159,162,164,167],start_column0:55,start_dat:[8,15,21],start_format:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],start_month:15,start_p:97,start_q:97,start_t:134,start_tim:[2,5,6,8,9,10,13,14,15,21,134,142],start_valu:[3,64,69,155],start_year:15,starting_valu:155,startingd:15,stat:[49,62,121,134,154],state:[0,2,5,8,9,10,11,19,21,73,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,150,155,156,158,162,163],state_dict:[85,86,87,89,99,102,110,111,112,113,118,124,125,128,130,136,150,156],state_kei:136,static_col:[16,134],static_cov:[71,134],static_cov_1:134,static_cov_2:134,static_covari:[16,61,62,64,65,69,70,71,134,138,139,140,141,142,143,161,166],static_covariates_import:77,static_covariates_transform:[71,125],static_covariates_valu:134,static_covs_multi:[16,134],static_covs_singl:16,staticcovariatestransform:[16,71,125],staticmethod:[61,64,65,69],station:73,stationar:[63,131,154],stationari:[63,80,134,154],stationarity_test:154,stationarity_test_adf:154,stationarity_test_kpss:154,statist:[0,3,5,7,8,9,14,21,95,96,97,98,99,100,101,102,104,105,107,108,109,110,111,112,114,115,117,118,119,120,121,122,123,124,125,127,128,130,131,132,135,158,159,161],statsforecast:[0,88,101,119,120,121,122,158,162],statsforecast_util:88,statsforecastautoarima:[0,95,97,158,161],statsforecastautoc:[0,95,158,161],statsforecastautoet:[0,95,158,161],statsforecastautotheta:[0,95,158,161],statsmodel:[17,96,104,131,154],stattool:154,statu:[61,62,63,64,65,66,67,68,69,70,71,72],std:[9,10,11,12,18,53,72,88,134,155],stdin:53,steadi:11,steeper:[13,55],step:[2,3,7,13,14,15,16,18,20,21,26,28,33,53,57,58,59,62,63,64,67,68,69,70,72,78,80,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,139,141,149,153,155,159,161,165,166,167],stephan:121,still:[2,4,15,18,21,53,99,102,107,110,111,112,118,124,125,128,130,142,159,160,161],stl:154,stm:122,stochast:[0,3,18,40,41,42,43,44,45,50,62,70,82,92,93,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,154,158,166],stop:[13,15,18,19,59,68,99,102,110,111,112,118,124,125,128,130,150,159,165],storag:[53,85,86,87,89,113,134,150,156,164],store:[2,3,9,19,21,53,55,58,61,62,63,64,65,66,67,68,69,70,71,72,77,79,85,86,87,89,99,102,106,110,111,112,113,118,124,125,128,130,134,136,150,156,161,163,166],str:[4,6,8,9,10,25,26,27,28,31,32,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,57,58,61,62,63,64,65,66,67,68,69,70,71,72,73,74,77,78,79,80,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,142,149,150,151,152,153,154,155,156],strategi:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,164],strength:[149,163],strglo:[21,73],strict:[85,86,87,89,99,102,110,111,112,113,118,124,125,128,130,150,156],strictli:[18,54,85,86,87,89,99,102,110,111,112,113,117,118,124,125,128,130,149,150,156],stride:[2,5,6,7,8,9,10,14,20,39,47,49,53,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,139,142,150,156],stride_trick:[53,142],strided_moving_window:142,strides_a:53,string:[53,57,58,67,72,78,80,85,86,87,89,99,102,108,110,111,112,113,117,118,124,125,128,130,134,142,150,153,155,156],strip:[21,67,134],strong:[4,21],stronger:9,strongli:164,structur:[53,113,142],studi:[18,165],style:[15,53,54],sub:[2,15,21,53,57,58,125,151,153,157,161],subclass:[53,57,58,85,86,87,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,150,156],subject:[2,73,78,85,87,126,164],sublicens:[85,87,126],submodul:[0,85,86,87,89,113,150,156,158,167],subobject:153,subok:53,subplot:[2,15,19,20,79],subprocess:164,subroutin:[82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],subsect:[161,167],subsequ:[37,39,47,49,53,64,69,85,86,87,89,105,113,150,156],subseri:[151,167],subset:[17,37,78,167],subslic:15,substanti:[85,87,126,167],subtil:20,subtract:[4,96,112,131,159],succe:15,success:[2,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,149,156,159],successfulli:164,suffer:18,suffici:[2,15,31,32,99,102,110,111,112,118,124,125,128,130,159],suffix:134,suggest:[0,11,18,53,98,99,102,104,110,111,112,118,124,125,128,130,134,158,159,162,167],suggest_categor:[18,165],suggest_float:[18,165],suggest_int:[18,165],suit:[4,5,23],suitabl:[0,7,53,130,158,167],sum:[9,10,15,17,21,53,54,63,72,113,134,153],sum_:[82,150],sum_city_nonc:17,sum_i:149,summari:[78,85,99,102,110,111,112,118,124,125,128,130,156,160],summaris:69,summary_plot:[21,78],summarywrit:[7,9],summer:54,sun1:167,sun_gru:5,sun_spots_transform:7,sundai:73,sunspot:[7,13,73],sunspotsdataset:[5,6,7,13,73],supervis:[15,20,21,99,102,110,111,112,117,118,124,125,128,130,159],suppli:[14,16,57,58,61,62,63,64,65,66,68,69,70,71,72,73,92,139,161,167],support:[0,2,3,14,16,17,18,20,21,32,53,55,57,58,78,82,85,91,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,149,151,152,153,154,158,159,160,162,166],supports_future_covari:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],supports_likelihood_parameter_predict:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],supports_multi_t:163,supports_multivari:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],supports_optimized_historical_forecast:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],supports_past_covari:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],supports_static_covari:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],suppos:[3,142],suppress:114,suppress_stdout_stderror:114,suppress_warn:134,sure:[2,6,20,21,53,99,102,110,111,112,113,118,124,125,128,130,162,163],surprisingli:4,suscept:2,suspicion:58,swap:53,swapax:53,sweep:[99,102,110,111,112,118,124,125,128,130],swiglu:[86,125,130],swiss:73,switzerland:[15,21,73],sy:53,symmetr:[82,134],sync:113,sync_dist:113,sync_dist_group:113,sync_grad:113,synchron:113,syntax:53,synteto:101,synthet:11,system:[0,15,18,73,87,93,107,113,130,158,159],systemerror:53,t0:21,t:[2,3,4,6,9,14,15,16,17,18,21,53,61,62,63,64,65,66,67,68,69,70,71,72,73,78,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,142,150,153,154,155,156,159,161,162,163,164,167],t_0:[77,78],t_0_target_lag:[77,78],t_1:[77,78],t_1_target_lag:[77,78],t_destin:[85,86,87,89,113,150,156],t_i:21,ta:[17,73],tab:15,tabl:[0,20,142,154,161,167],tabular:[15,21,117,142,159],tabularizion:21,tafti:[0,158],tag:[58,113],tail:[134,149],tailor:58,take:[0,2,3,9,11,12,15,18,20,21,23,24,29,33,37,53,54,57,58,61,62,63,64,65,66,67,68,69,70,71,72,76,77,78,82,85,86,87,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,139,150,154,155,156,158,159,163,166,167],taken:[3,20,61,69,73,114,126,134],takes_future_covari:58,takes_past_covari:58,tanh:[110,111],target1:161,target2:[161,167],target:[0,2,5,9,10,14,15,16,20,31,32,57,58,67,72,73,77,78,79,80,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,140,141,142,149,150,153,156,158,159,160,161,162,163,166],target_2:161,target_compon:[77,78,79,80],target_dim:[100,108,109,115,117,132],target_nam:[77,78],target_seri:[9,10,138,139,140,141,142],target_train:[9,10],target_v:[9,10,167],task:[3,15,37,80],tau:82,taylor:73,taylordataset:73,tb:74,tbat:[0,95,158,159,161],tbats_model:123,tcn:[0,1,2,6,10,20,124,158,163,165],tcn_air:6,tcn_energi:6,tcn_model:[18,20,124,165],tcn_sun:6,tcn_test:10,tcnmodel:[0,2,6,10,18,20,95,124,158,159,161,163,165],teardown:[113,136],technic:[85,86,87,89,113,149,150,156,162],techniqu:[17,18,20,57,99,105,107,110,116,118,124,125,128,130,156,159],tell:[0,4,5,14,15,16,53,58,113,158,159],temp:19,temperatur:[4,21,73,99,100,102,108,109,112,115,117,118,125,128,131,132,161,167],temperature_forecast:167,temperaturedataset:[4,73],templat:21,tempor:[0,2,19,21,57,58,61,62,63,64,65,66,67,68,69,70,71,72,75,95,126,128,158,159,161],temporal_decoder_hidden:128,temporal_kw:58,temporal_width_futur:128,temporal_width_past:128,temporalfusiontransform:125,temporarili:136,tend:[2,20,21,161,167],tensor:[85,86,87,89,110,111,113,139,149,150,156,164],tensorboad:167,tensorboard:[99,102,110,111,112,113,118,124,125,128,130,167],tensorboardx:[7,9],tent:[82,127],term:[2,4,14,15,20,73,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,149,159,163,164,167],terribl:159,test:[2,4,6,7,8,9,15,18,19,49,53,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,136,152,153,154,159,164,165,167],test_acc:113,test_cas:16,test_dataload:113,test_descript:136,test_loss:113,test_progress_bar:136,test_seri:15,test_siz:152,test_stationar:80,test_step:113,testing_model:7,teunter:101,text:[2,8,13,53,82,113,149],tf:113,tfm:160,tfmprogressbar:[2,6,8,9,10,136],tft:[0,75,77,95,158,167],tft_explain:79,tft_model:[79,125],tft_submodel:126,tftexplain:[14,77,79],tftexplainabilityresult:[77,79],tftmodel:[0,2,14,75,95,99,102,110,111,112,118,124,125,128,130,158,159,161,167],tg:[9,10,11,12,13,16,163],tgt:[89,130,150],tgt_is_caus:89,tgt_key_padding_mask:89,tgt_mask:89,th:[14,53,61,62,63,64,65,66,67,68,69,70,71,72,114,134,138,140,141,142,149],thailand:114,than:[2,3,4,12,13,14,15,16,18,19,20,49,50,53,54,55,61,62,63,64,65,66,67,68,69,70,71,72,78,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,140,141,142,154,159,161,162,163,164,166],thank:18,thei:[2,3,14,15,16,17,18,20,23,25,27,33,35,36,37,38,40,41,42,43,44,45,46,48,53,58,85,86,87,89,91,96,97,98,99,100,101,102,103,107,108,109,110,111,112,113,114,115,116,117,118,119,121,123,124,125,128,130,131,132,134,140,141,149,150,154,156,157,159,161,163,166,167],them:[2,3,7,12,13,14,15,16,17,18,20,21,24,53,54,58,59,61,62,63,64,65,66,68,69,70,71,72,85,86,87,89,98,99,102,103,110,111,112,113,116,118,124,125,128,130,134,136,150,154,156,159,161,167],themselv:[2,15,53,59,161,163,167],theori:[21,142],therebi:[61,62,63,64,65,66,67,68,69,70,71,72],therefor:[11,63,140,141,159],thereof:113,theta:[0,4,11,15,17,95,122,158,161],theta_smap:15,theta_smapes_m3:15,theta_tim:15,theta_time_m3:15,thi:[0,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,20,21,31,32,35,36,37,38,39,46,47,48,49,53,54,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,79,80,82,85,86,87,89,92,93,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,134,136,138,139,140,141,142,143,149,150,152,153,154,155,156,158,159,160,161,162,163,164,165,166],thin:97,thing:[0,2,5,8,9,18,19,21,113,158,159,162,165],think:[2,161],third:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],thoma:[0,158],those:[3,17,58,61,62,63,64,65,66,67,68,69,70,71,72,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,139,142,159,163,166],though:[2,6,12,13,15,127,142,149,159,161,167],thousand:159,thread:[15,123],three:[0,2,4,7,14,15,16,20,67,73,79,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,158,159,161,164],threshold:[13,29,31,32,33,35,37,38,39,40,41,42,43,44,45,46,47,48,49,99,102,110,111,112,118,124,125,128,130,154],threshold_detector:36,thresholddetector:36,throat:73,through:[13,15,16,18,19,53,58,61,62,63,64,65,66,68,69,70,71,72,89,113,136,164,167],throughout:[18,99,102,110,111,112,118,124,125,128,130,165],thrown:[85,86,87,89,113,142,150,156],thu:[2,3,5,18,39,47,49,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,152,164],thumb:161,ti:53,tic:15,tick:13,tide0:19,tide1:19,tide:[0,19,95,158],tide_model:128,tidemodel:[0,19,95,128,158,161],tight:142,tight_layout:[15,20,21],tile:13,time:[4,5,6,7,8,9,10,11,12,14,17,18,19,20,21,23,26,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,51,53,55,57,59,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,79,80,82,85,86,87,89,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,130,131,132,134,135,138,139,140,141,142,149,150,151,152,156,157,159,160,162,163,164,165],time_axi:15,time_col:[15,16,134],time_dim:134,time_idx:17,time_index:[14,16,20,58,61,62,63,64,65,66,67,68,69,70,71,72,131,134,142,155,159],time_intersect:14,time_rang:13,time_seri:[73,74],timedelta:[72,134],timeout:18,times_m3:15,timeseri:[0,5,6,7,8,9,10,11,12,13,14,15,17,18,21,22,24,25,26,27,28,31,32,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,54,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,77,78,79,80,82,91,92,93,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,135,138,139,140,141,142,143,151,152,154,155,157,158,160,161,162,163],timeseries_gener:[2,3,5,6,9,10,11,12,13,14,16,20,61,64,65,69,96,97,107,114,119,121,131,134,155,159,163],timestamp:[3,4,5,6,7,8,9,10,14,15,17,20,21,32,39,46,47,49,50,57,66,77,78,80,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,151,155,157,159,163,164,165,166,167],timestemp:21,timestep:[21,37,61,62,63,64,65,66,67,68,69,70,71,72,114,131,134,142,152,167],timezon:58,timsort:53,titl:[0,2,3,5,7,8,13,14,15,31,32,38,39,40,41,42,43,44,45,46,47,48,49,50,85,154,158,159],titles:13,tl:160,tlc:73,to_cpu:[99,102,110,111,112,118,124,125,128,130,167],to_csv:134,to_dens:53,to_dtyp:113,to_empti:[85,86,87,89,113,150,156],to_json:134,to_onnx:113,to_pickl:134,to_torchscript:113,tobyt:53,todailyaverag:3,tofil:53,togath:142,togeth:[2,13,20,58,59,61,62,63,64,65,66,67,68,69,70,71,72,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,138,139,161,166],toggl:[53,113],toggle_optim:113,toi:[2,3,9,11],token:[85,113],tokyo:73,tolist:53,toma:[0,158],tonn:73,too:[0,2,3,15,18,104,142,152,158,159,161,163,164,167],took:82,tool:[0,18,23,158],top:[9,17,20,69,134,160,161],top_level_compon:134,top_level_seri:134,topdownreconcili:[17,69],topic:[2,20,73,164,167],torch:[2,5,6,7,8,9,10,14,15,18,19,85,86,87,89,99,102,110,111,112,113,118,124,125,128,129,130,136,139,143,150,156,160,161,163,165],torch_doctest_cuda1:[85,86,87,89,150,156],torch_forecasting_model:[99,102,110,111,112,118,124,125,128,130],torch_metr:[99,102,110,111,112,113,118,124,125,128,130,165,167],torch_stabl:164,torch_xla:164,torchforecastingmodel:[16,19,57,58,99,102,110,111,112,113,118,124,125,128,129,130,136,143,165,167],torchmetr:[99,102,110,111,112,113,118,124,125,128,130,165,167],torchparametricprobabilisticforecastingmodel:129,torchscript:113,torchtext:164,torchvis:[113,164],tort:[85,87],tostr:53,total:[2,3,4,13,15,17,21,53,54,59,61,62,63,64,65,66,67,68,69,70,71,73,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,140,141,142,153,159,164,166],total_fmt:136,total_predict_batches_current_dataload:136,total_test_batches_current_dataload:136,total_train_batch:136,total_val_batch:136,total_val_batches_current_dataload:136,touch:159,tourism:[1,73],tourism_seri:17,toward:[2,14],tpu:[0,15,18,113,158,159,160,167],tpu_cor:164,tqdm:[5,7,9,14,15,18,21,136],tqdm_asyncio:136,tqdm_notebook:[5,7,9,14],tqdm_progress:136,tqdmprogressbar:[6,16,136],trace:[53,69,113],traceback:53,track:[2,11,99,102,110,111,112,118,124,125,128,130,167],trade:54,tradeoff:15,tradit:21,traffic:159,trafficdataset:73,train:[0,3,5,6,7,8,9,10,16,17,18,19,21,25,29,31,32,33,34,35,37,39,47,48,49,57,58,69,77,78,79,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,136,137,139,142,149,150,152,156,158,160,161,162,163,164,165,166],train_air:[2,159],train_air_sc:159,train_batch:113,train_dataload:113,train_dataset:[99,102,110,111,112,118,124,125,128,130],train_descript:136,train_en:[6,9,10],train_en_transform:[6,9,10],train_fn_with_paramet:165,train_forecasting_model:[20,98,103,116],train_ic:14,train_ice_transform:14,train_length:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],train_loss:[113,167],train_metr:[15,159],train_milk:[2,159],train_milk_sc:159,train_model:165,train_num_sampl:103,train_progress_bar:136,train_sample_shap:113,train_samples_reduct:103,train_scal:[6,7,8],train_seri:[15,16,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],train_set:18,train_sp:[5,7],train_sp_scal:7,train_sp_transform:[5,6],train_test_split:152,train_transform:[5,14,164],train_using_historical_forecast:[20,116],train_val_set:18,trainabl:[15,23,29,33,37,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,159,164],trainer:[0,15,19,99,102,110,111,112,113,118,124,125,128,130,136,158,159,163,164,167],training_cutoff:[14,167],training_cutoff_ic:14,training_dataset:[138,140,141,143],training_epoch_mean:[113,136],training_iter:165,training_length:[2,5,9,118,164,167],training_sc:2,training_set:2,training_step:[113,136],training_step_output:[113,136],trainingdataset:[2,99,102,110,111,112,118,124,125,128,130,141,143,167],trait:2,transfer:[0,67,113,134,158,167],transfer_batch_to_devic:113,transferablefuturecovariateslocalforecastingmodel:[96,107,131],transform:[0,2,5,6,8,9,10,13,15,17,18,19,20,23,25,26,27,28,33,37,39,47,48,49,50,51,57,58,59,66,68,69,70,73,75,82,85,87,89,95,96,97,99,100,101,102,107,108,109,110,111,112,113,114,115,117,118,119,121,123,124,126,128,131,132,134,155,158,159,161,163,164,165,166,167],transform_mask:57,transformer_cat:71,transformer_heat:14,transformer_ic:14,transformer_model:130,transformer_num:71,transformer_sunspot:5,transformerdecoderlay:89,transformerencoderlay:89,transformermodel:[0,2,7,95,128,130,158,161],transit:[85,86,87,89,113,150,156,159],translat:[21,139],transpar:[2,6],transport:[15,53,73],transpos:53,travel:17,travers:[53,59],treat:[31,32,37,39,47,49,72,107,108,113,117,134,152,156],treat_na:[72,134],tree:[17,20,78,108,115],trend:[2,4,5,8,9,10,14,20,21,96,104,105,110,123,127,131,154,159,161],trend_mod:127,trend_poly_degre:105,trend_polynomial_degre:[2,8,15,110],trendmod:[15,127,157],tri:[15,85,86,87,89,105,113,150,152,156],trial:[18,165],trick:167,trigger:[20,167],trigonometr:123,trim:[0,96,97,101,107,114,119,121,131,142,157,158],trivial:[0,2,18,158],troubl:53,trough:[12,13],truli:53,truncat:[72,134,154],trust:[21,159],truth:[19,20,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,149],ts:[3,4,6,11,13,16,127,134,154,157,159],ts_2:4,ts_3:4,ts_air:20,ts_caus:154,ts_effect:154,ts_energi:21,ts_energy_train:21,ts_energy_v:21,ts_fit:[61,62,63,64,65,66,67,68,69,70,71,72],ts_inverse_transform:[62,63,64,65,66,67,69,70,71],ts_length:152,ts_scale:[6,16],ts_shape:13,ts_shape_seri:13,ts_smooth:13,ts_transform:[8,61,62,63,64,65,66,67,68,69,70,71,72],ts_weather:21,tsa:[17,104,154],tsb:101,tslib:134,tu:114,tune:[15,18,19,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,136,159,160],tune_callback:165,tune_dart:165,tuneabl:18,tuner:[99,102,110,111,112,118,124,125,128,130],tunereportcallback:165,tupl:[15,17,21,53,54,55,57,58,73,80,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,140,141,142,143,150,152,154,156],turkei:114,turn:[100,108,109,115,117,132,140,141,152,153,156,163],tutori:[2,16,161],tweak:[7,20],two:[2,3,5,7,8,13,14,15,16,20,21,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,58,61,62,63,64,65,66,67,68,69,70,71,72,73,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,139,149,150,152,155,156,161,162,163,166,167],type:[2,9,15,16,17,25,26,27,28,31,32,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,77,78,79,80,82,85,86,87,88,89,91,92,93,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,136,139,141,142,143,149,150,151,152,153,154,155,156,157,161,163,164,166,167],type_of_cov:[77,78],typecod:53,typeerror:[53,113,142],typevar:[85,86,87,89,113,150,156],typic:[3,15,17,18,24,33,53,63,70,71,85,86,87,89,113,119,121,149,150,156,161,167],tz:[21,58,96,97,99,100,101,102,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132,134,155],u1:[3,64,66,69],u2:53,u8dart:159,u:[11,18,73,93,153],ub:142,uber:73,ubertlcdataset:73,uci:73,udf:[72,134],ugz_meteodaten_stundenmittelwert:73,uic:53,uint32:53,uint8:53,ultim:53,un:[108,109,115,117,132],unabl:[61,62,63,64,65,66,67,68,69,70,71,72],unappli:[61,62,63,64,65,66,68,69,70,71,72],unapply_component_mask:[61,62,63,64,65,66,67,68,69,70,71,72],uncertainti:[9,12,100,110,111,124,125,128,149,156],unchang:[53,85,86,87,89,150,153,156],uncom:12,uncov:[15,37],undefin:[53,85,86,87,89,113,150,156],under:[15,20,21,40,41,42,43,44,45,46,53,58,61,62,63,64,65,66,68,69,70,71,72,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,149,150,154,156,160,163,167],underli:[0,11,12,16,21,31,32,39,47,53,57,58,61,62,63,64,65,66,67,68,69,70,71,72,77,93,108,116,123,134,143,153,155,158,161,166],understand:[14,17,159,162],understim:20,undifferenc:63,undo:[61,62,63,64,65,66,67,68,69,70,71,72],undocu:53,unequ:[140,141],unexpect:[85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,150,156],unexpected_kei:[85,86,87,89,113,150,156],unfortun:[3,73,167],unfreez:113,uni:[16,54,134,154],unifi:[3,21,159],uniform:[138,140,141,165],uniform_averag:153,uniformli:[134,138,149],union:[2,25,26,27,28,31,32,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,54,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,77,78,79,80,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,139,140,141,142,151,152,153,154,155,157],uniqu:[2,58,113,125,134,136,154],unit8:[0,17,142,158,162],unit8co:108,unit:[73,85,134,154,155,164],unit_scal:[64,69],univari:[0,2,7,8,14,18,24,25,26,27,28,38,39,40,41,42,43,44,45,46,47,48,49,50,54,73,77,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,149,154,155,158,159,166],univariate_compon:[8,134],univariate_scor:48,univariate_valu:[13,134],unknown:[99,100,102,108,109,110,111,112,115,117,124,125,128,130,132],unless:[18,53,85,86,87,89,92,113,134,150,156],unlik:[53,142,162],unmask:[61,62,63,64,65,66,67,68,69,70,71,72,127],unnecessarili:[99,102,110,111,112,118,124,125,128,130],unpack:[53,88],unpack_sf_dict:88,unpickl:53,unpromis:18,unrestrict:154,unsaf:53,unsampl:67,unscal:113,unseen:[2,8],unspecifi:53,unstabl:15,unstack:[61,62,63,64,65,66,67,68,69,70,71,72],unstack_sampl:[61,62,63,64,65,66,67,68,69,70,71,72],unsurprisingli:18,untest:164,until:[2,9,10,14,15,21,73,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,154,155,159,163,165,167],untoggl:113,untoggle_optim:113,untrain:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],untransform:[61,62,63,64,65,66,67,68,69,70,71,72],untypedstorag:113,unus:14,unweight:73,up:[0,2,5,13,15,17,53,58,59,61,62,63,64,65,66,67,68,69,70,71,72,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,142,154,155,158,159,161,163,164,165,166,167],upcom:167,updat:[53,55,73,85,86,87,89,99,102,106,110,111,112,113,118,124,125,128,130,150,153,156],upfront:[159,163,167],upload:15,upon:[4,31,32,63,93,127,159],upper:[2,19,35,36,50,53,99,100,102,108,109,110,111,112,115,117,118,124,125,128,130,132,134,140,141,142,167],upsampl:67,upward:[2,4,20],uri:74,url:[0,113,158],us:[0,1,4,5,6,7,8,9,10,13,14,19,23,24,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,79,80,82,85,86,87,89,92,93,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,136,138,139,140,141,142,143,149,150,151,152,153,154,155,156,157,158,160,162],usa:15,usabl:[133,156,166],usag:[3,21,98,99,102,103,105,106,107,110,111,112,116,118,124,125,128,130,135,142,164,167],use_arma_error:123,use_box_cox:123,use_damped_trend:123,use_fitted_valu:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],use_layer_norm:128,use_moving_window:142,use_pl_optim:113,use_reversible_instance_norm:[19,99,102,110,111,112,113,124,125,128,130],use_static_covari:[14,100,102,108,109,112,115,117,125,128,132,138,139,140,141,142],use_trend:123,usedlag:154,useless:[4,73],user:[0,2,17,21,36,53,57,58,61,62,63,64,65,66,67,68,69,70,71,72,85,86,87,89,96,97,99,100,101,102,107,108,109,110,111,112,113,114,115,117,118,119,121,124,125,127,128,130,131,132,134,150,153,156,158,159,161,163,166],user_guid:67,uses_future_covari:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],uses_past_covari:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],uses_static_covari:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,142],usgasolinedataset:73,usual:[2,13,15,53,78,85,130,150,161,162],uszkoreit:130,utc:73,util:[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,25,26,27,28,57,61,64,65,69,78,80,85,86,87,89,96,97,99,102,104,105,107,110,111,112,113,114,118,119,121,123,124,125,127,128,130,131,133,134,136,138,139,140,141,142,143,144,149,150,153,154,158,159,163,164,165,167],utilis:142,v0:126,v1:69,v23:[0,158],v2:20,v:[53,113,153,164],v_num:[136,164],val:[0,4,5,6,7,8,14,15,17,18,19,20,21,53,61,62,63,64,65,66,67,68,69,70,71,72,99,102,110,111,112,113,118,124,125,128,130,136,158,159,163,164,165,167],val_acc:113,val_air:[2,159],val_batch:113,val_dataload:113,val_dataset:[99,102,110,111,112,118,124,125,128,130],val_en:[6,9,10],val_en_transform:[6,9,10],val_future_covari:[2,5,9,99,100,102,108,110,111,112,118,124,125,128,130,132,167],val_ic:14,val_ice_transform:14,val_len:[18,165],val_loss:[18,19,99,102,110,111,112,113,118,124,125,128,130,165,167],val_meanabsolutepercentageerror:[165,167],val_metr:[15,159],val_milk:[2,159],val_past_covari:[2,6,10,99,100,102,108,110,111,112,118,124,125,128,130,132,167],val_progress_bar:136,val_scal:[6,7,8],val_seri:[2,5,6,7,8,9,10,14,18,19,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,164,165,167],val_set:18,val_sp:[5,7],val_sp_scal:7,val_sp_transform:[5,6],val_transform:[5,14,164],valid:[0,3,6,7,8,9,10,16,17,18,19,20,21,57,58,72,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,142,143,152,153,158,160,163,164,165],validation_cutoff:21,validation_descript:136,validation_end:165,validation_sc:2,validation_set:2,validation_step:113,validli:142,valu:[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,20,21,25,26,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,57,58,59,60,61,62,63,64,65,66,67,69,70,71,72,73,77,78,79,80,82,85,86,87,89,91,92,93,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,134,135,136,142,143,144,149,150,152,153,154,155,156,157,158,161,163,165,166,167],valuabl:[2,163],value_amplitud:[9,10,155],value_at_first_step:134,value_col:[15,16,134],value_frequ:[9,10,12,16,155,163],value_ne5:[21,73],value_ne5_q0:21,value_ne5_target_lag:21,value_ne7:73,value_phas:155,value_y_offset:155,valueerror:[3,53,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,157],values_seri:15,van:[0,158],vanilla:[5,19,99,118],var1:16,vari:[0,16,53,67,134,149,158,166],variabl:[2,14,15,16,18,21,53,79,96,125,134,142,153,159,161],varianc:[12,53,69,100,134],variant:[17,85,89,99,118,125,130],variat:[54,82,96,97,98,99,101,102,103,104,105,107,110,111,112,114,116,118,119,120,121,122,123,124,125,127,128,130,131],varieti:[0,158],varima:[0,2,95,158,161],variou:[8,15,107],varuna:85,vaswani:130,ve:[13,15],vector:[2,16,39,46,47,49,69,73,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,163],vector_autoregress:131,vectoris:[61,62,63,64,65,66,67,68,69,70,71,72,142],venv:[0,158],verbos:[2,3,5,6,7,8,9,10,14,18,19,20,21,59,61,62,63,64,65,66,67,68,69,70,71,72,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,159,165],veri:[4,10,12,15,18,53,113,114,130,134,159,161,164,165,167],version:[0,2,17,18,53,73,85,86,87,89,91,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,136,149,150,153,156,158,161,162,164,167],vertic:[16,54],vertical_split_typ:152,vfr:[17,73],via:[21,53,74,111,128,167],vic:[17,73],video:[0,158],vietnam:114,view:[15,21,53,54,85,86,87,89,113,134,142,143,150,156,159],violin:78,virtual:[65,106,159],virtualenv:[0,158],virtualenvwrapp:[0,158],visit:[73,99,102,108,110,111,112,118,124,125,128,130],visual:[18,29,31,32,38,39,40,41,42,43,44,45,46,47,48,49,50,54,167],visualis:[2,15,18],vizual:21,vmax:21,vmin:21,vn:114,vol:116,voltag:73,volum:[0,158],vs:[15,54,113,160],w1:69,w:[20,21,34,35,36,37,39,46,47,49,50,53,69,73,136,153,159],w_1:85,w_2:85,wa:[4,5,9,13,14,15,16,17,20,21,53,58,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,79,80,93,99,102,110,111,112,113,118,121,124,125,128,130,139,142,159,164,167],wai:[0,2,3,7,15,17,18,21,23,53,65,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,136,138,141,149,158,159,161,163,164,166,167],wait:[3,99,102,110,111,112,118,124,125,128,130],wale:[17,73],walk:[19,155],walker:154,wall:162,wang:87,want:[0,2,3,6,13,14,16,18,20,21,53,61,62,63,64,65,66,68,69,70,71,72,99,102,110,111,112,113,118,124,125,128,130,136,158,159,161,167],warm:113,warn:[2,3,4,5,6,7,8,9,10,14,15,16,17,19,20,54,58,80,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,133,152,154,164,167],warp:[51,82],warped_mae0:13,warped_mae1:13,warped_series1:82,warped_series2:82,warped_t:13,warped_ts_shap:13,warped_ts_shape_valu:13,warped_ts_valu:13,warranti:[85,87],wasn:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],wasserstein:49,wasserstein_metr:49,wasserstein_scor:49,wassersteinscor:37,wast:3,wasteful:13,wave:[2,9,16,58],waveform:110,wd:73,we:[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,19,20,21,53,71,73,77,78,79,85,86,87,89,98,104,113,119,120,121,122,130,134,142,143,149,150,154,156,158,159,161,162,163,164,165,166,167],weak:20,weaker:9,weather:[2,21,73,159,161,163],weatherdataset:[73,99,100,102,108,109,110,111,112,115,117,118,124,125,128,130,132],websit:20,wed:126,week:[2,18,58,73,155,159,161,167],week_of_year:[58,155],weekdai:[4,58,134,155,167],weekli:[73,104,114],weekofyear:[58,155],weibul:149,weibull_distribut:149,weibulllikelihood:149,weigh:159,weight:[14,18,19,20,21,73,79,85,86,87,89,99,102,110,111,112,113,118,124,125,128,130,134,150,153,156,167],weight_norm:[6,10,18,20,124,165],weigth:[72,134],weird:2,welcom:[0,158,162],well:[2,8,11,12,14,15,16,18,20,21,29,39,53,65,71,78,85,86,87,89,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,134,149,150,152,153,156,159,161,164],were:[2,4,13,15,16,53,61,62,63,64,65,66,67,68,69,70,71,72,73,77,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,139,142,161,165,167],west:154,wetter:73,wgfupus2:73,wh:69,what:[0,2,5,6,13,14,15,16,17,18,20,21,32,53,99,102,105,110,111,112,113,118,124,125,128,130,134,149,158,159,160,162,163,167],whatev:[61,62,63,64,65,66,68,69,70,71,72,113],wheel:164,when:[2,3,4,6,9,12,13,14,15,16,18,19,20,21,35,36,37,39,47,49,53,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,77,78,82,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,139,140,141,142,143,149,150,151,152,153,154,156,159,160,161,162,163,164,165,166],whenev:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],where:[2,5,15,16,17,18,20,24,33,35,39,47,49,53,54,55,57,58,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,82,85,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,141,142,152,153,154,155,157,159,161,164,166],wherea:[2,5,14,17,20,82,119,122,142,166],wherebi:[72,134],whether:[2,9,16,17,18,38,39,40,41,42,43,44,45,46,47,48,49,53,54,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,78,79,80,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,139,140,141,142,150,154,155,156,163,167],which:[0,2,3,4,5,9,11,12,13,14,15,16,17,18,20,21,24,29,32,34,35,36,37,39,47,49,53,54,57,58,61,62,63,64,65,66,67,68,69,70,71,72,77,78,82,85,86,87,89,91,93,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,139,140,141,142,149,150,151,154,155,156,157,158,159,161,162,163,164,165,166,167],whichev:142,whilst:[67,142],white:[11,17,155],whl:164,whole:[5,6,14,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,150,156,159],whom:[85,87,126],whose:[2,20,53,61,62,63,64,65,66,68,69,70,71,72,85,86,87,89,96,98,99,100,102,103,107,108,109,110,111,112,115,116,117,118,124,125,128,130,131,132,134,142,150,154,155,156,159,163,166],why:[2,3,16,161,167],wide:[15,21],width:[6,46,53,55,93,110,111,128,134,167],wiki:[39,46,49,67,96,115,131,149,150],wikipedia:[39,46,49,67,82,96,115,131,149,150],wilei:120,williamson:[0,158],win_typ:[72,134],wind:73,window:[0,2,8,15,18,19,20,25,26,27,28,31,32,34,35,36,37,39,40,41,42,43,44,45,47,48,49,50,52,53,54,60,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,155,158,159,164],window_len:142,window_mod:134,window_s:[13,55,134],window_transform:[72,134],window_weight:21,windowtransform:72,wine:73,winedataset:73,wineind:73,winner:20,winter:104,wise:[13,15,53,54,85,89,98,152],wish:[61,62,63,64,65,66,68,69,70,71,72,113,142,161,163,167],with_column:155,with_columns_renam:134,with_hierarchi:[17,69,134],with_kwarg:[85,86,87,89,113,150,156],with_paramet:165,with_static_covari:[15,16,62,70,134,166],with_traceback:74,with_valu:134,within:[13,37,53,55,61,69,85,86,87,89,113,130,134,142,149,150,155,156],within_threshold:13,without:[0,2,3,11,13,15,18,19,20,31,32,53,54,57,58,59,61,62,64,65,66,68,69,82,85,86,87,89,93,96,113,125,126,128,131,134,136,142,150,151,154,156,158,159,164,166],wls_struct:69,wls_val:[17,69],wls_var:69,wolpert:116,won:[15,16,61,64,65,67,69,85,86,87,89,113,150,156,164],woollen:73,woolydataset:73,woolyrnq:73,word:[13,64,69,142],work:[0,2,3,4,5,6,7,8,9,11,13,14,15,16,17,18,19,20,21,29,31,32,37,53,67,69,78,85,86,87,89,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,150,153,154,155,156,158,159,161,162,163,164,165,166,167],work_dir:[99,102,110,111,112,118,124,125,128,130,167],workaround:165,worker:[99,102,110,111,112,118,124,125,128,130,167],workshop:15,world:113,world_siz:113,worri:[2,163],wors:[16,153],worth:[15,18],would:[0,2,3,8,11,13,14,15,18,20,32,53,61,62,63,64,65,66,68,69,70,71,72,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,140,141,150,153,156,158,159,161,165,166,167],wrap:[0,2,3,15,18,21,27,31,32,47,49,85,86,87,89,96,99,100,102,108,109,110,111,112,113,115,117,118,124,125,128,130,131,132,150,156,158,159,166],wrapper:[0,3,15,70,71,97,99,102,104,109,110,111,112,113,114,115,117,118,123,124,125,128,130,134,142,158,162],write:[2,15,18,53,134,162,163,167],writeabl:53,writebackifcopi:53,written:[15,21,53,161,164,167],wrong:[99,102,110,111,112,118,124,125,128,130],wv:73,wvv:73,www:[73,122,154],x00:53,x01:53,x02:53,x03:53,x:[3,11,12,13,14,21,53,55,58,66,79,82,85,86,87,93,111,113,127,134,141,142,153,159,167],x_0:149,x_1:149,x_2:11,x_2_nois:11,x_:82,x_i:149,x_k:149,x_miss:12,x_missing_arr:12,x_nois:12,x_t:82,x_trimmed_shap:142,xa:134,xarrai:[134,159,166],xdoctest:[85,86,87,89,113,150,156],xferd:15,xgb:132,xgb_quantile_loss:132,xgbmodel:[0,21,95,132,158,161,163],xgboost:[21,95],xgboost_model:21,xgboostmodel:21,xgbregressor:[21,132],xgub:15,xl:15,xlabel:[6,9,10,14,15,20,21],xlrd:15,xpu:[85,86,87,89,113,150,156],xtick:13,xu:[102,112],xv:53,xxx:55,xxxx:55,xxxxxx:55,xxxxxxxxx:55,xxxxxxxxxxx:55,xxxxxxxxxxxx:55,xxxxxxxxxxxxxx:55,xxxxxxxxxxxxxxxx:55,xxxxxxxxxxxxxxxxx:55,xxxxxxxxxxxxxxxxxxxx:55,xxxxxxxxxxxxxxxxxxxxx:55,y:[11,13,21,53,63,66,79,82,98,113,134,142,150,153,155],y_1:[98,106],y_2:11,y_2_nois:11,y_:[63,106],y_filter:11,y_hat:113,y_nois:11,y_offset:155,y_pred:153,y_t0:21,y_t:[63,82,98,106,150],y_true:153,yaml:113,yang:150,yarin:163,yarn:73,ye:[162,167],year:[0,2,5,7,14,15,58,73,96,97,99,100,101,102,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132,158,159,161,165,167],year_seri:5,yearli:[2,14,105,114,159],yet:[21,113,155,159,160,164,167],yield:[20,21,62,63,64,69,70,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,150,156,159],ylabel:[14,15],ylim:20,you:[0,1,2,3,5,7,8,12,13,14,15,16,18,21,53,61,62,63,64,65,66,68,69,70,71,72,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,149,150,152,153,156,158,159,160,161,162,163,164,165,166,167],your:[0,2,3,15,16,18,20,21,58,85,86,87,89,99,102,110,111,112,113,114,118,124,125,128,130,149,150,156,158,159,161,162,164,166],yourself:[113,167],ytick:13,yule:154,yw:154,ywadjust:154,ywm:154,ywmle:154,yyyi:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,163],z:[53,82,93,120],zch_rosengartenstrass:73,zch_schimmelstrass:73,zch_stampfenbachstrass:73,zealand:73,zeng:[102,112],zero:[15,53,82,85,86,87,89,113,134,142,150,156],zero_grad:[85,86,87,89,113,136,150,156],zhang:[87,102,112],zhouhaoyi:73,zi:101,zip:[2,16,20,21],zone:[58,73,134,155,159],zoubin:163,zuerich:73,zurich:[21,73]},titles:["Time Series Made Easy in Python","Examples","Multiple Time Series, Pre-trained Models and Covariates","Data (pre) processing using DataTransformer and Pipeline","Fast Fourier Transform Forecasting Model (FFT)","Recurrent Neural Networks Models","Temporal Convolutional Network","Transformer Model","N-BEATS","Probabilistic RNN","DeepTCN model","Filtering and predicting using the darts filters","Filtering and predicting using the Gaussian Process filter","Dynamic Time Warping (DTW)","Temporal Fusion Transformer","Transfer Learning for Time Series Forecasting with Darts","Static Covariates","Hierarchical Reconciliation - Example on the Australian Tourism Dataset","Hyper-parameters Optimization for Electricity Load Forecasting","TimeSeries Deep Encoder","Ensembling Models","Regression Models","darts","Anomaly Detection","Anomaly Aggregators","<no title>","AND Aggregator","Ensemble scikit-learn aggregator","OR Aggregator","Anomaly Models","<no title>","Filtering Anomaly Model","Forecasting Anomaly Model","Anomaly Detectors","<no title>","Quantile Detector","Threshold Detector","Anomaly Scorers","Difference Scorer","k-means Scorer","NLL Cauchy Scorer","NLL Exponential Scorer","NLL Gamma Scorer","NLL Gaussian Scorer","NLL Laplace Scorer","NLL Poisson Scorer","Norm Scorer","PyODScorer","<no title>","WassersteinScorer","Utils for Anomaly Detection","Data Processing","Dynamic Time Warping (DTW)","<no title>","Dynamic Time Warping (DTW)","DTW Windows","Time Axis Encoders","Encoder Base Classes","Time Axes Encoders","Pipeline","Data Transformers","Data Transformer Base Class","Box-Cox Transformer","Differencing Transformer","Fittable Data Transformer Base Class","Invertible Data Transformer Base Class","Mapper and InvertibleMapper","Mixed-data sampling (MIDAS) Transformer","Missing Values Filler","Hierarchical Reconciliation","Scaler","Static Covariates Transformer","Window Transformer","Datasets","<no title>","Explainability","<no title>","Explainability Result","Shap Explainer for RegressionModels","TFT Explainer for Temporal Fusion Transformer (TFTModel)","<no title>","Metrics","Metrics","Models","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","Filtering Models","<no title>","Gaussian Processes","Kalman Filter","Moving Average","Forecasting Models","ARIMA","AutoARIMA","Baseline Models","Block Recurrent Neural Networks","CatBoost model","Croston method","D-Linear","<no title>","Exponential Smoothing","Fast Fourier Transform","<no title>","Kalman Filter Forecaster","LightGBM Model","Linear Regression model","N-BEATS","N-HiTS","N-Linear","<no title>","Facebook Prophet","Random Forest","Regression ensemble model","Regression Model","Recurrent Neural Networks","StatsForecastAutoARIMA","StatsForecastAutoCES","StatsForecastAutoETS","StatsForecastAutoTheta","BATS and TBATS","Temporal Convolutional Network","Temporal Fusion Transformer (TFT)","<no title>","Theta Method","Time-series Dense Encoder (TiDE)","<no title>","Transformer Model","VARIMA","XGBoost Model","<no title>","Timeseries","Utils","<no title>","TimeSeries Datasets","Horizon-Based Training Dataset","Inference Dataset","Sequential Training Dataset","Shifted Training Dataset","<no title>","Training Datasets Base Classes","<no title>","<no title>","<no title>","<no title>","<no title>","Likelihood Models","PyTorch Loss Functions","Utils for filling missing values","Model selection utilities","<no title>","Time Series Statistics","Utils for time series generation","Utils for Pytorch and its usage","Additional util functions","Time Series Made Easy in Python","Quickstart","User Guide","Covariates","Frequently Asked Questions","Overview of Forecasting Models","Using Torch Models with GPUs and TPUs","Hyperparameter Optimization in Darts","TimeSeries","Torch Forecasting Models"],titleterms:{"0":[15,16],"1":[4,15,16],"2":[4,15,16],"3":[4,15,16],"32":167,"4":[15,16],"5":16,"6":16,"abstract":3,"class":[57,61,64,65,143],"do":167,"export":166,"function":[15,150,157],"new":4,"static":[1,16,71,166],"try":[15,159],A:[2,3,15,159],AND:26,In:167,No:13,OR:28,One:18,The:3,With:[13,159],ad:[12,16],add:16,addit:157,advanc:167,after:2,aggreg:[24,26,27,28],air:[2,5,6,7,14,15],airlin:15,align:13,all:167,altern:17,amplitud:4,an:[15,16],anomali:[23,24,29,31,32,33,37,50],anoth:3,appendix:21,appli:15,ar:161,architectur:8,arima:96,articl:[0,158],ask:162,australian:17,autoarima:97,automat:[14,167],averag:94,ax:58,axi:56,backtest:[2,5,14,159],base:[21,57,61,64,65,138,143],baselin:98,basic:[4,20],bat:123,batch:167,beat:[1,8,15,110,159],behind:2,benchmark:167,best:18,binari:16,bit:167,block:99,boost:21,bootstrap:20,both:2,bottleneck:167,box:62,build:[2,15,18,159,167],callback:167,captur:163,carlo:163,catboost:100,categor:16,cauchi:40,caution:159,chain:3,checkpoint:167,chunk:[21,167],citat:[0,158],comment:2,commun:[0,158],compar:[13,15],comparison:13,complex:3,compon:[17,21],comput:159,conclus:[15,18,20,21],condit:2,configur:19,construct:[4,16],consumpt:18,contact:[0,158],content:167,contribut:[0,158],convolut:[1,6,124],covari:[1,2,14,16,20,21,71,159,161,163,166,167],cox:62,cpu:[164,167],cream:14,creat:[3,14,159,166],crop:4,croston:101,custom:[21,167],d:102,daili:[6,8,9,10],dart:[11,15,21,22,159,161,165],data:[1,2,3,4,12,14,15,16,17,18,19,21,51,60,61,64,65,67,159,166,167],datafram:16,dataset:[6,15,17,21,73,137,138,139,140,141,143,167],datatransform:3,deep:[15,19,159],deepar:1,deeptcn:[1,10],defin:16,dens:[1,128],depth:167,detect:[23,50],detector:[33,35,36],determin:13,determinist:[14,166],detrend:4,diagon:13,differ:[13,38],differenc:63,distribut:159,document:[0,158,166],doe:2,dr:161,draw:11,dropout:163,dtw:[1,13,52,54,55],dynam:[1,13,52,54],earli:167,easi:[0,158],electr:18,electricti:18,encod:[1,16,17,19,56,57,58,128,159],end:2,energi:[4,6,8,9,10],ensembl:[1,20,27,116,159],enter:13,error:159,evalu:[15,159],exampl:[0,1,2,3,5,7,8,14,16,17,21,158,159,161,167],exist:16,experi:16,explain:[14,21,75,77,78,79],exponenti:[41,104],extern:159,extract:[16,21],facebook:114,far:15,fast:[1,4,105],featur:[0,158],few:2,fft:4,fill:151,filler:68,filter:[1,4,11,12,31,90,93,107,159],find:13,fine:167,first:[11,167],fit:[13,159],fittabl:64,forecast:[0,2,4,14,15,16,17,18,20,21,32,95,107,158,159,161,163,167],forest:115,format:[4,13],fourier:[1,4,105],free:159,frequent:162,from:[12,16,166],from_group_datafram:16,functionn:167,fusion:[1,14,79,125],futur:[2,14,161],gamma:42,gaussian:[1,12,43,92,159],gener:[4,8,13,14,155,163],gfm:161,global:[2,15,159,161],go:18,gpu:[164,167],grid:13,gridsearch:[18,165],group:16,guid:[160,161,167],handl:163,help:2,hierarch:[1,17,69,166],hierarchi:17,high:[0,158],histor:[20,159],hit:111,horizon:138,hourli:4,how:[161,167],hyper:[18,159],hyperparamet:[1,165],i:[166,167],ic:14,implement:166,improv:4,independ:17,indic:158,infer:[2,12,139,159],inform:[14,166],input:[21,167],inspect:[15,17,159],instal:[0,158,159],instanc:4,interpret:8,introduc:3,introduct:[0,158,161,167],invert:65,invertiblemapp:[3,66],itakura:13,its:156,k:39,kalman:[1,93,107,159],kernel:12,kind:3,lag:21,laplac:44,learn:[1,15,20,27,159],length:21,less:159,level:[0,158,167],lfm:161,lightgbm:108,likelihood:149,linear:[18,102,109,112],list:16,load:[15,17,18,19,163,167],local:[15,161],look:[5,14,167],loss:[150,159,167],low:4,m3:15,m4:15,machin:159,made:[0,158],make:159,manipul:159,manual:167,mapper:[3,66],match:13,mean:[2,12,39],memori:167,method:[15,101,127,159],metric:[81,82,159],mida:67,milk:2,miss:[12,68,151,159],missingvaluesfil:3,mix:67,model:[0,1,2,4,5,7,8,10,14,15,17,18,19,20,21,29,31,32,83,90,95,98,100,108,109,116,117,130,132,149,152,158,159,161,163,164,167],monitor:3,mont:163,monthli:[5,6,7,14],more:[2,3,14,166],move:94,multi:[13,21,164],multioutputregressor:21,multipl:[1,2,3,16,163,166],multivari:[2,17,20,163,166],my:166,n:[1,8,15,110,111,112,159],naiv:[20,159],network:[1,5,6,99,118,124,159,163],neural:[1,5,99,118,159,163],nll:[40,41,42,43,44,45],nois:[9,10,12],norm:46,nuclear:4,num_loader_work:167,number:13,numer:16,o:167,one:2,onli:21,oper:159,optim:[1,18,165],option:18,optuna:[18,165],order:11,other:[2,15],out:[4,159],output:21,overview:[15,163],parallelis:3,parallelogram:13,paramet:[18,19,159],part:15,passeng:[5,6,7,14,15],past:[2,161],pattern:13,peak:13,perform:167,period:12,pick:18,pipelin:[3,59],plai:159,point:12,poisson:45,possibl:167,pre:[1,2,3,20,167],predict:[2,5,11,12,14,20,159,167],prepar:[2,18,19],preprocess:2,probabilist:[9,14,20,21,159,163,166],problem:166,process:[1,2,3,12,14,51,92,159],produc:2,product:[2,6,9,10],prophet:114,pyodscor:47,python:[0,158],pytorch:[150,156],quantil:[35,159],quantit:13,question:162,quick:[0,158,161],quickli:159,quickstart:159,rai:165,random:115,re:167,read:[2,3,4,13,159],recap:15,recommend:167,reconcil:17,reconcili:[1,17,69],recurr:[1,5,99,118],refer:20,regress:[1,18,20,21,109,116,117,159,163],regressionmodel:[15,21,78],requir:[161,167],rescal:3,respons:11,result:[19,77],rnn:9,routin:2,s:21,sakoechiba:13,sale:14,same:15,sampl:[12,67],save:[163,167],scale:16,scaler:[3,70],scene:2,scikit:27,scorer:[37,38,39,40,41,42,43,44,45,46],search:159,season:159,select:[0,152,158],sequenti:140,sequentialencod:58,seri:[0,1,2,3,9,10,13,15,16,20,128,154,155,158,159,163,166,167],set:[3,4,5,14],setup:[15,16,19],sever:159,shall:18,shap:78,shift:141,should:166,side:18,simpl:18,simul:159,sine:12,singl:21,singleencod:58,size:167,small:167,smooth:104,so:15,some:[14,159],span:[161,167],special:3,specif:21,spiral:11,split:2,spot:7,state:167,statist:154,statsforecastautoarima:119,statsforecastautoc:120,statsforecastautoet:121,statsforecastautotheta:122,step:11,stop:167,store:167,sub:167,subsequ:13,summari:161,sun:7,sunspot:[5,6],support:[161,163,164,167],system:11,tabl:158,target:[21,167],tbat:123,tcn:18,tempor:[1,6,14,79,124,125],tfm:167,tft:[1,14,79,125],tftmodel:[16,79],theta:[127,159],thi:[2,167],threshold:36,tide:[1,128],time:[0,1,2,3,13,15,16,52,54,56,58,128,154,155,158,161,166,167],timeseri:[1,2,3,4,16,19,134,137,159,166,167],tl:161,toi:159,top:167,topic:[0,158],torch:[164,167],tourism:17,tpu:164,traffic:2,train:[1,2,4,14,15,20,138,140,141,143,159,167],transfer:[1,15],transform:[1,3,4,7,14,16,60,61,62,63,64,65,67,71,72,79,105,125,130],tree:21,tune:[165,167],tutori:1,two:159,type:159,uncertainti:163,up:[3,18],us:[2,3,11,12,15,16,17,18,20,21,159,161,163,164,165,166,167],usag:[0,156,158],user:160,util:[50,135,151,152,155,156,157],valid:[2,4,5,14,159,167],valu:[68,151,159],variabl:[9,10],varima:131,visual:[13,21],vs:166,wait:2,warp:[1,13,52,54],wassersteinscor:49,wave:[4,12],we:18,what:161,when:167,white:12,window:[13,55,72],without:16,word:[2,159],wrapper:21,xgboost:132,your:167}}) \ No newline at end of file +Search.setIndex({docnames:["README","examples","examples/01-multi-time-series-and-covariates","examples/02-data-processing","examples/03-FFT-examples","examples/04-RNN-examples","examples/05-TCN-examples","examples/06-Transformer-examples","examples/07-NBEATS-examples","examples/08-DeepAR-examples","examples/09-DeepTCN-examples","examples/10-Kalman-filter-examples","examples/11-GP-filter-examples","examples/12-Dynamic-Time-Warping-example","examples/13-TFT-examples","examples/14-transfer-learning","examples/15-static-covariates","examples/16-hierarchical-reconciliation","examples/17-hyperparameter-optimization","examples/18-TiDE-examples","examples/19-EnsembleModel-examples","examples/20-RegressionModel-examples","generated_api/darts","generated_api/darts.ad","generated_api/darts.ad.aggregators","generated_api/darts.ad.aggregators.aggregators","generated_api/darts.ad.aggregators.and_aggregator","generated_api/darts.ad.aggregators.ensemble_sklearn_aggregator","generated_api/darts.ad.aggregators.or_aggregator","generated_api/darts.ad.anomaly_model","generated_api/darts.ad.anomaly_model.anomaly_model","generated_api/darts.ad.anomaly_model.filtering_am","generated_api/darts.ad.anomaly_model.forecasting_am","generated_api/darts.ad.detectors","generated_api/darts.ad.detectors.detectors","generated_api/darts.ad.detectors.quantile_detector","generated_api/darts.ad.detectors.threshold_detector","generated_api/darts.ad.scorers","generated_api/darts.ad.scorers.difference_scorer","generated_api/darts.ad.scorers.kmeans_scorer","generated_api/darts.ad.scorers.nll_cauchy_scorer","generated_api/darts.ad.scorers.nll_exponential_scorer","generated_api/darts.ad.scorers.nll_gamma_scorer","generated_api/darts.ad.scorers.nll_gaussian_scorer","generated_api/darts.ad.scorers.nll_laplace_scorer","generated_api/darts.ad.scorers.nll_poisson_scorer","generated_api/darts.ad.scorers.norm_scorer","generated_api/darts.ad.scorers.pyod_scorer","generated_api/darts.ad.scorers.scorers","generated_api/darts.ad.scorers.wasserstein_scorer","generated_api/darts.ad.utils","generated_api/darts.dataprocessing","generated_api/darts.dataprocessing.dtw","generated_api/darts.dataprocessing.dtw.cost_matrix","generated_api/darts.dataprocessing.dtw.dtw","generated_api/darts.dataprocessing.dtw.window","generated_api/darts.dataprocessing.encoders","generated_api/darts.dataprocessing.encoders.encoder_base","generated_api/darts.dataprocessing.encoders.encoders","generated_api/darts.dataprocessing.pipeline","generated_api/darts.dataprocessing.transformers","generated_api/darts.dataprocessing.transformers.base_data_transformer","generated_api/darts.dataprocessing.transformers.boxcox","generated_api/darts.dataprocessing.transformers.diff","generated_api/darts.dataprocessing.transformers.fittable_data_transformer","generated_api/darts.dataprocessing.transformers.invertible_data_transformer","generated_api/darts.dataprocessing.transformers.mappers","generated_api/darts.dataprocessing.transformers.midas","generated_api/darts.dataprocessing.transformers.missing_values_filler","generated_api/darts.dataprocessing.transformers.reconciliation","generated_api/darts.dataprocessing.transformers.scaler","generated_api/darts.dataprocessing.transformers.static_covariates_transformer","generated_api/darts.dataprocessing.transformers.window_transformer","generated_api/darts.datasets","generated_api/darts.datasets.dataset_loaders","generated_api/darts.explainability","generated_api/darts.explainability.explainability","generated_api/darts.explainability.explainability_result","generated_api/darts.explainability.shap_explainer","generated_api/darts.explainability.tft_explainer","generated_api/darts.explainability.utils","generated_api/darts.metrics","generated_api/darts.metrics.metrics","generated_api/darts.models","generated_api/darts.models.components","generated_api/darts.models.components.feed_forward","generated_api/darts.models.components.glu_variants","generated_api/darts.models.components.layer_norm_variants","generated_api/darts.models.components.statsforecast_utils","generated_api/darts.models.components.transformer","generated_api/darts.models.filtering","generated_api/darts.models.filtering.filtering_model","generated_api/darts.models.filtering.gaussian_process_filter","generated_api/darts.models.filtering.kalman_filter","generated_api/darts.models.filtering.moving_average_filter","generated_api/darts.models.forecasting","generated_api/darts.models.forecasting.arima","generated_api/darts.models.forecasting.auto_arima","generated_api/darts.models.forecasting.baselines","generated_api/darts.models.forecasting.block_rnn_model","generated_api/darts.models.forecasting.catboost_model","generated_api/darts.models.forecasting.croston","generated_api/darts.models.forecasting.dlinear","generated_api/darts.models.forecasting.ensemble_model","generated_api/darts.models.forecasting.exponential_smoothing","generated_api/darts.models.forecasting.fft","generated_api/darts.models.forecasting.forecasting_model","generated_api/darts.models.forecasting.kalman_forecaster","generated_api/darts.models.forecasting.lgbm","generated_api/darts.models.forecasting.linear_regression_model","generated_api/darts.models.forecasting.nbeats","generated_api/darts.models.forecasting.nhits","generated_api/darts.models.forecasting.nlinear","generated_api/darts.models.forecasting.pl_forecasting_module","generated_api/darts.models.forecasting.prophet_model","generated_api/darts.models.forecasting.random_forest","generated_api/darts.models.forecasting.regression_ensemble_model","generated_api/darts.models.forecasting.regression_model","generated_api/darts.models.forecasting.rnn_model","generated_api/darts.models.forecasting.sf_auto_arima","generated_api/darts.models.forecasting.sf_auto_ces","generated_api/darts.models.forecasting.sf_auto_ets","generated_api/darts.models.forecasting.sf_auto_theta","generated_api/darts.models.forecasting.tbats_model","generated_api/darts.models.forecasting.tcn_model","generated_api/darts.models.forecasting.tft_model","generated_api/darts.models.forecasting.tft_submodels","generated_api/darts.models.forecasting.theta","generated_api/darts.models.forecasting.tide_model","generated_api/darts.models.forecasting.torch_forecasting_model","generated_api/darts.models.forecasting.transformer_model","generated_api/darts.models.forecasting.varima","generated_api/darts.models.forecasting.xgboost","generated_api/darts.models.utils","generated_api/darts.timeseries","generated_api/darts.utils","generated_api/darts.utils.callbacks","generated_api/darts.utils.data","generated_api/darts.utils.data.horizon_based_dataset","generated_api/darts.utils.data.inference_dataset","generated_api/darts.utils.data.sequential_dataset","generated_api/darts.utils.data.shifted_dataset","generated_api/darts.utils.data.tabularization","generated_api/darts.utils.data.training_dataset","generated_api/darts.utils.data.utils","generated_api/darts.utils.historical_forecasts","generated_api/darts.utils.historical_forecasts.optimized_historical_forecasts_regression","generated_api/darts.utils.historical_forecasts.optimized_historical_forecasts_torch","generated_api/darts.utils.historical_forecasts.utils","generated_api/darts.utils.likelihood_models","generated_api/darts.utils.losses","generated_api/darts.utils.missing_values","generated_api/darts.utils.model_selection","generated_api/darts.utils.multioutput","generated_api/darts.utils.statistics","generated_api/darts.utils.timeseries_generation","generated_api/darts.utils.torch","generated_api/darts.utils.utils","index","quickstart/00-quickstart","userguide","userguide/covariates","userguide/faq","userguide/forecasting_overview","userguide/gpu_and_tpu_usage","userguide/hyperparameter_optimization","userguide/timeseries","userguide/torch_forecasting_models"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":4,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.todo":2,"sphinx.ext.viewcode":1,nbsphinx:3,sphinx:56},filenames:["README.rst","examples.rst","examples/01-multi-time-series-and-covariates.ipynb","examples/02-data-processing.ipynb","examples/03-FFT-examples.ipynb","examples/04-RNN-examples.ipynb","examples/05-TCN-examples.ipynb","examples/06-Transformer-examples.ipynb","examples/07-NBEATS-examples.ipynb","examples/08-DeepAR-examples.ipynb","examples/09-DeepTCN-examples.ipynb","examples/10-Kalman-filter-examples.ipynb","examples/11-GP-filter-examples.ipynb","examples/12-Dynamic-Time-Warping-example.ipynb","examples/13-TFT-examples.ipynb","examples/14-transfer-learning.ipynb","examples/15-static-covariates.ipynb","examples/16-hierarchical-reconciliation.ipynb","examples/17-hyperparameter-optimization.ipynb","examples/18-TiDE-examples.ipynb","examples/19-EnsembleModel-examples.ipynb","examples/20-RegressionModel-examples.ipynb","generated_api/darts.rst","generated_api/darts.ad.rst","generated_api/darts.ad.aggregators.rst","generated_api/darts.ad.aggregators.aggregators.rst","generated_api/darts.ad.aggregators.and_aggregator.rst","generated_api/darts.ad.aggregators.ensemble_sklearn_aggregator.rst","generated_api/darts.ad.aggregators.or_aggregator.rst","generated_api/darts.ad.anomaly_model.rst","generated_api/darts.ad.anomaly_model.anomaly_model.rst","generated_api/darts.ad.anomaly_model.filtering_am.rst","generated_api/darts.ad.anomaly_model.forecasting_am.rst","generated_api/darts.ad.detectors.rst","generated_api/darts.ad.detectors.detectors.rst","generated_api/darts.ad.detectors.quantile_detector.rst","generated_api/darts.ad.detectors.threshold_detector.rst","generated_api/darts.ad.scorers.rst","generated_api/darts.ad.scorers.difference_scorer.rst","generated_api/darts.ad.scorers.kmeans_scorer.rst","generated_api/darts.ad.scorers.nll_cauchy_scorer.rst","generated_api/darts.ad.scorers.nll_exponential_scorer.rst","generated_api/darts.ad.scorers.nll_gamma_scorer.rst","generated_api/darts.ad.scorers.nll_gaussian_scorer.rst","generated_api/darts.ad.scorers.nll_laplace_scorer.rst","generated_api/darts.ad.scorers.nll_poisson_scorer.rst","generated_api/darts.ad.scorers.norm_scorer.rst","generated_api/darts.ad.scorers.pyod_scorer.rst","generated_api/darts.ad.scorers.scorers.rst","generated_api/darts.ad.scorers.wasserstein_scorer.rst","generated_api/darts.ad.utils.rst","generated_api/darts.dataprocessing.rst","generated_api/darts.dataprocessing.dtw.rst","generated_api/darts.dataprocessing.dtw.cost_matrix.rst","generated_api/darts.dataprocessing.dtw.dtw.rst","generated_api/darts.dataprocessing.dtw.window.rst","generated_api/darts.dataprocessing.encoders.rst","generated_api/darts.dataprocessing.encoders.encoder_base.rst","generated_api/darts.dataprocessing.encoders.encoders.rst","generated_api/darts.dataprocessing.pipeline.rst","generated_api/darts.dataprocessing.transformers.rst","generated_api/darts.dataprocessing.transformers.base_data_transformer.rst","generated_api/darts.dataprocessing.transformers.boxcox.rst","generated_api/darts.dataprocessing.transformers.diff.rst","generated_api/darts.dataprocessing.transformers.fittable_data_transformer.rst","generated_api/darts.dataprocessing.transformers.invertible_data_transformer.rst","generated_api/darts.dataprocessing.transformers.mappers.rst","generated_api/darts.dataprocessing.transformers.midas.rst","generated_api/darts.dataprocessing.transformers.missing_values_filler.rst","generated_api/darts.dataprocessing.transformers.reconciliation.rst","generated_api/darts.dataprocessing.transformers.scaler.rst","generated_api/darts.dataprocessing.transformers.static_covariates_transformer.rst","generated_api/darts.dataprocessing.transformers.window_transformer.rst","generated_api/darts.datasets.rst","generated_api/darts.datasets.dataset_loaders.rst","generated_api/darts.explainability.rst","generated_api/darts.explainability.explainability.rst","generated_api/darts.explainability.explainability_result.rst","generated_api/darts.explainability.shap_explainer.rst","generated_api/darts.explainability.tft_explainer.rst","generated_api/darts.explainability.utils.rst","generated_api/darts.metrics.rst","generated_api/darts.metrics.metrics.rst","generated_api/darts.models.rst","generated_api/darts.models.components.rst","generated_api/darts.models.components.feed_forward.rst","generated_api/darts.models.components.glu_variants.rst","generated_api/darts.models.components.layer_norm_variants.rst","generated_api/darts.models.components.statsforecast_utils.rst","generated_api/darts.models.components.transformer.rst","generated_api/darts.models.filtering.rst","generated_api/darts.models.filtering.filtering_model.rst","generated_api/darts.models.filtering.gaussian_process_filter.rst","generated_api/darts.models.filtering.kalman_filter.rst","generated_api/darts.models.filtering.moving_average_filter.rst","generated_api/darts.models.forecasting.rst","generated_api/darts.models.forecasting.arima.rst","generated_api/darts.models.forecasting.auto_arima.rst","generated_api/darts.models.forecasting.baselines.rst","generated_api/darts.models.forecasting.block_rnn_model.rst","generated_api/darts.models.forecasting.catboost_model.rst","generated_api/darts.models.forecasting.croston.rst","generated_api/darts.models.forecasting.dlinear.rst","generated_api/darts.models.forecasting.ensemble_model.rst","generated_api/darts.models.forecasting.exponential_smoothing.rst","generated_api/darts.models.forecasting.fft.rst","generated_api/darts.models.forecasting.forecasting_model.rst","generated_api/darts.models.forecasting.kalman_forecaster.rst","generated_api/darts.models.forecasting.lgbm.rst","generated_api/darts.models.forecasting.linear_regression_model.rst","generated_api/darts.models.forecasting.nbeats.rst","generated_api/darts.models.forecasting.nhits.rst","generated_api/darts.models.forecasting.nlinear.rst","generated_api/darts.models.forecasting.pl_forecasting_module.rst","generated_api/darts.models.forecasting.prophet_model.rst","generated_api/darts.models.forecasting.random_forest.rst","generated_api/darts.models.forecasting.regression_ensemble_model.rst","generated_api/darts.models.forecasting.regression_model.rst","generated_api/darts.models.forecasting.rnn_model.rst","generated_api/darts.models.forecasting.sf_auto_arima.rst","generated_api/darts.models.forecasting.sf_auto_ces.rst","generated_api/darts.models.forecasting.sf_auto_ets.rst","generated_api/darts.models.forecasting.sf_auto_theta.rst","generated_api/darts.models.forecasting.tbats_model.rst","generated_api/darts.models.forecasting.tcn_model.rst","generated_api/darts.models.forecasting.tft_model.rst","generated_api/darts.models.forecasting.tft_submodels.rst","generated_api/darts.models.forecasting.theta.rst","generated_api/darts.models.forecasting.tide_model.rst","generated_api/darts.models.forecasting.torch_forecasting_model.rst","generated_api/darts.models.forecasting.transformer_model.rst","generated_api/darts.models.forecasting.varima.rst","generated_api/darts.models.forecasting.xgboost.rst","generated_api/darts.models.utils.rst","generated_api/darts.timeseries.rst","generated_api/darts.utils.rst","generated_api/darts.utils.callbacks.rst","generated_api/darts.utils.data.rst","generated_api/darts.utils.data.horizon_based_dataset.rst","generated_api/darts.utils.data.inference_dataset.rst","generated_api/darts.utils.data.sequential_dataset.rst","generated_api/darts.utils.data.shifted_dataset.rst","generated_api/darts.utils.data.tabularization.rst","generated_api/darts.utils.data.training_dataset.rst","generated_api/darts.utils.data.utils.rst","generated_api/darts.utils.historical_forecasts.rst","generated_api/darts.utils.historical_forecasts.optimized_historical_forecasts_regression.rst","generated_api/darts.utils.historical_forecasts.optimized_historical_forecasts_torch.rst","generated_api/darts.utils.historical_forecasts.utils.rst","generated_api/darts.utils.likelihood_models.rst","generated_api/darts.utils.losses.rst","generated_api/darts.utils.missing_values.rst","generated_api/darts.utils.model_selection.rst","generated_api/darts.utils.multioutput.rst","generated_api/darts.utils.statistics.rst","generated_api/darts.utils.timeseries_generation.rst","generated_api/darts.utils.torch.rst","generated_api/darts.utils.utils.rst","index.rst","quickstart/00-quickstart.ipynb","userguide.rst","userguide/covariates.rst","userguide/faq.rst","userguide/forecasting_overview.rst","userguide/gpu_and_tpu_usage.rst","userguide/hyperparameter_optimization.rst","userguide/timeseries.rst","userguide/torch_forecasting_models.rst"],objects:{"":[[22,0,0,"-","darts"]],"darts.ad":[[24,0,0,"-","aggregators"],[29,0,0,"-","anomaly_model"],[33,0,0,"-","detectors"],[37,0,0,"-","scorers"],[50,0,0,"-","utils"]],"darts.ad.aggregators":[[25,0,0,"-","aggregators"],[26,0,0,"-","and_aggregator"],[27,0,0,"-","ensemble_sklearn_aggregator"],[28,0,0,"-","or_aggregator"]],"darts.ad.aggregators.aggregators":[[25,1,1,"","Aggregator"],[25,1,1,"","FittableAggregator"],[25,1,1,"","NonFittableAggregator"]],"darts.ad.aggregators.aggregators.Aggregator":[[25,2,1,"","eval_accuracy"],[25,2,1,"","predict"]],"darts.ad.aggregators.aggregators.FittableAggregator":[[25,2,1,"","eval_accuracy"],[25,2,1,"","fit"],[25,2,1,"","predict"]],"darts.ad.aggregators.aggregators.NonFittableAggregator":[[25,2,1,"","eval_accuracy"],[25,2,1,"","predict"]],"darts.ad.aggregators.and_aggregator":[[26,1,1,"","AndAggregator"]],"darts.ad.aggregators.and_aggregator.AndAggregator":[[26,2,1,"","eval_accuracy"],[26,2,1,"","predict"]],"darts.ad.aggregators.ensemble_sklearn_aggregator":[[27,1,1,"","EnsembleSklearnAggregator"]],"darts.ad.aggregators.ensemble_sklearn_aggregator.EnsembleSklearnAggregator":[[27,2,1,"","eval_accuracy"],[27,2,1,"","fit"],[27,2,1,"","predict"]],"darts.ad.aggregators.or_aggregator":[[28,1,1,"","OrAggregator"]],"darts.ad.aggregators.or_aggregator.OrAggregator":[[28,2,1,"","eval_accuracy"],[28,2,1,"","predict"]],"darts.ad.anomaly_model":[[30,0,0,"-","anomaly_model"],[31,0,0,"-","filtering_am"],[32,0,0,"-","forecasting_am"]],"darts.ad.anomaly_model.filtering_am":[[31,1,1,"","FilteringAnomalyModel"]],"darts.ad.anomaly_model.filtering_am.FilteringAnomalyModel":[[31,2,1,"","eval_accuracy"],[31,2,1,"","fit"],[31,2,1,"","score"],[31,2,1,"","show_anomalies"]],"darts.ad.anomaly_model.forecasting_am":[[32,1,1,"","ForecastingAnomalyModel"]],"darts.ad.anomaly_model.forecasting_am.ForecastingAnomalyModel":[[32,2,1,"","eval_accuracy"],[32,2,1,"","fit"],[32,2,1,"","score"],[32,2,1,"","show_anomalies"]],"darts.ad.detectors":[[34,0,0,"-","detectors"],[35,0,0,"-","quantile_detector"],[36,0,0,"-","threshold_detector"]],"darts.ad.detectors.detectors":[[34,1,1,"","Detector"],[34,1,1,"","FittableDetector"]],"darts.ad.detectors.detectors.Detector":[[34,2,1,"","detect"],[34,2,1,"","eval_accuracy"]],"darts.ad.detectors.detectors.FittableDetector":[[34,2,1,"","detect"],[34,2,1,"","eval_accuracy"],[34,2,1,"","fit"],[34,2,1,"","fit_detect"]],"darts.ad.detectors.quantile_detector":[[35,1,1,"","QuantileDetector"]],"darts.ad.detectors.quantile_detector.QuantileDetector":[[35,2,1,"","detect"],[35,2,1,"","eval_accuracy"],[35,2,1,"","fit"],[35,2,1,"","fit_detect"],[35,3,1,"","high_threshold"],[35,3,1,"","low_threshold"]],"darts.ad.detectors.threshold_detector":[[36,1,1,"","ThresholdDetector"]],"darts.ad.detectors.threshold_detector.ThresholdDetector":[[36,2,1,"","detect"],[36,2,1,"","eval_accuracy"]],"darts.ad.scorers":[[38,0,0,"-","difference_scorer"],[39,0,0,"-","kmeans_scorer"],[40,0,0,"-","nll_cauchy_scorer"],[41,0,0,"-","nll_exponential_scorer"],[42,0,0,"-","nll_gamma_scorer"],[43,0,0,"-","nll_gaussian_scorer"],[44,0,0,"-","nll_laplace_scorer"],[45,0,0,"-","nll_poisson_scorer"],[46,0,0,"-","norm_scorer"],[47,0,0,"-","pyod_scorer"],[48,0,0,"-","scorers"],[49,0,0,"-","wasserstein_scorer"]],"darts.ad.scorers.difference_scorer":[[38,1,1,"","DifferenceScorer"]],"darts.ad.scorers.difference_scorer.DifferenceScorer":[[38,2,1,"","eval_accuracy_from_prediction"],[38,4,1,"","is_probabilistic"],[38,2,1,"","score_from_prediction"],[38,2,1,"","show_anomalies_from_prediction"]],"darts.ad.scorers.kmeans_scorer":[[39,1,1,"","KMeansScorer"]],"darts.ad.scorers.kmeans_scorer.KMeansScorer":[[39,2,1,"","check_if_fit_called"],[39,2,1,"","eval_accuracy"],[39,2,1,"","eval_accuracy_from_prediction"],[39,2,1,"","fit"],[39,2,1,"","fit_from_prediction"],[39,4,1,"","is_probabilistic"],[39,2,1,"","score"],[39,2,1,"","score_from_prediction"],[39,2,1,"","show_anomalies"],[39,2,1,"","show_anomalies_from_prediction"]],"darts.ad.scorers.nll_cauchy_scorer":[[40,1,1,"","CauchyNLLScorer"]],"darts.ad.scorers.nll_cauchy_scorer.CauchyNLLScorer":[[40,2,1,"","eval_accuracy_from_prediction"],[40,4,1,"","is_probabilistic"],[40,2,1,"","score_from_prediction"],[40,2,1,"","show_anomalies_from_prediction"]],"darts.ad.scorers.nll_exponential_scorer":[[41,1,1,"","ExponentialNLLScorer"]],"darts.ad.scorers.nll_exponential_scorer.ExponentialNLLScorer":[[41,2,1,"","eval_accuracy_from_prediction"],[41,4,1,"","is_probabilistic"],[41,2,1,"","score_from_prediction"],[41,2,1,"","show_anomalies_from_prediction"]],"darts.ad.scorers.nll_gamma_scorer":[[42,1,1,"","GammaNLLScorer"]],"darts.ad.scorers.nll_gamma_scorer.GammaNLLScorer":[[42,2,1,"","eval_accuracy_from_prediction"],[42,4,1,"","is_probabilistic"],[42,2,1,"","score_from_prediction"],[42,2,1,"","show_anomalies_from_prediction"]],"darts.ad.scorers.nll_gaussian_scorer":[[43,1,1,"","GaussianNLLScorer"]],"darts.ad.scorers.nll_gaussian_scorer.GaussianNLLScorer":[[43,2,1,"","eval_accuracy_from_prediction"],[43,4,1,"","is_probabilistic"],[43,2,1,"","score_from_prediction"],[43,2,1,"","show_anomalies_from_prediction"]],"darts.ad.scorers.nll_laplace_scorer":[[44,1,1,"","LaplaceNLLScorer"]],"darts.ad.scorers.nll_laplace_scorer.LaplaceNLLScorer":[[44,2,1,"","eval_accuracy_from_prediction"],[44,4,1,"","is_probabilistic"],[44,2,1,"","score_from_prediction"],[44,2,1,"","show_anomalies_from_prediction"]],"darts.ad.scorers.nll_poisson_scorer":[[45,1,1,"","PoissonNLLScorer"]],"darts.ad.scorers.nll_poisson_scorer.PoissonNLLScorer":[[45,2,1,"","eval_accuracy_from_prediction"],[45,4,1,"","is_probabilistic"],[45,2,1,"","score_from_prediction"],[45,2,1,"","show_anomalies_from_prediction"]],"darts.ad.scorers.norm_scorer":[[46,1,1,"","NormScorer"]],"darts.ad.scorers.norm_scorer.NormScorer":[[46,2,1,"","eval_accuracy_from_prediction"],[46,4,1,"","is_probabilistic"],[46,2,1,"","score_from_prediction"],[46,2,1,"","show_anomalies_from_prediction"]],"darts.ad.scorers.pyod_scorer":[[47,1,1,"","PyODScorer"]],"darts.ad.scorers.pyod_scorer.PyODScorer":[[47,2,1,"","check_if_fit_called"],[47,2,1,"","eval_accuracy"],[47,2,1,"","eval_accuracy_from_prediction"],[47,2,1,"","fit"],[47,2,1,"","fit_from_prediction"],[47,4,1,"","is_probabilistic"],[47,2,1,"","score"],[47,2,1,"","score_from_prediction"],[47,2,1,"","show_anomalies"],[47,2,1,"","show_anomalies_from_prediction"]],"darts.ad.scorers.scorers":[[48,1,1,"","AnomalyScorer"],[48,1,1,"","FittableAnomalyScorer"],[48,1,1,"","NLLScorer"],[48,1,1,"","NonFittableAnomalyScorer"]],"darts.ad.scorers.scorers.AnomalyScorer":[[48,2,1,"","eval_accuracy_from_prediction"],[48,4,1,"","is_probabilistic"],[48,2,1,"","score_from_prediction"],[48,2,1,"","show_anomalies_from_prediction"]],"darts.ad.scorers.scorers.FittableAnomalyScorer":[[48,2,1,"","check_if_fit_called"],[48,2,1,"","eval_accuracy"],[48,2,1,"","eval_accuracy_from_prediction"],[48,2,1,"","fit"],[48,2,1,"","fit_from_prediction"],[48,4,1,"","is_probabilistic"],[48,2,1,"","score"],[48,2,1,"","score_from_prediction"],[48,2,1,"","show_anomalies"],[48,2,1,"","show_anomalies_from_prediction"]],"darts.ad.scorers.scorers.NLLScorer":[[48,2,1,"","eval_accuracy_from_prediction"],[48,4,1,"","is_probabilistic"],[48,2,1,"","score_from_prediction"],[48,2,1,"","show_anomalies_from_prediction"]],"darts.ad.scorers.scorers.NonFittableAnomalyScorer":[[48,2,1,"","eval_accuracy_from_prediction"],[48,4,1,"","is_probabilistic"],[48,2,1,"","score_from_prediction"],[48,2,1,"","show_anomalies_from_prediction"]],"darts.ad.scorers.wasserstein_scorer":[[49,1,1,"","WassersteinScorer"]],"darts.ad.scorers.wasserstein_scorer.WassersteinScorer":[[49,2,1,"","check_if_fit_called"],[49,2,1,"","eval_accuracy"],[49,2,1,"","eval_accuracy_from_prediction"],[49,2,1,"","fit"],[49,2,1,"","fit_from_prediction"],[49,4,1,"","is_probabilistic"],[49,2,1,"","score"],[49,2,1,"","score_from_prediction"],[49,2,1,"","show_anomalies"],[49,2,1,"","show_anomalies_from_prediction"]],"darts.ad.utils":[[50,5,1,"","eval_accuracy_from_binary_prediction"],[50,5,1,"","eval_accuracy_from_scores"],[50,5,1,"","show_anomalies_from_scores"]],"darts.dataprocessing":[[52,0,0,"-","dtw"],[56,0,0,"-","encoders"],[59,0,0,"-","pipeline"],[60,0,0,"-","transformers"]],"darts.dataprocessing.dtw":[[53,0,0,"-","cost_matrix"],[54,0,0,"-","dtw"],[55,0,0,"-","window"]],"darts.dataprocessing.dtw.cost_matrix":[[53,1,1,"","CostMatrix"],[53,1,1,"","DenseCostMatrix"],[53,1,1,"","SparseCostMatrix"]],"darts.dataprocessing.dtw.cost_matrix.CostMatrix":[[53,2,1,"","fill"],[53,3,1,"","m"],[53,3,1,"","n"],[53,2,1,"","to_dense"]],"darts.dataprocessing.dtw.cost_matrix.DenseCostMatrix":[[53,3,1,"","ALIGNED"],[53,3,1,"","BEHAVED"],[53,3,1,"","CARRAY"],[53,3,1,"","C_CONTIGUOUS"],[53,3,1,"","FARRAY"],[53,3,1,"","FNC"],[53,3,1,"","FORC"],[53,3,1,"","F_CONTIGUOUS"],[53,3,1,"","OWNDATA"],[53,3,1,"","T"],[53,3,1,"","WRITEABLE"],[53,3,1,"","WRITEBACKIFCOPY"],[53,2,1,"","all"],[53,2,1,"","any"],[53,2,1,"","argmax"],[53,2,1,"","argmin"],[53,2,1,"","argpartition"],[53,2,1,"","argsort"],[53,2,1,"","astype"],[53,3,1,"","base"],[53,2,1,"","byteswap"],[53,2,1,"","choose"],[53,2,1,"","clip"],[53,2,1,"","compress"],[53,2,1,"","conj"],[53,2,1,"","conjugate"],[53,2,1,"","copy"],[53,3,1,"","ctypes"],[53,2,1,"","cumprod"],[53,2,1,"","cumsum"],[53,3,1,"","data"],[53,2,1,"","diagonal"],[53,2,1,"","dot"],[53,3,1,"","dtype"],[53,2,1,"","dump"],[53,2,1,"","dumps"],[53,2,1,"","fill"],[53,3,1,"","flags"],[53,3,1,"","flat"],[53,2,1,"","flatten"],[53,2,1,"","getfield"],[53,3,1,"","imag"],[53,2,1,"","item"],[53,2,1,"","itemset"],[53,3,1,"","itemsize"],[53,3,1,"","m"],[53,2,1,"","max"],[53,2,1,"","mean"],[53,2,1,"","min"],[53,3,1,"","n"],[53,3,1,"","nbytes"],[53,3,1,"","ndim"],[53,2,1,"","newbyteorder"],[53,2,1,"","nonzero"],[53,2,1,"","partition"],[53,2,1,"","prod"],[53,2,1,"","ptp"],[53,2,1,"","put"],[53,2,1,"","ravel"],[53,3,1,"","real"],[53,2,1,"","repeat"],[53,2,1,"","reshape"],[53,2,1,"","resize"],[53,2,1,"","round"],[53,2,1,"","searchsorted"],[53,2,1,"","setfield"],[53,2,1,"","setflags"],[53,3,1,"","shape"],[53,3,1,"","size"],[53,2,1,"","sort"],[53,2,1,"","squeeze"],[53,2,1,"","std"],[53,3,1,"","strides"],[53,2,1,"","sum"],[53,2,1,"","swapaxes"],[53,2,1,"","take"],[53,2,1,"","to_dense"],[53,2,1,"","tobytes"],[53,2,1,"","tofile"],[53,2,1,"","tolist"],[53,2,1,"","tostring"],[53,2,1,"","trace"],[53,2,1,"","transpose"],[53,2,1,"","var"],[53,2,1,"","view"]],"darts.dataprocessing.dtw.cost_matrix.SparseCostMatrix":[[53,2,1,"","fill"],[53,3,1,"","m"],[53,3,1,"","n"],[53,2,1,"","to_dense"]],"darts.dataprocessing.dtw.dtw":[[54,1,1,"","DTWAlignment"],[54,5,1,"","dtw"]],"darts.dataprocessing.dtw.dtw.DTWAlignment":[[54,3,1,"id0","cost"],[54,2,1,"","distance"],[54,3,1,"id1","m"],[54,2,1,"","mean_distance"],[54,3,1,"id2","n"],[54,2,1,"","path"],[54,2,1,"","plot"],[54,2,1,"","plot_alignment"],[54,3,1,"id3","series1"],[54,3,1,"id4","series2"],[54,2,1,"","warped"]],"darts.dataprocessing.dtw.window":[[55,1,1,"","CRWindow"],[55,1,1,"","Itakura"],[55,1,1,"","NoWindow"],[55,1,1,"","SakoeChiba"],[55,1,1,"","Window"],[55,5,1,"","gtz"]],"darts.dataprocessing.dtw.window.CRWindow":[[55,2,1,"","add"],[55,2,1,"","add_range"],[55,2,1,"","column_index"],[55,2,1,"","column_length"],[55,2,1,"","column_lengths"],[55,3,1,"","column_ranges"],[55,2,1,"","init_size"],[55,3,1,"","length"],[55,3,1,"","m"],[55,3,1,"","n"]],"darts.dataprocessing.dtw.window.Itakura":[[55,2,1,"","add"],[55,2,1,"","add_range"],[55,2,1,"","column_index"],[55,2,1,"","column_length"],[55,2,1,"","column_lengths"],[55,3,1,"","column_ranges"],[55,2,1,"","init_size"],[55,3,1,"","length"],[55,3,1,"","m"],[55,3,1,"","n"]],"darts.dataprocessing.dtw.window.NoWindow":[[55,2,1,"","column_index"],[55,2,1,"","column_length"],[55,2,1,"","column_lengths"],[55,2,1,"","init_size"],[55,3,1,"","m"],[55,3,1,"","n"]],"darts.dataprocessing.dtw.window.SakoeChiba":[[55,2,1,"","add"],[55,2,1,"","add_range"],[55,2,1,"","column_index"],[55,2,1,"","column_length"],[55,2,1,"","column_lengths"],[55,3,1,"","column_ranges"],[55,2,1,"","init_size"],[55,3,1,"","length"],[55,3,1,"","m"],[55,3,1,"","n"]],"darts.dataprocessing.dtw.window.Window":[[55,2,1,"","column_index"],[55,2,1,"","column_length"],[55,2,1,"","column_lengths"],[55,2,1,"","init_size"],[55,3,1,"","m"],[55,3,1,"","n"]],"darts.dataprocessing.encoders":[[57,0,0,"-","encoder_base"],[58,0,0,"-","encoders"]],"darts.dataprocessing.encoders.encoder_base":[[57,1,1,"","CovariatesIndexGenerator"],[57,1,1,"","Encoder"],[57,1,1,"","FutureCovariatesIndexGenerator"],[57,1,1,"","PastCovariatesIndexGenerator"],[57,1,1,"","SequentialEncoderTransformer"],[57,1,1,"","SingleEncoder"]],"darts.dataprocessing.encoders.encoder_base.CovariatesIndexGenerator":[[57,4,1,"","base_component_name"],[57,2,1,"","generate_inference_idx"],[57,2,1,"","generate_train_idx"],[57,2,1,"","generate_train_inference_idx"]],"darts.dataprocessing.encoders.encoder_base.Encoder":[[57,2,1,"","encode_inference"],[57,2,1,"","encode_train"],[57,2,1,"","encode_train_inference"],[57,4,1,"","fit_called"],[57,4,1,"","requires_fit"]],"darts.dataprocessing.encoders.encoder_base.FutureCovariatesIndexGenerator":[[57,4,1,"","base_component_name"],[57,2,1,"","generate_inference_idx"],[57,2,1,"","generate_train_idx"],[57,2,1,"","generate_train_inference_idx"]],"darts.dataprocessing.encoders.encoder_base.PastCovariatesIndexGenerator":[[57,4,1,"","base_component_name"],[57,2,1,"","generate_inference_idx"],[57,2,1,"","generate_train_idx"],[57,2,1,"","generate_train_inference_idx"]],"darts.dataprocessing.encoders.encoder_base.SequentialEncoderTransformer":[[57,4,1,"","fit_called"],[57,2,1,"","transform"]],"darts.dataprocessing.encoders.encoder_base.SingleEncoder":[[57,4,1,"","accept_transformer"],[57,4,1,"","base_component_name"],[57,4,1,"","components"],[57,2,1,"","encode_inference"],[57,2,1,"","encode_train"],[57,2,1,"","encode_train_inference"],[57,4,1,"","encoding_n_components"],[57,4,1,"","fit_called"],[57,4,1,"","requires_fit"]],"darts.dataprocessing.encoders.encoders":[[58,1,1,"","CallableIndexEncoder"],[58,1,1,"","CyclicTemporalEncoder"],[58,1,1,"","DatetimeAttributeEncoder"],[58,1,1,"","FutureCallableIndexEncoder"],[58,1,1,"","FutureCyclicEncoder"],[58,1,1,"","FutureDatetimeAttributeEncoder"],[58,1,1,"","FutureIntegerIndexEncoder"],[58,1,1,"","IntegerIndexEncoder"],[58,1,1,"","PastCallableIndexEncoder"],[58,1,1,"","PastCyclicEncoder"],[58,1,1,"","PastDatetimeAttributeEncoder"],[58,1,1,"","PastIntegerIndexEncoder"],[58,1,1,"","SequentialEncoder"]],"darts.dataprocessing.encoders.encoders.CallableIndexEncoder":[[58,4,1,"","accept_transformer"],[58,4,1,"","base_component_name"],[58,4,1,"","components"],[58,2,1,"","encode_inference"],[58,2,1,"","encode_train"],[58,2,1,"","encode_train_inference"],[58,4,1,"","encoding_n_components"],[58,4,1,"","fit_called"],[58,4,1,"","requires_fit"]],"darts.dataprocessing.encoders.encoders.CyclicTemporalEncoder":[[58,4,1,"","accept_transformer"],[58,4,1,"","base_component_name"],[58,4,1,"","components"],[58,2,1,"","encode_inference"],[58,2,1,"","encode_train"],[58,2,1,"","encode_train_inference"],[58,4,1,"","encoding_n_components"],[58,4,1,"","fit_called"],[58,4,1,"","requires_fit"]],"darts.dataprocessing.encoders.encoders.DatetimeAttributeEncoder":[[58,4,1,"","accept_transformer"],[58,4,1,"","base_component_name"],[58,4,1,"","components"],[58,2,1,"","encode_inference"],[58,2,1,"","encode_train"],[58,2,1,"","encode_train_inference"],[58,4,1,"","encoding_n_components"],[58,4,1,"","fit_called"],[58,4,1,"","requires_fit"]],"darts.dataprocessing.encoders.encoders.FutureCallableIndexEncoder":[[58,4,1,"","accept_transformer"],[58,4,1,"","base_component_name"],[58,4,1,"","components"],[58,2,1,"","encode_inference"],[58,2,1,"","encode_train"],[58,2,1,"","encode_train_inference"],[58,4,1,"","encoding_n_components"],[58,4,1,"","fit_called"],[58,4,1,"","requires_fit"]],"darts.dataprocessing.encoders.encoders.FutureCyclicEncoder":[[58,4,1,"","accept_transformer"],[58,4,1,"","base_component_name"],[58,4,1,"","components"],[58,2,1,"","encode_inference"],[58,2,1,"","encode_train"],[58,2,1,"","encode_train_inference"],[58,4,1,"","encoding_n_components"],[58,4,1,"","fit_called"],[58,4,1,"","requires_fit"]],"darts.dataprocessing.encoders.encoders.FutureDatetimeAttributeEncoder":[[58,4,1,"","accept_transformer"],[58,4,1,"","base_component_name"],[58,4,1,"","components"],[58,2,1,"","encode_inference"],[58,2,1,"","encode_train"],[58,2,1,"","encode_train_inference"],[58,4,1,"","encoding_n_components"],[58,4,1,"","fit_called"],[58,4,1,"","requires_fit"]],"darts.dataprocessing.encoders.encoders.FutureIntegerIndexEncoder":[[58,4,1,"","accept_transformer"],[58,4,1,"","base_component_name"],[58,4,1,"","components"],[58,2,1,"","encode_inference"],[58,2,1,"","encode_train"],[58,2,1,"","encode_train_inference"],[58,4,1,"","encoding_n_components"],[58,4,1,"","fit_called"],[58,4,1,"","requires_fit"]],"darts.dataprocessing.encoders.encoders.IntegerIndexEncoder":[[58,4,1,"","accept_transformer"],[58,4,1,"","base_component_name"],[58,4,1,"","components"],[58,2,1,"","encode_inference"],[58,2,1,"","encode_train"],[58,2,1,"","encode_train_inference"],[58,4,1,"","encoding_n_components"],[58,4,1,"","fit_called"],[58,4,1,"","requires_fit"]],"darts.dataprocessing.encoders.encoders.PastCallableIndexEncoder":[[58,4,1,"","accept_transformer"],[58,4,1,"","base_component_name"],[58,4,1,"","components"],[58,2,1,"","encode_inference"],[58,2,1,"","encode_train"],[58,2,1,"","encode_train_inference"],[58,4,1,"","encoding_n_components"],[58,4,1,"","fit_called"],[58,4,1,"","requires_fit"]],"darts.dataprocessing.encoders.encoders.PastCyclicEncoder":[[58,4,1,"","accept_transformer"],[58,4,1,"","base_component_name"],[58,4,1,"","components"],[58,2,1,"","encode_inference"],[58,2,1,"","encode_train"],[58,2,1,"","encode_train_inference"],[58,4,1,"","encoding_n_components"],[58,4,1,"","fit_called"],[58,4,1,"","requires_fit"]],"darts.dataprocessing.encoders.encoders.PastDatetimeAttributeEncoder":[[58,4,1,"","accept_transformer"],[58,4,1,"","base_component_name"],[58,4,1,"","components"],[58,2,1,"","encode_inference"],[58,2,1,"","encode_train"],[58,2,1,"","encode_train_inference"],[58,4,1,"","encoding_n_components"],[58,4,1,"","fit_called"],[58,4,1,"","requires_fit"]],"darts.dataprocessing.encoders.encoders.PastIntegerIndexEncoder":[[58,4,1,"","accept_transformer"],[58,4,1,"","base_component_name"],[58,4,1,"","components"],[58,2,1,"","encode_inference"],[58,2,1,"","encode_train"],[58,2,1,"","encode_train_inference"],[58,4,1,"","encoding_n_components"],[58,4,1,"","fit_called"],[58,4,1,"","requires_fit"]],"darts.dataprocessing.encoders.encoders.SequentialEncoder":[[58,4,1,"","components"],[58,2,1,"","encode_inference"],[58,2,1,"","encode_train"],[58,2,1,"","encode_train_inference"],[58,4,1,"","encoder_map"],[58,4,1,"","encoders"],[58,4,1,"","encoding_n_components"],[58,4,1,"","fit_called"],[58,4,1,"","future_components"],[58,4,1,"","future_encoders"],[58,4,1,"","future_transformer"],[58,4,1,"","past_components"],[58,4,1,"","past_encoders"],[58,4,1,"","past_transformer"],[58,4,1,"","requires_fit"],[58,2,1,"","transformers"]],"darts.dataprocessing.pipeline":[[59,1,1,"","Pipeline"]],"darts.dataprocessing.pipeline.Pipeline":[[59,2,1,"","fit"],[59,2,1,"","fit_transform"],[59,2,1,"","inverse_transform"],[59,2,1,"","invertible"],[59,2,1,"","transform"]],"darts.dataprocessing.transformers":[[61,0,0,"-","base_data_transformer"],[62,0,0,"-","boxcox"],[63,0,0,"-","diff"],[64,0,0,"-","fittable_data_transformer"],[65,0,0,"-","invertible_data_transformer"],[66,0,0,"-","mappers"],[67,0,0,"-","midas"],[68,0,0,"-","missing_values_filler"],[69,0,0,"-","reconciliation"],[70,0,0,"-","scaler"],[71,0,0,"-","static_covariates_transformer"],[72,0,0,"-","window_transformer"]],"darts.dataprocessing.transformers.base_data_transformer":[[61,1,1,"","BaseDataTransformer"]],"darts.dataprocessing.transformers.base_data_transformer.BaseDataTransformer":[[61,2,1,"","apply_component_mask"],[61,3,1,"id0","hierarchy"],[61,4,1,"","name"],[61,2,1,"","set_n_jobs"],[61,2,1,"","set_verbose"],[61,2,1,"","stack_samples"],[61,2,1,"","transform"],[61,2,1,"","ts_transform"],[61,2,1,"","unapply_component_mask"],[61,2,1,"","unstack_samples"]],"darts.dataprocessing.transformers.boxcox":[[62,1,1,"","BoxCox"]],"darts.dataprocessing.transformers.boxcox.BoxCox":[[62,2,1,"","apply_component_mask"],[62,2,1,"","fit"],[62,2,1,"","fit_transform"],[62,2,1,"","inverse_transform"],[62,4,1,"","name"],[62,2,1,"","set_n_jobs"],[62,2,1,"","set_verbose"],[62,2,1,"","stack_samples"],[62,2,1,"","transform"],[62,2,1,"","ts_fit"],[62,2,1,"","ts_inverse_transform"],[62,2,1,"","ts_transform"],[62,2,1,"","unapply_component_mask"],[62,2,1,"","unstack_samples"]],"darts.dataprocessing.transformers.diff":[[63,1,1,"","Diff"]],"darts.dataprocessing.transformers.diff.Diff":[[63,2,1,"","apply_component_mask"],[63,2,1,"","fit"],[63,2,1,"","fit_transform"],[63,2,1,"","inverse_transform"],[63,4,1,"","name"],[63,2,1,"","set_n_jobs"],[63,2,1,"","set_verbose"],[63,2,1,"","stack_samples"],[63,2,1,"","transform"],[63,2,1,"","ts_fit"],[63,2,1,"","ts_inverse_transform"],[63,2,1,"","ts_transform"],[63,2,1,"","unapply_component_mask"],[63,2,1,"","unstack_samples"]],"darts.dataprocessing.transformers.fittable_data_transformer":[[64,1,1,"","FittableDataTransformer"]],"darts.dataprocessing.transformers.fittable_data_transformer.FittableDataTransformer":[[64,2,1,"","apply_component_mask"],[64,2,1,"","fit"],[64,2,1,"","fit_transform"],[64,3,1,"id0","hierarchy"],[64,4,1,"","name"],[64,2,1,"","set_n_jobs"],[64,2,1,"","set_verbose"],[64,2,1,"","stack_samples"],[64,2,1,"","transform"],[64,2,1,"","ts_fit"],[64,2,1,"","ts_transform"],[64,2,1,"","unapply_component_mask"],[64,2,1,"","unstack_samples"]],"darts.dataprocessing.transformers.invertible_data_transformer":[[65,1,1,"","InvertibleDataTransformer"]],"darts.dataprocessing.transformers.invertible_data_transformer.InvertibleDataTransformer":[[65,2,1,"","apply_component_mask"],[65,3,1,"id1","hierarchy"],[65,2,1,"","inverse_transform"],[65,4,1,"","name"],[65,2,1,"","set_n_jobs"],[65,2,1,"","set_verbose"],[65,2,1,"","stack_samples"],[65,2,1,"","transform"],[65,2,1,"","ts_inverse_transform"],[65,2,1,"","ts_transform"],[65,2,1,"","unapply_component_mask"],[65,2,1,"","unstack_samples"]],"darts.dataprocessing.transformers.mappers":[[66,1,1,"","InvertibleMapper"],[66,1,1,"","Mapper"]],"darts.dataprocessing.transformers.mappers.InvertibleMapper":[[66,2,1,"","apply_component_mask"],[66,2,1,"","inverse_transform"],[66,4,1,"","name"],[66,2,1,"","set_n_jobs"],[66,2,1,"","set_verbose"],[66,2,1,"","stack_samples"],[66,2,1,"","transform"],[66,2,1,"","ts_inverse_transform"],[66,2,1,"","ts_transform"],[66,2,1,"","unapply_component_mask"],[66,2,1,"","unstack_samples"]],"darts.dataprocessing.transformers.mappers.Mapper":[[66,2,1,"","apply_component_mask"],[66,4,1,"","name"],[66,2,1,"","set_n_jobs"],[66,2,1,"","set_verbose"],[66,2,1,"","stack_samples"],[66,2,1,"","transform"],[66,2,1,"","ts_transform"],[66,2,1,"","unapply_component_mask"],[66,2,1,"","unstack_samples"]],"darts.dataprocessing.transformers.midas":[[67,1,1,"","MIDAS"]],"darts.dataprocessing.transformers.midas.MIDAS":[[67,2,1,"","apply_component_mask"],[67,2,1,"","fit"],[67,2,1,"","fit_transform"],[67,2,1,"","inverse_transform"],[67,4,1,"","name"],[67,2,1,"","set_n_jobs"],[67,2,1,"","set_verbose"],[67,2,1,"","stack_samples"],[67,2,1,"","transform"],[67,2,1,"","ts_fit"],[67,2,1,"","ts_inverse_transform"],[67,2,1,"","ts_transform"],[67,2,1,"","unapply_component_mask"],[67,2,1,"","unstack_samples"]],"darts.dataprocessing.transformers.missing_values_filler":[[68,1,1,"","MissingValuesFiller"]],"darts.dataprocessing.transformers.missing_values_filler.MissingValuesFiller":[[68,2,1,"","apply_component_mask"],[68,4,1,"","name"],[68,2,1,"","set_n_jobs"],[68,2,1,"","set_verbose"],[68,2,1,"","stack_samples"],[68,2,1,"","transform"],[68,2,1,"","ts_transform"],[68,2,1,"","unapply_component_mask"],[68,2,1,"","unstack_samples"]],"darts.dataprocessing.transformers.reconciliation":[[69,1,1,"","BottomUpReconciliator"],[69,1,1,"","MinTReconciliator"],[69,1,1,"","TopDownReconciliator"]],"darts.dataprocessing.transformers.reconciliation.BottomUpReconciliator":[[69,2,1,"","apply_component_mask"],[69,2,1,"","get_projection_matrix"],[69,3,1,"id0","hierarchy"],[69,4,1,"","name"],[69,2,1,"","set_n_jobs"],[69,2,1,"","set_verbose"],[69,2,1,"","stack_samples"],[69,2,1,"","transform"],[69,2,1,"","ts_transform"],[69,2,1,"","unapply_component_mask"],[69,2,1,"","unstack_samples"]],"darts.dataprocessing.transformers.reconciliation.MinTReconciliator":[[69,2,1,"","apply_component_mask"],[69,2,1,"","fit"],[69,2,1,"","fit_transform"],[69,2,1,"","get_matrices"],[69,4,1,"","name"],[69,2,1,"","set_n_jobs"],[69,2,1,"","set_verbose"],[69,2,1,"","stack_samples"],[69,2,1,"","transform"],[69,2,1,"","ts_fit"],[69,2,1,"","ts_transform"],[69,2,1,"","unapply_component_mask"],[69,2,1,"","unstack_samples"]],"darts.dataprocessing.transformers.reconciliation.TopDownReconciliator":[[69,2,1,"","apply_component_mask"],[69,2,1,"","fit"],[69,2,1,"","fit_transform"],[69,2,1,"","get_projection_matrix"],[69,3,1,"id8","hierarchy"],[69,4,1,"","name"],[69,2,1,"","set_n_jobs"],[69,2,1,"","set_verbose"],[69,2,1,"","stack_samples"],[69,2,1,"","transform"],[69,2,1,"","ts_fit"],[69,2,1,"","ts_transform"],[69,2,1,"","unapply_component_mask"],[69,2,1,"","unstack_samples"]],"darts.dataprocessing.transformers.scaler":[[70,1,1,"","Scaler"]],"darts.dataprocessing.transformers.scaler.Scaler":[[70,2,1,"","apply_component_mask"],[70,2,1,"","fit"],[70,2,1,"","fit_transform"],[70,2,1,"","inverse_transform"],[70,4,1,"","name"],[70,2,1,"","set_n_jobs"],[70,2,1,"","set_verbose"],[70,2,1,"","stack_samples"],[70,2,1,"","transform"],[70,2,1,"","ts_fit"],[70,2,1,"","ts_inverse_transform"],[70,2,1,"","ts_transform"],[70,2,1,"","unapply_component_mask"],[70,2,1,"","unstack_samples"]],"darts.dataprocessing.transformers.static_covariates_transformer":[[71,1,1,"","StaticCovariatesTransformer"]],"darts.dataprocessing.transformers.static_covariates_transformer.StaticCovariatesTransformer":[[71,2,1,"","apply_component_mask"],[71,2,1,"","fit"],[71,2,1,"","fit_transform"],[71,2,1,"","inverse_transform"],[71,4,1,"","name"],[71,2,1,"","set_n_jobs"],[71,2,1,"","set_verbose"],[71,2,1,"","stack_samples"],[71,2,1,"","transform"],[71,2,1,"","ts_fit"],[71,2,1,"","ts_inverse_transform"],[71,2,1,"","ts_transform"],[71,2,1,"","unapply_component_mask"],[71,2,1,"","unstack_samples"]],"darts.dataprocessing.transformers.window_transformer":[[72,1,1,"","WindowTransformer"]],"darts.dataprocessing.transformers.window_transformer.WindowTransformer":[[72,2,1,"","apply_component_mask"],[72,4,1,"","name"],[72,2,1,"","set_n_jobs"],[72,2,1,"","set_verbose"],[72,2,1,"","stack_samples"],[72,2,1,"","transform"],[72,2,1,"","ts_transform"],[72,2,1,"","unapply_component_mask"],[72,2,1,"","unstack_samples"]],"darts.datasets":[[73,1,1,"","AirPassengersDataset"],[73,1,1,"","AusBeerDataset"],[73,1,1,"","AustralianTourismDataset"],[73,1,1,"","ETTh1Dataset"],[73,1,1,"","ETTh2Dataset"],[73,1,1,"","ETTm1Dataset"],[73,1,1,"","ETTm2Dataset"],[73,1,1,"","ElectricityConsumptionZurichDataset"],[73,1,1,"","ElectricityDataset"],[73,1,1,"","EnergyDataset"],[73,1,1,"","ExchangeRateDataset"],[73,1,1,"","GasRateCO2Dataset"],[73,1,1,"","HeartRateDataset"],[73,1,1,"","ILINetDataset"],[73,1,1,"","IceCreamHeaterDataset"],[73,1,1,"","MonthlyMilkDataset"],[73,1,1,"","MonthlyMilkIncompleteDataset"],[73,1,1,"","SunspotsDataset"],[73,1,1,"","TaylorDataset"],[73,1,1,"","TemperatureDataset"],[73,1,1,"","TrafficDataset"],[73,1,1,"","USGasolineDataset"],[73,1,1,"","UberTLCDataset"],[73,1,1,"","WeatherDataset"],[73,1,1,"","WineDataset"],[73,1,1,"","WoolyDataset"],[74,0,0,"-","dataset_loaders"]],"darts.datasets.AirPassengersDataset":[[73,2,1,"","load"]],"darts.datasets.AusBeerDataset":[[73,2,1,"","load"]],"darts.datasets.AustralianTourismDataset":[[73,2,1,"","load"]],"darts.datasets.ETTh1Dataset":[[73,2,1,"","load"]],"darts.datasets.ETTh2Dataset":[[73,2,1,"","load"]],"darts.datasets.ETTm1Dataset":[[73,2,1,"","load"]],"darts.datasets.ETTm2Dataset":[[73,2,1,"","load"]],"darts.datasets.ElectricityConsumptionZurichDataset":[[73,2,1,"","load"]],"darts.datasets.ElectricityDataset":[[73,2,1,"","load"]],"darts.datasets.EnergyDataset":[[73,2,1,"","load"]],"darts.datasets.ExchangeRateDataset":[[73,2,1,"","load"]],"darts.datasets.GasRateCO2Dataset":[[73,2,1,"","load"]],"darts.datasets.HeartRateDataset":[[73,2,1,"","load"]],"darts.datasets.ILINetDataset":[[73,2,1,"","load"]],"darts.datasets.IceCreamHeaterDataset":[[73,2,1,"","load"]],"darts.datasets.MonthlyMilkDataset":[[73,2,1,"","load"]],"darts.datasets.MonthlyMilkIncompleteDataset":[[73,2,1,"","load"]],"darts.datasets.SunspotsDataset":[[73,2,1,"","load"]],"darts.datasets.TaylorDataset":[[73,2,1,"","load"]],"darts.datasets.TemperatureDataset":[[73,2,1,"","load"]],"darts.datasets.TrafficDataset":[[73,2,1,"","load"]],"darts.datasets.USGasolineDataset":[[73,2,1,"","load"]],"darts.datasets.UberTLCDataset":[[73,2,1,"","load"]],"darts.datasets.WeatherDataset":[[73,2,1,"","load"]],"darts.datasets.WineDataset":[[73,2,1,"","load"]],"darts.datasets.WoolyDataset":[[73,2,1,"","load"]],"darts.datasets.dataset_loaders":[[74,1,1,"","DatasetLoader"],[74,1,1,"","DatasetLoaderCSV"],[74,1,1,"","DatasetLoaderMetadata"],[74,6,1,"","DatasetLoadingException"]],"darts.datasets.dataset_loaders.DatasetLoader":[[74,2,1,"","load"]],"darts.datasets.dataset_loaders.DatasetLoaderCSV":[[74,2,1,"","load"]],"darts.datasets.dataset_loaders.DatasetLoaderMetadata":[[74,3,1,"","format_time"],[74,3,1,"","freq"],[74,3,1,"","hash"],[74,3,1,"","header_time"],[74,3,1,"","multivariate"],[74,3,1,"","name"],[74,3,1,"","pre_process_csv_fn"],[74,3,1,"","pre_process_zipped_csv_fn"],[74,3,1,"","uri"]],"darts.datasets.dataset_loaders.DatasetLoadingException":[[74,3,1,"","args"],[74,2,1,"","with_traceback"]],"darts.explainability":[[76,0,0,"-","explainability"],[77,0,0,"-","explainability_result"],[78,0,0,"-","shap_explainer"],[79,0,0,"-","tft_explainer"],[80,0,0,"-","utils"]],"darts.explainability.explainability_result":[[77,1,1,"","ComponentBasedExplainabilityResult"],[77,1,1,"","HorizonBasedExplainabilityResult"],[77,1,1,"","ShapExplainabilityResult"],[77,1,1,"","TFTExplainabilityResult"]],"darts.explainability.explainability_result.ComponentBasedExplainabilityResult":[[77,2,1,"","get_explanation"]],"darts.explainability.explainability_result.HorizonBasedExplainabilityResult":[[77,2,1,"","get_explanation"]],"darts.explainability.explainability_result.ShapExplainabilityResult":[[77,2,1,"","get_explanation"],[77,2,1,"","get_feature_values"],[77,2,1,"","get_shap_explanation_object"]],"darts.explainability.explainability_result.TFTExplainabilityResult":[[77,2,1,"","get_attention"],[77,2,1,"","get_decoder_importance"],[77,2,1,"","get_encoder_importance"],[77,2,1,"","get_explanation"],[77,2,1,"","get_feature_importances"],[77,2,1,"","get_static_covariates_importance"]],"darts.explainability.shap_explainer":[[78,1,1,"","ShapExplainer"]],"darts.explainability.shap_explainer.ShapExplainer":[[78,2,1,"","explain"],[78,2,1,"","force_plot_from_ts"],[78,3,1,"","model"],[78,2,1,"","summary_plot"]],"darts.explainability.tft_explainer":[[79,1,1,"","TFTExplainer"]],"darts.explainability.tft_explainer.TFTExplainer":[[79,2,1,"","explain"],[79,3,1,"","model"],[79,2,1,"","plot_attention"],[79,2,1,"","plot_variable_selection"]],"darts.explainability.utils":[[80,5,1,"","get_component_names"],[80,5,1,"","process_horizons_and_targets"],[80,5,1,"","process_input"]],"darts.metrics":[[82,0,0,"-","metrics"]],"darts.metrics.metrics":[[82,5,1,"","coefficient_of_variation"],[82,5,1,"","dtw_metric"],[82,5,1,"","mae"],[82,5,1,"","mape"],[82,5,1,"","marre"],[82,5,1,"","mase"],[82,5,1,"","mse"],[82,5,1,"","multi_ts_support"],[82,5,1,"","multivariate_support"],[82,5,1,"","ope"],[82,5,1,"","quantile_loss"],[82,5,1,"","r2_score"],[82,5,1,"","rho_risk"],[82,5,1,"","rmse"],[82,5,1,"","rmsle"],[82,5,1,"","smape"]],"darts.models":[[84,0,0,"-","components"],[90,0,0,"-","filtering"],[95,0,0,"-","forecasting"],[133,0,0,"-","utils"]],"darts.models.components":[[85,0,0,"-","feed_forward"],[86,0,0,"-","glu_variants"],[87,0,0,"-","layer_norm_variants"],[88,0,0,"-","statsforecast_utils"],[89,0,0,"-","transformer"]],"darts.models.components.feed_forward":[[85,1,1,"","FeedForward"]],"darts.models.components.feed_forward.FeedForward":[[85,3,1,"","T_destination"],[85,2,1,"","add_module"],[85,2,1,"","apply"],[85,2,1,"","bfloat16"],[85,2,1,"","buffers"],[85,3,1,"","call_super_init"],[85,2,1,"","children"],[85,2,1,"","compile"],[85,2,1,"","cpu"],[85,2,1,"","cuda"],[85,2,1,"","double"],[85,3,1,"","dump_patches"],[85,2,1,"","eval"],[85,2,1,"","extra_repr"],[85,2,1,"","float"],[85,2,1,"","forward"],[85,2,1,"","get_buffer"],[85,2,1,"","get_extra_state"],[85,2,1,"","get_parameter"],[85,2,1,"","get_submodule"],[85,2,1,"","half"],[85,2,1,"","ipu"],[85,2,1,"","load_state_dict"],[85,2,1,"","modules"],[85,2,1,"","named_buffers"],[85,2,1,"","named_children"],[85,2,1,"","named_modules"],[85,2,1,"","named_parameters"],[85,2,1,"","parameters"],[85,2,1,"","register_backward_hook"],[85,2,1,"","register_buffer"],[85,2,1,"","register_forward_hook"],[85,2,1,"","register_forward_pre_hook"],[85,2,1,"","register_full_backward_hook"],[85,2,1,"","register_full_backward_pre_hook"],[85,2,1,"","register_load_state_dict_post_hook"],[85,2,1,"","register_module"],[85,2,1,"","register_parameter"],[85,2,1,"","register_state_dict_pre_hook"],[85,2,1,"","requires_grad_"],[85,2,1,"","set_extra_state"],[85,2,1,"","share_memory"],[85,2,1,"","state_dict"],[85,2,1,"","to"],[85,2,1,"","to_empty"],[85,2,1,"","train"],[85,3,1,"","training"],[85,2,1,"","type"],[85,2,1,"","xpu"],[85,2,1,"","zero_grad"]],"darts.models.components.glu_variants":[[86,1,1,"","Bilinear"],[86,1,1,"","GEGLU"],[86,1,1,"","GELU"],[86,1,1,"","GLU"],[86,1,1,"","ReGLU"],[86,1,1,"","ReLU"],[86,1,1,"","SwiGLU"]],"darts.models.components.glu_variants.Bilinear":[[86,3,1,"","T_destination"],[86,2,1,"","add_module"],[86,2,1,"","apply"],[86,2,1,"","bfloat16"],[86,2,1,"","buffers"],[86,3,1,"","call_super_init"],[86,2,1,"","children"],[86,2,1,"","compile"],[86,2,1,"","cpu"],[86,2,1,"","cuda"],[86,2,1,"","double"],[86,3,1,"","dump_patches"],[86,2,1,"","eval"],[86,2,1,"","extra_repr"],[86,2,1,"","float"],[86,2,1,"","forward"],[86,2,1,"","get_buffer"],[86,2,1,"","get_extra_state"],[86,2,1,"","get_parameter"],[86,2,1,"","get_submodule"],[86,2,1,"","half"],[86,2,1,"","ipu"],[86,2,1,"","load_state_dict"],[86,2,1,"","modules"],[86,2,1,"","named_buffers"],[86,2,1,"","named_children"],[86,2,1,"","named_modules"],[86,2,1,"","named_parameters"],[86,2,1,"","parameters"],[86,2,1,"","register_backward_hook"],[86,2,1,"","register_buffer"],[86,2,1,"","register_forward_hook"],[86,2,1,"","register_forward_pre_hook"],[86,2,1,"","register_full_backward_hook"],[86,2,1,"","register_full_backward_pre_hook"],[86,2,1,"","register_load_state_dict_post_hook"],[86,2,1,"","register_module"],[86,2,1,"","register_parameter"],[86,2,1,"","register_state_dict_pre_hook"],[86,2,1,"","requires_grad_"],[86,2,1,"","set_extra_state"],[86,2,1,"","share_memory"],[86,2,1,"","state_dict"],[86,2,1,"","to"],[86,2,1,"","to_empty"],[86,2,1,"","train"],[86,3,1,"","training"],[86,2,1,"","type"],[86,2,1,"","xpu"],[86,2,1,"","zero_grad"]],"darts.models.components.glu_variants.GEGLU":[[86,3,1,"","T_destination"],[86,2,1,"","add_module"],[86,2,1,"","apply"],[86,2,1,"","bfloat16"],[86,2,1,"","buffers"],[86,3,1,"","call_super_init"],[86,2,1,"","children"],[86,2,1,"","compile"],[86,2,1,"","cpu"],[86,2,1,"","cuda"],[86,2,1,"","double"],[86,3,1,"","dump_patches"],[86,2,1,"","eval"],[86,2,1,"","extra_repr"],[86,2,1,"","float"],[86,2,1,"","forward"],[86,2,1,"","get_buffer"],[86,2,1,"","get_extra_state"],[86,2,1,"","get_parameter"],[86,2,1,"","get_submodule"],[86,2,1,"","half"],[86,2,1,"","ipu"],[86,2,1,"","load_state_dict"],[86,2,1,"","modules"],[86,2,1,"","named_buffers"],[86,2,1,"","named_children"],[86,2,1,"","named_modules"],[86,2,1,"","named_parameters"],[86,2,1,"","parameters"],[86,2,1,"","register_backward_hook"],[86,2,1,"","register_buffer"],[86,2,1,"","register_forward_hook"],[86,2,1,"","register_forward_pre_hook"],[86,2,1,"","register_full_backward_hook"],[86,2,1,"","register_full_backward_pre_hook"],[86,2,1,"","register_load_state_dict_post_hook"],[86,2,1,"","register_module"],[86,2,1,"","register_parameter"],[86,2,1,"","register_state_dict_pre_hook"],[86,2,1,"","requires_grad_"],[86,2,1,"","set_extra_state"],[86,2,1,"","share_memory"],[86,2,1,"","state_dict"],[86,2,1,"","to"],[86,2,1,"","to_empty"],[86,2,1,"","train"],[86,3,1,"","training"],[86,2,1,"","type"],[86,2,1,"","xpu"],[86,2,1,"","zero_grad"]],"darts.models.components.glu_variants.GELU":[[86,3,1,"","T_destination"],[86,2,1,"","add_module"],[86,2,1,"","apply"],[86,2,1,"","bfloat16"],[86,2,1,"","buffers"],[86,3,1,"","call_super_init"],[86,2,1,"","children"],[86,2,1,"","compile"],[86,2,1,"","cpu"],[86,2,1,"","cuda"],[86,2,1,"","double"],[86,3,1,"","dump_patches"],[86,2,1,"","eval"],[86,2,1,"","extra_repr"],[86,2,1,"","float"],[86,2,1,"","forward"],[86,2,1,"","get_buffer"],[86,2,1,"","get_extra_state"],[86,2,1,"","get_parameter"],[86,2,1,"","get_submodule"],[86,2,1,"","half"],[86,2,1,"","ipu"],[86,2,1,"","load_state_dict"],[86,2,1,"","modules"],[86,2,1,"","named_buffers"],[86,2,1,"","named_children"],[86,2,1,"","named_modules"],[86,2,1,"","named_parameters"],[86,2,1,"","parameters"],[86,2,1,"","register_backward_hook"],[86,2,1,"","register_buffer"],[86,2,1,"","register_forward_hook"],[86,2,1,"","register_forward_pre_hook"],[86,2,1,"","register_full_backward_hook"],[86,2,1,"","register_full_backward_pre_hook"],[86,2,1,"","register_load_state_dict_post_hook"],[86,2,1,"","register_module"],[86,2,1,"","register_parameter"],[86,2,1,"","register_state_dict_pre_hook"],[86,2,1,"","requires_grad_"],[86,2,1,"","set_extra_state"],[86,2,1,"","share_memory"],[86,2,1,"","state_dict"],[86,2,1,"","to"],[86,2,1,"","to_empty"],[86,2,1,"","train"],[86,3,1,"","training"],[86,2,1,"","type"],[86,2,1,"","xpu"],[86,2,1,"","zero_grad"]],"darts.models.components.glu_variants.GLU":[[86,3,1,"","T_destination"],[86,2,1,"","add_module"],[86,2,1,"","apply"],[86,2,1,"","bfloat16"],[86,2,1,"","buffers"],[86,3,1,"","call_super_init"],[86,2,1,"","children"],[86,2,1,"","compile"],[86,2,1,"","cpu"],[86,2,1,"","cuda"],[86,2,1,"","double"],[86,3,1,"","dump_patches"],[86,2,1,"","eval"],[86,2,1,"","extra_repr"],[86,2,1,"","float"],[86,2,1,"","forward"],[86,2,1,"","get_buffer"],[86,2,1,"","get_extra_state"],[86,2,1,"","get_parameter"],[86,2,1,"","get_submodule"],[86,2,1,"","half"],[86,2,1,"","ipu"],[86,2,1,"","load_state_dict"],[86,2,1,"","modules"],[86,2,1,"","named_buffers"],[86,2,1,"","named_children"],[86,2,1,"","named_modules"],[86,2,1,"","named_parameters"],[86,2,1,"","parameters"],[86,2,1,"","register_backward_hook"],[86,2,1,"","register_buffer"],[86,2,1,"","register_forward_hook"],[86,2,1,"","register_forward_pre_hook"],[86,2,1,"","register_full_backward_hook"],[86,2,1,"","register_full_backward_pre_hook"],[86,2,1,"","register_load_state_dict_post_hook"],[86,2,1,"","register_module"],[86,2,1,"","register_parameter"],[86,2,1,"","register_state_dict_pre_hook"],[86,2,1,"","requires_grad_"],[86,2,1,"","set_extra_state"],[86,2,1,"","share_memory"],[86,2,1,"","state_dict"],[86,2,1,"","to"],[86,2,1,"","to_empty"],[86,2,1,"","train"],[86,3,1,"","training"],[86,2,1,"","type"],[86,2,1,"","xpu"],[86,2,1,"","zero_grad"]],"darts.models.components.glu_variants.ReGLU":[[86,3,1,"","T_destination"],[86,2,1,"","add_module"],[86,2,1,"","apply"],[86,2,1,"","bfloat16"],[86,2,1,"","buffers"],[86,3,1,"","call_super_init"],[86,2,1,"","children"],[86,2,1,"","compile"],[86,2,1,"","cpu"],[86,2,1,"","cuda"],[86,2,1,"","double"],[86,3,1,"","dump_patches"],[86,2,1,"","eval"],[86,2,1,"","extra_repr"],[86,2,1,"","float"],[86,2,1,"","forward"],[86,2,1,"","get_buffer"],[86,2,1,"","get_extra_state"],[86,2,1,"","get_parameter"],[86,2,1,"","get_submodule"],[86,2,1,"","half"],[86,2,1,"","ipu"],[86,2,1,"","load_state_dict"],[86,2,1,"","modules"],[86,2,1,"","named_buffers"],[86,2,1,"","named_children"],[86,2,1,"","named_modules"],[86,2,1,"","named_parameters"],[86,2,1,"","parameters"],[86,2,1,"","register_backward_hook"],[86,2,1,"","register_buffer"],[86,2,1,"","register_forward_hook"],[86,2,1,"","register_forward_pre_hook"],[86,2,1,"","register_full_backward_hook"],[86,2,1,"","register_full_backward_pre_hook"],[86,2,1,"","register_load_state_dict_post_hook"],[86,2,1,"","register_module"],[86,2,1,"","register_parameter"],[86,2,1,"","register_state_dict_pre_hook"],[86,2,1,"","requires_grad_"],[86,2,1,"","set_extra_state"],[86,2,1,"","share_memory"],[86,2,1,"","state_dict"],[86,2,1,"","to"],[86,2,1,"","to_empty"],[86,2,1,"","train"],[86,3,1,"","training"],[86,2,1,"","type"],[86,2,1,"","xpu"],[86,2,1,"","zero_grad"]],"darts.models.components.glu_variants.ReLU":[[86,3,1,"","T_destination"],[86,2,1,"","add_module"],[86,2,1,"","apply"],[86,2,1,"","bfloat16"],[86,2,1,"","buffers"],[86,3,1,"","call_super_init"],[86,2,1,"","children"],[86,2,1,"","compile"],[86,2,1,"","cpu"],[86,2,1,"","cuda"],[86,2,1,"","double"],[86,3,1,"","dump_patches"],[86,2,1,"","eval"],[86,2,1,"","extra_repr"],[86,2,1,"","float"],[86,2,1,"","forward"],[86,2,1,"","get_buffer"],[86,2,1,"","get_extra_state"],[86,2,1,"","get_parameter"],[86,2,1,"","get_submodule"],[86,2,1,"","half"],[86,2,1,"","ipu"],[86,2,1,"","load_state_dict"],[86,2,1,"","modules"],[86,2,1,"","named_buffers"],[86,2,1,"","named_children"],[86,2,1,"","named_modules"],[86,2,1,"","named_parameters"],[86,2,1,"","parameters"],[86,2,1,"","register_backward_hook"],[86,2,1,"","register_buffer"],[86,2,1,"","register_forward_hook"],[86,2,1,"","register_forward_pre_hook"],[86,2,1,"","register_full_backward_hook"],[86,2,1,"","register_full_backward_pre_hook"],[86,2,1,"","register_load_state_dict_post_hook"],[86,2,1,"","register_module"],[86,2,1,"","register_parameter"],[86,2,1,"","register_state_dict_pre_hook"],[86,2,1,"","requires_grad_"],[86,2,1,"","set_extra_state"],[86,2,1,"","share_memory"],[86,2,1,"","state_dict"],[86,2,1,"","to"],[86,2,1,"","to_empty"],[86,2,1,"","train"],[86,3,1,"","training"],[86,2,1,"","type"],[86,2,1,"","xpu"],[86,2,1,"","zero_grad"]],"darts.models.components.glu_variants.SwiGLU":[[86,3,1,"","T_destination"],[86,2,1,"","add_module"],[86,2,1,"","apply"],[86,2,1,"","bfloat16"],[86,2,1,"","buffers"],[86,3,1,"","call_super_init"],[86,2,1,"","children"],[86,2,1,"","compile"],[86,2,1,"","cpu"],[86,2,1,"","cuda"],[86,2,1,"","double"],[86,3,1,"","dump_patches"],[86,2,1,"","eval"],[86,2,1,"","extra_repr"],[86,2,1,"","float"],[86,2,1,"","forward"],[86,2,1,"","get_buffer"],[86,2,1,"","get_extra_state"],[86,2,1,"","get_parameter"],[86,2,1,"","get_submodule"],[86,2,1,"","half"],[86,2,1,"","ipu"],[86,2,1,"","load_state_dict"],[86,2,1,"","modules"],[86,2,1,"","named_buffers"],[86,2,1,"","named_children"],[86,2,1,"","named_modules"],[86,2,1,"","named_parameters"],[86,2,1,"","parameters"],[86,2,1,"","register_backward_hook"],[86,2,1,"","register_buffer"],[86,2,1,"","register_forward_hook"],[86,2,1,"","register_forward_pre_hook"],[86,2,1,"","register_full_backward_hook"],[86,2,1,"","register_full_backward_pre_hook"],[86,2,1,"","register_load_state_dict_post_hook"],[86,2,1,"","register_module"],[86,2,1,"","register_parameter"],[86,2,1,"","register_state_dict_pre_hook"],[86,2,1,"","requires_grad_"],[86,2,1,"","set_extra_state"],[86,2,1,"","share_memory"],[86,2,1,"","state_dict"],[86,2,1,"","to"],[86,2,1,"","to_empty"],[86,2,1,"","train"],[86,3,1,"","training"],[86,2,1,"","type"],[86,2,1,"","xpu"],[86,2,1,"","zero_grad"]],"darts.models.components.layer_norm_variants":[[87,1,1,"","LayerNorm"],[87,1,1,"","LayerNormNoBias"],[87,1,1,"","RINorm"],[87,1,1,"","RMSNorm"]],"darts.models.components.layer_norm_variants.LayerNorm":[[87,3,1,"","T_destination"],[87,2,1,"","add_module"],[87,2,1,"","apply"],[87,2,1,"","bfloat16"],[87,2,1,"","buffers"],[87,3,1,"","call_super_init"],[87,2,1,"","children"],[87,2,1,"","compile"],[87,2,1,"","cpu"],[87,2,1,"","cuda"],[87,2,1,"","double"],[87,3,1,"","dump_patches"],[87,3,1,"","elementwise_affine"],[87,3,1,"","eps"],[87,2,1,"","eval"],[87,2,1,"","extra_repr"],[87,2,1,"","float"],[87,2,1,"","forward"],[87,2,1,"","get_buffer"],[87,2,1,"","get_extra_state"],[87,2,1,"","get_parameter"],[87,2,1,"","get_submodule"],[87,2,1,"","half"],[87,2,1,"","ipu"],[87,2,1,"","load_state_dict"],[87,2,1,"","modules"],[87,2,1,"","named_buffers"],[87,2,1,"","named_children"],[87,2,1,"","named_modules"],[87,2,1,"","named_parameters"],[87,3,1,"","normalized_shape"],[87,2,1,"","parameters"],[87,2,1,"","register_backward_hook"],[87,2,1,"","register_buffer"],[87,2,1,"","register_forward_hook"],[87,2,1,"","register_forward_pre_hook"],[87,2,1,"","register_full_backward_hook"],[87,2,1,"","register_full_backward_pre_hook"],[87,2,1,"","register_load_state_dict_post_hook"],[87,2,1,"","register_module"],[87,2,1,"","register_parameter"],[87,2,1,"","register_state_dict_pre_hook"],[87,2,1,"","requires_grad_"],[87,2,1,"","reset_parameters"],[87,2,1,"","set_extra_state"],[87,2,1,"","share_memory"],[87,2,1,"","state_dict"],[87,2,1,"","to"],[87,2,1,"","to_empty"],[87,2,1,"","train"],[87,3,1,"","training"],[87,2,1,"","type"],[87,2,1,"","xpu"],[87,2,1,"","zero_grad"]],"darts.models.components.layer_norm_variants.LayerNormNoBias":[[87,3,1,"","T_destination"],[87,2,1,"","add_module"],[87,2,1,"","apply"],[87,2,1,"","bfloat16"],[87,2,1,"","buffers"],[87,3,1,"","call_super_init"],[87,2,1,"","children"],[87,2,1,"","compile"],[87,2,1,"","cpu"],[87,2,1,"","cuda"],[87,2,1,"","double"],[87,3,1,"","dump_patches"],[87,3,1,"","elementwise_affine"],[87,3,1,"","eps"],[87,2,1,"","eval"],[87,2,1,"","extra_repr"],[87,2,1,"","float"],[87,2,1,"","forward"],[87,2,1,"","get_buffer"],[87,2,1,"","get_extra_state"],[87,2,1,"","get_parameter"],[87,2,1,"","get_submodule"],[87,2,1,"","half"],[87,2,1,"","ipu"],[87,2,1,"","load_state_dict"],[87,2,1,"","modules"],[87,2,1,"","named_buffers"],[87,2,1,"","named_children"],[87,2,1,"","named_modules"],[87,2,1,"","named_parameters"],[87,3,1,"","normalized_shape"],[87,2,1,"","parameters"],[87,2,1,"","register_backward_hook"],[87,2,1,"","register_buffer"],[87,2,1,"","register_forward_hook"],[87,2,1,"","register_forward_pre_hook"],[87,2,1,"","register_full_backward_hook"],[87,2,1,"","register_full_backward_pre_hook"],[87,2,1,"","register_load_state_dict_post_hook"],[87,2,1,"","register_module"],[87,2,1,"","register_parameter"],[87,2,1,"","register_state_dict_pre_hook"],[87,2,1,"","requires_grad_"],[87,2,1,"","reset_parameters"],[87,2,1,"","set_extra_state"],[87,2,1,"","share_memory"],[87,2,1,"","state_dict"],[87,2,1,"","to"],[87,2,1,"","to_empty"],[87,2,1,"","train"],[87,3,1,"","training"],[87,2,1,"","type"],[87,2,1,"","xpu"],[87,2,1,"","zero_grad"]],"darts.models.components.layer_norm_variants.RINorm":[[87,3,1,"","T_destination"],[87,2,1,"","add_module"],[87,2,1,"","apply"],[87,2,1,"","bfloat16"],[87,2,1,"","buffers"],[87,3,1,"","call_super_init"],[87,2,1,"","children"],[87,2,1,"","compile"],[87,2,1,"","cpu"],[87,2,1,"","cuda"],[87,2,1,"","double"],[87,3,1,"","dump_patches"],[87,2,1,"","eval"],[87,2,1,"","extra_repr"],[87,2,1,"","float"],[87,2,1,"","forward"],[87,2,1,"","get_buffer"],[87,2,1,"","get_extra_state"],[87,2,1,"","get_parameter"],[87,2,1,"","get_submodule"],[87,2,1,"","half"],[87,2,1,"","inverse"],[87,2,1,"","ipu"],[87,2,1,"","load_state_dict"],[87,2,1,"","modules"],[87,2,1,"","named_buffers"],[87,2,1,"","named_children"],[87,2,1,"","named_modules"],[87,2,1,"","named_parameters"],[87,2,1,"","parameters"],[87,2,1,"","register_backward_hook"],[87,2,1,"","register_buffer"],[87,2,1,"","register_forward_hook"],[87,2,1,"","register_forward_pre_hook"],[87,2,1,"","register_full_backward_hook"],[87,2,1,"","register_full_backward_pre_hook"],[87,2,1,"","register_load_state_dict_post_hook"],[87,2,1,"","register_module"],[87,2,1,"","register_parameter"],[87,2,1,"","register_state_dict_pre_hook"],[87,2,1,"","requires_grad_"],[87,2,1,"","set_extra_state"],[87,2,1,"","share_memory"],[87,2,1,"","state_dict"],[87,2,1,"","to"],[87,2,1,"","to_empty"],[87,2,1,"","train"],[87,3,1,"","training"],[87,2,1,"","type"],[87,2,1,"","xpu"],[87,2,1,"","zero_grad"]],"darts.models.components.layer_norm_variants.RMSNorm":[[87,3,1,"","T_destination"],[87,2,1,"","add_module"],[87,2,1,"","apply"],[87,2,1,"","bfloat16"],[87,2,1,"","buffers"],[87,3,1,"","call_super_init"],[87,2,1,"","children"],[87,2,1,"","compile"],[87,2,1,"","cpu"],[87,2,1,"","cuda"],[87,2,1,"","double"],[87,3,1,"","dump_patches"],[87,2,1,"","eval"],[87,2,1,"","extra_repr"],[87,2,1,"","float"],[87,2,1,"","forward"],[87,2,1,"","get_buffer"],[87,2,1,"","get_extra_state"],[87,2,1,"","get_parameter"],[87,2,1,"","get_submodule"],[87,2,1,"","half"],[87,2,1,"","ipu"],[87,2,1,"","load_state_dict"],[87,2,1,"","modules"],[87,2,1,"","named_buffers"],[87,2,1,"","named_children"],[87,2,1,"","named_modules"],[87,2,1,"","named_parameters"],[87,2,1,"","parameters"],[87,2,1,"","register_backward_hook"],[87,2,1,"","register_buffer"],[87,2,1,"","register_forward_hook"],[87,2,1,"","register_forward_pre_hook"],[87,2,1,"","register_full_backward_hook"],[87,2,1,"","register_full_backward_pre_hook"],[87,2,1,"","register_load_state_dict_post_hook"],[87,2,1,"","register_module"],[87,2,1,"","register_parameter"],[87,2,1,"","register_state_dict_pre_hook"],[87,2,1,"","requires_grad_"],[87,2,1,"","set_extra_state"],[87,2,1,"","share_memory"],[87,2,1,"","state_dict"],[87,2,1,"","to"],[87,2,1,"","to_empty"],[87,2,1,"","train"],[87,3,1,"","training"],[87,2,1,"","type"],[87,2,1,"","xpu"],[87,2,1,"","zero_grad"]],"darts.models.components.statsforecast_utils":[[88,5,1,"","create_normal_samples"],[88,5,1,"","unpack_sf_dict"]],"darts.models.components.transformer":[[89,1,1,"","CustomFeedForwardDecoderLayer"],[89,1,1,"","CustomFeedForwardEncoderLayer"]],"darts.models.components.transformer.CustomFeedForwardDecoderLayer":[[89,3,1,"","T_destination"],[89,2,1,"","add_module"],[89,2,1,"","apply"],[89,2,1,"","bfloat16"],[89,2,1,"","buffers"],[89,3,1,"","call_super_init"],[89,2,1,"","children"],[89,2,1,"","compile"],[89,2,1,"","cpu"],[89,2,1,"","cuda"],[89,2,1,"","double"],[89,3,1,"","dump_patches"],[89,2,1,"","eval"],[89,2,1,"","extra_repr"],[89,2,1,"","float"],[89,2,1,"","forward"],[89,2,1,"","get_buffer"],[89,2,1,"","get_extra_state"],[89,2,1,"","get_parameter"],[89,2,1,"","get_submodule"],[89,2,1,"","half"],[89,2,1,"","ipu"],[89,2,1,"","load_state_dict"],[89,2,1,"","modules"],[89,2,1,"","named_buffers"],[89,2,1,"","named_children"],[89,2,1,"","named_modules"],[89,2,1,"","named_parameters"],[89,2,1,"","parameters"],[89,2,1,"","register_backward_hook"],[89,2,1,"","register_buffer"],[89,2,1,"","register_forward_hook"],[89,2,1,"","register_forward_pre_hook"],[89,2,1,"","register_full_backward_hook"],[89,2,1,"","register_full_backward_pre_hook"],[89,2,1,"","register_load_state_dict_post_hook"],[89,2,1,"","register_module"],[89,2,1,"","register_parameter"],[89,2,1,"","register_state_dict_pre_hook"],[89,2,1,"","requires_grad_"],[89,2,1,"","set_extra_state"],[89,2,1,"","share_memory"],[89,2,1,"","state_dict"],[89,2,1,"","to"],[89,2,1,"","to_empty"],[89,2,1,"","train"],[89,3,1,"","training"],[89,2,1,"","type"],[89,2,1,"","xpu"],[89,2,1,"","zero_grad"]],"darts.models.components.transformer.CustomFeedForwardEncoderLayer":[[89,3,1,"","T_destination"],[89,2,1,"","add_module"],[89,2,1,"","apply"],[89,2,1,"","bfloat16"],[89,2,1,"","buffers"],[89,3,1,"","call_super_init"],[89,2,1,"","children"],[89,2,1,"","compile"],[89,2,1,"","cpu"],[89,2,1,"","cuda"],[89,2,1,"","double"],[89,3,1,"","dump_patches"],[89,2,1,"","eval"],[89,2,1,"","extra_repr"],[89,2,1,"","float"],[89,2,1,"","forward"],[89,2,1,"","get_buffer"],[89,2,1,"","get_extra_state"],[89,2,1,"","get_parameter"],[89,2,1,"","get_submodule"],[89,2,1,"","half"],[89,2,1,"","ipu"],[89,2,1,"","load_state_dict"],[89,2,1,"","modules"],[89,2,1,"","named_buffers"],[89,2,1,"","named_children"],[89,2,1,"","named_modules"],[89,2,1,"","named_parameters"],[89,2,1,"","parameters"],[89,2,1,"","register_backward_hook"],[89,2,1,"","register_buffer"],[89,2,1,"","register_forward_hook"],[89,2,1,"","register_forward_pre_hook"],[89,2,1,"","register_full_backward_hook"],[89,2,1,"","register_full_backward_pre_hook"],[89,2,1,"","register_load_state_dict_post_hook"],[89,2,1,"","register_module"],[89,2,1,"","register_parameter"],[89,2,1,"","register_state_dict_pre_hook"],[89,2,1,"","requires_grad_"],[89,2,1,"","set_extra_state"],[89,2,1,"","share_memory"],[89,2,1,"","state_dict"],[89,2,1,"","to"],[89,2,1,"","to_empty"],[89,2,1,"","train"],[89,3,1,"","training"],[89,2,1,"","type"],[89,2,1,"","xpu"],[89,2,1,"","zero_grad"]],"darts.models.filtering":[[91,0,0,"-","filtering_model"],[92,0,0,"-","gaussian_process_filter"],[93,0,0,"-","kalman_filter"],[94,0,0,"-","moving_average_filter"]],"darts.models.filtering.filtering_model":[[91,1,1,"","FilteringModel"]],"darts.models.filtering.filtering_model.FilteringModel":[[91,2,1,"","filter"]],"darts.models.filtering.gaussian_process_filter":[[92,1,1,"","GaussianProcessFilter"]],"darts.models.filtering.gaussian_process_filter.GaussianProcessFilter":[[92,2,1,"","filter"]],"darts.models.filtering.kalman_filter":[[93,1,1,"","KalmanFilter"]],"darts.models.filtering.kalman_filter.KalmanFilter":[[93,2,1,"","filter"],[93,2,1,"","fit"]],"darts.models.filtering.moving_average_filter":[[94,1,1,"","MovingAverageFilter"]],"darts.models.filtering.moving_average_filter.MovingAverageFilter":[[94,2,1,"","filter"]],"darts.models.forecasting":[[96,0,0,"-","arima"],[97,0,0,"-","auto_arima"],[98,0,0,"-","baselines"],[100,0,0,"-","catboost_model"],[101,0,0,"-","croston"],[102,0,0,"-","dlinear"],[103,0,0,"-","ensemble_model"],[104,0,0,"-","exponential_smoothing"],[105,0,0,"-","fft"],[106,0,0,"-","forecasting_model"],[107,0,0,"-","kalman_forecaster"],[108,0,0,"-","lgbm"],[109,0,0,"-","linear_regression_model"],[110,0,0,"-","nbeats"],[111,0,0,"-","nhits"],[112,0,0,"-","nlinear"],[113,0,0,"-","pl_forecasting_module"],[114,0,0,"-","prophet_model"],[115,0,0,"-","random_forest"],[116,0,0,"-","regression_ensemble_model"],[117,0,0,"-","regression_model"],[119,0,0,"-","sf_auto_arima"],[120,0,0,"-","sf_auto_ces"],[121,0,0,"-","sf_auto_ets"],[122,0,0,"-","sf_auto_theta"],[123,0,0,"-","tbats_model"],[124,0,0,"-","tcn_model"],[125,0,0,"-","tft_model"],[126,0,0,"-","tft_submodels"],[127,0,0,"-","theta"],[128,0,0,"-","tide_model"],[129,0,0,"-","torch_forecasting_model"],[130,0,0,"-","transformer_model"],[131,0,0,"-","varima"],[132,0,0,"-","xgboost"]],"darts.models.forecasting.arima":[[96,1,1,"","ARIMA"]],"darts.models.forecasting.arima.ARIMA":[[96,2,1,"","backtest"],[96,4,1,"","considers_static_covariates"],[96,4,1,"","extreme_lags"],[96,2,1,"","fit"],[96,2,1,"","generate_fit_encodings"],[96,2,1,"","generate_fit_predict_encodings"],[96,2,1,"","generate_predict_encodings"],[96,2,1,"","gridsearch"],[96,2,1,"","historical_forecasts"],[96,2,1,"","load"],[96,4,1,"","min_train_samples"],[96,4,1,"","model_params"],[96,4,1,"","output_chunk_length"],[96,2,1,"","predict"],[96,2,1,"","residuals"],[96,2,1,"","save"],[96,4,1,"","supports_future_covariates"],[96,4,1,"","supports_likelihood_parameter_prediction"],[96,4,1,"","supports_multivariate"],[96,4,1,"","supports_optimized_historical_forecasts"],[96,4,1,"","supports_past_covariates"],[96,4,1,"","supports_static_covariates"],[96,4,1,"","supports_transferrable_series_prediction"],[96,4,1,"","uses_future_covariates"],[96,4,1,"","uses_past_covariates"],[96,4,1,"","uses_static_covariates"]],"darts.models.forecasting.auto_arima":[[97,1,1,"","AutoARIMA"]],"darts.models.forecasting.auto_arima.AutoARIMA":[[97,2,1,"","backtest"],[97,4,1,"","considers_static_covariates"],[97,4,1,"","extreme_lags"],[97,2,1,"","fit"],[97,2,1,"","generate_fit_encodings"],[97,2,1,"","generate_fit_predict_encodings"],[97,2,1,"","generate_predict_encodings"],[97,2,1,"","gridsearch"],[97,2,1,"","historical_forecasts"],[97,2,1,"","load"],[97,4,1,"","min_train_samples"],[97,4,1,"","model_params"],[97,4,1,"","output_chunk_length"],[97,2,1,"","predict"],[97,2,1,"","residuals"],[97,2,1,"","save"],[97,4,1,"","supports_future_covariates"],[97,4,1,"","supports_likelihood_parameter_prediction"],[97,4,1,"","supports_multivariate"],[97,4,1,"","supports_optimized_historical_forecasts"],[97,4,1,"","supports_past_covariates"],[97,4,1,"","supports_static_covariates"],[97,4,1,"","supports_transferrable_series_prediction"],[97,4,1,"","uses_future_covariates"],[97,4,1,"","uses_past_covariates"],[97,4,1,"","uses_static_covariates"]],"darts.models.forecasting.baselines":[[98,1,1,"","NaiveDrift"],[98,1,1,"","NaiveEnsembleModel"],[98,1,1,"","NaiveMean"],[98,1,1,"","NaiveMovingAverage"],[98,1,1,"","NaiveSeasonal"]],"darts.models.forecasting.baselines.NaiveDrift":[[98,2,1,"","backtest"],[98,4,1,"","considers_static_covariates"],[98,4,1,"","extreme_lags"],[98,2,1,"","fit"],[98,2,1,"","generate_fit_encodings"],[98,2,1,"","generate_fit_predict_encodings"],[98,2,1,"","generate_predict_encodings"],[98,2,1,"","gridsearch"],[98,2,1,"","historical_forecasts"],[98,2,1,"","load"],[98,4,1,"","min_train_samples"],[98,4,1,"","model_params"],[98,4,1,"","output_chunk_length"],[98,2,1,"","predict"],[98,2,1,"","residuals"],[98,2,1,"","save"],[98,4,1,"","supports_future_covariates"],[98,4,1,"","supports_likelihood_parameter_prediction"],[98,4,1,"","supports_multivariate"],[98,4,1,"","supports_optimized_historical_forecasts"],[98,4,1,"","supports_past_covariates"],[98,4,1,"","supports_static_covariates"],[98,4,1,"","supports_transferrable_series_prediction"],[98,4,1,"","uses_future_covariates"],[98,4,1,"","uses_past_covariates"],[98,4,1,"","uses_static_covariates"]],"darts.models.forecasting.baselines.NaiveEnsembleModel":[[98,2,1,"","backtest"],[98,4,1,"","considers_static_covariates"],[98,2,1,"","ensemble"],[98,4,1,"","extreme_lags"],[98,2,1,"","fit"],[98,2,1,"","generate_fit_encodings"],[98,2,1,"","generate_fit_predict_encodings"],[98,2,1,"","generate_predict_encodings"],[98,2,1,"","gridsearch"],[98,2,1,"","historical_forecasts"],[98,2,1,"","load"],[98,4,1,"","min_train_samples"],[98,4,1,"","model_params"],[98,4,1,"","output_chunk_length"],[98,2,1,"","predict"],[98,2,1,"","residuals"],[98,2,1,"","save"],[98,4,1,"","supports_future_covariates"],[98,4,1,"","supports_likelihood_parameter_prediction"],[98,4,1,"","supports_multivariate"],[98,4,1,"","supports_optimized_historical_forecasts"],[98,4,1,"","supports_past_covariates"],[98,4,1,"","supports_static_covariates"],[98,4,1,"","supports_transferrable_series_prediction"],[98,4,1,"","uses_future_covariates"],[98,4,1,"","uses_past_covariates"],[98,4,1,"","uses_static_covariates"]],"darts.models.forecasting.baselines.NaiveMean":[[98,2,1,"","backtest"],[98,4,1,"","considers_static_covariates"],[98,4,1,"","extreme_lags"],[98,2,1,"","fit"],[98,2,1,"","generate_fit_encodings"],[98,2,1,"","generate_fit_predict_encodings"],[98,2,1,"","generate_predict_encodings"],[98,2,1,"","gridsearch"],[98,2,1,"","historical_forecasts"],[98,2,1,"","load"],[98,4,1,"","min_train_samples"],[98,4,1,"","model_params"],[98,4,1,"","output_chunk_length"],[98,2,1,"","predict"],[98,2,1,"","residuals"],[98,2,1,"","save"],[98,4,1,"","supports_future_covariates"],[98,4,1,"","supports_likelihood_parameter_prediction"],[98,4,1,"","supports_multivariate"],[98,4,1,"","supports_optimized_historical_forecasts"],[98,4,1,"","supports_past_covariates"],[98,4,1,"","supports_static_covariates"],[98,4,1,"","supports_transferrable_series_prediction"],[98,4,1,"","uses_future_covariates"],[98,4,1,"","uses_past_covariates"],[98,4,1,"","uses_static_covariates"]],"darts.models.forecasting.baselines.NaiveMovingAverage":[[98,2,1,"","backtest"],[98,4,1,"","considers_static_covariates"],[98,4,1,"","extreme_lags"],[98,2,1,"","fit"],[98,2,1,"","generate_fit_encodings"],[98,2,1,"","generate_fit_predict_encodings"],[98,2,1,"","generate_predict_encodings"],[98,2,1,"","gridsearch"],[98,2,1,"","historical_forecasts"],[98,2,1,"","load"],[98,4,1,"","min_train_samples"],[98,4,1,"","model_params"],[98,4,1,"","output_chunk_length"],[98,2,1,"","predict"],[98,2,1,"","residuals"],[98,2,1,"","save"],[98,4,1,"","supports_future_covariates"],[98,4,1,"","supports_likelihood_parameter_prediction"],[98,4,1,"","supports_multivariate"],[98,4,1,"","supports_optimized_historical_forecasts"],[98,4,1,"","supports_past_covariates"],[98,4,1,"","supports_static_covariates"],[98,4,1,"","supports_transferrable_series_prediction"],[98,4,1,"","uses_future_covariates"],[98,4,1,"","uses_past_covariates"],[98,4,1,"","uses_static_covariates"]],"darts.models.forecasting.baselines.NaiveSeasonal":[[98,2,1,"","backtest"],[98,4,1,"","considers_static_covariates"],[98,4,1,"","extreme_lags"],[98,2,1,"","fit"],[98,2,1,"","generate_fit_encodings"],[98,2,1,"","generate_fit_predict_encodings"],[98,2,1,"","generate_predict_encodings"],[98,2,1,"","gridsearch"],[98,2,1,"","historical_forecasts"],[98,2,1,"","load"],[98,4,1,"","min_train_samples"],[98,4,1,"","model_params"],[98,4,1,"","output_chunk_length"],[98,2,1,"","predict"],[98,2,1,"","residuals"],[98,2,1,"","save"],[98,4,1,"","supports_future_covariates"],[98,4,1,"","supports_likelihood_parameter_prediction"],[98,4,1,"","supports_multivariate"],[98,4,1,"","supports_optimized_historical_forecasts"],[98,4,1,"","supports_past_covariates"],[98,4,1,"","supports_static_covariates"],[98,4,1,"","supports_transferrable_series_prediction"],[98,4,1,"","uses_future_covariates"],[98,4,1,"","uses_past_covariates"],[98,4,1,"","uses_static_covariates"]],"darts.models.forecasting.block_rnn_model":[[99,1,1,"","BlockRNNModel"],[99,1,1,"","CustomBlockRNNModule"]],"darts.models.forecasting.block_rnn_model.BlockRNNModel":[[99,2,1,"","backtest"],[99,4,1,"","considers_static_covariates"],[99,4,1,"","extreme_lags"],[99,4,1,"","first_prediction_index"],[99,2,1,"","fit"],[99,2,1,"","fit_from_dataset"],[99,2,1,"","generate_fit_encodings"],[99,2,1,"","generate_fit_predict_encodings"],[99,2,1,"","generate_predict_encodings"],[99,2,1,"","gridsearch"],[99,2,1,"","historical_forecasts"],[99,2,1,"","initialize_encoders"],[99,2,1,"","load"],[99,2,1,"","load_from_checkpoint"],[99,2,1,"","load_weights"],[99,2,1,"","load_weights_from_checkpoint"],[99,2,1,"","lr_find"],[99,4,1,"","min_train_samples"],[99,4,1,"","min_train_series_length"],[99,4,1,"","output_chunk_length"],[99,2,1,"","predict"],[99,2,1,"","predict_from_dataset"],[99,2,1,"","reset_model"],[99,2,1,"","residuals"],[99,2,1,"","save"],[99,4,1,"","supports_likelihood_parameter_prediction"],[99,4,1,"","supports_multivariate"],[99,4,1,"","supports_optimized_historical_forecasts"],[99,4,1,"","supports_past_covariates"],[99,4,1,"","supports_static_covariates"],[99,4,1,"","supports_transferrable_series_prediction"],[99,2,1,"","to_cpu"],[99,2,1,"","untrained_model"],[99,4,1,"","uses_future_covariates"],[99,4,1,"","uses_past_covariates"],[99,4,1,"","uses_static_covariates"]],"darts.models.forecasting.block_rnn_model.CustomBlockRNNModule":[[99,2,1,"","forward"]],"darts.models.forecasting.catboost_model":[[100,1,1,"","CatBoostModel"]],"darts.models.forecasting.catboost_model.CatBoostModel":[[100,2,1,"","backtest"],[100,4,1,"","considers_static_covariates"],[100,4,1,"","extreme_lags"],[100,2,1,"","fit"],[100,2,1,"","generate_fit_encodings"],[100,2,1,"","generate_fit_predict_encodings"],[100,2,1,"","generate_predict_encodings"],[100,2,1,"","get_multioutput_estimator"],[100,2,1,"","gridsearch"],[100,2,1,"","historical_forecasts"],[100,4,1,"","lagged_feature_names"],[100,2,1,"","load"],[100,4,1,"","min_train_samples"],[100,4,1,"","model_params"],[100,4,1,"","num_parameters"],[100,4,1,"","output_chunk_length"],[100,2,1,"","predict"],[100,2,1,"","residuals"],[100,2,1,"","save"],[100,4,1,"","supports_future_covariates"],[100,4,1,"","supports_likelihood_parameter_prediction"],[100,4,1,"","supports_multivariate"],[100,4,1,"","supports_optimized_historical_forecasts"],[100,4,1,"","supports_past_covariates"],[100,4,1,"","supports_static_covariates"],[100,4,1,"","supports_transferrable_series_prediction"],[100,4,1,"","uses_future_covariates"],[100,4,1,"","uses_past_covariates"],[100,4,1,"","uses_static_covariates"]],"darts.models.forecasting.croston":[[101,1,1,"","Croston"]],"darts.models.forecasting.croston.Croston":[[101,2,1,"","backtest"],[101,4,1,"","considers_static_covariates"],[101,4,1,"","extreme_lags"],[101,2,1,"","fit"],[101,2,1,"","generate_fit_encodings"],[101,2,1,"","generate_fit_predict_encodings"],[101,2,1,"","generate_predict_encodings"],[101,2,1,"","gridsearch"],[101,2,1,"","historical_forecasts"],[101,2,1,"","load"],[101,4,1,"","min_train_samples"],[101,4,1,"","model_params"],[101,4,1,"","output_chunk_length"],[101,2,1,"","predict"],[101,2,1,"","residuals"],[101,2,1,"","save"],[101,4,1,"","supports_future_covariates"],[101,4,1,"","supports_likelihood_parameter_prediction"],[101,4,1,"","supports_multivariate"],[101,4,1,"","supports_optimized_historical_forecasts"],[101,4,1,"","supports_past_covariates"],[101,4,1,"","supports_static_covariates"],[101,4,1,"","supports_transferrable_series_prediction"],[101,4,1,"","uses_future_covariates"],[101,4,1,"","uses_past_covariates"],[101,4,1,"","uses_static_covariates"]],"darts.models.forecasting.dlinear":[[102,1,1,"","DLinearModel"]],"darts.models.forecasting.dlinear.DLinearModel":[[102,2,1,"","backtest"],[102,4,1,"","considers_static_covariates"],[102,4,1,"","epochs_trained"],[102,4,1,"","extreme_lags"],[102,2,1,"","fit"],[102,2,1,"","fit_from_dataset"],[102,2,1,"","generate_fit_encodings"],[102,2,1,"","generate_fit_predict_encodings"],[102,2,1,"","generate_predict_encodings"],[102,2,1,"","gridsearch"],[102,2,1,"","historical_forecasts"],[102,4,1,"","input_chunk_length"],[102,4,1,"","likelihood"],[102,2,1,"","load"],[102,2,1,"","load_from_checkpoint"],[102,2,1,"","load_weights"],[102,2,1,"","load_weights_from_checkpoint"],[102,2,1,"","lr_find"],[102,4,1,"","min_train_samples"],[102,4,1,"","model_created"],[102,4,1,"","model_params"],[102,4,1,"","output_chunk_length"],[102,2,1,"","predict"],[102,2,1,"","predict_from_dataset"],[102,2,1,"","reset_model"],[102,2,1,"","residuals"],[102,2,1,"","save"],[102,4,1,"","supports_future_covariates"],[102,4,1,"","supports_likelihood_parameter_prediction"],[102,4,1,"","supports_multivariate"],[102,4,1,"","supports_optimized_historical_forecasts"],[102,4,1,"","supports_past_covariates"],[102,4,1,"","supports_static_covariates"],[102,4,1,"","supports_transferrable_series_prediction"],[102,2,1,"","to_cpu"],[102,4,1,"","uses_future_covariates"],[102,4,1,"","uses_past_covariates"],[102,4,1,"","uses_static_covariates"]],"darts.models.forecasting.ensemble_model":[[103,1,1,"","EnsembleModel"]],"darts.models.forecasting.ensemble_model.EnsembleModel":[[103,2,1,"","backtest"],[103,4,1,"","considers_static_covariates"],[103,2,1,"","ensemble"],[103,4,1,"","extreme_lags"],[103,2,1,"","fit"],[103,2,1,"","generate_fit_encodings"],[103,2,1,"","generate_fit_predict_encodings"],[103,2,1,"","generate_predict_encodings"],[103,2,1,"","gridsearch"],[103,2,1,"","historical_forecasts"],[103,2,1,"","load"],[103,4,1,"","min_train_samples"],[103,4,1,"","model_params"],[103,4,1,"","output_chunk_length"],[103,2,1,"","predict"],[103,2,1,"","residuals"],[103,2,1,"","save"],[103,4,1,"","supports_future_covariates"],[103,4,1,"","supports_likelihood_parameter_prediction"],[103,4,1,"","supports_multivariate"],[103,4,1,"","supports_optimized_historical_forecasts"],[103,4,1,"","supports_past_covariates"],[103,4,1,"","supports_static_covariates"],[103,4,1,"","supports_transferrable_series_prediction"],[103,4,1,"","uses_future_covariates"],[103,4,1,"","uses_past_covariates"],[103,4,1,"","uses_static_covariates"]],"darts.models.forecasting.exponential_smoothing":[[104,1,1,"","ExponentialSmoothing"]],"darts.models.forecasting.exponential_smoothing.ExponentialSmoothing":[[104,2,1,"","backtest"],[104,4,1,"","considers_static_covariates"],[104,4,1,"","extreme_lags"],[104,2,1,"","fit"],[104,2,1,"","generate_fit_encodings"],[104,2,1,"","generate_fit_predict_encodings"],[104,2,1,"","generate_predict_encodings"],[104,2,1,"","gridsearch"],[104,2,1,"","historical_forecasts"],[104,2,1,"","load"],[104,4,1,"","min_train_samples"],[104,4,1,"","model_params"],[104,4,1,"","output_chunk_length"],[104,2,1,"","predict"],[104,2,1,"","residuals"],[104,2,1,"","save"],[104,4,1,"","supports_future_covariates"],[104,4,1,"","supports_likelihood_parameter_prediction"],[104,4,1,"","supports_multivariate"],[104,4,1,"","supports_optimized_historical_forecasts"],[104,4,1,"","supports_past_covariates"],[104,4,1,"","supports_static_covariates"],[104,4,1,"","supports_transferrable_series_prediction"],[104,4,1,"","uses_future_covariates"],[104,4,1,"","uses_past_covariates"],[104,4,1,"","uses_static_covariates"]],"darts.models.forecasting.fft":[[105,1,1,"","FFT"]],"darts.models.forecasting.fft.FFT":[[105,2,1,"","backtest"],[105,4,1,"","considers_static_covariates"],[105,4,1,"","extreme_lags"],[105,2,1,"","fit"],[105,2,1,"","generate_fit_encodings"],[105,2,1,"","generate_fit_predict_encodings"],[105,2,1,"","generate_predict_encodings"],[105,2,1,"","gridsearch"],[105,2,1,"","historical_forecasts"],[105,2,1,"","load"],[105,4,1,"","min_train_samples"],[105,4,1,"","model_params"],[105,4,1,"","output_chunk_length"],[105,2,1,"","predict"],[105,2,1,"","residuals"],[105,2,1,"","save"],[105,4,1,"","supports_future_covariates"],[105,4,1,"","supports_likelihood_parameter_prediction"],[105,4,1,"","supports_multivariate"],[105,4,1,"","supports_optimized_historical_forecasts"],[105,4,1,"","supports_past_covariates"],[105,4,1,"","supports_static_covariates"],[105,4,1,"","supports_transferrable_series_prediction"],[105,4,1,"","uses_future_covariates"],[105,4,1,"","uses_past_covariates"],[105,4,1,"","uses_static_covariates"]],"darts.models.forecasting.forecasting_model":[[106,1,1,"","ModelMeta"]],"darts.models.forecasting.forecasting_model.ModelMeta":[[106,2,1,"","mro"],[106,2,1,"","register"]],"darts.models.forecasting.kalman_forecaster":[[107,1,1,"","KalmanForecaster"]],"darts.models.forecasting.kalman_forecaster.KalmanForecaster":[[107,2,1,"","backtest"],[107,4,1,"","considers_static_covariates"],[107,4,1,"","extreme_lags"],[107,2,1,"","fit"],[107,2,1,"","generate_fit_encodings"],[107,2,1,"","generate_fit_predict_encodings"],[107,2,1,"","generate_predict_encodings"],[107,2,1,"","gridsearch"],[107,2,1,"","historical_forecasts"],[107,2,1,"","load"],[107,4,1,"","min_train_samples"],[107,4,1,"","model_params"],[107,4,1,"","output_chunk_length"],[107,2,1,"","predict"],[107,2,1,"","residuals"],[107,2,1,"","save"],[107,4,1,"","supports_future_covariates"],[107,4,1,"","supports_likelihood_parameter_prediction"],[107,4,1,"","supports_multivariate"],[107,4,1,"","supports_optimized_historical_forecasts"],[107,4,1,"","supports_past_covariates"],[107,4,1,"","supports_static_covariates"],[107,4,1,"","supports_transferrable_series_prediction"],[107,4,1,"","uses_future_covariates"],[107,4,1,"","uses_past_covariates"],[107,4,1,"","uses_static_covariates"]],"darts.models.forecasting.lgbm":[[108,1,1,"","LightGBMModel"]],"darts.models.forecasting.lgbm.LightGBMModel":[[108,2,1,"","backtest"],[108,4,1,"","considers_static_covariates"],[108,4,1,"","extreme_lags"],[108,2,1,"","fit"],[108,2,1,"","generate_fit_encodings"],[108,2,1,"","generate_fit_predict_encodings"],[108,2,1,"","generate_predict_encodings"],[108,2,1,"","get_multioutput_estimator"],[108,2,1,"","gridsearch"],[108,2,1,"","historical_forecasts"],[108,4,1,"","lagged_feature_names"],[108,2,1,"","load"],[108,4,1,"","min_train_samples"],[108,4,1,"","model_params"],[108,4,1,"","num_parameters"],[108,4,1,"","output_chunk_length"],[108,2,1,"","predict"],[108,2,1,"","residuals"],[108,2,1,"","save"],[108,4,1,"","supports_future_covariates"],[108,4,1,"","supports_likelihood_parameter_prediction"],[108,4,1,"","supports_multivariate"],[108,4,1,"","supports_optimized_historical_forecasts"],[108,4,1,"","supports_past_covariates"],[108,4,1,"","supports_static_covariates"],[108,4,1,"","supports_transferrable_series_prediction"],[108,4,1,"","uses_future_covariates"],[108,4,1,"","uses_past_covariates"],[108,4,1,"","uses_static_covariates"]],"darts.models.forecasting.linear_regression_model":[[109,1,1,"","LinearRegressionModel"]],"darts.models.forecasting.linear_regression_model.LinearRegressionModel":[[109,2,1,"","backtest"],[109,4,1,"","considers_static_covariates"],[109,4,1,"","extreme_lags"],[109,2,1,"","fit"],[109,2,1,"","generate_fit_encodings"],[109,2,1,"","generate_fit_predict_encodings"],[109,2,1,"","generate_predict_encodings"],[109,2,1,"","get_multioutput_estimator"],[109,2,1,"","gridsearch"],[109,2,1,"","historical_forecasts"],[109,4,1,"","lagged_feature_names"],[109,2,1,"","load"],[109,4,1,"","min_train_samples"],[109,4,1,"","model_params"],[109,4,1,"","num_parameters"],[109,4,1,"","output_chunk_length"],[109,2,1,"","predict"],[109,2,1,"","residuals"],[109,2,1,"","save"],[109,4,1,"","supports_future_covariates"],[109,4,1,"","supports_likelihood_parameter_prediction"],[109,4,1,"","supports_multivariate"],[109,4,1,"","supports_optimized_historical_forecasts"],[109,4,1,"","supports_past_covariates"],[109,4,1,"","supports_static_covariates"],[109,4,1,"","supports_transferrable_series_prediction"],[109,4,1,"","uses_future_covariates"],[109,4,1,"","uses_past_covariates"],[109,4,1,"","uses_static_covariates"]],"darts.models.forecasting.nbeats":[[110,1,1,"","NBEATSModel"]],"darts.models.forecasting.nbeats.NBEATSModel":[[110,2,1,"","backtest"],[110,4,1,"","considers_static_covariates"],[110,4,1,"","epochs_trained"],[110,4,1,"","extreme_lags"],[110,2,1,"","fit"],[110,2,1,"","fit_from_dataset"],[110,2,1,"","generate_fit_encodings"],[110,2,1,"","generate_fit_predict_encodings"],[110,2,1,"","generate_predict_encodings"],[110,2,1,"","gridsearch"],[110,2,1,"","historical_forecasts"],[110,4,1,"","input_chunk_length"],[110,4,1,"","likelihood"],[110,2,1,"","load"],[110,2,1,"","load_from_checkpoint"],[110,2,1,"","load_weights"],[110,2,1,"","load_weights_from_checkpoint"],[110,2,1,"","lr_find"],[110,4,1,"","min_train_samples"],[110,4,1,"","model_created"],[110,4,1,"","model_params"],[110,4,1,"","output_chunk_length"],[110,2,1,"","predict"],[110,2,1,"","predict_from_dataset"],[110,2,1,"","reset_model"],[110,2,1,"","residuals"],[110,2,1,"","save"],[110,3,1,"","supports_future_covariates"],[110,4,1,"","supports_likelihood_parameter_prediction"],[110,4,1,"","supports_multivariate"],[110,4,1,"","supports_optimized_historical_forecasts"],[110,4,1,"","supports_past_covariates"],[110,4,1,"","supports_static_covariates"],[110,4,1,"","supports_transferrable_series_prediction"],[110,2,1,"","to_cpu"],[110,4,1,"","uses_future_covariates"],[110,4,1,"","uses_past_covariates"],[110,4,1,"","uses_static_covariates"]],"darts.models.forecasting.nhits":[[111,1,1,"","NHiTSModel"]],"darts.models.forecasting.nhits.NHiTSModel":[[111,2,1,"","backtest"],[111,4,1,"","considers_static_covariates"],[111,4,1,"","epochs_trained"],[111,4,1,"","extreme_lags"],[111,2,1,"","fit"],[111,2,1,"","fit_from_dataset"],[111,2,1,"","generate_fit_encodings"],[111,2,1,"","generate_fit_predict_encodings"],[111,2,1,"","generate_predict_encodings"],[111,2,1,"","gridsearch"],[111,2,1,"","historical_forecasts"],[111,4,1,"","input_chunk_length"],[111,4,1,"","likelihood"],[111,2,1,"","load"],[111,2,1,"","load_from_checkpoint"],[111,2,1,"","load_weights"],[111,2,1,"","load_weights_from_checkpoint"],[111,2,1,"","lr_find"],[111,4,1,"","min_train_samples"],[111,4,1,"","model_created"],[111,4,1,"","model_params"],[111,4,1,"","output_chunk_length"],[111,2,1,"","predict"],[111,2,1,"","predict_from_dataset"],[111,2,1,"","reset_model"],[111,2,1,"","residuals"],[111,2,1,"","save"],[111,3,1,"","supports_future_covariates"],[111,4,1,"","supports_likelihood_parameter_prediction"],[111,4,1,"","supports_multivariate"],[111,4,1,"","supports_optimized_historical_forecasts"],[111,4,1,"","supports_past_covariates"],[111,4,1,"","supports_static_covariates"],[111,4,1,"","supports_transferrable_series_prediction"],[111,2,1,"","to_cpu"],[111,4,1,"","uses_future_covariates"],[111,4,1,"","uses_past_covariates"],[111,4,1,"","uses_static_covariates"]],"darts.models.forecasting.nlinear":[[112,1,1,"","NLinearModel"]],"darts.models.forecasting.nlinear.NLinearModel":[[112,2,1,"","backtest"],[112,4,1,"","considers_static_covariates"],[112,4,1,"","epochs_trained"],[112,4,1,"","extreme_lags"],[112,2,1,"","fit"],[112,2,1,"","fit_from_dataset"],[112,2,1,"","generate_fit_encodings"],[112,2,1,"","generate_fit_predict_encodings"],[112,2,1,"","generate_predict_encodings"],[112,2,1,"","gridsearch"],[112,2,1,"","historical_forecasts"],[112,4,1,"","input_chunk_length"],[112,4,1,"","likelihood"],[112,2,1,"","load"],[112,2,1,"","load_from_checkpoint"],[112,2,1,"","load_weights"],[112,2,1,"","load_weights_from_checkpoint"],[112,2,1,"","lr_find"],[112,4,1,"","min_train_samples"],[112,4,1,"","model_created"],[112,4,1,"","model_params"],[112,4,1,"","output_chunk_length"],[112,2,1,"","predict"],[112,2,1,"","predict_from_dataset"],[112,2,1,"","reset_model"],[112,2,1,"","residuals"],[112,2,1,"","save"],[112,4,1,"","supports_future_covariates"],[112,4,1,"","supports_likelihood_parameter_prediction"],[112,4,1,"","supports_multivariate"],[112,4,1,"","supports_optimized_historical_forecasts"],[112,4,1,"","supports_past_covariates"],[112,4,1,"","supports_static_covariates"],[112,4,1,"","supports_transferrable_series_prediction"],[112,2,1,"","to_cpu"],[112,4,1,"","uses_future_covariates"],[112,4,1,"","uses_past_covariates"],[112,4,1,"","uses_static_covariates"]],"darts.models.forecasting.pl_forecasting_module":[[113,1,1,"","PLDualCovariatesModule"],[113,1,1,"","PLForecastingModule"],[113,1,1,"","PLFutureCovariatesModule"],[113,1,1,"","PLMixedCovariatesModule"],[113,1,1,"","PLPastCovariatesModule"],[113,1,1,"","PLSplitCovariatesModule"],[113,5,1,"","io_processor"]],"darts.models.forecasting.pl_forecasting_module.PLDualCovariatesModule":[[113,3,1,"","CHECKPOINT_HYPER_PARAMS_KEY"],[113,3,1,"","CHECKPOINT_HYPER_PARAMS_NAME"],[113,3,1,"","CHECKPOINT_HYPER_PARAMS_TYPE"],[113,3,1,"","T_destination"],[113,2,1,"","add_module"],[113,2,1,"","all_gather"],[113,2,1,"","apply"],[113,4,1,"","automatic_optimization"],[113,2,1,"","backward"],[113,2,1,"","bfloat16"],[113,2,1,"","buffers"],[113,3,1,"","call_super_init"],[113,2,1,"","children"],[113,2,1,"","clip_gradients"],[113,2,1,"","compile"],[113,2,1,"","configure_callbacks"],[113,2,1,"","configure_gradient_clipping"],[113,2,1,"","configure_model"],[113,2,1,"","configure_optimizers"],[113,2,1,"","configure_sharded_model"],[113,2,1,"","configure_torch_metrics"],[113,2,1,"","cpu"],[113,2,1,"","cuda"],[113,4,1,"","current_epoch"],[113,4,1,"","device"],[113,2,1,"","double"],[113,4,1,"","dtype"],[113,3,1,"","dump_patches"],[113,4,1,"","epochs_trained"],[113,2,1,"","eval"],[113,4,1,"","example_input_array"],[113,2,1,"","extra_repr"],[113,4,1,"","fabric"],[113,2,1,"","float"],[113,2,1,"","forward"],[113,2,1,"","freeze"],[113,2,1,"","get_buffer"],[113,2,1,"","get_extra_state"],[113,2,1,"","get_parameter"],[113,2,1,"","get_submodule"],[113,4,1,"","global_rank"],[113,4,1,"","global_step"],[113,2,1,"","half"],[113,4,1,"","hparams"],[113,4,1,"","hparams_initial"],[113,2,1,"","ipu"],[113,2,1,"","load_from_checkpoint"],[113,2,1,"","load_state_dict"],[113,4,1,"","local_rank"],[113,2,1,"","log"],[113,2,1,"","log_dict"],[113,4,1,"","logger"],[113,4,1,"","loggers"],[113,2,1,"","lr_scheduler_step"],[113,2,1,"","lr_schedulers"],[113,2,1,"","manual_backward"],[113,2,1,"","modules"],[113,2,1,"","named_buffers"],[113,2,1,"","named_children"],[113,2,1,"","named_modules"],[113,2,1,"","named_parameters"],[113,2,1,"","on_after_backward"],[113,2,1,"","on_after_batch_transfer"],[113,2,1,"","on_before_backward"],[113,2,1,"","on_before_batch_transfer"],[113,2,1,"","on_before_optimizer_step"],[113,2,1,"","on_before_zero_grad"],[113,2,1,"","on_fit_end"],[113,2,1,"","on_fit_start"],[113,4,1,"","on_gpu"],[113,2,1,"","on_load_checkpoint"],[113,2,1,"","on_predict_batch_end"],[113,2,1,"","on_predict_batch_start"],[113,2,1,"","on_predict_end"],[113,2,1,"","on_predict_epoch_end"],[113,2,1,"","on_predict_epoch_start"],[113,2,1,"","on_predict_model_eval"],[113,2,1,"","on_predict_start"],[113,2,1,"","on_save_checkpoint"],[113,2,1,"","on_test_batch_end"],[113,2,1,"","on_test_batch_start"],[113,2,1,"","on_test_end"],[113,2,1,"","on_test_epoch_end"],[113,2,1,"","on_test_epoch_start"],[113,2,1,"","on_test_model_eval"],[113,2,1,"","on_test_model_train"],[113,2,1,"","on_test_start"],[113,2,1,"","on_train_batch_end"],[113,2,1,"","on_train_batch_start"],[113,2,1,"","on_train_end"],[113,2,1,"","on_train_epoch_end"],[113,2,1,"","on_train_epoch_start"],[113,2,1,"","on_train_start"],[113,2,1,"","on_validation_batch_end"],[113,2,1,"","on_validation_batch_start"],[113,2,1,"","on_validation_end"],[113,2,1,"","on_validation_epoch_end"],[113,2,1,"","on_validation_epoch_start"],[113,2,1,"","on_validation_model_eval"],[113,2,1,"","on_validation_model_train"],[113,2,1,"","on_validation_model_zero_grad"],[113,2,1,"","on_validation_start"],[113,2,1,"","optimizer_step"],[113,2,1,"","optimizer_zero_grad"],[113,2,1,"","optimizers"],[113,4,1,"","output_chunk_length"],[113,2,1,"","parameters"],[113,2,1,"","predict_dataloader"],[113,2,1,"","predict_step"],[113,2,1,"","prepare_data"],[113,2,1,"","print"],[113,2,1,"","register_backward_hook"],[113,2,1,"","register_buffer"],[113,2,1,"","register_forward_hook"],[113,2,1,"","register_forward_pre_hook"],[113,2,1,"","register_full_backward_hook"],[113,2,1,"","register_full_backward_pre_hook"],[113,2,1,"","register_load_state_dict_post_hook"],[113,2,1,"","register_module"],[113,2,1,"","register_parameter"],[113,2,1,"","register_state_dict_pre_hook"],[113,2,1,"","requires_grad_"],[113,2,1,"","save_hyperparameters"],[113,2,1,"","set_extra_state"],[113,2,1,"","set_mc_dropout"],[113,2,1,"","set_predict_parameters"],[113,2,1,"","setup"],[113,2,1,"","share_memory"],[113,2,1,"","state_dict"],[113,2,1,"","teardown"],[113,2,1,"","test_dataloader"],[113,2,1,"","test_step"],[113,2,1,"","to"],[113,2,1,"","to_dtype"],[113,2,1,"","to_empty"],[113,2,1,"","to_onnx"],[113,2,1,"","to_torchscript"],[113,2,1,"","toggle_optimizer"],[113,2,1,"","train"],[113,2,1,"","train_dataloader"],[113,4,1,"","trainer"],[113,3,1,"","training"],[113,2,1,"","training_step"],[113,2,1,"","transfer_batch_to_device"],[113,2,1,"","type"],[113,2,1,"","unfreeze"],[113,2,1,"","untoggle_optimizer"],[113,2,1,"","val_dataloader"],[113,2,1,"","validation_step"],[113,2,1,"","xpu"],[113,2,1,"","zero_grad"]],"darts.models.forecasting.pl_forecasting_module.PLForecastingModule":[[113,3,1,"","CHECKPOINT_HYPER_PARAMS_KEY"],[113,3,1,"","CHECKPOINT_HYPER_PARAMS_NAME"],[113,3,1,"","CHECKPOINT_HYPER_PARAMS_TYPE"],[113,3,1,"","T_destination"],[113,2,1,"","add_module"],[113,2,1,"","all_gather"],[113,2,1,"","apply"],[113,4,1,"","automatic_optimization"],[113,2,1,"","backward"],[113,2,1,"","bfloat16"],[113,2,1,"","buffers"],[113,3,1,"","call_super_init"],[113,2,1,"","children"],[113,2,1,"","clip_gradients"],[113,2,1,"","compile"],[113,2,1,"","configure_callbacks"],[113,2,1,"","configure_gradient_clipping"],[113,2,1,"","configure_model"],[113,2,1,"","configure_optimizers"],[113,2,1,"","configure_sharded_model"],[113,2,1,"","configure_torch_metrics"],[113,2,1,"","cpu"],[113,2,1,"","cuda"],[113,4,1,"","current_epoch"],[113,4,1,"","device"],[113,2,1,"","double"],[113,4,1,"","dtype"],[113,3,1,"","dump_patches"],[113,4,1,"","epochs_trained"],[113,2,1,"","eval"],[113,4,1,"","example_input_array"],[113,2,1,"","extra_repr"],[113,4,1,"","fabric"],[113,2,1,"","float"],[113,2,1,"","forward"],[113,2,1,"","freeze"],[113,2,1,"","get_buffer"],[113,2,1,"","get_extra_state"],[113,2,1,"","get_parameter"],[113,2,1,"","get_submodule"],[113,4,1,"","global_rank"],[113,4,1,"","global_step"],[113,2,1,"","half"],[113,4,1,"","hparams"],[113,4,1,"","hparams_initial"],[113,2,1,"","ipu"],[113,2,1,"","load_from_checkpoint"],[113,2,1,"","load_state_dict"],[113,4,1,"","local_rank"],[113,2,1,"","log"],[113,2,1,"","log_dict"],[113,4,1,"","logger"],[113,4,1,"","loggers"],[113,2,1,"","lr_scheduler_step"],[113,2,1,"","lr_schedulers"],[113,2,1,"","manual_backward"],[113,2,1,"","modules"],[113,2,1,"","named_buffers"],[113,2,1,"","named_children"],[113,2,1,"","named_modules"],[113,2,1,"","named_parameters"],[113,2,1,"","on_after_backward"],[113,2,1,"","on_after_batch_transfer"],[113,2,1,"","on_before_backward"],[113,2,1,"","on_before_batch_transfer"],[113,2,1,"","on_before_optimizer_step"],[113,2,1,"","on_before_zero_grad"],[113,2,1,"","on_fit_end"],[113,2,1,"","on_fit_start"],[113,4,1,"","on_gpu"],[113,2,1,"","on_load_checkpoint"],[113,2,1,"","on_predict_batch_end"],[113,2,1,"","on_predict_batch_start"],[113,2,1,"","on_predict_end"],[113,2,1,"","on_predict_epoch_end"],[113,2,1,"","on_predict_epoch_start"],[113,2,1,"","on_predict_model_eval"],[113,2,1,"","on_predict_start"],[113,2,1,"","on_save_checkpoint"],[113,2,1,"","on_test_batch_end"],[113,2,1,"","on_test_batch_start"],[113,2,1,"","on_test_end"],[113,2,1,"","on_test_epoch_end"],[113,2,1,"","on_test_epoch_start"],[113,2,1,"","on_test_model_eval"],[113,2,1,"","on_test_model_train"],[113,2,1,"","on_test_start"],[113,2,1,"","on_train_batch_end"],[113,2,1,"","on_train_batch_start"],[113,2,1,"","on_train_end"],[113,2,1,"","on_train_epoch_end"],[113,2,1,"","on_train_epoch_start"],[113,2,1,"","on_train_start"],[113,2,1,"","on_validation_batch_end"],[113,2,1,"","on_validation_batch_start"],[113,2,1,"","on_validation_end"],[113,2,1,"","on_validation_epoch_end"],[113,2,1,"","on_validation_epoch_start"],[113,2,1,"","on_validation_model_eval"],[113,2,1,"","on_validation_model_train"],[113,2,1,"","on_validation_model_zero_grad"],[113,2,1,"","on_validation_start"],[113,2,1,"","optimizer_step"],[113,2,1,"","optimizer_zero_grad"],[113,2,1,"","optimizers"],[113,4,1,"","output_chunk_length"],[113,2,1,"","parameters"],[113,2,1,"","predict_dataloader"],[113,2,1,"","predict_step"],[113,2,1,"","prepare_data"],[113,2,1,"","print"],[113,2,1,"","register_backward_hook"],[113,2,1,"","register_buffer"],[113,2,1,"","register_forward_hook"],[113,2,1,"","register_forward_pre_hook"],[113,2,1,"","register_full_backward_hook"],[113,2,1,"","register_full_backward_pre_hook"],[113,2,1,"","register_load_state_dict_post_hook"],[113,2,1,"","register_module"],[113,2,1,"","register_parameter"],[113,2,1,"","register_state_dict_pre_hook"],[113,2,1,"","requires_grad_"],[113,2,1,"","save_hyperparameters"],[113,2,1,"","set_extra_state"],[113,2,1,"","set_mc_dropout"],[113,2,1,"","set_predict_parameters"],[113,2,1,"","setup"],[113,2,1,"","share_memory"],[113,2,1,"","state_dict"],[113,2,1,"","teardown"],[113,2,1,"","test_dataloader"],[113,2,1,"","test_step"],[113,2,1,"","to"],[113,2,1,"","to_dtype"],[113,2,1,"","to_empty"],[113,2,1,"","to_onnx"],[113,2,1,"","to_torchscript"],[113,2,1,"","toggle_optimizer"],[113,2,1,"","train"],[113,2,1,"","train_dataloader"],[113,4,1,"","trainer"],[113,3,1,"","training"],[113,2,1,"","training_step"],[113,2,1,"","transfer_batch_to_device"],[113,2,1,"","type"],[113,2,1,"","unfreeze"],[113,2,1,"","untoggle_optimizer"],[113,2,1,"","val_dataloader"],[113,2,1,"","validation_step"],[113,2,1,"","xpu"],[113,2,1,"","zero_grad"]],"darts.models.forecasting.pl_forecasting_module.PLFutureCovariatesModule":[[113,3,1,"","CHECKPOINT_HYPER_PARAMS_KEY"],[113,3,1,"","CHECKPOINT_HYPER_PARAMS_NAME"],[113,3,1,"","CHECKPOINT_HYPER_PARAMS_TYPE"],[113,3,1,"","T_destination"],[113,2,1,"","add_module"],[113,2,1,"","all_gather"],[113,3,1,"","allow_zero_length_dataloader_with_multiple_devices"],[113,2,1,"","apply"],[113,4,1,"","automatic_optimization"],[113,2,1,"","backward"],[113,2,1,"","bfloat16"],[113,2,1,"","buffers"],[113,3,1,"","call_super_init"],[113,2,1,"","children"],[113,2,1,"","clip_gradients"],[113,2,1,"","compile"],[113,2,1,"","configure_callbacks"],[113,2,1,"","configure_gradient_clipping"],[113,2,1,"","configure_model"],[113,2,1,"","configure_optimizers"],[113,2,1,"","configure_sharded_model"],[113,2,1,"","configure_torch_metrics"],[113,2,1,"","cpu"],[113,2,1,"","cuda"],[113,4,1,"","current_epoch"],[113,4,1,"","device"],[113,2,1,"","double"],[113,4,1,"","dtype"],[113,3,1,"","dump_patches"],[113,4,1,"","epochs_trained"],[113,2,1,"","eval"],[113,4,1,"","example_input_array"],[113,2,1,"","extra_repr"],[113,4,1,"","fabric"],[113,2,1,"","float"],[113,2,1,"","forward"],[113,2,1,"","freeze"],[113,2,1,"","get_buffer"],[113,2,1,"","get_extra_state"],[113,2,1,"","get_parameter"],[113,2,1,"","get_submodule"],[113,4,1,"","global_rank"],[113,4,1,"","global_step"],[113,2,1,"","half"],[113,4,1,"","hparams"],[113,4,1,"","hparams_initial"],[113,2,1,"","ipu"],[113,2,1,"","load_from_checkpoint"],[113,2,1,"","load_state_dict"],[113,4,1,"","local_rank"],[113,2,1,"","log"],[113,2,1,"","log_dict"],[113,4,1,"","logger"],[113,4,1,"","loggers"],[113,2,1,"","lr_scheduler_step"],[113,2,1,"","lr_schedulers"],[113,2,1,"","manual_backward"],[113,2,1,"","modules"],[113,2,1,"","named_buffers"],[113,2,1,"","named_children"],[113,2,1,"","named_modules"],[113,2,1,"","named_parameters"],[113,2,1,"","on_after_backward"],[113,2,1,"","on_after_batch_transfer"],[113,2,1,"","on_before_backward"],[113,2,1,"","on_before_batch_transfer"],[113,2,1,"","on_before_optimizer_step"],[113,2,1,"","on_before_zero_grad"],[113,2,1,"","on_fit_end"],[113,2,1,"","on_fit_start"],[113,4,1,"","on_gpu"],[113,2,1,"","on_load_checkpoint"],[113,2,1,"","on_predict_batch_end"],[113,2,1,"","on_predict_batch_start"],[113,2,1,"","on_predict_end"],[113,2,1,"","on_predict_epoch_end"],[113,2,1,"","on_predict_epoch_start"],[113,2,1,"","on_predict_model_eval"],[113,2,1,"","on_predict_start"],[113,2,1,"","on_save_checkpoint"],[113,2,1,"","on_test_batch_end"],[113,2,1,"","on_test_batch_start"],[113,2,1,"","on_test_end"],[113,2,1,"","on_test_epoch_end"],[113,2,1,"","on_test_epoch_start"],[113,2,1,"","on_test_model_eval"],[113,2,1,"","on_test_model_train"],[113,2,1,"","on_test_start"],[113,2,1,"","on_train_batch_end"],[113,2,1,"","on_train_batch_start"],[113,2,1,"","on_train_end"],[113,2,1,"","on_train_epoch_end"],[113,2,1,"","on_train_epoch_start"],[113,2,1,"","on_train_start"],[113,2,1,"","on_validation_batch_end"],[113,2,1,"","on_validation_batch_start"],[113,2,1,"","on_validation_end"],[113,2,1,"","on_validation_epoch_end"],[113,2,1,"","on_validation_epoch_start"],[113,2,1,"","on_validation_model_eval"],[113,2,1,"","on_validation_model_train"],[113,2,1,"","on_validation_model_zero_grad"],[113,2,1,"","on_validation_start"],[113,2,1,"","optimizer_step"],[113,2,1,"","optimizer_zero_grad"],[113,2,1,"","optimizers"],[113,4,1,"","output_chunk_length"],[113,2,1,"","parameters"],[113,3,1,"","pred_batch_size"],[113,3,1,"","pred_n"],[113,3,1,"","pred_n_jobs"],[113,3,1,"","pred_num_samples"],[113,3,1,"","pred_roll_size"],[113,2,1,"","predict_dataloader"],[113,3,1,"","predict_likelihood_parameters"],[113,2,1,"","predict_step"],[113,2,1,"","prepare_data"],[113,3,1,"","prepare_data_per_node"],[113,2,1,"","print"],[113,2,1,"","register_backward_hook"],[113,2,1,"","register_buffer"],[113,2,1,"","register_forward_hook"],[113,2,1,"","register_forward_pre_hook"],[113,2,1,"","register_full_backward_hook"],[113,2,1,"","register_full_backward_pre_hook"],[113,2,1,"","register_load_state_dict_post_hook"],[113,2,1,"","register_module"],[113,2,1,"","register_parameter"],[113,2,1,"","register_state_dict_pre_hook"],[113,2,1,"","requires_grad_"],[113,2,1,"","save_hyperparameters"],[113,2,1,"","set_extra_state"],[113,2,1,"","set_mc_dropout"],[113,2,1,"","set_predict_parameters"],[113,2,1,"","setup"],[113,2,1,"","share_memory"],[113,2,1,"","state_dict"],[113,2,1,"","teardown"],[113,2,1,"","test_dataloader"],[113,2,1,"","test_step"],[113,2,1,"","to"],[113,2,1,"","to_dtype"],[113,2,1,"","to_empty"],[113,2,1,"","to_onnx"],[113,2,1,"","to_torchscript"],[113,2,1,"","toggle_optimizer"],[113,2,1,"","train"],[113,2,1,"","train_dataloader"],[113,4,1,"","trainer"],[113,3,1,"","training"],[113,2,1,"","training_step"],[113,2,1,"","transfer_batch_to_device"],[113,2,1,"","type"],[113,2,1,"","unfreeze"],[113,2,1,"","untoggle_optimizer"],[113,2,1,"","val_dataloader"],[113,2,1,"","validation_step"],[113,2,1,"","xpu"],[113,2,1,"","zero_grad"]],"darts.models.forecasting.pl_forecasting_module.PLMixedCovariatesModule":[[113,3,1,"","CHECKPOINT_HYPER_PARAMS_KEY"],[113,3,1,"","CHECKPOINT_HYPER_PARAMS_NAME"],[113,3,1,"","CHECKPOINT_HYPER_PARAMS_TYPE"],[113,3,1,"","T_destination"],[113,2,1,"","add_module"],[113,2,1,"","all_gather"],[113,3,1,"","allow_zero_length_dataloader_with_multiple_devices"],[113,2,1,"","apply"],[113,4,1,"","automatic_optimization"],[113,2,1,"","backward"],[113,2,1,"","bfloat16"],[113,2,1,"","buffers"],[113,3,1,"","call_super_init"],[113,2,1,"","children"],[113,2,1,"","clip_gradients"],[113,2,1,"","compile"],[113,2,1,"","configure_callbacks"],[113,2,1,"","configure_gradient_clipping"],[113,2,1,"","configure_model"],[113,2,1,"","configure_optimizers"],[113,2,1,"","configure_sharded_model"],[113,2,1,"","configure_torch_metrics"],[113,2,1,"","cpu"],[113,2,1,"","cuda"],[113,4,1,"","current_epoch"],[113,4,1,"","device"],[113,2,1,"","double"],[113,4,1,"","dtype"],[113,3,1,"","dump_patches"],[113,4,1,"","epochs_trained"],[113,2,1,"","eval"],[113,4,1,"","example_input_array"],[113,2,1,"","extra_repr"],[113,4,1,"","fabric"],[113,2,1,"","float"],[113,2,1,"","forward"],[113,2,1,"","freeze"],[113,2,1,"","get_buffer"],[113,2,1,"","get_extra_state"],[113,2,1,"","get_parameter"],[113,2,1,"","get_submodule"],[113,4,1,"","global_rank"],[113,4,1,"","global_step"],[113,2,1,"","half"],[113,4,1,"","hparams"],[113,4,1,"","hparams_initial"],[113,2,1,"","ipu"],[113,2,1,"","load_from_checkpoint"],[113,2,1,"","load_state_dict"],[113,4,1,"","local_rank"],[113,2,1,"","log"],[113,2,1,"","log_dict"],[113,4,1,"","logger"],[113,4,1,"","loggers"],[113,2,1,"","lr_scheduler_step"],[113,2,1,"","lr_schedulers"],[113,2,1,"","manual_backward"],[113,2,1,"","modules"],[113,2,1,"","named_buffers"],[113,2,1,"","named_children"],[113,2,1,"","named_modules"],[113,2,1,"","named_parameters"],[113,2,1,"","on_after_backward"],[113,2,1,"","on_after_batch_transfer"],[113,2,1,"","on_before_backward"],[113,2,1,"","on_before_batch_transfer"],[113,2,1,"","on_before_optimizer_step"],[113,2,1,"","on_before_zero_grad"],[113,2,1,"","on_fit_end"],[113,2,1,"","on_fit_start"],[113,4,1,"","on_gpu"],[113,2,1,"","on_load_checkpoint"],[113,2,1,"","on_predict_batch_end"],[113,2,1,"","on_predict_batch_start"],[113,2,1,"","on_predict_end"],[113,2,1,"","on_predict_epoch_end"],[113,2,1,"","on_predict_epoch_start"],[113,2,1,"","on_predict_model_eval"],[113,2,1,"","on_predict_start"],[113,2,1,"","on_save_checkpoint"],[113,2,1,"","on_test_batch_end"],[113,2,1,"","on_test_batch_start"],[113,2,1,"","on_test_end"],[113,2,1,"","on_test_epoch_end"],[113,2,1,"","on_test_epoch_start"],[113,2,1,"","on_test_model_eval"],[113,2,1,"","on_test_model_train"],[113,2,1,"","on_test_start"],[113,2,1,"","on_train_batch_end"],[113,2,1,"","on_train_batch_start"],[113,2,1,"","on_train_end"],[113,2,1,"","on_train_epoch_end"],[113,2,1,"","on_train_epoch_start"],[113,2,1,"","on_train_start"],[113,2,1,"","on_validation_batch_end"],[113,2,1,"","on_validation_batch_start"],[113,2,1,"","on_validation_end"],[113,2,1,"","on_validation_epoch_end"],[113,2,1,"","on_validation_epoch_start"],[113,2,1,"","on_validation_model_eval"],[113,2,1,"","on_validation_model_train"],[113,2,1,"","on_validation_model_zero_grad"],[113,2,1,"","on_validation_start"],[113,2,1,"","optimizer_step"],[113,2,1,"","optimizer_zero_grad"],[113,2,1,"","optimizers"],[113,4,1,"","output_chunk_length"],[113,2,1,"","parameters"],[113,3,1,"","pred_batch_size"],[113,3,1,"","pred_n"],[113,3,1,"","pred_n_jobs"],[113,3,1,"","pred_num_samples"],[113,3,1,"","pred_roll_size"],[113,2,1,"","predict_dataloader"],[113,3,1,"","predict_likelihood_parameters"],[113,2,1,"","predict_step"],[113,2,1,"","prepare_data"],[113,3,1,"","prepare_data_per_node"],[113,2,1,"","print"],[113,2,1,"","register_backward_hook"],[113,2,1,"","register_buffer"],[113,2,1,"","register_forward_hook"],[113,2,1,"","register_forward_pre_hook"],[113,2,1,"","register_full_backward_hook"],[113,2,1,"","register_full_backward_pre_hook"],[113,2,1,"","register_load_state_dict_post_hook"],[113,2,1,"","register_module"],[113,2,1,"","register_parameter"],[113,2,1,"","register_state_dict_pre_hook"],[113,2,1,"","requires_grad_"],[113,2,1,"","save_hyperparameters"],[113,2,1,"","set_extra_state"],[113,2,1,"","set_mc_dropout"],[113,2,1,"","set_predict_parameters"],[113,2,1,"","setup"],[113,2,1,"","share_memory"],[113,2,1,"","state_dict"],[113,2,1,"","teardown"],[113,2,1,"","test_dataloader"],[113,2,1,"","test_step"],[113,2,1,"","to"],[113,2,1,"","to_dtype"],[113,2,1,"","to_empty"],[113,2,1,"","to_onnx"],[113,2,1,"","to_torchscript"],[113,2,1,"","toggle_optimizer"],[113,2,1,"","train"],[113,2,1,"","train_dataloader"],[113,4,1,"","trainer"],[113,3,1,"","training"],[113,2,1,"","training_step"],[113,2,1,"","transfer_batch_to_device"],[113,2,1,"","type"],[113,2,1,"","unfreeze"],[113,2,1,"","untoggle_optimizer"],[113,2,1,"","val_dataloader"],[113,2,1,"","validation_step"],[113,2,1,"","xpu"],[113,2,1,"","zero_grad"]],"darts.models.forecasting.pl_forecasting_module.PLPastCovariatesModule":[[113,3,1,"","CHECKPOINT_HYPER_PARAMS_KEY"],[113,3,1,"","CHECKPOINT_HYPER_PARAMS_NAME"],[113,3,1,"","CHECKPOINT_HYPER_PARAMS_TYPE"],[113,3,1,"","T_destination"],[113,2,1,"","add_module"],[113,2,1,"","all_gather"],[113,3,1,"","allow_zero_length_dataloader_with_multiple_devices"],[113,2,1,"","apply"],[113,4,1,"","automatic_optimization"],[113,2,1,"","backward"],[113,2,1,"","bfloat16"],[113,2,1,"","buffers"],[113,3,1,"","call_super_init"],[113,2,1,"","children"],[113,2,1,"","clip_gradients"],[113,2,1,"","compile"],[113,2,1,"","configure_callbacks"],[113,2,1,"","configure_gradient_clipping"],[113,2,1,"","configure_model"],[113,2,1,"","configure_optimizers"],[113,2,1,"","configure_sharded_model"],[113,2,1,"","configure_torch_metrics"],[113,2,1,"","cpu"],[113,2,1,"","cuda"],[113,4,1,"","current_epoch"],[113,4,1,"","device"],[113,2,1,"","double"],[113,4,1,"","dtype"],[113,3,1,"","dump_patches"],[113,4,1,"","epochs_trained"],[113,2,1,"","eval"],[113,4,1,"","example_input_array"],[113,2,1,"","extra_repr"],[113,4,1,"","fabric"],[113,2,1,"","float"],[113,2,1,"","forward"],[113,2,1,"","freeze"],[113,2,1,"","get_buffer"],[113,2,1,"","get_extra_state"],[113,2,1,"","get_parameter"],[113,2,1,"","get_submodule"],[113,4,1,"","global_rank"],[113,4,1,"","global_step"],[113,2,1,"","half"],[113,4,1,"","hparams"],[113,4,1,"","hparams_initial"],[113,2,1,"","ipu"],[113,2,1,"","load_from_checkpoint"],[113,2,1,"","load_state_dict"],[113,4,1,"","local_rank"],[113,2,1,"","log"],[113,2,1,"","log_dict"],[113,4,1,"","logger"],[113,4,1,"","loggers"],[113,2,1,"","lr_scheduler_step"],[113,2,1,"","lr_schedulers"],[113,2,1,"","manual_backward"],[113,2,1,"","modules"],[113,2,1,"","named_buffers"],[113,2,1,"","named_children"],[113,2,1,"","named_modules"],[113,2,1,"","named_parameters"],[113,2,1,"","on_after_backward"],[113,2,1,"","on_after_batch_transfer"],[113,2,1,"","on_before_backward"],[113,2,1,"","on_before_batch_transfer"],[113,2,1,"","on_before_optimizer_step"],[113,2,1,"","on_before_zero_grad"],[113,2,1,"","on_fit_end"],[113,2,1,"","on_fit_start"],[113,4,1,"","on_gpu"],[113,2,1,"","on_load_checkpoint"],[113,2,1,"","on_predict_batch_end"],[113,2,1,"","on_predict_batch_start"],[113,2,1,"","on_predict_end"],[113,2,1,"","on_predict_epoch_end"],[113,2,1,"","on_predict_epoch_start"],[113,2,1,"","on_predict_model_eval"],[113,2,1,"","on_predict_start"],[113,2,1,"","on_save_checkpoint"],[113,2,1,"","on_test_batch_end"],[113,2,1,"","on_test_batch_start"],[113,2,1,"","on_test_end"],[113,2,1,"","on_test_epoch_end"],[113,2,1,"","on_test_epoch_start"],[113,2,1,"","on_test_model_eval"],[113,2,1,"","on_test_model_train"],[113,2,1,"","on_test_start"],[113,2,1,"","on_train_batch_end"],[113,2,1,"","on_train_batch_start"],[113,2,1,"","on_train_end"],[113,2,1,"","on_train_epoch_end"],[113,2,1,"","on_train_epoch_start"],[113,2,1,"","on_train_start"],[113,2,1,"","on_validation_batch_end"],[113,2,1,"","on_validation_batch_start"],[113,2,1,"","on_validation_end"],[113,2,1,"","on_validation_epoch_end"],[113,2,1,"","on_validation_epoch_start"],[113,2,1,"","on_validation_model_eval"],[113,2,1,"","on_validation_model_train"],[113,2,1,"","on_validation_model_zero_grad"],[113,2,1,"","on_validation_start"],[113,2,1,"","optimizer_step"],[113,2,1,"","optimizer_zero_grad"],[113,2,1,"","optimizers"],[113,4,1,"","output_chunk_length"],[113,2,1,"","parameters"],[113,3,1,"","pred_batch_size"],[113,3,1,"","pred_n"],[113,3,1,"","pred_n_jobs"],[113,3,1,"","pred_num_samples"],[113,3,1,"","pred_roll_size"],[113,2,1,"","predict_dataloader"],[113,3,1,"","predict_likelihood_parameters"],[113,2,1,"","predict_step"],[113,2,1,"","prepare_data"],[113,3,1,"","prepare_data_per_node"],[113,2,1,"","print"],[113,2,1,"","register_backward_hook"],[113,2,1,"","register_buffer"],[113,2,1,"","register_forward_hook"],[113,2,1,"","register_forward_pre_hook"],[113,2,1,"","register_full_backward_hook"],[113,2,1,"","register_full_backward_pre_hook"],[113,2,1,"","register_load_state_dict_post_hook"],[113,2,1,"","register_module"],[113,2,1,"","register_parameter"],[113,2,1,"","register_state_dict_pre_hook"],[113,2,1,"","requires_grad_"],[113,2,1,"","save_hyperparameters"],[113,2,1,"","set_extra_state"],[113,2,1,"","set_mc_dropout"],[113,2,1,"","set_predict_parameters"],[113,2,1,"","setup"],[113,2,1,"","share_memory"],[113,2,1,"","state_dict"],[113,2,1,"","teardown"],[113,2,1,"","test_dataloader"],[113,2,1,"","test_step"],[113,2,1,"","to"],[113,2,1,"","to_dtype"],[113,2,1,"","to_empty"],[113,2,1,"","to_onnx"],[113,2,1,"","to_torchscript"],[113,2,1,"","toggle_optimizer"],[113,2,1,"","train"],[113,2,1,"","train_dataloader"],[113,4,1,"","trainer"],[113,3,1,"","training"],[113,2,1,"","training_step"],[113,2,1,"","transfer_batch_to_device"],[113,2,1,"","type"],[113,2,1,"","unfreeze"],[113,2,1,"","untoggle_optimizer"],[113,2,1,"","val_dataloader"],[113,2,1,"","validation_step"],[113,2,1,"","xpu"],[113,2,1,"","zero_grad"]],"darts.models.forecasting.pl_forecasting_module.PLSplitCovariatesModule":[[113,3,1,"","CHECKPOINT_HYPER_PARAMS_KEY"],[113,3,1,"","CHECKPOINT_HYPER_PARAMS_NAME"],[113,3,1,"","CHECKPOINT_HYPER_PARAMS_TYPE"],[113,3,1,"","T_destination"],[113,2,1,"","add_module"],[113,2,1,"","all_gather"],[113,3,1,"","allow_zero_length_dataloader_with_multiple_devices"],[113,2,1,"","apply"],[113,4,1,"","automatic_optimization"],[113,2,1,"","backward"],[113,2,1,"","bfloat16"],[113,2,1,"","buffers"],[113,3,1,"","call_super_init"],[113,2,1,"","children"],[113,2,1,"","clip_gradients"],[113,2,1,"","compile"],[113,2,1,"","configure_callbacks"],[113,2,1,"","configure_gradient_clipping"],[113,2,1,"","configure_model"],[113,2,1,"","configure_optimizers"],[113,2,1,"","configure_sharded_model"],[113,2,1,"","configure_torch_metrics"],[113,2,1,"","cpu"],[113,2,1,"","cuda"],[113,4,1,"","current_epoch"],[113,4,1,"","device"],[113,2,1,"","double"],[113,4,1,"","dtype"],[113,3,1,"","dump_patches"],[113,4,1,"","epochs_trained"],[113,2,1,"","eval"],[113,4,1,"","example_input_array"],[113,2,1,"","extra_repr"],[113,4,1,"","fabric"],[113,2,1,"","float"],[113,2,1,"","forward"],[113,2,1,"","freeze"],[113,2,1,"","get_buffer"],[113,2,1,"","get_extra_state"],[113,2,1,"","get_parameter"],[113,2,1,"","get_submodule"],[113,4,1,"","global_rank"],[113,4,1,"","global_step"],[113,2,1,"","half"],[113,4,1,"","hparams"],[113,4,1,"","hparams_initial"],[113,2,1,"","ipu"],[113,2,1,"","load_from_checkpoint"],[113,2,1,"","load_state_dict"],[113,4,1,"","local_rank"],[113,2,1,"","log"],[113,2,1,"","log_dict"],[113,4,1,"","logger"],[113,4,1,"","loggers"],[113,2,1,"","lr_scheduler_step"],[113,2,1,"","lr_schedulers"],[113,2,1,"","manual_backward"],[113,2,1,"","modules"],[113,2,1,"","named_buffers"],[113,2,1,"","named_children"],[113,2,1,"","named_modules"],[113,2,1,"","named_parameters"],[113,2,1,"","on_after_backward"],[113,2,1,"","on_after_batch_transfer"],[113,2,1,"","on_before_backward"],[113,2,1,"","on_before_batch_transfer"],[113,2,1,"","on_before_optimizer_step"],[113,2,1,"","on_before_zero_grad"],[113,2,1,"","on_fit_end"],[113,2,1,"","on_fit_start"],[113,4,1,"","on_gpu"],[113,2,1,"","on_load_checkpoint"],[113,2,1,"","on_predict_batch_end"],[113,2,1,"","on_predict_batch_start"],[113,2,1,"","on_predict_end"],[113,2,1,"","on_predict_epoch_end"],[113,2,1,"","on_predict_epoch_start"],[113,2,1,"","on_predict_model_eval"],[113,2,1,"","on_predict_start"],[113,2,1,"","on_save_checkpoint"],[113,2,1,"","on_test_batch_end"],[113,2,1,"","on_test_batch_start"],[113,2,1,"","on_test_end"],[113,2,1,"","on_test_epoch_end"],[113,2,1,"","on_test_epoch_start"],[113,2,1,"","on_test_model_eval"],[113,2,1,"","on_test_model_train"],[113,2,1,"","on_test_start"],[113,2,1,"","on_train_batch_end"],[113,2,1,"","on_train_batch_start"],[113,2,1,"","on_train_end"],[113,2,1,"","on_train_epoch_end"],[113,2,1,"","on_train_epoch_start"],[113,2,1,"","on_train_start"],[113,2,1,"","on_validation_batch_end"],[113,2,1,"","on_validation_batch_start"],[113,2,1,"","on_validation_end"],[113,2,1,"","on_validation_epoch_end"],[113,2,1,"","on_validation_epoch_start"],[113,2,1,"","on_validation_model_eval"],[113,2,1,"","on_validation_model_train"],[113,2,1,"","on_validation_model_zero_grad"],[113,2,1,"","on_validation_start"],[113,2,1,"","optimizer_step"],[113,2,1,"","optimizer_zero_grad"],[113,2,1,"","optimizers"],[113,4,1,"","output_chunk_length"],[113,2,1,"","parameters"],[113,3,1,"","pred_batch_size"],[113,3,1,"","pred_n"],[113,3,1,"","pred_n_jobs"],[113,3,1,"","pred_num_samples"],[113,3,1,"","pred_roll_size"],[113,2,1,"","predict_dataloader"],[113,3,1,"","predict_likelihood_parameters"],[113,2,1,"","predict_step"],[113,2,1,"","prepare_data"],[113,3,1,"","prepare_data_per_node"],[113,2,1,"","print"],[113,2,1,"","register_backward_hook"],[113,2,1,"","register_buffer"],[113,2,1,"","register_forward_hook"],[113,2,1,"","register_forward_pre_hook"],[113,2,1,"","register_full_backward_hook"],[113,2,1,"","register_full_backward_pre_hook"],[113,2,1,"","register_load_state_dict_post_hook"],[113,2,1,"","register_module"],[113,2,1,"","register_parameter"],[113,2,1,"","register_state_dict_pre_hook"],[113,2,1,"","requires_grad_"],[113,2,1,"","save_hyperparameters"],[113,2,1,"","set_extra_state"],[113,2,1,"","set_mc_dropout"],[113,2,1,"","set_predict_parameters"],[113,2,1,"","setup"],[113,2,1,"","share_memory"],[113,2,1,"","state_dict"],[113,2,1,"","teardown"],[113,2,1,"","test_dataloader"],[113,2,1,"","test_step"],[113,2,1,"","to"],[113,2,1,"","to_dtype"],[113,2,1,"","to_empty"],[113,2,1,"","to_onnx"],[113,2,1,"","to_torchscript"],[113,2,1,"","toggle_optimizer"],[113,2,1,"","train"],[113,2,1,"","train_dataloader"],[113,4,1,"","trainer"],[113,3,1,"","training"],[113,2,1,"","training_step"],[113,2,1,"","transfer_batch_to_device"],[113,2,1,"","type"],[113,2,1,"","unfreeze"],[113,2,1,"","untoggle_optimizer"],[113,2,1,"","val_dataloader"],[113,2,1,"","validation_step"],[113,2,1,"","xpu"],[113,2,1,"","zero_grad"]],"darts.models.forecasting.prophet_model":[[114,1,1,"","Prophet"]],"darts.models.forecasting.prophet_model.Prophet":[[114,2,1,"","add_seasonality"],[114,2,1,"","backtest"],[114,4,1,"","considers_static_covariates"],[114,4,1,"","extreme_lags"],[114,2,1,"","fit"],[114,2,1,"","generate_fit_encodings"],[114,2,1,"","generate_fit_predict_encodings"],[114,2,1,"","generate_predict_encodings"],[114,2,1,"","gridsearch"],[114,2,1,"","historical_forecasts"],[114,2,1,"","load"],[114,4,1,"","min_train_samples"],[114,4,1,"","model_params"],[114,4,1,"","output_chunk_length"],[114,2,1,"","predict"],[114,2,1,"","predict_raw"],[114,2,1,"","residuals"],[114,2,1,"","save"],[114,4,1,"","supports_future_covariates"],[114,4,1,"","supports_likelihood_parameter_prediction"],[114,4,1,"","supports_multivariate"],[114,4,1,"","supports_optimized_historical_forecasts"],[114,4,1,"","supports_past_covariates"],[114,4,1,"","supports_static_covariates"],[114,4,1,"","supports_transferrable_series_prediction"],[114,4,1,"","uses_future_covariates"],[114,4,1,"","uses_past_covariates"],[114,4,1,"","uses_static_covariates"]],"darts.models.forecasting.random_forest":[[115,1,1,"","RandomForest"]],"darts.models.forecasting.random_forest.RandomForest":[[115,2,1,"","backtest"],[115,4,1,"","considers_static_covariates"],[115,4,1,"","extreme_lags"],[115,2,1,"","fit"],[115,2,1,"","generate_fit_encodings"],[115,2,1,"","generate_fit_predict_encodings"],[115,2,1,"","generate_predict_encodings"],[115,2,1,"","get_multioutput_estimator"],[115,2,1,"","gridsearch"],[115,2,1,"","historical_forecasts"],[115,4,1,"","lagged_feature_names"],[115,2,1,"","load"],[115,4,1,"","min_train_samples"],[115,4,1,"","model_params"],[115,4,1,"","output_chunk_length"],[115,2,1,"","predict"],[115,2,1,"","residuals"],[115,2,1,"","save"],[115,4,1,"","supports_future_covariates"],[115,4,1,"","supports_likelihood_parameter_prediction"],[115,4,1,"","supports_multivariate"],[115,4,1,"","supports_optimized_historical_forecasts"],[115,4,1,"","supports_past_covariates"],[115,4,1,"","supports_static_covariates"],[115,4,1,"","supports_transferrable_series_prediction"],[115,4,1,"","uses_future_covariates"],[115,4,1,"","uses_past_covariates"],[115,4,1,"","uses_static_covariates"]],"darts.models.forecasting.regression_ensemble_model":[[116,1,1,"","RegressionEnsembleModel"]],"darts.models.forecasting.regression_ensemble_model.RegressionEnsembleModel":[[116,2,1,"","backtest"],[116,4,1,"","considers_static_covariates"],[116,2,1,"","ensemble"],[116,4,1,"","extreme_lags"],[116,2,1,"","fit"],[116,2,1,"","generate_fit_encodings"],[116,2,1,"","generate_fit_predict_encodings"],[116,2,1,"","generate_predict_encodings"],[116,2,1,"","gridsearch"],[116,2,1,"","historical_forecasts"],[116,2,1,"","load"],[116,4,1,"","min_train_samples"],[116,4,1,"","model_params"],[116,4,1,"","output_chunk_length"],[116,2,1,"","predict"],[116,2,1,"","residuals"],[116,2,1,"","save"],[116,4,1,"","supports_future_covariates"],[116,4,1,"","supports_likelihood_parameter_prediction"],[116,4,1,"","supports_multivariate"],[116,4,1,"","supports_optimized_historical_forecasts"],[116,4,1,"","supports_past_covariates"],[116,4,1,"","supports_static_covariates"],[116,4,1,"","supports_transferrable_series_prediction"],[116,4,1,"","uses_future_covariates"],[116,4,1,"","uses_past_covariates"],[116,4,1,"","uses_static_covariates"]],"darts.models.forecasting.regression_model":[[117,1,1,"","RegressionModel"],[117,1,1,"","RegressionModelWithCategoricalCovariates"]],"darts.models.forecasting.regression_model.RegressionModel":[[117,2,1,"","backtest"],[117,4,1,"","considers_static_covariates"],[117,4,1,"","extreme_lags"],[117,2,1,"","fit"],[117,2,1,"","generate_fit_encodings"],[117,2,1,"","generate_fit_predict_encodings"],[117,2,1,"","generate_predict_encodings"],[117,2,1,"","get_multioutput_estimator"],[117,2,1,"","gridsearch"],[117,2,1,"","historical_forecasts"],[117,4,1,"","lagged_feature_names"],[117,2,1,"","load"],[117,4,1,"","min_train_samples"],[117,4,1,"","model_params"],[117,4,1,"","output_chunk_length"],[117,2,1,"","predict"],[117,2,1,"","residuals"],[117,2,1,"","save"],[117,4,1,"","supports_future_covariates"],[117,4,1,"","supports_likelihood_parameter_prediction"],[117,4,1,"","supports_multivariate"],[117,4,1,"","supports_optimized_historical_forecasts"],[117,4,1,"","supports_past_covariates"],[117,4,1,"","supports_static_covariates"],[117,4,1,"","supports_transferrable_series_prediction"],[117,4,1,"","uses_future_covariates"],[117,4,1,"","uses_past_covariates"],[117,4,1,"","uses_static_covariates"]],"darts.models.forecasting.regression_model.RegressionModelWithCategoricalCovariates":[[117,2,1,"","backtest"],[117,4,1,"","considers_static_covariates"],[117,4,1,"","extreme_lags"],[117,2,1,"","fit"],[117,2,1,"","generate_fit_encodings"],[117,2,1,"","generate_fit_predict_encodings"],[117,2,1,"","generate_predict_encodings"],[117,2,1,"","get_multioutput_estimator"],[117,2,1,"","gridsearch"],[117,2,1,"","historical_forecasts"],[117,4,1,"","lagged_feature_names"],[117,2,1,"","load"],[117,4,1,"","min_train_samples"],[117,4,1,"","model_params"],[117,4,1,"","output_chunk_length"],[117,2,1,"","predict"],[117,2,1,"","residuals"],[117,2,1,"","save"],[117,4,1,"","supports_future_covariates"],[117,4,1,"","supports_likelihood_parameter_prediction"],[117,4,1,"","supports_multivariate"],[117,4,1,"","supports_optimized_historical_forecasts"],[117,4,1,"","supports_past_covariates"],[117,4,1,"","supports_static_covariates"],[117,4,1,"","supports_transferrable_series_prediction"],[117,4,1,"","uses_future_covariates"],[117,4,1,"","uses_past_covariates"],[117,4,1,"","uses_static_covariates"]],"darts.models.forecasting.rnn_model":[[118,1,1,"","CustomRNNModule"],[118,1,1,"","RNNModel"]],"darts.models.forecasting.rnn_model.CustomRNNModule":[[118,2,1,"","forward"]],"darts.models.forecasting.rnn_model.RNNModel":[[118,2,1,"","backtest"],[118,4,1,"","considers_static_covariates"],[118,4,1,"","extreme_lags"],[118,4,1,"","first_prediction_index"],[118,2,1,"","fit"],[118,2,1,"","fit_from_dataset"],[118,2,1,"","generate_fit_encodings"],[118,2,1,"","generate_fit_predict_encodings"],[118,2,1,"","generate_predict_encodings"],[118,2,1,"","gridsearch"],[118,2,1,"","historical_forecasts"],[118,2,1,"","initialize_encoders"],[118,2,1,"","load"],[118,2,1,"","load_from_checkpoint"],[118,2,1,"","load_weights"],[118,2,1,"","load_weights_from_checkpoint"],[118,2,1,"","lr_find"],[118,4,1,"","min_train_samples"],[118,4,1,"","min_train_series_length"],[118,4,1,"","output_chunk_length"],[118,2,1,"","predict"],[118,2,1,"","predict_from_dataset"],[118,2,1,"","reset_model"],[118,2,1,"","residuals"],[118,2,1,"","save"],[118,4,1,"","supports_future_covariates"],[118,4,1,"","supports_likelihood_parameter_prediction"],[118,4,1,"","supports_multivariate"],[118,4,1,"","supports_optimized_historical_forecasts"],[118,4,1,"","supports_static_covariates"],[118,4,1,"","supports_transferrable_series_prediction"],[118,2,1,"","to_cpu"],[118,2,1,"","untrained_model"],[118,4,1,"","uses_future_covariates"],[118,4,1,"","uses_past_covariates"],[118,4,1,"","uses_static_covariates"]],"darts.models.forecasting.sf_auto_arima":[[119,1,1,"","StatsForecastAutoARIMA"]],"darts.models.forecasting.sf_auto_arima.StatsForecastAutoARIMA":[[119,2,1,"","backtest"],[119,4,1,"","considers_static_covariates"],[119,4,1,"","extreme_lags"],[119,2,1,"","fit"],[119,2,1,"","generate_fit_encodings"],[119,2,1,"","generate_fit_predict_encodings"],[119,2,1,"","generate_predict_encodings"],[119,2,1,"","gridsearch"],[119,2,1,"","historical_forecasts"],[119,2,1,"","load"],[119,4,1,"","min_train_samples"],[119,4,1,"","model_params"],[119,4,1,"","output_chunk_length"],[119,2,1,"","predict"],[119,2,1,"","residuals"],[119,2,1,"","save"],[119,4,1,"","supports_future_covariates"],[119,4,1,"","supports_likelihood_parameter_prediction"],[119,4,1,"","supports_multivariate"],[119,4,1,"","supports_optimized_historical_forecasts"],[119,4,1,"","supports_past_covariates"],[119,4,1,"","supports_static_covariates"],[119,4,1,"","supports_transferrable_series_prediction"],[119,4,1,"","uses_future_covariates"],[119,4,1,"","uses_past_covariates"],[119,4,1,"","uses_static_covariates"]],"darts.models.forecasting.sf_auto_ces":[[120,1,1,"","StatsForecastAutoCES"]],"darts.models.forecasting.sf_auto_ces.StatsForecastAutoCES":[[120,2,1,"","backtest"],[120,4,1,"","considers_static_covariates"],[120,4,1,"","extreme_lags"],[120,2,1,"","fit"],[120,2,1,"","generate_fit_encodings"],[120,2,1,"","generate_fit_predict_encodings"],[120,2,1,"","generate_predict_encodings"],[120,2,1,"","gridsearch"],[120,2,1,"","historical_forecasts"],[120,2,1,"","load"],[120,4,1,"","min_train_samples"],[120,4,1,"","model_params"],[120,4,1,"","output_chunk_length"],[120,2,1,"","predict"],[120,2,1,"","residuals"],[120,2,1,"","save"],[120,4,1,"","supports_future_covariates"],[120,4,1,"","supports_likelihood_parameter_prediction"],[120,4,1,"","supports_multivariate"],[120,4,1,"","supports_optimized_historical_forecasts"],[120,4,1,"","supports_past_covariates"],[120,4,1,"","supports_static_covariates"],[120,4,1,"","supports_transferrable_series_prediction"],[120,4,1,"","uses_future_covariates"],[120,4,1,"","uses_past_covariates"],[120,4,1,"","uses_static_covariates"]],"darts.models.forecasting.sf_auto_ets":[[121,1,1,"","StatsForecastAutoETS"]],"darts.models.forecasting.sf_auto_ets.StatsForecastAutoETS":[[121,2,1,"","backtest"],[121,4,1,"","considers_static_covariates"],[121,4,1,"","extreme_lags"],[121,2,1,"","fit"],[121,2,1,"","generate_fit_encodings"],[121,2,1,"","generate_fit_predict_encodings"],[121,2,1,"","generate_predict_encodings"],[121,2,1,"","gridsearch"],[121,2,1,"","historical_forecasts"],[121,2,1,"","load"],[121,4,1,"","min_train_samples"],[121,4,1,"","model_params"],[121,4,1,"","output_chunk_length"],[121,2,1,"","predict"],[121,2,1,"","residuals"],[121,2,1,"","save"],[121,4,1,"","supports_future_covariates"],[121,4,1,"","supports_likelihood_parameter_prediction"],[121,4,1,"","supports_multivariate"],[121,4,1,"","supports_optimized_historical_forecasts"],[121,4,1,"","supports_past_covariates"],[121,4,1,"","supports_static_covariates"],[121,4,1,"","supports_transferrable_series_prediction"],[121,4,1,"","uses_future_covariates"],[121,4,1,"","uses_past_covariates"],[121,4,1,"","uses_static_covariates"]],"darts.models.forecasting.sf_auto_theta":[[122,1,1,"","StatsForecastAutoTheta"]],"darts.models.forecasting.sf_auto_theta.StatsForecastAutoTheta":[[122,2,1,"","backtest"],[122,4,1,"","considers_static_covariates"],[122,4,1,"","extreme_lags"],[122,2,1,"","fit"],[122,2,1,"","generate_fit_encodings"],[122,2,1,"","generate_fit_predict_encodings"],[122,2,1,"","generate_predict_encodings"],[122,2,1,"","gridsearch"],[122,2,1,"","historical_forecasts"],[122,2,1,"","load"],[122,4,1,"","min_train_samples"],[122,4,1,"","model_params"],[122,4,1,"","output_chunk_length"],[122,2,1,"","predict"],[122,2,1,"","residuals"],[122,2,1,"","save"],[122,4,1,"","supports_future_covariates"],[122,4,1,"","supports_likelihood_parameter_prediction"],[122,4,1,"","supports_multivariate"],[122,4,1,"","supports_optimized_historical_forecasts"],[122,4,1,"","supports_past_covariates"],[122,4,1,"","supports_static_covariates"],[122,4,1,"","supports_transferrable_series_prediction"],[122,4,1,"","uses_future_covariates"],[122,4,1,"","uses_past_covariates"],[122,4,1,"","uses_static_covariates"]],"darts.models.forecasting.tbats_model":[[123,1,1,"","BATS"],[123,1,1,"","TBATS"]],"darts.models.forecasting.tbats_model.BATS":[[123,2,1,"","backtest"],[123,4,1,"","considers_static_covariates"],[123,4,1,"","extreme_lags"],[123,2,1,"","fit"],[123,2,1,"","generate_fit_encodings"],[123,2,1,"","generate_fit_predict_encodings"],[123,2,1,"","generate_predict_encodings"],[123,2,1,"","gridsearch"],[123,2,1,"","historical_forecasts"],[123,2,1,"","load"],[123,4,1,"","min_train_samples"],[123,4,1,"","model_params"],[123,4,1,"","output_chunk_length"],[123,2,1,"","predict"],[123,2,1,"","residuals"],[123,2,1,"","save"],[123,4,1,"","supports_future_covariates"],[123,4,1,"","supports_likelihood_parameter_prediction"],[123,4,1,"","supports_multivariate"],[123,4,1,"","supports_optimized_historical_forecasts"],[123,4,1,"","supports_past_covariates"],[123,4,1,"","supports_static_covariates"],[123,4,1,"","supports_transferrable_series_prediction"],[123,4,1,"","uses_future_covariates"],[123,4,1,"","uses_past_covariates"],[123,4,1,"","uses_static_covariates"]],"darts.models.forecasting.tbats_model.TBATS":[[123,2,1,"","backtest"],[123,4,1,"","considers_static_covariates"],[123,4,1,"","extreme_lags"],[123,2,1,"","fit"],[123,2,1,"","generate_fit_encodings"],[123,2,1,"","generate_fit_predict_encodings"],[123,2,1,"","generate_predict_encodings"],[123,2,1,"","gridsearch"],[123,2,1,"","historical_forecasts"],[123,2,1,"","load"],[123,4,1,"","min_train_samples"],[123,4,1,"","model_params"],[123,4,1,"","output_chunk_length"],[123,2,1,"","predict"],[123,2,1,"","residuals"],[123,2,1,"","save"],[123,4,1,"","supports_future_covariates"],[123,4,1,"","supports_likelihood_parameter_prediction"],[123,4,1,"","supports_multivariate"],[123,4,1,"","supports_optimized_historical_forecasts"],[123,4,1,"","supports_past_covariates"],[123,4,1,"","supports_static_covariates"],[123,4,1,"","supports_transferrable_series_prediction"],[123,4,1,"","uses_future_covariates"],[123,4,1,"","uses_past_covariates"],[123,4,1,"","uses_static_covariates"]],"darts.models.forecasting.tcn_model":[[124,1,1,"","TCNModel"]],"darts.models.forecasting.tcn_model.TCNModel":[[124,2,1,"","backtest"],[124,4,1,"","considers_static_covariates"],[124,4,1,"","epochs_trained"],[124,4,1,"","extreme_lags"],[124,2,1,"","fit"],[124,2,1,"","fit_from_dataset"],[124,2,1,"","generate_fit_encodings"],[124,2,1,"","generate_fit_predict_encodings"],[124,2,1,"","generate_predict_encodings"],[124,2,1,"","gridsearch"],[124,2,1,"","historical_forecasts"],[124,4,1,"","input_chunk_length"],[124,4,1,"","likelihood"],[124,2,1,"","load"],[124,2,1,"","load_from_checkpoint"],[124,2,1,"","load_weights"],[124,2,1,"","load_weights_from_checkpoint"],[124,2,1,"","lr_find"],[124,4,1,"","min_train_samples"],[124,4,1,"","model_created"],[124,4,1,"","model_params"],[124,4,1,"","output_chunk_length"],[124,2,1,"","predict"],[124,2,1,"","predict_from_dataset"],[124,2,1,"","reset_model"],[124,2,1,"","residuals"],[124,2,1,"","save"],[124,3,1,"","supports_future_covariates"],[124,4,1,"","supports_likelihood_parameter_prediction"],[124,4,1,"","supports_multivariate"],[124,4,1,"","supports_optimized_historical_forecasts"],[124,4,1,"","supports_past_covariates"],[124,4,1,"","supports_static_covariates"],[124,4,1,"","supports_transferrable_series_prediction"],[124,2,1,"","to_cpu"],[124,4,1,"","uses_future_covariates"],[124,4,1,"","uses_past_covariates"],[124,4,1,"","uses_static_covariates"]],"darts.models.forecasting.tft_model":[[125,1,1,"","TFTModel"]],"darts.models.forecasting.tft_model.TFTModel":[[125,2,1,"","backtest"],[125,4,1,"","considers_static_covariates"],[125,4,1,"","epochs_trained"],[125,4,1,"","extreme_lags"],[125,2,1,"","fit"],[125,2,1,"","fit_from_dataset"],[125,2,1,"","generate_fit_encodings"],[125,2,1,"","generate_fit_predict_encodings"],[125,2,1,"","generate_predict_encodings"],[125,2,1,"","gridsearch"],[125,2,1,"","historical_forecasts"],[125,4,1,"","input_chunk_length"],[125,4,1,"","likelihood"],[125,2,1,"","load"],[125,2,1,"","load_from_checkpoint"],[125,2,1,"","load_weights"],[125,2,1,"","load_weights_from_checkpoint"],[125,2,1,"","lr_find"],[125,4,1,"","min_train_samples"],[125,4,1,"","model_created"],[125,4,1,"","model_params"],[125,4,1,"","output_chunk_length"],[125,2,1,"","predict"],[125,2,1,"","predict_from_dataset"],[125,2,1,"","reset_model"],[125,2,1,"","residuals"],[125,2,1,"","save"],[125,4,1,"","supports_future_covariates"],[125,4,1,"","supports_likelihood_parameter_prediction"],[125,4,1,"","supports_multivariate"],[125,4,1,"","supports_optimized_historical_forecasts"],[125,4,1,"","supports_past_covariates"],[125,4,1,"","supports_static_covariates"],[125,4,1,"","supports_transferrable_series_prediction"],[125,2,1,"","to_cpu"],[125,4,1,"","uses_future_covariates"],[125,4,1,"","uses_past_covariates"],[125,4,1,"","uses_static_covariates"]],"darts.models.forecasting.tft_submodels":[[126,5,1,"","get_embedding_size"]],"darts.models.forecasting.theta":[[127,1,1,"","FourTheta"],[127,1,1,"","Theta"]],"darts.models.forecasting.theta.FourTheta":[[127,2,1,"","backtest"],[127,4,1,"","considers_static_covariates"],[127,4,1,"","extreme_lags"],[127,2,1,"","fit"],[127,2,1,"","generate_fit_encodings"],[127,2,1,"","generate_fit_predict_encodings"],[127,2,1,"","generate_predict_encodings"],[127,2,1,"","gridsearch"],[127,2,1,"","historical_forecasts"],[127,2,1,"","load"],[127,4,1,"","min_train_samples"],[127,4,1,"","model_params"],[127,4,1,"","output_chunk_length"],[127,2,1,"","predict"],[127,2,1,"","residuals"],[127,2,1,"","save"],[127,2,1,"","select_best_model"],[127,4,1,"","supports_future_covariates"],[127,4,1,"","supports_likelihood_parameter_prediction"],[127,4,1,"","supports_multivariate"],[127,4,1,"","supports_optimized_historical_forecasts"],[127,4,1,"","supports_past_covariates"],[127,4,1,"","supports_static_covariates"],[127,4,1,"","supports_transferrable_series_prediction"],[127,4,1,"","uses_future_covariates"],[127,4,1,"","uses_past_covariates"],[127,4,1,"","uses_static_covariates"]],"darts.models.forecasting.theta.Theta":[[127,2,1,"","backtest"],[127,4,1,"","considers_static_covariates"],[127,4,1,"","extreme_lags"],[127,2,1,"","fit"],[127,2,1,"","generate_fit_encodings"],[127,2,1,"","generate_fit_predict_encodings"],[127,2,1,"","generate_predict_encodings"],[127,2,1,"","gridsearch"],[127,2,1,"","historical_forecasts"],[127,2,1,"","load"],[127,4,1,"","min_train_samples"],[127,4,1,"","model_params"],[127,4,1,"","output_chunk_length"],[127,2,1,"","predict"],[127,2,1,"","residuals"],[127,2,1,"","save"],[127,4,1,"","supports_future_covariates"],[127,4,1,"","supports_likelihood_parameter_prediction"],[127,4,1,"","supports_multivariate"],[127,4,1,"","supports_optimized_historical_forecasts"],[127,4,1,"","supports_past_covariates"],[127,4,1,"","supports_static_covariates"],[127,4,1,"","supports_transferrable_series_prediction"],[127,4,1,"","uses_future_covariates"],[127,4,1,"","uses_past_covariates"],[127,4,1,"","uses_static_covariates"]],"darts.models.forecasting.tide_model":[[128,1,1,"","TiDEModel"]],"darts.models.forecasting.tide_model.TiDEModel":[[128,2,1,"","backtest"],[128,4,1,"","considers_static_covariates"],[128,4,1,"","epochs_trained"],[128,4,1,"","extreme_lags"],[128,2,1,"","fit"],[128,2,1,"","fit_from_dataset"],[128,2,1,"","generate_fit_encodings"],[128,2,1,"","generate_fit_predict_encodings"],[128,2,1,"","generate_predict_encodings"],[128,2,1,"","gridsearch"],[128,2,1,"","historical_forecasts"],[128,4,1,"","input_chunk_length"],[128,4,1,"","likelihood"],[128,2,1,"","load"],[128,2,1,"","load_from_checkpoint"],[128,2,1,"","load_weights"],[128,2,1,"","load_weights_from_checkpoint"],[128,2,1,"","lr_find"],[128,4,1,"","min_train_samples"],[128,4,1,"","model_created"],[128,4,1,"","model_params"],[128,4,1,"","output_chunk_length"],[128,2,1,"","predict"],[128,2,1,"","predict_from_dataset"],[128,2,1,"","reset_model"],[128,2,1,"","residuals"],[128,2,1,"","save"],[128,4,1,"","supports_future_covariates"],[128,4,1,"","supports_likelihood_parameter_prediction"],[128,4,1,"","supports_multivariate"],[128,4,1,"","supports_optimized_historical_forecasts"],[128,4,1,"","supports_past_covariates"],[128,4,1,"","supports_static_covariates"],[128,4,1,"","supports_transferrable_series_prediction"],[128,2,1,"","to_cpu"],[128,4,1,"","uses_future_covariates"],[128,4,1,"","uses_past_covariates"],[128,4,1,"","uses_static_covariates"]],"darts.models.forecasting.transformer_model":[[130,1,1,"","TransformerModel"]],"darts.models.forecasting.transformer_model.TransformerModel":[[130,2,1,"","backtest"],[130,4,1,"","considers_static_covariates"],[130,4,1,"","epochs_trained"],[130,4,1,"","extreme_lags"],[130,2,1,"","fit"],[130,2,1,"","fit_from_dataset"],[130,2,1,"","generate_fit_encodings"],[130,2,1,"","generate_fit_predict_encodings"],[130,2,1,"","generate_predict_encodings"],[130,2,1,"","gridsearch"],[130,2,1,"","historical_forecasts"],[130,4,1,"","input_chunk_length"],[130,4,1,"","likelihood"],[130,2,1,"","load"],[130,2,1,"","load_from_checkpoint"],[130,2,1,"","load_weights"],[130,2,1,"","load_weights_from_checkpoint"],[130,2,1,"","lr_find"],[130,4,1,"","min_train_samples"],[130,4,1,"","model_created"],[130,4,1,"","model_params"],[130,4,1,"","output_chunk_length"],[130,2,1,"","predict"],[130,2,1,"","predict_from_dataset"],[130,2,1,"","reset_model"],[130,2,1,"","residuals"],[130,2,1,"","save"],[130,3,1,"","supports_future_covariates"],[130,4,1,"","supports_likelihood_parameter_prediction"],[130,4,1,"","supports_multivariate"],[130,4,1,"","supports_optimized_historical_forecasts"],[130,4,1,"","supports_past_covariates"],[130,4,1,"","supports_static_covariates"],[130,4,1,"","supports_transferrable_series_prediction"],[130,2,1,"","to_cpu"],[130,4,1,"","uses_future_covariates"],[130,4,1,"","uses_past_covariates"],[130,4,1,"","uses_static_covariates"]],"darts.models.forecasting.varima":[[131,1,1,"","VARIMA"]],"darts.models.forecasting.varima.VARIMA":[[131,2,1,"","backtest"],[131,4,1,"","considers_static_covariates"],[131,4,1,"","extreme_lags"],[131,2,1,"","fit"],[131,2,1,"","generate_fit_encodings"],[131,2,1,"","generate_fit_predict_encodings"],[131,2,1,"","generate_predict_encodings"],[131,2,1,"","gridsearch"],[131,2,1,"","historical_forecasts"],[131,2,1,"","load"],[131,4,1,"","min_train_samples"],[131,4,1,"","model_params"],[131,4,1,"","output_chunk_length"],[131,2,1,"","predict"],[131,2,1,"","residuals"],[131,2,1,"","save"],[131,4,1,"","supports_future_covariates"],[131,4,1,"","supports_likelihood_parameter_prediction"],[131,4,1,"","supports_multivariate"],[131,4,1,"","supports_optimized_historical_forecasts"],[131,4,1,"","supports_past_covariates"],[131,4,1,"","supports_static_covariates"],[131,4,1,"","supports_transferrable_series_prediction"],[131,4,1,"","uses_future_covariates"],[131,4,1,"","uses_past_covariates"],[131,4,1,"","uses_static_covariates"]],"darts.models.forecasting.xgboost":[[132,1,1,"","XGBModel"],[132,5,1,"","xgb_quantile_loss"]],"darts.models.forecasting.xgboost.XGBModel":[[132,2,1,"","backtest"],[132,4,1,"","considers_static_covariates"],[132,4,1,"","extreme_lags"],[132,2,1,"","fit"],[132,2,1,"","generate_fit_encodings"],[132,2,1,"","generate_fit_predict_encodings"],[132,2,1,"","generate_predict_encodings"],[132,2,1,"","get_multioutput_estimator"],[132,2,1,"","gridsearch"],[132,2,1,"","historical_forecasts"],[132,4,1,"","lagged_feature_names"],[132,2,1,"","load"],[132,4,1,"","min_train_samples"],[132,4,1,"","model_params"],[132,4,1,"","num_parameters"],[132,4,1,"","output_chunk_length"],[132,2,1,"","predict"],[132,2,1,"","residuals"],[132,2,1,"","save"],[132,4,1,"","supports_future_covariates"],[132,4,1,"","supports_likelihood_parameter_prediction"],[132,4,1,"","supports_multivariate"],[132,4,1,"","supports_optimized_historical_forecasts"],[132,4,1,"","supports_past_covariates"],[132,4,1,"","supports_static_covariates"],[132,4,1,"","supports_transferrable_series_prediction"],[132,4,1,"","uses_future_covariates"],[132,4,1,"","uses_past_covariates"],[132,4,1,"","uses_static_covariates"]],"darts.models.utils":[[133,1,1,"","NotImportedModule"]],"darts.models.utils.NotImportedModule":[[133,3,1,"","usable"]],"darts.timeseries":[[134,1,1,"","TimeSeries"],[134,5,1,"","concatenate"]],"darts.timeseries.TimeSeries":[[134,2,1,"","add_datetime_attribute"],[134,2,1,"","add_holidays"],[134,2,1,"","all_values"],[134,2,1,"","append"],[134,2,1,"","append_values"],[134,2,1,"","astype"],[134,4,1,"","bottom_level_components"],[134,4,1,"","bottom_level_series"],[134,4,1,"","columns"],[134,4,1,"","components"],[134,2,1,"","concatenate"],[134,2,1,"","copy"],[134,2,1,"","cumsum"],[134,2,1,"","data_array"],[134,2,1,"","diff"],[134,2,1,"","drop_after"],[134,2,1,"","drop_before"],[134,2,1,"","drop_columns"],[134,4,1,"","dtype"],[134,4,1,"","duration"],[134,2,1,"","end_time"],[134,2,1,"","first_value"],[134,2,1,"","first_values"],[134,4,1,"","freq"],[134,4,1,"","freq_str"],[134,2,1,"","from_csv"],[134,2,1,"","from_dataframe"],[134,2,1,"","from_group_dataframe"],[134,2,1,"","from_json"],[134,2,1,"","from_pickle"],[134,2,1,"","from_series"],[134,2,1,"","from_times_and_values"],[134,2,1,"","from_values"],[134,2,1,"","from_xarray"],[134,2,1,"","gaps"],[134,2,1,"","get_index_at_point"],[134,2,1,"","get_timestamp_at_point"],[134,4,1,"","has_datetime_index"],[134,4,1,"","has_hierarchy"],[134,4,1,"","has_range_index"],[134,2,1,"","has_same_time_as"],[134,4,1,"","has_static_covariates"],[134,2,1,"","head"],[134,4,1,"","hierarchy"],[134,4,1,"","is_deterministic"],[134,4,1,"","is_probabilistic"],[134,4,1,"","is_stochastic"],[134,4,1,"","is_univariate"],[134,2,1,"","is_within_range"],[134,2,1,"","kurtosis"],[134,2,1,"","last_value"],[134,2,1,"","last_values"],[134,2,1,"","longest_contiguous_slice"],[134,2,1,"","map"],[134,2,1,"","max"],[134,2,1,"","mean"],[134,2,1,"","median"],[134,2,1,"","min"],[134,4,1,"","n_components"],[134,4,1,"","n_samples"],[134,4,1,"","n_timesteps"],[134,2,1,"","pd_dataframe"],[134,2,1,"","pd_series"],[134,2,1,"","plot"],[134,2,1,"","prepend"],[134,2,1,"","prepend_values"],[134,2,1,"","quantile"],[134,2,1,"","quantile_df"],[134,2,1,"","quantile_timeseries"],[134,2,1,"","quantiles_df"],[134,2,1,"","random_component_values"],[134,2,1,"","resample"],[134,2,1,"","rescale_with_value"],[134,2,1,"","shift"],[134,2,1,"","skew"],[134,2,1,"","slice"],[134,2,1,"","slice_intersect"],[134,2,1,"","slice_n_points_after"],[134,2,1,"","slice_n_points_before"],[134,2,1,"","split_after"],[134,2,1,"","split_before"],[134,2,1,"","stack"],[134,2,1,"","start_time"],[134,4,1,"","static_covariates"],[134,2,1,"","static_covariates_values"],[134,2,1,"","std"],[134,2,1,"","strip"],[134,2,1,"","sum"],[134,2,1,"","tail"],[134,4,1,"","time_dim"],[134,4,1,"","time_index"],[134,2,1,"","to_csv"],[134,2,1,"","to_json"],[134,2,1,"","to_pickle"],[134,4,1,"","top_level_component"],[134,4,1,"","top_level_series"],[134,2,1,"","univariate_component"],[134,2,1,"","univariate_values"],[134,2,1,"","values"],[134,2,1,"","var"],[134,4,1,"","width"],[134,2,1,"","window_transform"],[134,2,1,"","with_columns_renamed"],[134,2,1,"","with_hierarchy"],[134,2,1,"","with_static_covariates"],[134,2,1,"","with_values"]],"darts.utils":[[136,0,0,"-","callbacks"],[137,0,0,"-","data"],[145,0,0,"-","historical_forecasts"],[149,0,0,"-","likelihood_models"],[150,0,0,"-","losses"],[151,0,0,"-","missing_values"],[152,0,0,"-","model_selection"],[153,0,0,"-","multioutput"],[154,0,0,"-","statistics"],[155,0,0,"-","timeseries_generation"],[156,0,0,"-","torch"],[157,0,0,"-","utils"]],"darts.utils.callbacks":[[136,1,1,"","TFMProgressBar"]],"darts.utils.callbacks.TFMProgressBar":[[136,3,1,"","BAR_FORMAT"],[136,2,1,"","disable"],[136,2,1,"","enable"],[136,2,1,"","get_metrics"],[136,2,1,"","has_dataloader_changed"],[136,2,1,"","init_predict_tqdm"],[136,2,1,"","init_sanity_tqdm"],[136,2,1,"","init_test_tqdm"],[136,2,1,"","init_train_tqdm"],[136,2,1,"","init_validation_tqdm"],[136,4,1,"","is_disabled"],[136,4,1,"","is_enabled"],[136,2,1,"","load_state_dict"],[136,2,1,"","on_after_backward"],[136,2,1,"","on_before_backward"],[136,2,1,"","on_before_optimizer_step"],[136,2,1,"","on_before_zero_grad"],[136,2,1,"","on_exception"],[136,2,1,"","on_fit_end"],[136,2,1,"","on_fit_start"],[136,2,1,"","on_load_checkpoint"],[136,2,1,"","on_predict_batch_end"],[136,2,1,"","on_predict_batch_start"],[136,2,1,"","on_predict_end"],[136,2,1,"","on_predict_epoch_end"],[136,2,1,"","on_predict_epoch_start"],[136,2,1,"","on_predict_start"],[136,2,1,"","on_sanity_check_end"],[136,2,1,"","on_sanity_check_start"],[136,2,1,"","on_save_checkpoint"],[136,2,1,"","on_test_batch_end"],[136,2,1,"","on_test_batch_start"],[136,2,1,"","on_test_end"],[136,2,1,"","on_test_epoch_end"],[136,2,1,"","on_test_epoch_start"],[136,2,1,"","on_test_start"],[136,2,1,"","on_train_batch_end"],[136,2,1,"","on_train_batch_start"],[136,2,1,"","on_train_end"],[136,2,1,"","on_train_epoch_end"],[136,2,1,"","on_train_epoch_start"],[136,2,1,"","on_train_start"],[136,2,1,"","on_validation_batch_end"],[136,2,1,"","on_validation_batch_start"],[136,2,1,"","on_validation_end"],[136,2,1,"","on_validation_epoch_end"],[136,2,1,"","on_validation_epoch_start"],[136,2,1,"","on_validation_start"],[136,4,1,"","predict_description"],[136,4,1,"","predict_progress_bar"],[136,2,1,"","print"],[136,4,1,"","process_position"],[136,4,1,"","refresh_rate"],[136,2,1,"","reset_dataloader_idx_tracker"],[136,4,1,"","sanity_check_description"],[136,2,1,"","setup"],[136,2,1,"","state_dict"],[136,4,1,"","state_key"],[136,2,1,"","teardown"],[136,4,1,"","test_description"],[136,4,1,"","test_progress_bar"],[136,4,1,"","total_predict_batches_current_dataloader"],[136,4,1,"","total_test_batches_current_dataloader"],[136,4,1,"","total_train_batches"],[136,4,1,"","total_val_batches"],[136,4,1,"","total_val_batches_current_dataloader"],[136,4,1,"","train_description"],[136,4,1,"","train_progress_bar"],[136,4,1,"","trainer"],[136,4,1,"","val_progress_bar"],[136,4,1,"","validation_description"]],"darts.utils.data":[[138,0,0,"-","horizon_based_dataset"],[139,0,0,"-","inference_dataset"],[140,0,0,"-","sequential_dataset"],[141,0,0,"-","shifted_dataset"],[142,0,0,"-","tabularization"],[143,0,0,"-","training_dataset"],[144,0,0,"-","utils"]],"darts.utils.data.horizon_based_dataset":[[138,1,1,"","HorizonBasedDataset"]],"darts.utils.data.inference_dataset":[[139,1,1,"","DualCovariatesInferenceDataset"],[139,1,1,"","FutureCovariatesInferenceDataset"],[139,1,1,"","GenericInferenceDataset"],[139,1,1,"","InferenceDataset"],[139,1,1,"","MixedCovariatesInferenceDataset"],[139,1,1,"","PastCovariatesInferenceDataset"],[139,1,1,"","SplitCovariatesInferenceDataset"]],"darts.utils.data.inference_dataset.GenericInferenceDataset":[[139,2,1,"","find_list_index"]],"darts.utils.data.sequential_dataset":[[140,1,1,"","DualCovariatesSequentialDataset"],[140,1,1,"","FutureCovariatesSequentialDataset"],[140,1,1,"","MixedCovariatesSequentialDataset"],[140,1,1,"","PastCovariatesSequentialDataset"],[140,1,1,"","SplitCovariatesSequentialDataset"]],"darts.utils.data.shifted_dataset":[[141,1,1,"","DualCovariatesShiftedDataset"],[141,1,1,"","FutureCovariatesShiftedDataset"],[141,1,1,"","GenericShiftedDataset"],[141,1,1,"","MixedCovariatesShiftedDataset"],[141,1,1,"","PastCovariatesShiftedDataset"],[141,1,1,"","SplitCovariatesShiftedDataset"]],"darts.utils.data.tabularization":[[142,5,1,"","add_static_covariates_to_lagged_data"],[142,5,1,"","create_lagged_component_names"],[142,5,1,"","create_lagged_data"],[142,5,1,"","create_lagged_prediction_data"],[142,5,1,"","create_lagged_training_data"],[142,5,1,"","get_shared_times"],[142,5,1,"","get_shared_times_bounds"],[142,5,1,"","strided_moving_window"]],"darts.utils.data.training_dataset":[[143,1,1,"","DualCovariatesTrainingDataset"],[143,1,1,"","FutureCovariatesTrainingDataset"],[143,1,1,"","MixedCovariatesTrainingDataset"],[143,1,1,"","PastCovariatesTrainingDataset"],[143,1,1,"","SplitCovariatesTrainingDataset"],[143,1,1,"","TrainingDataset"]],"darts.utils.data.utils":[[144,1,1,"","CovariateType"]],"darts.utils.data.utils.CovariateType":[[144,3,1,"","FUTURE"],[144,3,1,"","FUTURE_PAST"],[144,3,1,"","HISTORIC_FUTURE"],[144,3,1,"","NONE"],[144,3,1,"","PAST"]],"darts.utils.historical_forecasts":[[146,0,0,"-","optimized_historical_forecasts_regression"],[147,0,0,"-","optimized_historical_forecasts_torch"],[148,0,0,"-","utils"]],"darts.utils.likelihood_models":[[149,1,1,"","BernoulliLikelihood"],[149,1,1,"","BetaLikelihood"],[149,1,1,"","CauchyLikelihood"],[149,1,1,"","ContinuousBernoulliLikelihood"],[149,1,1,"","DirichletLikelihood"],[149,1,1,"","ExponentialLikelihood"],[149,1,1,"","GammaLikelihood"],[149,1,1,"","GaussianLikelihood"],[149,1,1,"","GeometricLikelihood"],[149,1,1,"","GumbelLikelihood"],[149,1,1,"","HalfNormalLikelihood"],[149,1,1,"","LaplaceLikelihood"],[149,1,1,"","Likelihood"],[149,1,1,"","LogNormalLikelihood"],[149,1,1,"","NegativeBinomialLikelihood"],[149,1,1,"","PoissonLikelihood"],[149,1,1,"","QuantileRegression"],[149,1,1,"","WeibullLikelihood"]],"darts.utils.likelihood_models.BernoulliLikelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.BetaLikelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.CauchyLikelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.ContinuousBernoulliLikelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.DirichletLikelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.ExponentialLikelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.GammaLikelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.GaussianLikelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.GeometricLikelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.GumbelLikelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.HalfNormalLikelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.LaplaceLikelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.Likelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.LogNormalLikelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.NegativeBinomialLikelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.PoissonLikelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.QuantileRegression":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.likelihood_models.WeibullLikelihood":[[149,2,1,"","compute_loss"],[149,2,1,"","likelihood_components_names"],[149,4,1,"","num_parameters"],[149,2,1,"","predict_likelihood_parameters"],[149,2,1,"","sample"],[149,2,1,"","simplified_name"]],"darts.utils.losses":[[150,1,1,"","MAELoss"],[150,1,1,"","MapeLoss"],[150,1,1,"","SmapeLoss"]],"darts.utils.losses.MAELoss":[[150,3,1,"","T_destination"],[150,2,1,"","add_module"],[150,2,1,"","apply"],[150,2,1,"","bfloat16"],[150,2,1,"","buffers"],[150,3,1,"","call_super_init"],[150,2,1,"","children"],[150,2,1,"","compile"],[150,2,1,"","cpu"],[150,2,1,"","cuda"],[150,2,1,"","double"],[150,3,1,"","dump_patches"],[150,2,1,"","eval"],[150,2,1,"","extra_repr"],[150,2,1,"","float"],[150,2,1,"","forward"],[150,2,1,"","get_buffer"],[150,2,1,"","get_extra_state"],[150,2,1,"","get_parameter"],[150,2,1,"","get_submodule"],[150,2,1,"","half"],[150,2,1,"","ipu"],[150,2,1,"","load_state_dict"],[150,2,1,"","modules"],[150,2,1,"","named_buffers"],[150,2,1,"","named_children"],[150,2,1,"","named_modules"],[150,2,1,"","named_parameters"],[150,2,1,"","parameters"],[150,2,1,"","register_backward_hook"],[150,2,1,"","register_buffer"],[150,2,1,"","register_forward_hook"],[150,2,1,"","register_forward_pre_hook"],[150,2,1,"","register_full_backward_hook"],[150,2,1,"","register_full_backward_pre_hook"],[150,2,1,"","register_load_state_dict_post_hook"],[150,2,1,"","register_module"],[150,2,1,"","register_parameter"],[150,2,1,"","register_state_dict_pre_hook"],[150,2,1,"","requires_grad_"],[150,2,1,"","set_extra_state"],[150,2,1,"","share_memory"],[150,2,1,"","state_dict"],[150,2,1,"","to"],[150,2,1,"","to_empty"],[150,2,1,"","train"],[150,3,1,"","training"],[150,2,1,"","type"],[150,2,1,"","xpu"],[150,2,1,"","zero_grad"]],"darts.utils.losses.MapeLoss":[[150,3,1,"","T_destination"],[150,2,1,"","add_module"],[150,2,1,"","apply"],[150,2,1,"","bfloat16"],[150,2,1,"","buffers"],[150,3,1,"","call_super_init"],[150,2,1,"","children"],[150,2,1,"","compile"],[150,2,1,"","cpu"],[150,2,1,"","cuda"],[150,2,1,"","double"],[150,3,1,"","dump_patches"],[150,2,1,"","eval"],[150,2,1,"","extra_repr"],[150,2,1,"","float"],[150,2,1,"","forward"],[150,2,1,"","get_buffer"],[150,2,1,"","get_extra_state"],[150,2,1,"","get_parameter"],[150,2,1,"","get_submodule"],[150,2,1,"","half"],[150,2,1,"","ipu"],[150,2,1,"","load_state_dict"],[150,2,1,"","modules"],[150,2,1,"","named_buffers"],[150,2,1,"","named_children"],[150,2,1,"","named_modules"],[150,2,1,"","named_parameters"],[150,2,1,"","parameters"],[150,2,1,"","register_backward_hook"],[150,2,1,"","register_buffer"],[150,2,1,"","register_forward_hook"],[150,2,1,"","register_forward_pre_hook"],[150,2,1,"","register_full_backward_hook"],[150,2,1,"","register_full_backward_pre_hook"],[150,2,1,"","register_load_state_dict_post_hook"],[150,2,1,"","register_module"],[150,2,1,"","register_parameter"],[150,2,1,"","register_state_dict_pre_hook"],[150,2,1,"","requires_grad_"],[150,2,1,"","set_extra_state"],[150,2,1,"","share_memory"],[150,2,1,"","state_dict"],[150,2,1,"","to"],[150,2,1,"","to_empty"],[150,2,1,"","train"],[150,3,1,"","training"],[150,2,1,"","type"],[150,2,1,"","xpu"],[150,2,1,"","zero_grad"]],"darts.utils.losses.SmapeLoss":[[150,3,1,"","T_destination"],[150,2,1,"","add_module"],[150,2,1,"","apply"],[150,2,1,"","bfloat16"],[150,2,1,"","buffers"],[150,3,1,"","call_super_init"],[150,2,1,"","children"],[150,2,1,"","compile"],[150,2,1,"","cpu"],[150,2,1,"","cuda"],[150,2,1,"","double"],[150,3,1,"","dump_patches"],[150,2,1,"","eval"],[150,2,1,"","extra_repr"],[150,2,1,"","float"],[150,2,1,"","forward"],[150,2,1,"","get_buffer"],[150,2,1,"","get_extra_state"],[150,2,1,"","get_parameter"],[150,2,1,"","get_submodule"],[150,2,1,"","half"],[150,2,1,"","ipu"],[150,2,1,"","load_state_dict"],[150,2,1,"","modules"],[150,2,1,"","named_buffers"],[150,2,1,"","named_children"],[150,2,1,"","named_modules"],[150,2,1,"","named_parameters"],[150,2,1,"","parameters"],[150,2,1,"","register_backward_hook"],[150,2,1,"","register_buffer"],[150,2,1,"","register_forward_hook"],[150,2,1,"","register_forward_pre_hook"],[150,2,1,"","register_full_backward_hook"],[150,2,1,"","register_full_backward_pre_hook"],[150,2,1,"","register_load_state_dict_post_hook"],[150,2,1,"","register_module"],[150,2,1,"","register_parameter"],[150,2,1,"","register_state_dict_pre_hook"],[150,2,1,"","requires_grad_"],[150,2,1,"","set_extra_state"],[150,2,1,"","share_memory"],[150,2,1,"","state_dict"],[150,2,1,"","to"],[150,2,1,"","to_empty"],[150,2,1,"","train"],[150,3,1,"","training"],[150,2,1,"","type"],[150,2,1,"","xpu"],[150,2,1,"","zero_grad"]],"darts.utils.missing_values":[[151,5,1,"","extract_subseries"],[151,5,1,"","fill_missing_values"],[151,5,1,"","missing_values_ratio"]],"darts.utils.model_selection":[[152,5,1,"","train_test_split"]],"darts.utils.multioutput":[[153,1,1,"","MultiOutputRegressor"]],"darts.utils.multioutput.MultiOutputRegressor":[[153,2,1,"","fit"],[153,2,1,"","get_metadata_routing"],[153,2,1,"","get_params"],[153,2,1,"","partial_fit"],[153,2,1,"","predict"],[153,2,1,"","score"],[153,2,1,"","set_fit_request"],[153,2,1,"","set_params"],[153,2,1,"","set_partial_fit_request"],[153,2,1,"","set_score_request"]],"darts.utils.statistics":[[154,5,1,"","check_seasonality"],[154,5,1,"","extract_trend_and_seasonality"],[154,5,1,"","granger_causality_tests"],[154,5,1,"","plot_acf"],[154,5,1,"","plot_hist"],[154,5,1,"","plot_pacf"],[154,5,1,"","plot_residuals_analysis"],[154,5,1,"","remove_from_series"],[154,5,1,"","remove_seasonality"],[154,5,1,"","remove_trend"],[154,5,1,"","stationarity_test_adf"],[154,5,1,"","stationarity_test_kpss"],[154,5,1,"","stationarity_tests"]],"darts.utils.timeseries_generation":[[155,5,1,"","autoregressive_timeseries"],[155,5,1,"","constant_timeseries"],[155,5,1,"","datetime_attribute_timeseries"],[155,5,1,"","gaussian_timeseries"],[155,5,1,"","generate_index"],[155,5,1,"","holidays_timeseries"],[155,5,1,"","linear_timeseries"],[155,5,1,"","random_walk_timeseries"],[155,5,1,"","sine_timeseries"]],"darts.utils.torch":[[156,1,1,"","MonteCarloDropout"],[156,5,1,"","random_method"]],"darts.utils.torch.MonteCarloDropout":[[156,3,1,"","T_destination"],[156,2,1,"","add_module"],[156,2,1,"","apply"],[156,2,1,"","bfloat16"],[156,2,1,"","buffers"],[156,3,1,"","call_super_init"],[156,2,1,"","children"],[156,2,1,"","compile"],[156,2,1,"","cpu"],[156,2,1,"","cuda"],[156,2,1,"","double"],[156,3,1,"","dump_patches"],[156,2,1,"","eval"],[156,2,1,"","extra_repr"],[156,2,1,"","float"],[156,2,1,"","forward"],[156,2,1,"","get_buffer"],[156,2,1,"","get_extra_state"],[156,2,1,"","get_parameter"],[156,2,1,"","get_submodule"],[156,2,1,"","half"],[156,3,1,"","inplace"],[156,2,1,"","ipu"],[156,2,1,"","load_state_dict"],[156,3,1,"","mc_dropout_enabled"],[156,2,1,"","modules"],[156,2,1,"","named_buffers"],[156,2,1,"","named_children"],[156,2,1,"","named_modules"],[156,2,1,"","named_parameters"],[156,3,1,"","p"],[156,2,1,"","parameters"],[156,2,1,"","register_backward_hook"],[156,2,1,"","register_buffer"],[156,2,1,"","register_forward_hook"],[156,2,1,"","register_forward_pre_hook"],[156,2,1,"","register_full_backward_hook"],[156,2,1,"","register_full_backward_pre_hook"],[156,2,1,"","register_load_state_dict_post_hook"],[156,2,1,"","register_module"],[156,2,1,"","register_parameter"],[156,2,1,"","register_state_dict_pre_hook"],[156,2,1,"","requires_grad_"],[156,2,1,"","set_extra_state"],[156,2,1,"","share_memory"],[156,2,1,"","state_dict"],[156,2,1,"","to"],[156,2,1,"","to_empty"],[156,2,1,"","train"],[156,3,1,"","training"],[156,2,1,"","type"],[156,2,1,"","xpu"],[156,2,1,"","zero_grad"]],"darts.utils.utils":[[157,1,1,"","ModelMode"],[157,1,1,"","SeasonalityMode"],[157,1,1,"","TrendMode"],[157,5,1,"","drop_after_index"],[157,5,1,"","drop_before_index"],[157,5,1,"","get_single_series"],[157,5,1,"","retain_period_common_to_all"],[157,5,1,"","seq2series"],[157,5,1,"","series2seq"],[157,5,1,"","slice_index"]],"darts.utils.utils.ModelMode":[[157,3,1,"","ADDITIVE"],[157,3,1,"","MULTIPLICATIVE"],[157,3,1,"","NONE"]],"darts.utils.utils.SeasonalityMode":[[157,3,1,"","ADDITIVE"],[157,3,1,"","MULTIPLICATIVE"],[157,3,1,"","NONE"]],"darts.utils.utils.TrendMode":[[157,3,1,"","EXPONENTIAL"],[157,3,1,"","LINEAR"]],darts:[[23,0,0,"-","ad"],[51,0,0,"-","dataprocessing"],[73,0,0,"-","datasets"],[75,0,0,"-","explainability"],[81,0,0,"-","metrics"],[83,0,0,"-","models"],[134,0,0,"-","timeseries"],[135,0,0,"-","utils"]]},objnames:{"0":["py","module","Python module"],"1":["py","class","Python class"],"2":["py","method","Python method"],"3":["py","attribute","Python attribute"],"4":["py","property","Python property"],"5":["py","function","Python function"],"6":["py","exception","Python exception"]},objtypes:{"0":"py:module","1":"py:class","2":"py:method","3":"py:attribute","4":"py:property","5":"py:function","6":"py:exception"},terms:{"0":[0,2,3,5,6,7,8,9,10,11,12,13,14,17,18,19,20,21,25,26,27,28,31,32,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,58,59,61,62,64,65,66,68,69,70,71,72,73,77,78,79,80,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,139,142,149,150,152,153,154,155,156,157,158,159,161,163,164,165,166,167],"00":[15,16,73,134,155,159,163,164],"000":[15,53],"0008841998396117885":18,"0008842":18,"001":[9,10,14,15,18,159,165,167],"002":164,"00285":164,"00325481":112,"003476":15,"0038491197353":4,"004":164,"0046":7,"004819":15,"005325414282057739":21,"00597806":119,"00872598":131,"00874069":131,"01":[3,4,9,14,16,18,21,61,62,63,64,65,67,69,73,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,154,155,159,163],"01166578":131,"0120":7,"0126":7,"01271":124,"01368849":159,"01625545":125,"01829086":118,"01837606837607":13,"01923077":3,"01_12":163,"01_12_00_00":[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],"02":[2,3,9,10,16,61,62,63,64,65,67,69,73,134,159,163,165],"02142":156,"02264":20,"025":12,"02523252":118,"0261":7,"0273":7,"02887":15,"02928407":125,"03":[15,16,18,63,67,159],"03417969":120,"03605769":3,"03751671":123,"03762":130,"039188":16,"04":[67,73],"04110":9,"042527":16,"04297":20,"04397":10,"04749318":62,"05":[0,9,10,14,17,20,21,50,61,62,63,64,65,69,87,99,102,110,111,112,118,124,125,128,130,134,154,158,159,163,165,167],"050242":16,"05202":[85,125,130],"05465":115,"05769231":3,"06":[63,99,102,110,111,112,118,124,125,128,130],"06414202":125,"06463942":119,"06505":115,"06625381":102,"06675142":127,"06769d701c1d9c9acb9a66f2f9d7a6c7":132,"06863863":125,"06938775510204":15,"07":[4,18,67,73],"07436":73,"07502":20,"07718156729165897":18,"0772":18,"07892911":96,"08":[73,87,99,102,110,111,112,118,124,125,128,130],"08337201":128,"08424":[19,128],"08653846":3,"08962991":127,"09":[2,167],"09168":149,"09229632":119,"09363":125,"09583093":111,"096098":16,"097101":16,"097573":15,"09781534":110,"0980105":159,"09871431":121,"0995766932270916":4,"0_comp_1_target":142,"0_comp_2_target":142,"0_fut_cov_lag_0":[77,78],"0_past_cov_lag":[77,78],"0d":53,"0e":53,"0j":53,"0th":159,"0x1":53,"0x100":53,"0x103d1a710":2,"0x166b2eca0":12,"0x166c993a0":12,"0x166db4a00":12,"0x176bcc790":6,"0x2233":53,"0x288b5d720":6,"0x2a9c067a0":10,"0x2a9ef6470":10,"0x2acf4d4e0":10,"0x2af20d5d0":2,"0x2af748f10":2,"0x2b00e2a40":6,"0x2b3386350":9,"0x2b3d98fd0":8,"0x2b3fc0790":8,"0x2b56bb640":2,"0x2b56bb9d0":2,"0x2b69cb9d0":2,"0x2b6abd4b0":2,"0x2b6ba5540":2,"0x2bc3c3970":6,"0x2bc722440":6,"0x2c0581de0":9,"0x2c1c97a00":9,"0x3322":53,"0x7f800691edc0":5,"0x7f80095963d0":5,"0x7f92e0d64c70":14,"0x7fc581075190":11,"0x7fc58144a950":11,"0x7fc594431ed0":11,"0x7fc75901cb10":164,"0x7ff1b5e4d4d0":164,"0x7ff2fc1fc200":53,"0x7ff2fc1fce60":53,"0x7ff2fc1ff320":53,"0x7ff5e3826c10":3,"0x7ff5e3bcc790":3,"0x7ff5e3dd1ac0":3,"0x7ff5e3fbb280":3,"1":[0,2,3,5,6,7,8,9,10,11,13,14,17,18,19,20,21,25,26,27,28,31,32,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,79,80,82,85,86,87,89,92,93,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,136,138,139,140,141,142,149,150,151,152,153,154,155,156,158,159,161,162,163,164,165,166,167],"10":[2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,49,53,66,68,71,73,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,154,159,163,164,165,167],"100":[0,2,5,6,8,10,12,14,15,18,20,66,73,82,85,86,87,89,99,100,102,108,109,110,111,112,113,115,117,118,124,125,126,128,130,132,150,154,156,158,159,163,164,165],"1000":[0,5,11,18,66,142,158,165],"10000":[0,3,11,158],"1000x":15,"1002":120,"1005":[109,117,128,132],"1006":[100,108,115],"1008":128,"1013":110,"10138":20,"1017":128,"102":15,"1024":[15,18,167],"10295":115,"10437":[8,138],"10520391":96,"10568429":114,"106":[100,102,108,109,112,115,117,118,125,128,132],"10790392":128,"108":13,"10900k":167,"10m":15,"10th":[5,134],"11":[2,3,4,5,6,7,8,9,13,14,15,16,17,19,20,21,53,159],"110375":16,"11057692":3,"112":67,"11286509":96,"115":[13,167],"1150":[85,86,87,89,150,156],"116":5,"117":167,"11716811":114,"1177":[0,158],"118":67,"11817462":121,"11846185":131,"11885377506043901":21,"1194":17,"12":[2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,19,20,21,53,58,59,63,73,78,79,96,97,98,99,100,102,107,108,109,110,111,112,115,116,117,118,119,120,121,122,123,124,125,128,130,132,134,138,139,140,141,154,159,161,163,165,167],"120":5,"12017":20,"120197":16,"1207":17,"121":[13,67],"123":53,"123046875":21,"124":[0,158],"125":[5,7,167],"1275":17,"128":[7,113,128,165],"1284":53,"1288":17,"12886":111,"12892167797527437":21,"129":67,"13":[2,3,4,5,6,7,8,9,13,14,15,16,17,18,20,21,53,73,159,167],"13090":53,"131":13,"13154426":112,"132":67,"13277921":118,"1344":53,"135":67,"13504":[73,102,112],"136":[15,67],"138":13,"138122":16,"138183":16,"138631":16,"1399":15,"14":[2,3,4,5,6,7,8,13,14,15,16,17,18,20,21,53,63,73,113,159,164],"140":2,"144":7,"14674087":131,"148":67,"14_09_53_32_torch_model_run_44607":[99,102,110,111,112,118,124,125,128,130],"15":[2,3,4,5,6,7,8,11,13,14,15,16,17,18,19,20,21,53,73,134,159,161,167],"150":[0,11,15,16,18,158],"1506":156,"15071":20,"154":15,"158970":16,"15t":134,"16":[2,3,4,5,6,7,9,13,14,15,16,17,18,20,21,53,85,86,87,89,113,125,128,150,156,159,164,165],"16145791":131,"16352":16,"166":159,"16604194":98,"16666667":98,"1667":4,"1667634":128,"168":[2,3],"17":[2,3,4,6,13,14,15,16,17,18,20,21,53,159,164],"1704":9,"1706":130,"1716k":15,"173":15,"17325":115,"174":13,"1747k":15,"1749":[5,73],"17791019":118,"1798":53,"18":[2,3,6,13,14,15,16,17,18,20,53,99,102,110,111,112,118,124,125,128,130,159],"180":13,"1800":73,"1803":124,"188":17,"18881119":98,"189":17,"18922903":118,"19":[2,3,6,14,15,16,17,18,53,159,165],"19010018398568":5,"1905":[8,138],"1906":10,"1912":125,"1913":[85,86,87,89,150,156],"1914":[85,86,87,89,150,156],"192":17,"19401001":[5,6,7],"1948":159,"1949":[62,63,67,73],"1950":[58,96,97,99,100,101,102,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132,159],"1953089418552":4,"19551201":4,"1956":73,"1957":[165,167],"19571201":14,"1958":159,"19580":21,"19580101":159,"19580801":6,"1959":[5,7],"19590101":[5,7,164],"1960":73,"1962":[3,73,159],"19623":21,"1965":73,"19650033":125,"196582":16,"19697244":99,"1973":3,"1975":[3,73],"198":17,"1980":73,"1981":73,"1983":73,"19850701":4,"1989":154,"1990":[73,166],"1991":[73,154],"1992":[116,154],"1994":[73,154],"1997":73,"1998":154,"1_comp_1_":142,"1_comp_2_":142,"1_past_cov_lag":[77,78],"1_t":82,"1d":53,"1e":[5,7,9,10,14,15,18,19,87,99,102,110,111,112,113,118,124,125,128,130,134,164,165],"1e0":66,"1e1":66,"1e2":66,"1e3":66,"1h":[2,134],"1j":53,"1l":[85,86,87,89,113,150,156],"1s":167,"2":[0,2,3,5,6,7,8,9,10,11,12,13,14,17,18,19,20,21,53,54,55,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,139,142,150,153,154,155,156,158,159,161,163,164,165,166,167],"20":[2,3,4,5,6,7,9,10,11,13,14,15,16,17,18,21,53,102,105,112,116,118,124,128,130,142,154,159,161,164],"200":[2,7,11,12,13,14,15,19,21,82,85,86,87,89,113,115,150,156,159],"2000":[15,61,64,65,69,73,155,166],"2001":15,"2002":[15,85,125,130],"2003":73,"2004":[14,73,150],"2005":101,"2008":73,"201":15,"2010":[15,154],"20100101":14,"2011":101,"2012":73,"2013":134,"2014":73,"2015":73,"2016":73,"2017":[4,21,130],"20170901":[6,8,9,10],"2018":[21,73],"2019":[15,21,87],"2020":[15,16,73,85,87,125,126,130,134],"20200101233000":134,"2021":[73,99,102,110,111,112,118,124,125,126,128,130],"2022":[0,15,16,73,87,102,112,158],"2023":165,"20418":21,"208":159,"2080":167,"20913462":3,"20957388":102,"20gb":18,"20l":[85,86,87,89,113,150,156],"21":[0,2,3,14,15,16,18,21,53,73,99,101,158,159,164],"214":101,"2142k":15,"21563229":62,"21607546":100,"218":13,"22":[2,3,14,15,18,21,53,63,73,159,167],"2201":111,"2203":149,"2205":[73,102,112],"22074":120,"220885":121,"22224366":98,"223":13,"22355514":100,"224":53,"22497681":99,"22618932":104,"22936898":122,"23":[0,2,13,14,15,21,53,73,134,153,158,159,167],"2304":[19,128],"2312":53,"23152974":98,"23201079":111,"2324":[85,86,87,89,150,156],"2325":[85,86,87,89,150,156],"2354389":111,"23675":115,"23776224":98,"2382":[85,86,87,89,150,156],"24":[2,13,14,15,18,20,21,58,73,114,118,134,154,159,163,165,167],"240":[5,7],"24050364":116,"241":116,"24147138":125,"24283838":104,"24334385":116,"245":15,"24759615":3,"25":[0,2,10,14,15,18,21,59,61,65,69,73,99,102,113,114,118,152,158,159,163],"250":[6,16,18,20],"252":13,"25202285131778":15,"256":[2,19,53,110],"25780816":125,"258":13,"259":116,"26":[2,5,7,14,15,159],"262":73,"26720705":105,"2682070257112743":21,"26891239":114,"26993332":97,"27":[2,13,14,15,73,159,167],"27121314":97,"2765364":62,"27869295":99,"27991":167,"28":[2,15,73,113,159,167],"280":98,"28005229":97,"28050":167,"282":167,"2820":7,"2826":53,"282807":16,"282935127615929":159,"283":167,"28318784":125,"28424783":99,"285":167,"28614154":100,"28886231":127,"289051":16,"28955078":120,"29":[15,17,159],"2941917142812893":4,"296":73,"29805":115,"29856017":123,"29861111":98,"2987822":125,"299":164,"2_comp_1_":142,"2_comp_2_":142,"2_past_cov_lag":[77,78],"2_t":82,"2d":[53,61,62,63,64,65,66,67,68,69,70,71,72],"2f":[2,3,5,7,14,17,18,159],"2m":15,"3":[0,2,3,5,6,7,8,9,10,11,12,13,14,17,18,19,20,21,32,53,59,61,63,64,65,66,67,68,69,71,73,77,78,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,138,142,143,150,153,154,156,158,159,163,164,165,166,167],"30":[2,8,9,10,13,15,18,53,73,110,134,159,163],"300":[5,9,10,14,15,164],"30092923516797":15,"302734375":21,"303":101,"30397":15,"30609727":122,"30625563":122,"30647185":107,"30872957":100,"309":17,"30t":134,"31":[15,21,73,159,167],"31180633":97,"312":17,"31305075":104,"314":[101,159],"315":17,"31519186":104,"3195560563281926":21,"31962608":53,"32":[5,7,10,14,15,53,87,99,102,110,111,112,113,118,124,125,128,130,159,165],"323":53,"3243":17,"3294":17,"33":[13,15,85,86,87,89,113,150,156,159],"332":17,"3340":53,"337489093281":4,"34":[7,13,15,159],"34039307":120,"3420":[85,86,87,89,150,156],"34615385":3,"35":[2,13,15,17,159],"350":18,"350149072706699":159,"35210616":112,"35256055":116,"36":[0,2,3,5,6,7,14,15,73,78,158,159,163,165],"360":11,"360166":125,"36111111":98,"36489334":96,"365":[6,114,167],"36561899":130,"368725":16,"36937856":127,"37":[15,73,159],"370":[2,18,73],"373275454432286":21,"3741":[85,86,87,89,150,156],"37621876784175745":21,"37965429":110,"38":[15,17,159,167],"3854":53,"38584654":121,"3869697":116,"39":[2,3,6,7,8,9,10,14,15,17,20,21,159,164,167],"391":98,"3949283":127,"39550065":108,"39769555":127,"39992814":118,"3_comp_1_target":142,"3_comp_2_target":142,"3f":15,"3m":15,"3rd":16,"3s":167,"4":[0,2,3,4,5,6,7,8,9,10,11,12,13,14,17,18,19,20,21,53,59,61,64,65,66,67,68,69,71,73,77,78,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,143,154,158,159,162,163,164,165,167],"40":[13,15,16,53,159,167],"400":[9,10,15,159,163],"40323676":121,"40498034":130,"40680728":107,"4079":17,"40817901":98,"40867163":125,"41":[15,124,159,167],"41161602":98,"41209025":111,"4141":17,"415":[119,121],"4153701":100,"416":[96,97],"4168":17,"417":98,"41736301779747":159,"418":104,"41826923":3,"419":98,"41907237":100,"42":[5,7,8,11,12,14,15,16,18,19,99,102,110,111,112,118,124,125,128,130,159,164,165],"42090089":107,"42215052":123,"4233k":15,"424526892430279":4,"42657343":98,"427":112,"428":112,"429":[112,120],"4294967296":53,"43":[15,17,18,159],"431":98,"432":122,"433":127,"434":[98,127],"436":98,"4368":53,"438":98,"439":[98,123],"44":[15,159,167],"440":[98,107],"441":121,"442":[122,127],"44242919":131,"443":[96,98,127],"4443":[85,86,87,89,150,156],"445":[97,98,104],"448":[121,123],"44874":20,"449":97,"45":[0,15,134,158,159,167],"450":119,"451":96,"453":[98,120],"454":[98,119],"455":98,"46":[15,159,167],"460":164,"461":[98,101,107],"462":98,"464":116,"465":[98,104],"467":114,"46803":20,"468651":16,"47":[15,131,159],"47087":15,"471":105,"472":[98,114],"47230467":114,"474":107,"47503662":120,"47552448":98,"47620885":98,"4770514":104,"47896667":124,"48":[2,15,21,53,73,114,131,159,167],"480":[53,127],"481":[96,127,164],"481005":15,"482":122,"483":98,"48476824":124,"485":[97,98],"486":119,"48695488":130,"487":122,"488":120,"4882":53,"49":[73,131,159],"491":121,"493":[114,121,123],"49312172":122,"494":[104,105,107,114,116,127],"495":[122,127],"496":116,"497":114,"498":123,"49it":164,"4d":[85,86,87,89,150,156],"4m":15,"4s":167,"4th":[16,20],"4theta":127,"5":[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,32,53,59,61,62,63,64,65,68,69,71,72,73,77,78,79,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,143,149,154,156,158,159,162,163,164,165,167],"50":[2,6,9,10,11,12,15,16,17,18,21,58,73,96,97,99,100,101,102,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132,159,163,167],"500":[2,6,9,10,20,113,120,131,159,163,165,167],"5000":15,"50153984":96,"502":96,"503":98,"504":[105,119],"505":104,"507":[97,123],"50859694":125,"51":[18,131,159],"5102040816326543":159,"5112":[85,86,87,89,150,156],"5113":[85,86,87,89,150,156],"512":[7,8,111,130],"51218795":119,"513":53,"51425784":111,"515":105,"5150k":15,"5163k":15,"51801726":107,"519":120,"52":[131,159],"520":105,"52290556":108,"523":15,"525":15,"52541292":125,"528":107,"52it":164,"53":[131,159],"53180506":116,"535":98,"5364068635935895":21,"539":114,"5396":53,"54":[73,159],"541":15,"543":15,"544":116,"545":127,"54534585":127,"546":127,"54686113":114,"547":105,"549":121,"55":[13,159],"55179949":119,"5539":20,"555":[96,119,122],"557":116,"5593":[85,86,87,89,150,156],"56":[15,17,125,159],"561":[3,97],"56117169":112,"564":123,"5659999":105,"568":3,"56955721":114,"57":[159,167],"57201255":108,"573":104,"577":3,"57902659":122,"58":[2,159,167],"586":120,"58653846":3,"589":3,"59":[18,159,167],"590":107,"5910":53,"59404623":105,"599":3,"5e":[18,53,165],"5l":[85,86,87,89,113,150,156],"5s":167,"5th":[0,158,159],"6":[0,2,3,4,5,6,7,8,9,10,11,13,14,15,17,18,19,20,21,53,63,68,73,77,78,79,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,158,159,163,167],"60":[16,159],"6000":130,"6010":130,"604846":16,"606":101,"61":16,"6122":[85,86,87,89,150,156],"61353249":119,"61463773":127,"615":101,"61749":20,"61787454":97,"62":167,"63":167,"630":116,"63158655":130,"63334":20,"63461538":3,"63584309419007":5,"6381425":105,"63884831":108,"64":[7,14,73,113,125,130,165,167],"640":3,"64008":20,"643":4,"6436328":107,"64471436":120,"64871897":123,"65":[9,10,13,17,73,159,167],"650":20,"653":4,"65403772":109,"65417736":130,"6548696":109,"656":3,"656330":16,"65865385":3,"66":159,"66032082":110,"66339481":110,"665":102,"666":102,"667":102,"67":18,"67733306":102,"6846175":109,"688":18,"6899k":15,"69":17,"69213369":125,"6949k":15,"697":3,"69711538":3,"6s":167,"6th":159,"7":[2,3,4,5,6,7,8,9,10,12,13,14,15,16,17,18,19,20,21,53,62,68,73,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,159,167],"70":[159,167],"7016":20,"70180806":98,"70491":20,"70710678":53,"70ghz":167,"71":5,"71159051":117,"71328671":98,"7188093":125,"72":[17,159,167],"7200":18,"72035839":128,"720555851487694":18,"72085839":109,"722222":15,"7256909":127,"72626":132,"727":3,"72888401":98,"73":[5,167],"7322616":117,"73317308":3,"73340676":117,"73465028":123,"739264":16,"74":17,"7421875":21,"74381763":127,"7475":132,"75":[10,14,16,59,61,65,69,159,163],"75320573":102,"75753605":109,"76":18,"76074":132,"76158729":124,"76314504":117,"7649":15,"7650":15,"7666":101,"76854107":124,"76986848":102,"770":53,"771293":15,"77135603":124,"77252372":125,"776":17,"78":167,"781":17,"78166819":124,"78509085":110,"78610361":127,"787":159,"7878":132,"79323146":105,"797":3,"79716178":97,"799":[17,73],"79962158":120,"8":[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,39,53,62,63,68,73,97,125,158,159,163,164,165],"80":[9,10,16,17,18,124,159,167],"800":8,"80068173":127,"805":73,"805755244887":4,"80616883":130,"8063744":15,"80th":159,"81":159,"811":17,"813":53,"81490385":3,"817":3,"81830675":109,"81it":164,"820993":16,"82204348":117,"82269341":116,"82451923":3,"82463265":105,"827":3,"82837":20,"83076568":125,"8315":132,"837945":16,"83998586":108,"84":14,"84134615":3,"843":3,"84735157":62,"85":[14,17,159],"85142":20,"8529289":102,"85314633":131,"85376674":108,"858":3,"85885374":123,"862":73,"8682864837639":4,"87":[15,159],"8755":53,"87818":20,"88":159,"8843893":110,"88729152":131,"88972829":96,"88974472":121,"89":[14,17],"89100967":117,"892":[3,110],"8925":15,"896":3,"8s":167,"9":[2,3,4,5,6,7,8,9,10,13,14,15,16,17,19,20,21,53,63,68,126,134,159,163,164],"90":[12,13,14,159],"900x600":14,"903":3,"90537286":128,"90785391":121,"90th":134,"91311":20,"91356":15,"915":17,"91534452":128,"9185":132,"919":111,"921":110,"9212963":98,"92307692":3,"925":111,"929":110,"93264096":112,"937":3,"938":111,"939":111,"94":18,"94078295":122,"94272629":131,"944":4,"94512461":107,"95":[0,9,10,14,20,21,50,134,158,159,163],"950":110,"95104895":98,"95129261":104,"956":4,"95625528":111,"958":111,"9586113":125,"95th":[0,158,159],"96":[17,159],"966":3,"96757177":98,"97":13,"9707572":99,"976459":16,"976761":16,"97713346":131,"97979827":99,"98":17,"98214351":62,"987":111,"98781641":112,"99":[0,9,14,17,113,158,159,163],"99278846":3,"997":128,"998":128,"99804203":131,"999":[19,110],"99th":159,"9s":167,"abstract":[2,25,48,53,55,57,61,64,65,69,91,99,103,113,118,129,139,143,149],"boolean":[23,31,32,37,39,47,49,53,54,57,61,62,63,64,65,66,67,68,69,70,71,72,100,110,114,124,134,154,155],"break":[17,53,85,86,87,89,113,136,150,156],"byte":53,"case":[0,2,3,4,11,12,14,15,17,18,19,20,29,32,35,36,37,53,58,61,62,63,64,65,66,67,68,69,70,71,72,77,78,79,80,82,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,149,155,157,158,159,161,163,164,165,166,167],"catch":14,"class":[2,5,20,21,23,25,26,27,28,30,31,32,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56,58,59,60,62,63,66,67,68,69,70,71,72,73,74,76,77,78,79,85,86,87,89,91,92,93,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,136,137,138,139,140,141,142,144,149,150,153,155,156,157,159,166,167],"d\u00e3":[0,158],"default":[2,3,4,7,13,14,15,16,19,21,25,26,27,28,31,32,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,59,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,79,82,85,86,87,89,92,93,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,136,149,150,151,152,153,154,155,156,159,163,164,167],"do":[2,3,4,13,14,15,16,17,18,20,21,25,48,53,58,85,87,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,136,142,159,161,162,163,166],"enum":[104,127,144,154,157],"export":[20,113,160],"final":[2,15,18,19,24,29,53,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,159,163,164,167],"float":[10,15,18,25,26,27,28,31,32,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,62,68,72,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,149,150,151,152,153,154,155,156,159,165,167],"fr\u00e3":[0,158],"function":[0,2,3,7,12,13,14,16,18,20,21,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,58,61,62,63,64,65,66,67,68,69,70,71,72,80,82,85,86,87,89,91,92,93,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,135,142,149,154,155,156,158,159,162,163,165,166,167],"ga\u00e3":[0,158],"ga\u00ebl":15,"import":[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,53,58,59,61,62,63,64,65,66,67,68,69,70,71,77,78,79,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,133,134,136,154,158,159,161,162,163,164,165,166,167],"int":[13,14,15,16,21,25,26,27,28,32,34,35,36,39,47,49,50,53,54,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,77,78,79,80,82,85,86,87,89,92,93,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,136,138,139,140,141,142,149,150,151,152,154,155,156,157],"ko\u00e5":[0,158],"l\u00e3":[0,158],"long":[2,3,14,15,18,21,53,99,102,110,111,112,118,124,125,128,130,134,138,140,141,161,167],"new":[0,1,2,3,5,7,8,13,14,15,16,17,19,20,21,37,53,54,57,58,61,62,63,64,65,66,67,68,69,70,71,72,73,79,85,86,87,89,93,94,96,99,102,107,110,111,112,113,118,124,125,128,130,131,134,150,151,153,154,155,156,157,158,159,162,164,166,167],"null":154,"public":[18,53,73],"return":[2,3,6,8,9,10,13,15,16,18,19,21,24,25,26,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,77,78,79,80,82,85,86,87,88,89,91,92,93,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,136,142,143,149,150,151,152,153,154,155,156,157,159,163,165,166],"short":[2,14,15,53,73,104,125,142],"static":[0,2,14,15,60,61,62,63,64,65,66,67,68,69,70,72,77,79,80,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,140,141,142,158,160,161],"super":[61,62,63,64,65,66,68,69,70,71,72,113,129,136,143],"switch":113,"throw":[85,86,87,89,113,150,156],"true":[2,3,5,6,7,8,9,10,12,13,14,15,18,19,20,21,25,26,27,28,31,32,34,35,36,37,39,46,47,49,50,53,54,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,79,80,82,85,86,87,89,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,133,134,136,138,139,140,141,142,150,153,154,155,156,159,163,164,165,167],"try":[2,4,5,6,12,14,18,21,99,102,110,111,112,118,123,124,125,128,130,131,140,141,142,162,165,166,167],"var":[53,85,86,87,89,113,134,150,156],"void":53,"while":[3,4,13,16,18,37,53,61,62,63,64,65,66,67,68,69,70,71,72,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,141,150,156,159],A:[0,1,5,8,11,19,21,23,31,32,37,39,47,49,53,54,55,57,58,59,62,63,66,67,68,69,70,71,72,73,74,76,78,79,80,85,86,87,89,91,92,93,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,140,141,142,150,151,153,154,155,156,157,158,166,167],AND:[24,85,87],AS:[85,87],And:[2,15,21,38,39,40,41,42,43,44,45,46,47,48,49,58,85,86,87,89,113,150,152,156,159],As:[2,3,9,14,15,16,17,18,19,20,21,37,53,159,164,167],At:[2,18,21,113,134,161,163,167],BE:[85,87],BUT:[85,87],Be:[20,134],But:[3,4,159,167],By:[2,16,21,39,47,48,49,53,71,72,78,79,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,149,155,159,164,167],FOR:[85,87],For:[0,2,4,5,8,12,13,14,15,16,17,18,21,31,32,33,39,47,49,53,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,79,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,142,149,150,153,154,156,158,159,161,162,163,165,166,167],IN:[85,87,114],IS:[85,87,154],If:[0,2,3,5,6,7,8,13,14,15,16,18,20,21,25,27,31,32,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,77,78,79,80,82,85,86,87,89,92,93,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,140,141,142,149,150,151,152,153,154,155,156,157,158,159,161,162,163,164,166,167],In:[0,2,3,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,31,32,35,36,37,49,53,58,61,62,63,64,65,66,67,68,69,70,71,72,77,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,149,150,155,156,158,159,160,161,162,163,164,166],Is:[130,162],It:[0,2,3,8,13,14,15,17,18,19,21,24,31,32,33,38,39,40,41,42,43,44,45,46,47,48,49,53,57,58,69,70,71,72,73,77,78,82,85,86,87,89,91,92,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,140,141,143,149,150,154,156,158,159,161,163,166,167],Its:[7,85,86,87,89,150,156],NO:[85,87],NOT:[85,87,98,103,113,154],No:[16,21,134,162],Not:[3,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,159],OF:[73,85,87],OR:[24,85,87],Of:[2,130,167],On:[14,15,99,102,110,111,112,118,124,125,128,130,149,163],One:[17,21,31,32,53,58,78,79,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,140,141],Or:[15,66],Such:[15,159],THE:[85,87,126],TO:[85,87],That:[2,14,16,19,85,159,161,163,167],The:[0,2,4,7,8,9,11,12,13,14,15,16,18,19,20,21,24,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,79,80,82,85,86,87,89,91,92,93,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,136,138,139,140,141,142,143,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167],Then:[2,7,13,21,53,59,77,78,159],There:[2,10,15,16,18,21,53,58,85,113,159,161,164,165],These:[0,2,12,16,17,23,49,53,57,69,85,86,87,89,99,102,110,111,112,113,118,124,125,128,130,134,143,150,156,158,159,163,167],To:[3,5,8,9,14,15,18,19,20,21,53,63,73,85,86,87,89,99,102,108,110,111,112,113,114,118,124,125,128,130,136,142,150,156,159,161,163,167],WITH:[85,87],Will:[18,80,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134],With:[2,15,16,21,57,99,102,110,111,112,118,124,125,128,130,134,163,167],_0:149,_:[27,47,57,58,67,77,78,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,142,149,154,163],__:153,__call__:[85,86,87,89,99,113,118,150,156],__getitem__:143,__init__:[21,61,62,63,64,65,66,67,68,69,70,71,72,99,106,113,118,136,142,167],__main__:[53,164,165],__name__:[164,165],__traceback__:74,_a:[61,65,69],_and_regressor:114,_array_interface_:53,_as_parameter_:53,_basebatstbatsmodel:123,_blockrnnmodul:99,_covari:[58,80,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,141,161,167],_ctype:53,_diff_seri:[39,47,49],_encod:[57,58],_encode_sequ:57,_explainabilityresult:77,_fabricoptim:113,_fill_missing_d:134,_fit_iter:[62,63,64,69,70],_fitted_param:[62,63,64,67,69,70,71],_forecastingmodelexplain:[76,77,78,79,80],_freq_to_dai:114,_get_batch_predict:113,_holiday_effect:114,_intern:53,_lag:[100,108,109,115,117,132,142],_lag_:[77,78,142],_lib:134,_likelihoodmixin:[21,100,108,109,132],_loss:113,_lrfinder:[99,102,110,111,112,118,124,125,128,130],_lrschedul:113,_model_encoder_set:[99,118],_my_fixed_param:[61,62,63,64,65,66,68,69,70,71,72],_my_param:[61,69],_n:134,_number_:117,_posit:[64,69],_produce_train_output:113,_random_inst:156,_rnnmodul:118,_scale:[64,69],_seri:142,_statcov_target_:[100,108,109,115,117,132,142],_t:[63,82,150],_target_comp0:142,_target_comp1:142,_window_adjustment_anomali:[25,26,27,28,50],_x:134,a_list:53,a_tolist:53,ab:[9,10,13,15,19,54,57,58,73,85,111,124,125,128,130,138,149],abbrevi:167,abc:[25,34,48,53,55,57,61,74,91,93,99,106,113,118,139,143,149],abcmeta:106,abil:[0,100,108,132,158],abl:[0,2,16,20,21,31,32,67,99,102,110,111,112,118,124,125,128,130,158,159,163,164],about:[2,5,12,14,15,16,17,18,19,21,53,61,62,63,64,65,66,67,68,69,70,71,72,82,96,97,99,100,101,102,107,108,109,110,111,112,113,114,115,117,118,119,121,124,125,128,130,131,132,142,149,156,159,160,161,162,163,164,166,167],abov:[2,3,11,13,15,17,18,20,21,35,36,53,58,73,85,86,87,89,113,126,150,151,155,156,159,164],abs_diff:[39,47,48,49],absenc:[31,32],absolut:[0,13,15,39,46,47,48,49,57,58,82,152,158,159,162],absolute_error:115,acc:113,acceler:[2,6,8,9,10,15,18,19,99,102,110,111,112,113,118,124,125,128,130,164,165,167],accept:[20,53,57,58,61,62,63,64,65,66,68,69,70,71,72,85,86,87,89,107,113,123,134,142,149,150,156,159,161,163,166,167],accept_transform:[57,58],access:[20,21,53,61,62,63,64,65,66,68,69,70,71,72,77,85,86,87,89,99,102,104,110,111,112,113,114,118,124,125,126,127,128,130,136,140,141,150,156,161,164,167],accommod:167,accompani:[23,37],accomplish:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],accord:[5,7,53,54,92,93,99,102,103,110,111,112,118,124,125,127,128,130,151,164],accordingli:[4,62,63,64,69,70,130,134],account:[0,2,3,11,14,114,131,134,158,159],accumul:113,accumulate_grad_batch:[113,136],accur:[15,18,19,20,32,87,99,102,110,111,112,113,124,125,128,130],accuraci:[2,13,15,16,17,18,20,21,25,26,27,28,31,32,33,34,35,36,50,54,82,101,113,159],acf:[82,154,159],acf_max_lag:154,achiev:[3,4,21,85,86,87,89,113,150,156,163,167],acknowledg:[0,158,162],acovf:154,across:[5,15,16,21,35,36,70,93,107,113,125,142,153,161,163,166],act:[53,71,91,100,108,109,115,117,132,142],action:[85,87],activ:[2,7,8,15,20,21,55,85,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,163,167],actual:[0,2,3,4,5,6,7,8,9,10,11,13,14,15,18,20,21,23,29,31,32,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,69,79,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,149,150,157,158,159,163,167],actual_anomali:[25,26,27,28,31,32,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50],actual_seri:[14,38,39,40,41,42,43,44,45,46,47,48,49,82],ad:[0,4,20,21,25,26,27,28,31,32,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,53,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,82,85,86,87,89,96,97,99,100,101,102,107,108,109,110,111,112,113,114,115,117,118,119,121,124,125,128,130,131,132,134,142,149,150,156,158,159,166],adam:[99,102,110,111,112,113,118,124,125,128,130,167],adapt:[11,15,82,130,134],add:[0,6,9,10,11,12,14,15,17,18,21,31,32,38,39,40,41,42,43,44,45,46,47,48,49,50,55,58,61,62,63,64,65,66,67,68,69,70,71,72,85,86,87,89,99,102,110,111,112,113,114,118,124,125,128,130,134,142,150,155,156,158,159,165,166,167],add_cyclic_encod:167,add_dataloader_idx:113,add_datetime_attribut:[134,159],add_encod:[14,16,18,21,58,79,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,159,165],add_histogram:113,add_holidai:[134,159],add_imag:113,add_length:[20,96,97,107,114,119,121,131,155],add_modul:[85,86,87,89,113,150,156],add_rang:55,add_relative_index:[14,125],add_season:114,add_static_covariates_to_lagged_data:142,addconst:154,addit:[0,2,8,14,15,16,20,21,31,32,39,58,61,62,63,64,65,66,67,68,69,70,71,72,77,78,85,86,87,89,92,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,135,150,154,156,158,159,161,162,163,166,167],addition:[6,14,53,54,61,62,63,64,65,66,67,68,69,70,71,72,96,97,99,100,101,102,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132,142,167],adequ:31,adf:154,adful:154,adition:2,adjac:[134,155],adjust:[67,101,113,154],adopt:125,advanc:[2,5,15,20,21,87,100,108,109,115,117,130,132,140,141,159,160,161],advantag:[18,159,163],advic:20,advis:164,afect:[99,118],affect:[11,15,53,85,86,87,89,113,125,130,150,156,167],affin:87,afraid:15,after:[7,13,16,17,18,19,20,21,53,54,57,58,61,62,63,64,65,66,67,68,69,70,71,72,78,85,86,87,89,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,139,141,142,150,156,157,159,161,167],afterward:[85,86,87,150,156,159],ag:73,again:[2,4,13,14,15,18,53,67,98,103,116,159,163],against:[14,19,25,26,27,28,34,35,36,50,62,63,64,69,70,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,150,156],aggreg:[0,14,15,17,23,25,50,79,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,158],agnost:[29,31,32,37,38,39,40,41,42,43,44,45,46,47,48,49,57],ago:[21,98,159],ahead:[7,9,10,142,159,167],ai:[85,164],aic:[123,154],aidan:130,aim:3,air:[73,159,164],air_cov:159,air_covari:2,air_month:2,air_rnn:[5,164],air_test:15,air_test_sc:15,air_train:15,air_train_covari:2,air_train_sc:15,air_transform:7,air_val_covari:2,air_year:2,airlin:159,airpasseng:[0,20,158],airpassengersdataset:[2,4,5,6,7,9,14,20,59,62,63,67,70,73,78,79,96,97,98,99,101,102,104,105,107,110,111,112,114,116,118,119,120,121,122,123,124,125,127,128,130,159,163,164,165,167],aka:142,al:[15,87,99,102,110,111,112,113,124,125,128,130,149,154],aleator:[100,163],algorithm:[4,11,13,15,39,47,49,53,54,93,107,108,113,127,159],alia:[53,67,85,86,87,89,113,134,150,153,155,156],alias:134,alig:13,align:[2,4,53,54,55,138,140,141,159],all:[0,1,2,3,4,5,6,8,9,10,13,14,15,16,17,18,19,20,21,26,34,35,36,37,39,47,48,49,50,53,54,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,77,78,79,80,82,85,86,87,89,91,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,134,136,138,139,140,141,142,143,149,150,151,152,153,154,155,156,157,158,159,161,163,164,166],all_air_seri:15,all_gath:113,all_param:106,all_past_covari:161,all_seri:18,all_series_fp32:18,all_target:161,all_valu:[64,69,125,134,166],alloc:[53,71],allow:[0,3,4,13,19,20,37,39,47,49,53,55,61,62,63,64,65,66,67,68,69,70,71,72,85,86,87,89,99,100,102,106,108,109,110,111,112,113,115,117,118,124,125,128,130,132,134,136,140,141,142,150,152,153,154,156,158,159,161,164,165,166,167],allow_filter_train:31,allow_model_train:[31,32],allow_zero_length_dataloader_with_multiple_devic:113,almost:[9,53,163],alon:[58,91],along:[31,32,53,61,62,63,64,65,66,67,68,69,70,71,72,78,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,152,155,159,166],alongsid:[61,69,85,86,87,89,113,150,156],alpha:[12,17,101,134,149,154,159],alpha_1:149,alpha_d:101,alpha_i:149,alpha_k:149,alpha_p:101,alreadi:[2,13,14,15,16,18,19,20,31,32,53,73,74,85,86,87,89,113,116,130,134,142,150,156,159,164,167],also:[0,1,2,3,4,5,9,11,13,14,15,16,17,18,19,20,21,29,31,32,53,58,61,62,63,64,65,66,68,69,70,71,72,77,78,79,82,85,86,87,89,93,96,97,98,99,101,102,103,107,110,111,112,113,114,116,117,118,119,121,123,124,125,128,130,131,134,139,142,149,150,153,154,156,158,159,161,162,163,164,165,166,167],alter:[53,113],altern:[39,47,49,53,71,87,113,114,134,142,155],although:[14,15,18,53,85,86,87,107,150,156,159],alwai:[15,18,19,53,67,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,149,150,153,156,159,161,162,167],always_cal:[85,86,87,89,113,150,156],amax:53,ambient:167,amin:53,among:[0,53,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,154,158],amount:[13,18,46,59,61,62,63,64,65,66,67,68,69,70,71,72,99,102,110,111,112,118,123,124,125,128,130,159,167],amp:113,amplitud:155,an:[0,1,2,3,5,6,7,8,9,10,11,12,13,14,18,19,20,21,24,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,57,58,61,62,63,64,65,66,67,68,69,70,71,72,73,78,79,80,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,139,140,141,142,144,149,150,152,153,154,155,156,157,158,159,161,162,163,164,165,166,167],analysi:[98,110,123,159,165],anaomli:23,anchor:67,and_aggreg:26,andaggreg:26,andrew:154,andrzej:[0,158],angl:15,ani:[0,2,11,14,15,16,18,19,20,21,23,28,29,31,32,37,46,48,53,55,58,61,62,63,64,65,66,67,68,69,70,71,72,77,78,80,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,136,138,139,140,141,142,149,150,151,155,156,158,159,161,164,165,166,167],anom_scor:[0,158],anomal:[19,26,28,36,37,39,47,49],anomali:[0,22,25,26,27,28,30,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,158],anomaly_model:[31,32,50],anomaly_scor:[34,35,36,50],anomalymodel:[31,32],anomalyscor:[31,32,48],anomoul:[34,35,36,50],anoth:[2,6,14,15,21,53,71,93,107,113,134,159,165,166,167],answer:162,any_seri:2,anymor:[2,19,159],anyon:[0,158],anyth:[77,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,136],apart:[21,114],api:[0,1,11,15,17,21,37,53,58,114,134,155,158,159,163,166],appear:[0,17,53,134,158],append:[13,14,15,17,20,58,113,117,134,136,142,167],append_valu:134,appendix:1,appl:15,appli:[0,3,13,14,16,18,21,23,31,32,33,35,36,37,39,47,48,49,53,54,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,78,79,80,82,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,149,150,156,158,159,161,167],applic:[3,15,31,32,67,134,159,164],apply_component_mask:[61,62,63,64,65,66,67,68,69,70,71,72],apply_to_collect:113,appreci:[0,158],approach:[2,4,8,11,16,18,21,53,67,69,121,149,159,161,162,163],appropri:[12,17,31,32,53,78,98,99,102,103,110,111,112,118,123,124,125,128,130,149,162,167],approxim:[15,54,99,101,102,110,111,112,118,124,125,128,130,154,156,163],april:15,ar:[0,1,2,3,4,5,7,8,11,12,13,14,15,16,17,18,19,20,21,23,26,29,31,32,33,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,79,80,82,85,86,87,89,91,92,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,139,140,141,142,143,149,150,152,153,154,155,156,157,158,159,160,162,163,164,166,167],arang:[13,14,21,53,59,68,159],arbitrari:[2,16,20,53,113,134,159,161,163,166],arbitrarili:[53,153],architectur:[2,7,14,15,18,19,99,110,118,125,130,167],archiv:[53,73],area:[14,53,73,161],aren:142,arg1:113,arg2:113,arg3:113,arg:[14,25,34,53,61,62,63,64,65,66,67,68,69,70,71,72,74,85,86,87,89,98,106,113,120,122,134,136,150,156],argmax:[53,113],argmin:53,argpartit:53,argrelextrema:13,args_cost:54,args_lin:54,args_path:54,args_series1:54,args_series2:54,argsort:53,argument:[2,3,4,5,12,14,19,20,21,39,53,54,61,62,63,64,65,66,67,68,69,70,71,72,78,82,85,86,87,89,92,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,139,150,151,154,156,159,162,163,167],ari:101,arima:[0,4,15,95,97,119,154,158,159,161,163],arima_smap:15,arima_smapes_m3:15,arima_tim:15,arima_time_m3:15,aris:[85,87,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],arithmet:[53,159],arma:[98,123],around:[0,3,12,15,18,21,27,31,32,47,49,53,85,96,97,99,102,104,110,111,112,113,114,115,117,118,123,124,125,128,130,131,134,142,149,154,158,159,162,164,166],arr:53,arr_t:53,arrai:[3,21,39,47,49,53,54,55,59,61,62,63,64,65,66,67,68,69,70,71,72,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,141,142,149,153,154,155,159,166,167],array_valu:[61,62,63,64,65,66,67,68,69,70,71,72],art:[8,21,130,162],articl:[2,18,122,163],arvix:[125,130],arxiv:[8,9,10,15,19,73,85,102,111,112,124,125,128,130,138,149,156],as_paramet:53,as_strid:[53,142],ashaschedul:165,ashish:130,ashx:73,asic:164,asid:[0,18,20,158,159],ask:[0,15,18,158,160],aspect:113,assert:16,assess:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],assign:[53,85,86,87,89,113,150,156],assimakopoulo:159,associ:[2,61,62,63,64,65,66,67,68,69,70,71,72,85,86,87,89,113,126,150,156],assum:[18,21,32,39,47,48,49,61,64,65,69,74,88,105,113,134,142,155,161,164,167],assumpt:[12,31,32,39,47,48,49,78,154,163],astronom:73,astyp:[6,7,8,9,10,14,15,18,53,134,159,164,165,167],asymmetr:102,asynchron:[85,86,87,89,150,156,165],asyncio:136,athanasopoulo:3,atmospher:[99,100,102,108,109,110,111,112,115,117,118,124,125,128,130,132],attach:[113,134],attempt:[4,12,18,53,78,111,128,161],attend:[14,125],attent:[7,14,18,77,79,125,128,130,167],attentd:14,attn:79,attribut:[2,4,5,6,9,10,14,20,21,37,38,39,40,41,42,43,44,45,46,47,48,49,53,57,58,61,62,63,64,65,66,67,68,69,70,71,72,74,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,149,150,155,156,159,161,166],attributedict:113,attributeerror:[53,85,86,87,89,113,150,156],auc:[29,37],auc_pr:[31,32,38,39,40,41,42,43,44,45,46,47,48,49,50],auc_roc:[31,32,38,39,40,41,42,43,44,45,46,47,48,49,50],aug:73,augment:[73,113,154],august:73,ausbeer:73,ausbeerdataset:[19,73],australia:73,australian:[1,19,73],australiantourismdataset:[17,73],author:[0,15,85,87,158],auto:[2,4,6,9,10,14,15,19,20,21,68,82,97,98,99,100,102,103,108,109,110,111,112,113,115,116,117,118,119,120,122,124,125,128,130,132,142,151,154,159,161,165,167],auto_arima:97,auto_select_gpu:[18,99,102,110,111,112,118,124,125,128,130,164],autoarima:[0,4,95,119,158,159,161],autoarima_arg:[97,119],autoarima_kwarg:[97,119],autoc:120,autoces_arg:120,autoces_kwarg:120,autoet:121,autoets_arg:121,autoets_kwarg:121,autograd:[85,86,87,89,113,150,156],autolag:154,autom:167,automat:[2,4,6,16,58,61,62,63,64,65,66,67,68,69,70,71,72,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,154,159,163,164,165],automatic_optim:113,automaticargsmodel:113,autonom:58,autonotebook:21,autoregress:[9,96,131,155],autoregressive_integrated_moving_averag:96,autoregressive_timeseri:155,autoreload:[3,4,5,7,9,11,12,13,14,16,19,20,21],autotheta:122,autotheta_arg:122,autotheta_kwarg:122,avail:[1,2,3,8,14,15,17,18,20,53,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,80,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,152,153,155,156,159,163,164,165,167],averag:[3,11,13,14,15,17,20,21,53,69,82,85,86,87,89,90,96,98,102,113,116,131,150,154,156,159,161,167],average_error:159,avgpool1d:111,avoid:[2,5,7,14,19,53,72,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,150,156,159,164,165,167],awai:142,awar:[18,113,134,149,152,165],awesom:162,ax:[2,6,9,10,13,14,15,19,20,21,53,56,79,99,102,110,111,112,118,124,125,128,130,134,138,140,141,142,154,163,166,167],axi:[2,9,10,13,14,15,17,51,53,54,55,61,62,63,64,65,66,67,68,69,70,71,72,79,87,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,139,142,152,154,155,159,161,166,167],axis1:53,axis2:53,ay:134,azz:121,b:[16,53,55,57,61,65,69,71,134,149,161,166],b_1:85,b_2:85,babai:101,back:[2,3,20,53,54,61,62,63,64,65,66,67,68,69,70,71,72,80,82,99,102,110,111,112,113,118,124,125,128,130,134,159,166,167],backbon:[99,118],backfil:[72,134],background:[14,77,78,79,80],background_future_covari:[78,79],background_num_sampl:78,background_past_covari:[78,79],background_seri:[78,79],backpropag:19,backtest:[0,6,7,9,10,20,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,158],backtest_en:[6,9,10],backtest_futcov:2,backtest_hist_fct:20,backtest_model:20,backtest_pastcov:2,backtest_seri:[5,7,14],backtest_series_ic:14,backtest_sp:6,backward:[53,67,85,86,87,89,100,113,117,134,136,150,156,167],backward_pr:[85,86,87,89,113,150,156],bad:[4,113,162],bader:[0,158],bai:73,balanc:18,band:13,bangladesh:114,bar:[2,3,6,8,9,10,13,16,19,78,82,113,136],bar_format:136,bare:159,barebon:21,bartlett:154,bartlett_confint:154,base:[0,2,3,5,13,15,18,19,20,25,26,27,28,30,31,32,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,53,54,55,56,58,59,60,62,63,66,67,68,69,70,71,72,73,74,76,77,78,79,85,86,87,89,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,133,134,136,137,139,140,141,144,149,150,153,154,156,157,158,159,161,163,164,165,166,167],base_component_nam:[57,58],base_data_transform:[61,64,65,66,68,69,72],basedatatransform:[59,61,62,63,64,65,66,67,68,69,70,71,72],basedetector:47,baseexcept:74,baselin:[0,16,18,95,158,159,161],basesianridg:21,basetyp:53,basi:[110,134,155],basic:[3,21,29,114,159,165,167],bat:[0,95,158,159,161,163],batch:[2,19,89,99,102,110,111,112,113,118,124,125,128,130,136,149,163],batch_idx:[113,136],batch_siz:[2,5,7,8,9,10,14,15,18,19,99,102,110,111,112,113,118,124,125,128,130,149,164,165],batchnorm:[85,86,87,89,113,150,156],bayes_ridge_model:159,bayesian:[18,21,99,102,110,111,112,118,124,125,128,130,149,156,159,163],bayesianridg:[21,159],bbox_to_anchor:15,bd:114,bear:12,beat:[0,2,73,95,111,138,158,162],becaus:[2,4,12,14,15,18,21,53,118,119,121,130,131,142,143,152,153,154,159,161,164,167],becom:[2,13,18,53,134],bee:2,been:[1,2,15,17,19,21,31,32,39,47,48,49,57,58,62,63,64,67,69,70,71,78,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,159,167],beer:[19,73],befor:[0,2,3,4,8,12,14,15,16,17,18,19,20,21,32,39,47,48,49,53,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,142,150,155,156,157,158,159,162,167],beforehand:166,began:16,begin:[2,9,10,13,20,53,72,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,167],behav:[37,39,47,49,53],behavior:[4,9,11,21,53,85,86,87,89,91,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,150,156,167],behaviour:[13,53,113],behind:[53,117,149,159,161,163,166],being:[0,11,15,19,20,31,32,39,47,49,53,57,61,62,63,64,65,66,67,68,69,70,71,72,78,80,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,142,150,156,158,159,163],beitner:126,belief:[149,159],believ:15,belong:[50,113,134,140,141],below:[0,2,4,15,16,17,18,20,21,35,36,53,54,57,58,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,150,156,158,159,161,163,165,167],benchmark:[19,98],benefici:163,benefit:[20,58,61,62,63,64,65,66,68,69,70,71,72,113,159,164],benheddi:[0,158],bernoulli:149,bernoulli_distribut:149,bernoullilikelihood:149,besid:18,best:[2,5,6,7,8,9,10,13,15,17,19,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,153,159,161,162,165,167],best_config:165,best_loss:[99,102,110,111,112,118,124,125,128,130],best_map:159,best_model:[5,7,18,167],best_model_sp:7,best_pr:18,best_preds_test:18,best_theta:159,best_theta_model:159,best_trial:[18,165],best_valu:[18,165],beta:149,beta_distribut:149,beta_nl:[9,10,149],betalikelihood:[149,159],better:[2,3,4,11,13,15,16,18,20,21,102,111,123,125,128,130,134,159,167],between:[2,3,13,15,18,21,29,33,35,37,38,39,40,41,42,43,44,45,46,47,48,49,53,54,55,58,61,64,65,69,70,71,73,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,142,149,150,152,155,156,157,159,163,165,167],bewar:53,beyond:[33,35,36,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,142,164],bfill:[72,134],bfloat16:[85,86,87,89,113,150,156],bgc:73,bia:[20,85,86,87,89,113,150,154,156],biao:87,bias1:85,bias2:85,bias:159,bias_gat:85,bibtex:[0,158],bic:154,big:[15,53,100,108,109,115,117,132,140,141,143,167],bigger:[1,6],bigger_s:13,bilinear:[86,125,130],bin:[15,16,154,159],binari:[0,23,24,25,26,27,28,29,33,34,35,36,50,53,114,134,155,158,159],binary_anom:[0,158],binary_pred_anomali:50,binaryio:[96,97,98,100,101,103,104,105,107,108,109,114,115,116,117,119,120,121,122,123,127,131,132],binomi:149,bit:[21,53,159],black:12,blindli:15,blob:[108,114,126],block:[2,5,53,93,95,110,111,118,128,142],block_denom_grad:150,block_rnn_model:[5,99],blockrnn:[2,99],blockrnn_test:2,blockrnnmodel:[0,2,5,9,95,99,118,158,161],blog:[0,158],blood:166,blue:[4,11,12,15,17,21,159],boilerpl:19,book:17,bool:[21,31,32,38,39,40,41,42,43,44,45,46,47,48,49,53,54,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,79,80,82,85,86,87,89,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,139,140,141,142,150,152,153,154,155,156],boost:108,border:94,borrow:53,both:[0,3,5,11,14,15,16,17,18,19,20,21,39,47,49,53,55,57,58,61,69,71,72,73,80,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,134,138,140,141,142,150,154,156,158,159,161,163,164,165,167],bottl:73,bottleneck:[61,62,63,64,65,66,68,69,70,71,72,164],bottom:[2,17,69,134],bottom_level_compon:134,bottom_level_seri:134,bottomupreconcili:[17,69],bound:[35,36,50,85,86,87,89,92,99,100,102,108,109,110,111,112,113,115,117,118,124,125,128,130,132,134,139,140,141,142,150,156,167],boundari:[97,139,154],box:[15,18,20,21,60,113,123,159],box_cox_bound:123,boxcox:[0,58,62,158],boxcox_normmax:62,boylan:101,br:114,brazil:114,breakdown:[0,158],brief:[4,20],bring:[0,54,158],british:73,broadli:[161,167],broken:73,bt:15,bu:[17,73],buf:[85,86,87,89,113,150,156],buffer:[53,85,86,87,89,113,150,156],buffer_callback:163,bug:[0,53,158],build:[0,5,6,14,17,21,58,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,141,150,156,158,163,165],build_fit_tcn_model:18,built:[2,18,53,99,102,110,111,112,113,118,124,125,128,130,134,159,163],builtin:[53,72,134],bulk:18,bunch:[4,15],busi:[17,73],bx:134,bypass:[53,128],byteord:53,bytesio:53,byteswap:53,c:[0,13,16,17,21,53,55,57,71,73,85,87,96,111,131,134,154,158,159,161],c_contigu:53,c_doubl:53,c_int:53,c_intp:53,c_long:53,c_long_array_2:53,c_longlong:53,c_name:21,c_short:53,c_uint32:53,c_uint64:53,c_uint:53,c_ulong:53,c_val:21,c_void_p:53,ca:[53,73],cach:[74,113,136],calcul:[15,53,73,98,113,134,152,154,155],calendar:[18,21,123,159,163],calibr:37,california:73,call:[2,3,13,15,17,18,20,21,29,31,32,33,39,47,48,49,53,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,77,80,82,85,86,87,89,93,98,99,102,103,104,106,107,110,111,112,113,114,116,118,119,121,124,125,127,128,130,136,142,150,153,156,159,161,162,163,166,167],call_super_init:[85,86,87,89,113,150,156],callabl:[54,57,58,66,72,74,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,150,156],callableindexencod:58,callback:[0,2,6,8,9,10,16,18,19,99,102,110,111,112,113,118,124,125,128,130,136,158,165],callback_metr:167,caller:[85,86,87,89,113,150,156],camila:[0,158],can:[0,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,20,21,23,24,29,33,37,39,47,49,50,53,54,55,57,58,61,62,63,64,65,66,67,68,69,70,71,72,73,74,77,78,79,82,85,86,87,89,92,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,139,140,141,142,143,149,150,152,153,154,155,156,157,158,159,161,162,163,164,165,166,167],canada:73,candid:[11,20,159],candidates_model:20,cannot:[20,21,37,53,63,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,142,152,159,162],canon:127,cap:114,capab:13,capabl:[0,158,161,163,164],capac:[114,163],capit:164,captur:[2,14,15,18,20,21,37,78,100,106,159,161,166],care:[3,18,20,61,62,63,64,65,66,67,68,69,70,71,72,85,86,87,113,150,156,163,167],carlo:[21,85,99,102,110,111,112,118,124,125,128,130,156,159,166],carrai:53,carri:[18,57,58,77,93,107,114],carrier:15,carrier_passeng:15,cast:[18,53,85,86,87,89,113,134,150,156,159,167],cat:[16,71],catageor:79,catboost:[21,95],catboost_model:[21,100],catboostmodel:[0,21,95,100,158,161],catboostregressor:[21,100],categor:[71,77,79,108,117,125,161],categori:[15,16,71,125,161],categorical_embedding_s:[14,16,125],categorical_future_covari:[108,117],categorical_past_covari:[108,117],categorical_static_covari:[108,117],cauchi:[37,149],cauchy_distribut:149,cauchylikelihood:149,cauchynllscor:40,caus:[20,53,134,149,154,162],causal:[89,154],caution:164,cavari:139,cdc:73,cdot:82,cdoubl:[85,86,87,89,150,156],ce:120,ceg:53,ceil:13,cell:[6,15,18,53,55,159],center:[14,72,73,87,94,134,149,159],centr:159,central:134,central_quantil:134,centroid:39,certain:[17,18,53,55,85,86,87,89,113,150,156,159,163],certainli:18,cet:[21,58,73,96,97,99,100,101,102,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132],cgdakqo1c0p:[99,102,110,111,112,113,124,125,128,130],ch:73,chain:59,challeng:5,challu:111,chanc:[113,136,138,167],chang:[0,7,11,12,15,16,18,53,61,62,63,64,65,66,67,68,69,70,71,72,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,150,153,156,158,164,167],changelog:162,channels_last:[85,86,87,89,150,156],character:2,characterist:[16,161],charg:[85,87,126],check:[0,5,14,17,20,21,39,47,48,49,50,53,58,80,85,86,87,89,99,102,110,111,112,113,118,124,125,128,130,134,136,142,150,152,153,154,156,158,159,161,167],check_component_nam:80,check_if_fit_cal:[39,47,48,49],check_input:142,check_season:[3,5,7,9,14,154,159],checkout:[97,118],checkpoint:[2,6,8,19,99,102,110,111,112,113,118,124,125,128,130,136,163],checkpoint_hyper_params_kei:113,checkpoint_hyper_params_nam:113,checkpoint_hyper_params_typ:113,checkpoint_path:113,checksum:[73,74],chen:[102,112,150],chiba:13,child:[17,61,62,63,64,65,66,68,69,70,71,72,85,86,87,89,113,150,156],children:[17,85,86,87,89,113,150,156],china:[73,114],choic:[5,15,18,21,53,154,161,165],choos:[15,53,113,167],chose:2,chosen:[4,6,70,78,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,154],christma:18,chronolog:78,chunk:[2,14,57,58,79,99,100,102,108,109,110,111,112,113,115,117,124,125,128,130,132,141,160,161,165],circuit:164,circumst:53,cisz:[0,158],citi:[17,73,161],city_label:17,ckpt:[99,102,110,111,112,113,118,124,125,128,130],claim:[85,87],classic:[0,15,20,101,158,162],classif:[0,23,33,158],classmethod:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134],clean:[0,158],clear:[13,53,85,86,87,89,113,131,136,150,156,166],clearli:4,client:[2,18,73,164],clip:[19,53,113],clip_gradi:113,clireport:165,clongdoubl:53,close:[2,3,10,11,12,13,15,21,53,54,72,113,134],closer:[4,18,130,159],closest:[39,53,149,157,167],closur:113,cloud:164,cluster:[37,39],cn:[114,131],co2:73,co:[0,11,58,134,155,158,159],code:[15,17,19,21,53,73,114,134,155,162,163,164,167],coef:155,coef_:[21,159],coef_nam:21,coef_valu:21,coeffici:[21,82,110,150,153,154,155,159],coefficient_of_vari:82,coeffs_dim:15,coincidentali:2,col:[14,15],col_nam:134,col_names_new:134,colab:[15,162,164],collaps:53,collat:71,collect:[0,73,98,113,136,158,159],collis:[99,102,110,111,112,118,124,125,128,130],color:[2,11,12,13,15,17],colormap:[21,54],cols_cat:71,cols_num:71,column:[0,14,15,16,17,21,53,55,58,61,62,63,64,65,66,67,68,69,70,71,72,73,114,125,134,142,151,155,158,163,166],column_index:55,column_length:55,column_nam:[16,155],column_rang:55,com:[15,62,63,69,73,108,114,120,121,122,123,126,127,132,142,150,164],combin:[0,12,18,20,21,23,24,37,57,58,59,73,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,136,158,159,163,165,167],combined_forecast:159,come:[2,3,17,18,21,24,37,53,73,99,100,102,108,110,111,112,118,124,125,128,130,132,138,140,141,165],command:[15,18,167],commensur:37,comment:14,common:[0,3,11,19,50,82,99,102,110,111,112,118,124,125,128,130,134,142,154,157,158,159],common_model_arg:19,commonli:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],commun:[113,162],comp0:142,comp0_:142,comp0_s0:134,comp0_s1:134,comp0_target_lag0:142,comp0_target_lag3:142,comp1:[16,71,142],comp1_:142,comp1_s0:134,comp1_s1:134,comp1_series_:16,comp1_target_lag0:142,comp1_target_lag3:142,comp2:[16,71],comp3:[16,71],comp:[21,72,100,108,109,115,117,132,134,142],comp_0:134,comp_1:134,comp_2:134,compani:[15,18],compar:[0,2,16,17,19,20,21,23,29,31,32,36,37,46,49,53,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,149,158,159,167],comparison:[5,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,150,156,165],compat:[0,2,15,20,53,85,86,87,89,110,111,113,123,124,125,128,134,150,154,156,158,159,167],competit:[8,15,20,127,159],compil:[53,85,86,87,89,113,119,121,150,156],complain:[2,99,102,110,111,112,118,124,125,128,130],complet:[2,4,19,104,160,165,166,167],complex128:[53,85,86,87,89,150,156],complex:[6,7,13,15,18,21,53,85,86,87,89,120,123,150,156],complexseason:123,complexwarn:53,complic:53,compon:[0,2,3,5,8,9,11,14,15,16,18,24,25,26,27,28,35,36,39,46,47,49,50,54,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,80,82,85,86,87,88,89,96,98,100,102,104,108,109,112,114,115,117,118,123,125,128,132,134,142,149,153,154,155,158,159,163,166],component_:134,component_i_sample_1:[61,62,63,64,65,66,67,68,69,70,71,72],component_i_sample_2:[61,62,63,64,65,66,67,68,69,70,71,72],component_i_sample_n:[61,62,63,64,65,66,67,68,69,70,71,72],component_mask:[61,62,63,64,65,66,67,68,69,70,71,72],component_wis:[31,32,37,39,46,47,49],componentbasedexplainabilityresult:77,componentn:134,components_max:134,components_mean:134,components_median:134,components_min:134,components_sum:134,components_to_show:17,compos:[13,21,31,32,38,39,40,41,42,43,44,45,46,47,48,49,50,69,85,86,87,89,113,114,134,150,156,159],compress:[53,55],compris:142,compromis:15,comput:[0,2,3,5,7,13,14,15,17,18,19,21,31,32,35,37,38,39,40,41,42,43,44,45,46,47,48,49,58,62,63,69,70,72,73,78,79,82,85,86,87,89,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,142,149,150,151,154,155,156,158,163,167],computation:[13,21,163],compute_loss:149,comsumpt:2,con:18,concaten:[2,6,8,9,10,14,17,39,47,48,49,61,62,63,64,65,66,67,68,69,70,71,72,134,142,159,161,166,167],concentr:149,concept:18,concern:[73,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],cond:82,conda:[0,158,159],condit:[16,19,53,85,87,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,140,141],condition_nam:114,confer:[15,87],confid:[0,12,18,20,134,154,158,159,166],confidence_low_quantil:134,config:165,configur:[1,8,59,72,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,163,167],configure_callback:113,configure_gradient_clip:113,configure_model:113,configure_optim:113,configure_sharded_model:113,configure_torch_metr:113,confirm:159,confus:[85,86,87,89,113,150,156],conj:53,conjug:53,connect:[2,5,85,87,99,110,111,125,128,130],consecut:[2,53,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,139,140,142,167],consequ:[5,64,69],consid:[8,13,14,15,16,18,19,20,34,35,36,37,39,47,49,50,54,55,58,61,62,63,64,65,66,67,68,69,70,71,72,78,82,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,140,141,142,150,151,154,156,157,159],consider:[9,20,21,117],considers_static_covari:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],consist:[2,3,4,8,14,18,85,86,87,89,110,112,113,114,134,138,150,153,156,166,167],consol:21,const_init:[102,112],constant:[14,15,16,96,99,102,110,111,112,113,114,118,124,125,128,130,131,153,154,155,161],constant_timeseri:[9,10,155],constantli:[0,158,162],constitu:[98,103],constitut:[15,21,134],constrain:[13,54,159],constraint:[2,54,118,140,141],constrast:2,construct:[13,17,53,55,62,70,78,85,86,87,89,99,102,110,111,112,113,118,124,125,128,130,134,139,142,150,156,160],constructor:[3,4,12,64,69,99,102,110,111,112,118,124,125,128,130,136],consult:[159,162],consum:[0,2,15,17,18,21,53,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,142,158,159,161,163,166],consumpt:[21,73,167],cont:16,contact:162,contain:[0,1,2,3,4,11,13,14,15,16,17,18,20,31,32,33,38,40,41,42,43,44,45,46,48,50,53,61,62,63,64,65,66,67,68,69,70,71,72,73,74,77,78,79,82,85,86,87,89,91,92,93,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,134,136,138,139,140,141,142,143,149,150,153,154,155,156,157,158,159,161,163,164,165,166,167],contamin:[72,134],content:[53,113,160,164],context:[2,8,19,85,86,87,89,113,123,150,156,161,164,167],contigu:[15,53,55,134,142,151],continu:[2,9,10,15,16,19,20,73,125,149],continuous_bernoulli_distribut:149,continuousbernoullilikelihood:149,contract:[85,87],contrast:[2,154,159],contribut:162,contributor:[0,158,162],control:[2,11,13,53,55,58,73,93,96,97,98,99,100,101,102,104,105,107,108,109,110,111,112,114,115,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,149,159,167],conv2d:[85,86,87,89,113,150,156],conv4:[85,86,87,89,113,150,156],conv5:[85,86,87,89,113,150,156],conv:[85,86,87,89,113,150,156],conveni:[3,15,21,23,37,53,77,123,159,165],convent:[16,58,77,78,100,108,109,115,117,132,134,142,166],converg:[11,17,167],convergencewarn:17,convers:[53,58,61,62,63,64,65,66,67,68,69,70,71,72,73,142],convert:[9,14,15,21,53,58,67,71,73,85,86,87,89,113,134,150,154,155,156,162],converted_seri:14,convincingli:162,convolut:[0,2,18,95,158,159],cookbook:12,coordin:[3,59,61,62,63,64,65,66,68,69,134,166],copi:[20,21,53,57,59,61,62,63,64,65,66,68,69,70,71,72,85,86,87,89,93,107,113,126,134,150,156,164],copyright:[85,87,126],copyto:53,core:[3,15,18,21,23,37,53,57,58,61,62,63,64,65,66,67,68,69,70,71,72,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,159,164,167],correct:[53,58,64,69,99,102,110,111,112,113,118,124,125,128,130,154],correctli:[2,9,15,64,69,85,86,87,89,99,102,110,111,112,113,118,124,125,128,130,150,153,156],correl:[21,82,154,159,166],correspond:[2,3,15,35,36,37,39,47,49,53,54,55,57,58,61,62,63,64,65,66,67,68,69,70,71,72,77,78,79,80,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,149,150,154,155,156,157,159,161,166,167],corrupt:[12,113],cosin:[58,96,97,107,114,119,121,155],cost:[13,15,53,54,111,128,142,167],cost_cmap:54,cost_matrix:[53,54],costmatrix:[53,54],cough:73,could:[3,4,13,15,17,18,21,37,53,59,61,62,63,64,65,66,67,68,69,70,71,142,159,161],count:[13,15,53,101,113,149,154,159],counter:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,162],countri:[73,114,134,155,161],country_cod:[134,155],country_holidai:114,coupl:[18,21,100,159],cours:[2,18,20,130,159,165,167],cov0_:142,cov1_:142,cov:16,cov_heat_train:14,cov_heat_v:14,cov_train:[5,14],cov_val:[5,14],covari:[0,5,6,9,10,11,15,18,32,57,58,60,62,67,69,70,77,78,79,80,92,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,134,138,139,140,141,142,143,155,158,160,162,165],covariate_index_gener:57,covariate_typ:[139,141],covariates_heat:14,covariates_heat_transform:14,covariates_temp:[57,58],covariates_transform:14,covariatesindexgener:[57,58],covariatesmodel:167,covariatetyp:[139,141,144],covarit:16,cover:[2,20,53,55,57,167],coverag:6,cow:[2,3,73,159],cox:[60,123],cp37:164,cp37m:164,cpu:[2,3,6,8,9,10,15,18,85,86,87,89,99,102,110,111,112,113,118,123,124,125,128,130,150,156,160,165],cran:73,crash:53,cream:[73,167],creat:[0,5,6,7,9,12,13,15,16,18,19,20,21,39,47,53,58,59,61,62,63,64,65,66,67,68,69,70,71,72,79,82,85,86,87,89,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,150,155,156,158,160,161,163,164,165,167],create_lagged_component_nam:142,create_lagged_data:142,create_lagged_prediction_data:142,create_lagged_training_data:142,create_normal_sampl:88,create_studi:[18,165],creation:[3,14,16,21,53,57,58,79,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,140,141,159,161,167],crest:12,crit:154,criterion:[13,15,115,120,154,159,164],critic:[2,3,4,5,6,7,8,9,10,14,16,19,20,21,154],crop:105,croston:[0,95,158,161],crwindow:55,csv:[0,3,4,13,15,113,134,158,159],ct:[96,131,154],ctt:154,ctype:53,ctypeslib:53,cu111:164,cu:[57,58],cuda:[18,85,86,87,89,113,150,156,165,167],cuda_visible_devic:[18,164],cumprod:53,cumsum:[53,134],cumul:[53,134],cumulative_length:139,curios:20,curl:15,current:[0,5,7,14,15,17,18,53,55,58,72,78,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,142,150,156,158,159,163,164,165,167],current_epoch:113,curv:[12,16],curve_typ:16,custom:[0,14,19,57,58,66,85,86,87,89,96,97,99,100,101,102,107,108,109,110,111,112,113,114,115,117,118,119,121,124,125,128,130,131,132,136,149,150,156,158,159],custom_decod:130,custom_encod:130,custombatch:113,customblockrnnmodul:99,customfeedforwarddecoderlay:89,customfeedforwardencoderlay:89,customm:14,customregressionmodel:21,customrnnmodul:118,cut:[134,157],cutoff:14,cyc:[57,58],cycl:[104,114],cyclic:[14,18,21,57,58,79,96,97,99,100,101,102,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132,134,155,159],cyclic_past:58,cyclicencod:58,cyclictemporalencod:58,d1:134,d1r1:134,d1r2:134,d2:134,d2r1:134,d2r2:134,d:[2,15,16,39,47,49,53,55,57,61,62,63,64,65,66,67,68,69,70,71,72,95,96,110,111,113,131,134,155,159,161,166],d_:85,d_ff:[85,86],d_model:[7,85,86,130],da:128,dai:[2,3,4,6,8,9,10,15,18,21,58,67,105,114,134,155,159,161,165,167],daili:[2,3,4,14,73,104,114,134,155,161,167],dailyaverag:3,dailyavg_forecast:3,dailyavg_train:3,dailyavg_v:3,damag:[85,87],damp:[104,123,159],dangl:113,dark:13,darkviolet:2,dart:[0,1,2,3,4,5,6,7,8,9,10,12,13,14,16,17,18,19,20,23,25,26,27,28,29,31,32,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,77,78,79,80,82,85,86,87,88,89,91,92,93,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,136,138,139,140,141,142,143,144,149,150,151,152,153,154,155,156,157,158,160,162,163,164,166,167],darts_enc_:[57,58],darts_enc_fc_cyc_month_co:14,darts_enc_fc_cyc_month_sin:14,darts_log:[99,102,110,111,112,118,124,125,128,130,167],dash:14,data:[0,5,6,7,8,9,10,11,13,20,22,32,35,37,39,47,49,53,54,57,58,59,62,63,66,68,69,70,71,72,73,78,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,140,141,142,143,144,152,153,154,158,160,161,162,163,164,165],data_a:53,data_arrai:[134,166],data_dt:15,data_sampl:67,data_split:113,dataarrai:[3,59,61,62,63,64,65,66,68,69,134,159,166],datafram:[0,15,17,19,67,68,71,72,77,114,134,151,158,159,162,166,167],dataload:[99,102,110,111,112,113,118,124,125,128,130,136,139,164,167],dataloader_idx:[113,136],datalod:164,datapoint:[3,152],dataprocess:[2,3,5,6,7,8,9,10,13,14,15,16,17,18,19,20,53,54,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,82,125,159,163,164,165,167],dataset:[0,1,2,3,4,5,7,8,9,10,11,13,14,18,19,20,22,54,57,58,59,62,63,67,70,74,78,79,96,97,98,99,100,101,102,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,135,152,158,159,163,164,165],dataset_load:[73,74],datasetload:74,datasetloadercsv:[73,74],datasetloadermetadata:74,datasetloadingexcept:[73,74],datatimeindex:[58,134,155],datatransform:1,datatyp:[53,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,150,156],date:[13,15,16,67,73,99,102,110,111,112,118,124,125,128,130,134,155,162,167],date_rang:[5,13,15,16,134],dateoffset:[67,134,155],dateset:13,datetim:[14,15,57,58,134,155,159,166],datetime64:[3,61,62,63,64,65,67,69,134],datetime_attribut:[16,58,96,97,99,100,101,102,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132,159,165],datetime_attribute_timeseri:[2,5,6,9,10,14,20,58,96,97,107,114,119,121,155,159],datetimeattributeencod:58,datetimeindex:[57,58,67,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,155,157,159,166],day_dur:18,day_of_week:58,day_of_year:58,day_seri:[6,9,10],dayofweek:[18,21,58,96,97,99,100,101,102,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132,159],dayofyear:58,days_in:18,days_in_month:[3,14,134,159],days_out:18,dd_hh:163,dd_hh_mm_ss:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],dd_hh_mm_ss_torch_model_run_pid:[99,102,110,111,112,118,124,125,128,130],ddof:[53,134],ddp:[113,164],ddp_spawn:164,de:[12,73,127],deadlock:113,deal:[3,15,16,85,87,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132],dealloc:53,decai:11,decemb:73,decent:159,decid:[113,154],decim:53,decis:20,decod:[5,14,19,77,79,89,110,111,125,128,130],decoder_import:77,decoder_output_dim:128,decompos:[17,127,154],decomposit:[4,154],decor:[82,106,113,156],decreas:[16,17,19,20,99,102,110,111,112,118,124,125,128,130],dedic:[2,21,58,161,166,167],deduct:152,deep:[0,1,14,18,20,21,53,59,70,78,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,153,158,161,163,165,167],deepar:[0,9,158,159,161],deeper:2,deepspe:113,deeptcn:[0,124,158],def:[2,5,6,7,8,9,10,14,15,16,17,18,21,61,64,65,69,85,86,87,89,96,97,99,100,101,102,107,108,109,110,111,112,113,114,115,117,118,119,121,124,125,128,130,131,132,136,150,156,159,165,167],default_format:[134,154],default_lag:[21,108,109,115,117,132],defin:[2,14,15,18,20,21,39,47,49,53,57,58,61,62,63,64,65,66,68,69,70,71,72,73,78,85,86,87,89,91,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,149,150,153,154,156,159,163,165,166,167],definit:[15,78,79,125,134,142,151,161],degc:[100,102,108,109,112,115,117,118,125,128,132],degre:[85,86,87,89,105,110,113,134,150,154,156,159],delimit:[0,158],delta:134,demand:[18,73,101],demonstr:[3,4,13,17,18,20,21],denni:[0,158],denois:11,denomin:[150,154],denot:[2,82,117,134,142,161,167],dens:[19,53,95],densecostmatrix:53,densiti:154,depart:73,depend:[0,2,3,4,5,6,14,15,20,21,37,53,58,61,62,63,64,65,66,67,68,69,70,71,72,77,80,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,133,142,154,158,159,161,163,166,167],deprec:[17,53,85,86,87,89,113,150,156,163],depth:[21,53,115,159,160],deriv:[57,58,61,62,63,64,65,66,68,69,70,71,72,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,155],derive:58,descend:[85,86,87,89,113,150,156],describ:[10,29,53,57,58,73,77,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,141,159,163],descript:[19,53,73,79,164],descriptor:53,design:[8,13,61,62,63,64,65,66,68,69,70,71,72,85,86,87,89,113,125,130,150,156],desir:[4,13,21,53,85,86,87,89,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,150,154,155,156,159],despit:[13,53],destin:[85,86,87,89,113,150,156],detach:[85,86,87,89,113,150,156],detail:[0,2,8,17,20,37,53,61,62,63,64,65,66,67,68,69,70,71,72,82,85,86,87,89,99,102,108,110,111,112,113,114,118,124,125,128,130,142,150,156,158,159,160,161,167],detect:[0,18,22,24,29,31,32,33,34,35,36,37,39,47,48,49,99,102,105,110,111,112,118,124,125,128,130,158,165],detector:[0,23,24,34,50,158],deterior:20,determin:[5,14,15,16,19,32,53,54,55,69,82,99,102,110,111,112,113,118,124,125,126,128,130,153,154,159,163],determinist:[20,32,37,68,69,82,85,86,87,89,92,93,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,150,154,156,160,163],detrend:105,dev:154,devel:154,develop:[0,158,164,167],deviat:[13,31,32,53,134,149,155],devic:[85,86,87,89,99,102,110,111,112,113,118,124,125,128,130,150,156,164,167],df3:[6,9,10],df3_day_avg:[6,9,10],df:[0,8,15,16,17,134,158],df_day_avg:8,df_m3:15,df_m4:15,df_meta:15,dft:[4,105],diag:[53,69],diagon:[53,55],diagram:[85,86,87,89,113,150,156],dickei:154,dict:[15,17,19,21,31,32,54,58,67,69,71,72,77,85,86,87,89,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,142,150,153,154,156],dictionari:[16,17,19,21,31,32,53,58,61,62,63,64,65,66,68,69,70,71,72,78,85,86,87,88,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,142,150,154,156,159,164,166],did:[18,99,102,110,111,112,118,124,125,128,130,159],didn:[2,15],diff:[13,39,47,49,63,134,159],diff_fn:[37,39,47,48,49],differ:[0,2,3,4,9,11,15,16,17,18,21,29,31,32,37,39,46,47,48,49,50,53,54,59,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,140,141,142,149,150,155,156,158,159,161,163,164,165,166,167],differenc:[0,60,82,134,158,159],difference_scor:38,differencescor:38,differenti:[2,96,131],dilat:[18,124],dilation_bas:[6,10,18,20,124,165],dim:[53,87,113],dim_feedforward:[7,130],dim_x:[11,15,20,93,107,159,163],dimens:[0,2,3,6,13,17,20,31,32,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,59,61,62,63,64,65,66,67,68,69,70,71,72,78,85,87,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,149,155,158,159,161,163,166,167],dimension:[2,7,15,35,36,53,93,99,100,102,107,108,109,110,112,115,117,118,125,128,132,134,142,149,166],direct:[18,53,73,85,86,87,89,96,97,98,99,100,101,102,104,105,107,108,109,110,111,112,113,114,115,117,118,119,120,121,122,123,124,125,127,128,130,131,132,149,150,154,156,163,165],directli:[1,2,14,16,18,20,32,37,53,58,80,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,142,159,163,167],directori:[99,102,110,111,112,118,124,125,128,130,167],dirichlet:149,dirichlet_distribut:149,dirichletlikelihood:149,disabl:[2,3,4,5,6,7,8,9,10,14,16,19,20,85,86,87,89,99,102,110,111,112,113,118,124,125,128,130,136,150,152,156],disaggr:17,disambigu:134,discard:[4,73,99,102,110,111,112,118,124,125,128,130,134],disclaim:[20,130],discourag:53,discret:[18,149,159],discuss:[0,73,142,158],diseas:73,disk:[73,74,167],displai:[14,15,54,78,100,134,136,154],display_forecast:8,dispos:17,disregard:153,distanc:[13,39,49,53,54],distant:37,distinct:[16,53,134,159],distinguish:[2,161,163,166,167],distort:13,distribut:[0,11,12,21,40,41,42,43,44,45,49,82,85,87,88,93,99,102,110,111,112,113,123,124,125,126,128,130,134,149,154,155,158,163,164,166,167],dive:2,diverg:[149,159,162,163],divers:20,divid:[3,73,113],divis:[134,150],divisor:134,dl:[8,19],dlinear:[0,102,158],dlinearmodel:[0,95,102,158,161],dload:15,dnav:73,doc:[14,15,16,21,46,58,67,85,86,87,89,113,114,123,134,142,150,155,156,159,164],docstr:[67,85,86,87,89,113,150,156],document:[14,15,17,18,21,37,53,61,62,65,69,70,72,85,86,87,89,93,97,99,102,104,108,110,111,112,113,118,119,120,121,122,123,124,125,126,128,130,134,149,150,151,156,160,162,163,164,167],doe:[11,13,14,15,18,20,21,53,61,62,63,64,65,66,67,68,69,70,71,72,77,78,98,99,102,103,110,111,112,116,118,121,124,125,128,130,131,134,142,149,159,164,167],doesn:[2,9,53,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,142,159,164],doi:120,domain:[4,149,159],domest:1,don:[2,3,4,6,14,15,17,21,98,99,100,102,103,108,109,110,111,112,113,115,116,117,124,125,128,130,132,134,136,142,161,162,167],done:[2,3,4,12,15,17,18,19,53,62,70,96,97,99,100,101,102,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132,134,159,165],dot:[53,73,78],dotm:122,doubl:[2,13,73,85,86,87,89,113,150,154,156],down:[13,17,69,73,134,154],download:[15,18,73,74,113,164],download_data:113,downsampl:[67,111],downstream:80,dpi:15,dr:[114,160],dramat:164,drastic:[19,167],draw:[130,166],drawback:18,drawn:142,drift:[98,159],drift_forecast:159,drift_model:159,drop:[13,63,72,99,118,134,150,154,156,157],drop_aft:[13,134],drop_after_index:157,drop_befor:[8,134],drop_before_index:157,drop_column:134,drop_hierarchi:134,drop_prob:113,drop_static_covari:67,dropna:[15,63,72,134],dropout:[2,5,6,7,8,9,10,14,15,18,20,85,86,87,89,99,102,110,111,112,113,118,124,125,128,130,150,156,159,164,165],dst_type:[85,86,87,89,113,150,156],dstm:122,dt_attr:[20,159],dta:[57,58],dtw:[51,53,82],dtw_metric:[13,82],dtwalign:54,dtype:[9,17,53,67,85,86,87,89,99,113,118,134,150,155,156,159,167],dual:[118,123],dualcovari:143,dualcovariatesinferencedataset:139,dualcovariatessequentialdataset:140,dualcovariatesshifteddataset:141,dualcovariatestorchmodel:[99,102,110,111,112,118,124,125,128,129,130,143],dualcovariatestrainingdataset:[140,141,143],due:[2,4,15,18,21,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,149],dumon:[0,158],dump:[53,96,97,98,100,101,103,104,105,107,108,109,113,114,115,116,117,119,120,121,122,123,127,131,132,163],dump_patch:[85,86,87,89,113,150,156],duplic:[85,86,87,89,113,150,156],durat:[0,2,15,21,37,72,73,134,158],durbin:154,dure:[1,2,3,14,15,16,18,19,20,21,33,37,39,47,49,57,58,62,63,64,69,70,92,96,97,98,99,101,102,103,107,110,111,112,113,114,116,118,119,121,124,125,128,130,131,139,149,152,161,163,165,167],dynam:[11,18,51,82,93,113,122,163,167],e:[0,2,3,4,5,6,7,12,14,15,17,18,20,21,23,37,50,53,58,61,62,63,64,65,66,68,69,70,71,72,74,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,140,141,142,149,150,152,153,154,155,156,158,159,161,162,163,164,166,167],each:[0,2,3,7,9,10,13,14,15,16,17,18,19,20,21,24,25,26,27,28,29,31,32,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,79,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,139,140,141,142,149,150,152,153,154,155,156,157,158,159,161,164,165,166,167],eagerli:58,ealier:2,earli:[18,19,99,102,110,111,112,118,124,125,128,130,165],earlier:[2,3,19,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],earliest:142,early_stop:[19,99,102,110,111,112,113,118,124,125,128,130],early_stop_threshold:[99,102,110,111,112,118,124,125,128,130],early_stopp:[18,165],early_stopping_arg:19,earlystop:[18,19,99,102,110,111,112,113,118,124,125,128,130,165,167],earth:3,eas:54,easi:[2,15,17,18,20,58,159],easier:[13,15,53,159],easili:[0,2,3,20,21,61,62,63,64,65,66,67,68,69,70,71,72,142,158,159],ecg:73,edit:20,edu:73,effect:[5,9,13,14,19,46,54,62,63,70,79,85,86,87,89,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,149,150,153,156],effici:[4,55,61,62,63,64,65,66,68,69,70,71,72,152,167],eg:[114,164],egypt:114,eia:73,eight:73,either:[3,4,16,17,18,21,23,31,32,35,36,37,53,54,58,61,62,63,64,65,66,67,68,69,70,71,72,73,79,80,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,139,142,149,150,152,154,155,156,157,159,161,162,166,167],elaps:[15,136],elapsed_tim:15,elapsed_times_2:15,elapsed_times_3:15,elapsed_times_4:15,electr:[1,2,21,73],electricityconsumptionzurichdataset:[21,73],electricitydataset:[2,18,73],electricityloaddiagrams20112014:73,elem:55,element:[13,20,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,57,58,63,72,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,139,142,154,157,159,167],elementwis:[3,38,46],elementwise_affin:87,elif:113,elimin:[13,67],els:[14,18,57,82,113,134,136,155,157,165],elsewher:[12,163],email:[0,158],emb:[16,17],embed:[7,16,85,125,126,161],embedding_s:16,emit:[29,33,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,138,139,140,141],empir:[69,126,163],emploi:[18,61,62,63,64,65,66,67,68,69,70,71,72],empti:[53,71,79,106,123],en:[39,46,47,49,67,93,99,102,110,111,112,113,115,118,124,125,128,130,131,134,149,150],enabl:[13,54,61,62,63,64,65,66,67,68,69,70,71,72,82,99,102,108,110,111,112,113,118,124,125,128,130,131,134,136,152,155,167],enable_graph:113,enable_metadata_rout:153,enable_optim:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],enable_prediction_bar:136,enable_progress_bar:[15,165],enable_sanity_check_bar:136,enable_train_bar:136,enable_train_bar_onli:[2,6,8,9,10,136],enable_validation_bar:136,encapsul:[3,153],encod:[5,6,9,10,12,14,18,20,21,51,71,77,79,80,89,95,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,130,131,132,134,155,165],encode_futur:58,encode_infer:[57,58],encode_past:58,encode_train:[57,58],encode_train_infer:[57,58],encode_year:[96,97,99,100,101,102,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132],encoder_bas:[57,58],encoder_id:58,encoder_import:77,encoder_kw:58,encoder_map:58,encoding_n_compon:[57,58],end:[5,7,9,10,13,14,15,19,20,21,55,58,59,61,62,63,64,65,66,67,68,69,70,71,72,77,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,139,142,150,152,155,156,157,159,161,167],end_column0:55,end_dat:21,end_t:134,end_tim:[13,14,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142],end_valu:[3,9,10,64,69,155],endian:53,energi:[18,21,73,167],energydataset:[4,6,8,9,10,73,167],enforc:[72,80,85,86,87,89,99,100,102,106,108,109,110,111,112,113,115,117,118,124,125,128,130,132,134,142,150,156],engin:8,england:73,enhanc:134,enjoi:164,enlarg:53,enough:[2,15,53,99,100,102,108,109,110,111,112,113,115,117,118,124,125,128,130,132,138,140,141,161,163,167],ensembl:[0,24,95,98,103,115,158,161],ensemble_hist_fct:20,ensemble_model:[20,98,103,116,159],ensemble_probabilist:20,ensemble_sklearn_aggreg:27,ensemblemodel:[20,98,103,116,161],ensemblesklearnaggreg:27,ensur:[6,13,21,31,32,57,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,140,141,150,156,167],enter:113,entir:[2,14,15,21,39,47,49,53,55,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,159,161,167],entiti:166,entri:[0,6,53,85,86,87,89,110,111,113,134,150,155,156,158,159],enumer:[13,15,16,21,85,86,87,89,113,117,144,150,156,157,159],env:[17,85,86,87,89,150,156],environ:[0,15,113,158,159,161,164],ep:87,epistem:163,epoch:[2,9,15,19,99,102,110,111,112,113,118,124,125,128,130,136,159,163,164,167],epoch_mean:[113,136],epochs_train:[99,102,110,111,112,113,118,124,125,128,130],epsilon:87,equal:[16,31,32,39,47,49,50,53,55,57,58,61,63,64,65,69,78,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,153,155,159],equilibrium:11,equiv:53,equival:[0,53,63,85,86,87,89,113,127,149,150,156,158,161],error:[0,2,4,11,13,15,17,20,21,53,59,67,69,80,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,133,134,140,141,142,149,150,153,156,158,161,165],es:142,esp:15,especi:[4,14,18,19,78,142,159,163],essenti:[15,149],establish:[8,19],estim:[0,11,12,15,21,40,41,42,43,44,45,69,93,101,110,111,124,125,128,149,153,154,158,159,163,164],estimators_:21,et:[5,7,15,87,99,102,110,111,112,113,121,124,125,128,130,149,154,161],etc:[2,4,15,17,18,53,85,86,87,89,99,102,105,110,111,112,113,118,124,125,128,130,142,150,156,159,163,164,166,167],etdataset:73,ets_smap:15,ets_smapes_m3:15,ets_tim:15,ets_time_m3:15,etth1dataset:73,etth2dataset:[0,73,131,158],ettm1dataset:73,ettm2dataset:73,european:101,eval:[17,85,86,87,89,113,150,156],eval_accuraci:[25,26,27,28,29,31,32,33,34,35,36,39,47,48,49],eval_accuracy_from_binary_predict:50,eval_accuracy_from_predict:[37,38,39,40,41,42,43,44,45,46,47,48,49],eval_accuracy_from_scor:50,eval_backtest:14,eval_forecast:15,eval_global_model:15,eval_local_model:15,eval_model:[5,7,14,18,159],eval_set:153,evalu:[0,2,5,7,13,16,18,19,25,26,27,28,31,32,53,54,58,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,150,156,158,165,167],even:[2,12,14,15,20,21,33,53,59,102,127,134,142,149,159,161,164,166],evenli:73,event:[85,87,149],everi:[5,6,13,16,31,32,33,50,55,61,62,63,64,65,66,67,68,69,70,71,72,73,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,149,150,155,156,159,167],everyth:[0,3,15,134,157,158,167],evid:162,ewm:[72,134],ewm_mean_comp_1:134,ewz_stromabgabe_netzebenen_stadt_zuerich:73,exact:[13,21,54,61,62,63,64,65,66,67,68,69,70,71,72,142,152,163],exact_align:13,exactli:[12,13,14,53,73,85,86,87,89,113,134,138,150,156,159,163],examnpl:21,exampl:[6,9,10,11,15,19,20,37,53,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,77,78,79,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,142,149,150,154,156,160,163,164,165,166],example_imag:113,example_input:113,example_input_arrai:113,exce:155,except:[2,3,6,8,9,10,15,17,19,53,72,74,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,142,143,150,152,153,156,159,161,163],exchang:73,exchangeratedataset:73,exclud:[3,72,134,157,159],exclus:[116,134],execut:[15,18,54,85,86,87,89,113,136,150,156,159,164,167],exercis:159,exhaust:[2,119,120,121,122],exhibit:[2,8,53],exist:[2,3,53,85,86,87,89,99,102,110,111,112,113,118,124,125,128,130,134,142,150,153,155,156,157,162,164,165,166,167],exit:167,exlainability_result:14,exlained_fc:77,exogen:[96,142],exp:[4,11,105,159],expand:[8,72,85,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134],expand_dim:16,expanding_sum_3_comp_2:134,expans:110,expansion_coefficient_dim:[2,8,15,110],expect:[14,16,17,20,37,38,39,40,41,42,43,44,45,46,47,48,49,53,65,71,72,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,150,153,155,156,159,161,163,166],expens:[13,53,100,108,109,115,117,132,140,141],experi:[17,18,113,165,166],experiment:[0,12,158,164,166],expl_result:79,explain:[0,2,22,76,80,158],explain_result:[77,78,79],explainability_result:[14,77],explained_compon:77,explained_forecast:77,explan:[14,53,76,77,78,79,85,86,87,89,113,150,156,161,163],explicit:159,explicitli:[4,15,57,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],explod:19,exploit:[0,15,18,158,159,166],explor:[15,18],expon:124,exponenti:[0,4,5,11,15,18,37,73,95,99,102,105,110,111,112,118,120,124,125,127,128,130,134,149,157,158,159,163],exponential_distribut:149,exponential_smooth:104,exponentiallikelihood:[149,159],exponentiallr:[19,167],exponentialnllscor:41,exponentialsmooth:[0,3,4,5,7,9,15,20,95,104,121,158,159,161,163],export_param:113,expos:[53,163,166],express:[9,55,85,87,138,164],expsinesquar:12,extend:[13,55,77,98,99,100,102,108,109,110,111,112,113,115,117,118,124,125,128,130,132,134,155,161],extens:[0,21,96,97,113,117,158],extent:[130,159],extern:[0,2,16,21,134,142,158,161,163],extra:[18,72,85,86,87,89,99,102,110,111,112,113,118,124,125,128,130,134,150,156,159,161],extra_repr:[85,86,87,89,113,150,156],extract:[2,3,13,14,15,57,58,61,62,63,64,65,66,67,68,69,70,71,72,79,80,106,134,142,149,154,159,161,167],extract_subseri:151,extract_trend_and_season:154,extract_year:159,extreme_lag:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],ey:53,f1:[25,26,27,28,33,34,35,36,50],f:[2,3,14,16,17,18,20,21,53,66,73,106,164,165],f_contigu:53,f_test:154,fa:53,fabric:[99,113,118],fac:53,facebook:95,facilit:67,fact:[2,3,15,18,159,166],factor:[111,114,167],factori:[17,134,159,166],fail:[4,15,17,20,53,73,74,82],failur:[18,149],fairli:[11,159],fall:[80,82,167],fallback:80,fallback_future_covari:80,fallback_horizon:80,fallback_past_covari:80,fallback_seri:80,fallback_target_compon:80,falmanforecast:20,fals:[2,5,6,7,8,9,10,13,14,15,18,19,20,21,31,32,37,39,46,47,49,53,54,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,80,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,133,134,136,141,142,150,152,153,154,155,156,159,164,165],fame:162,famili:[163,164],familiar:1,far:[20,99,100,102,108,109,110,111,112,113,115,117,118,124,125,128,130,132,159,161],farrai:53,fashion:[2,9,15,99,102,110,111,112,118,124,125,128,130,167],fast:[0,18,95,158,161],fastai:126,faster:[0,3,15,53,78,97,119,121,142,158,163],fat:149,favor:[2,20,85,86,87,89,113,150,156],favorit:[0,158],fc:[57,58,110,111],featur:[2,8,14,15,16,20,21,58,71,72,73,77,78,79,85,96,97,99,100,101,102,107,108,109,110,111,112,113,114,115,117,118,119,121,124,125,128,130,131,132,134,142,153,155,159,162,163,167],feature_rang:[3,70,71],feature_valu:[77,78],features_cols_nam:142,fed:[8,61,62,63,64,65,66,67,68,69,70,71,72,96,97,99,101,102,107,110,111,112,114,118,119,121,124,125,128,130,131],feder:73,feed:[2,3,4,85,89,99,102,110,111,112,118,124,125,128,130],feed_forward:[14,85,125],feedforward:[85,125,130],feel:[0,158,162],fetaur:14,fever:73,few:[15,17,18,19,21,73,155,159,161,165,166],ff:85,ffn:[85,89,125,130],fft:[0,1,95,105,158,161],fid:53,field:[53,73,85,86,87,89,113,150,156],fifth:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],fig:[2,19],fig_siz:[13,79,154],fig_width:13,figsiz:[2,5,6,7,8,9,10,11,12,13,14,15,17,18,19,20,159,163],figur:[0,2,5,6,7,8,9,10,11,12,13,14,15,17,18,20,31,32,38,39,40,41,42,43,44,45,46,47,48,49,50,54,79,134,154,158,159,161,163,166,167],file:[4,13,15,21,53,74,85,87,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,134,159,163],file_nam:[99,102,110,111,112,118,124,125,128,130],file_path:113,filenam:53,fileno:53,filepath_or_buff:134,filesystem:163,fill:[0,3,8,17,53,67,68,72,73,92,105,134,135,154,158,159],fill_:[85,86,87,89,113,150,156],fill_missing_d:134,fill_missing_valu:[4,6,9,10,13,105,151,159],fill_nan:154,filler:[3,8,60],fillna_valu:134,filter:[0,13,15,18,20,23,29,37,83,91,92,94,95,105,124,158,162],filter_fit_kwarg:31,filter_kwarg:31,filtered_i:11,filtered_seri:159,filtered_t:11,filtered_x:[11,12],filtered_x_missing_sampl:12,filtered_x_sampl:12,filtering_am:31,filtering_model:[91,92,93,94],filteringanomalymodel:[23,29,31],filteringmodel:[11,12,91,92,93,94],filterwarn:[2,3,4,5,6,7,8,9,10,14,15,16,19,20],find:[1,4,14,15,16,18,20,21,39,53,62,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,142,159,160,161,163],find_list_index:139,find_shared_tim:142,find_time_overlap_bound:142,finder:136,fine:[15,19,53,99,102,110,111,112,118,124,125,128,130,159],finetun:[85,86,87,89,113,150,156],finish:73,fire:[85,86,87,89,113,150,156],first:[0,2,3,4,5,7,8,13,14,15,16,17,18,21,32,38,39,40,41,42,43,44,45,46,47,48,49,53,57,59,61,62,63,64,65,66,68,69,70,71,72,78,79,80,82,85,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,142,152,154,155,157,158,159,163,164,165],first_order_diff:63,first_prediction_index:[99,118],first_seri:16,first_valu:134,fit:[0,2,3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21,25,27,29,31,32,33,34,35,37,39,47,48,49,53,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,76,78,79,80,85,87,92,93,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,136,142,143,149,151,153,154,158,161,162,163,164,165,166,167],fit_and_pr:2,fit_cal:[57,58],fit_detect:[34,35],fit_from_dataset:[2,99,102,110,111,112,113,118,124,125,128,130,143,167],fit_from_predict:[37,39,47,48,49],fit_intercept:[116,159],fit_kwarg:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],fit_param:[64,69,153],fit_transform:[2,3,5,6,7,8,9,10,14,15,16,18,19,20,57,59,61,62,63,64,65,67,69,70,71,159,163,164,165,167],fittabl:[31,32,59,60,61,69],fittable_data_transform:[62,63,64,67,69,70,71],fittableaggreg:[25,27],fittableanomalyscor:[39,47,48,49],fittabledatatransform:[57,58,61,62,63,64,65,66,67,68,69,70,71,72],fittabledetector:[34,35],fitted_valu:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],fivethirtyeight:73,fix:[0,2,3,4,5,6,7,8,9,13,14,16,18,19,20,21,53,61,62,63,64,65,66,68,69,70,71,72,92,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,158,161,165,167],fix_import:163,fix_param:[64,69],fix_pythonpath_if_working_loc:[2,3,4,5,6,7,8,9,10,13,14,16,19,20,21],flag:[26,28,35,36,53,99,102,110,111,112,113,118,124,125,128,130,152],flat:53,flatit:53,flatten:[2,20,53,67,110,111],flavour:[0,158,159],fledg:[0,158],flew:15,flexibl:[72,134,159],float16:[85,86,87,89,150,156],float32:[7,8,9,14,15,18,53,113,134,155,159,164,165,167],float64:[53,85,86,87,89,134,150,155,156],float_:53,floor:114,florian:15,flu:73,fluctuat:13,fluportaldashboard:73,fluview:73,fluviewphase2quickreferenceguid:73,fn:[3,66,85,86,87,89,113,134,150,156],fnc:53,focu:161,foil:73,folder:[99,102,110,111,112,118,124,125,128,130,167],follow:[0,2,4,5,6,7,8,9,13,14,15,17,18,20,21,31,32,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,57,58,71,72,73,77,78,85,86,87,89,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,138,140,141,142,150,152,156,158,159,161,163,164,166,167],font:13,fontsiz:13,forc:[21,53,78,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],force_col_wis:15,force_plot:78,force_plot_from_t:[21,78],force_reset:[2,5,6,7,8,9,10,18,19,99,102,110,111,112,118,124,125,128,130,164,165],force_row_wis:15,forecast:[1,3,5,6,7,8,9,10,19,23,29,37,57,58,67,69,72,73,76,77,78,79,80,82,83,87,96,97,98,99,100,101,102,103,104,105,106,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,134,138,139,142,152,155,160,162,164,165,166],forecast_dict:88,forecast_horizon:[2,5,6,7,8,9,10,14,20,32,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,159],forecast_horizon_ic:14,forecast_rnn:2,forecast_typ:8,forecast_varima:2,forecasting_am:32,forecasting_model:[20,96,97,98,99,101,103,104,105,106,107,114,116,117,118,119,120,121,122,127,131,159,163],forecasting_saf:[72,134],forecastinganomalymodel:[23,29,32],forecastingmodel:[11,12,32,58,80,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,163],foreground:[14,77,78,79,80],foreground_future_cov:21,foreground_future_covari:[21,77,78,79],foreground_past_covari:[77,78,79],foreground_seri:[21,77,78,79],foreground_target:21,foreign:73,forest:[15,95,117],forev:113,forg:159,forget:2,fork:[110,111],form:[2,13,23,24,39,53,55,61,62,63,64,65,66,67,68,69,70,71,72,85,86,87,89,113,114,134,142,150,153,156,159,162,166],format:[1,2,3,5,7,8,14,15,17,18,53,57,58,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,150,156,159,166],format_tim:74,former:[53,65,85,86,87,134,150,156],formula:[126,152,154],fortran:53,fortun:[3,13,18,159],forum:[99,102,110,111,112,113,124,125,128,130],forward:[85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,141,150,156,159,167],forward_pr:[85,86,87,89,113,150,156],forwardref:134,found:[2,12,13,37,53,72,85,86,87,89,93,99,102,110,111,112,113,118,124,125,128,130,134,150,155,156,165,167],four:[53,69,85,134,154,164],fourier:[0,95,114,158,161],fourier_ord:114,fourth:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],fourtheta:[0,95,122,127,158,161],fpp2:[62,63,142],fpp3:69,fpp:73,frac:[82,98,150,153],fraction:[89,99,118,125,130,134,159,167],frame:[17,113,134],frameon:[15,17],framework:[15,18],francesco:[0,158],francisco:73,free:[0,21,32,37,39,47,48,49,53,85,87,113,126,136,158,162],freedom:[134,154,159],freewai:73,freez:[85,86,87,89,113,150,156],freeze_support:164,freq:[2,5,13,14,15,16,21,67,74,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,154,155,162],freq_str:[5,134],frequenc:[2,4,9,13,18,21,67,73,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,154,155,166,167],frequent:[159,160],friendli:[0,158,166],from:[0,2,3,4,5,6,7,8,9,10,11,13,14,15,17,18,19,20,21,23,24,29,31,32,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,77,78,79,80,82,85,86,87,89,92,93,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,136,138,139,140,141,142,143,149,150,152,153,154,155,156,157,158,159,160,161,162,163,164,165,167],from_:16,from_csv:[134,159],from_datafram:[0,6,8,9,10,17,134,158,159,166],from_dict:19,from_group_datafram:[15,134],from_json:134,from_pickl:134,from_seri:[13,14,134,159],from_times_and_valu:[14,15,16,134,159,166],from_valu:[11,12,16,59,64,66,68,69,71,134,159,166],from_xarrai:[134,159],frombuff:53,fromfil:53,frozen:113,frustrat:3,fsdp:113,fulfil:161,full:[2,6,15,53,67,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,136,159,166],full_attent:[14,125],fuller:154,fulli:[0,2,5,16,21,59,85,86,87,89,99,110,111,113,118,125,128,130,150,156,158],fun:[15,19,99,102,110,111,112,118,124,125,128,130],func:[61,69,82,125],function_nam:[72,134],functionn:[20,160],funtion:4,furnish:[85,87,126],further:[2,13,15,18,20,21,53,61,62,63,64,65,66,67,68,69,70,71,72,82,114,142,161],furthermor:[2,3,4,78,110,111,159,162,163,166,167],fusion:[0,75,95,126,158,159],futcov:[100,108,109,115,117,132,142],futur:[0,5,6,9,16,17,18,20,21,32,53,57,58,72,77,78,79,80,85,86,87,89,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,134,138,139,140,141,142,144,150,156,158,159,160,163,167],future_compon:58,future_cov:[20,77,78,96,97,100,102,107,108,109,112,114,115,117,118,119,121,125,128,131,132],future_covari:[2,5,9,14,16,20,21,32,58,80,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,139,140,141,142,143,159,161,163,167],future_covariates_pr:161,future_covariates_train:161,future_covariates_v:167,future_encod:58,future_past:144,future_past_covari:[113,139],future_target:[138,140,141,143],future_transform:58,futurecallableindexencod:58,futurecovari:143,futurecovariatesindexgener:[57,58],futurecovariatesinferencedataset:139,futurecovariateslocalforecastingmodel:[97,101,114,119,121],futurecovariatesmodel:141,futurecovariatessequentialdataset:140,futurecovariatesshifteddataset:141,futurecovariatestorchmodel:[129,143,167],futurecovariatestrainingdataset:[140,141,143],futurecyclicencod:58,futuredatetimeattributeencod:58,futureintegerindexencod:58,futuretarget:141,futurewarn:17,g:[2,3,12,15,17,18,21,23,37,53,58,61,69,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,142,150,152,153,154,155,156,161,162,163,166,167],ga:73,gain:[13,20,143,167],gal:163,game:21,gamma:[19,37,149,167],gamma_distribut:149,gammalikelihood:149,gammanllscor:42,gan:[85,86,87,89,113,150,156],gap:[20,21,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,151],gasolin:73,gasrateco2dataset:73,gate:[14,85],gatedresidualnetwork:[14,125],gather:113,gaussian:[9,11,18,37,85,90,100,149,155,156,163],gaussian_process:[12,92,159],gaussian_process_filt:92,gaussian_timeseri:[2,9,10,11,12,155,163],gaussianlikelihood:[9,10,18,149,165],gaussiannllscor:43,gaussianprocessfilt:[0,12,92,158,159],gaussianprocessregressor:[12,92],gb:167,gca:13,gcp:164,geglu:[86,125,130],gelu:[85,86,125,130],gener:[0,6,9,10,11,12,15,16,17,20,21,31,32,37,39,46,47,48,49,50,53,57,58,67,70,71,73,76,77,78,79,85,88,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,135,136,141,142,149,152,153,154,158,159,160,161,162,164,166],generate_fit_encod:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],generate_fit_predict_encod:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],generate_index:155,generate_inference_idx:[57,58],generate_predict_encod:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],generate_torch_kwarg:[2,6,8,9,10],generate_train_idx:[57,58],generate_train_inference_idx:57,generic_architectur:[2,8,15,110],genericinferencedataset:139,genericshifteddataset:141,geometr:149,geometric_distribut:149,geometriclikelihood:149,geq:82,germani:73,get:[0,1,2,4,6,9,10,14,15,16,17,18,19,20,21,53,54,67,77,106,113,125,130,143,153,158,159,162,164,167],get_attent:[14,77,79],get_buff:[85,86,87,89,113,150,156],get_component_nam:80,get_decoder_import:[14,77],get_embedding_s:126,get_encoder_import:[14,77],get_explan:[77,78],get_extra_st:[85,86,87,89,113,150,156],get_feature_import:[77,79],get_feature_valu:[77,78],get_fram:17,get_index_at_point:134,get_legend:13,get_matric:69,get_metadata_rout:153,get_metr:136,get_model_param:16,get_multioutput_estim:[100,108,109,115,117,132],get_param:[21,153],get_paramet:[85,86,87,89,113,150,156],get_projection_matrix:69,get_shap_explanation_object:[77,78],get_shared_tim:142,get_shared_times_bound:142,get_single_seri:157,get_standard_metr:136,get_static_covariates_import:[14,77],get_submodul:[85,86,87,89,113,150,156],get_timestamp_at_point:134,getfield:53,getsizeof:53,getter:53,ghahramani:163,gi:73,gist:132,github:[0,1,20,21,73,108,114,126,132,158,162],githubusercont:15,gitter:[0,158],giuliano:[0,158],give:[2,14,15,21,31,32,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,57,78,79,99,102,110,111,112,113,118,124,125,128,130,136,142,159,161,162,163,167],given:[2,3,7,13,14,15,20,21,25,26,27,28,31,32,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,57,58,61,62,63,64,65,66,67,68,69,70,71,72,77,78,79,82,85,86,87,89,91,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,139,149,150,151,153,155,156,159,161,163,167],global:[0,4,16,18,20,64,69,71,73,85,86,87,89,100,105,108,109,113,115,117,132,134,142,150,156,158,160],global_compon:16,global_fit:[62,63,64,67,69,70,71],global_rank:113,global_step:113,globalforecastingmodel:[0,20,95,98,103,116,117,158,163],glu:[85,86,125,130],glu_vari:[86,89],go:[2,15,72,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,141,152,154,159,161,164,166,167],goal:[7,15],goe:[19,61,62,63,64,65,66,68,69,70,71,72,113,141],gomez:130,good:[0,1,2,11,15,17,18,20,21,53,99,102,110,111,112,113,118,124,125,126,128,130,158,159,161,162,163,165,167],googl:[162,164],googleapi:164,got:[18,136],gov:[15,73],gpf:[12,159],gpf_miss:12,gpu1:[85,86,87,89,150,156],gpu:[0,15,18,85,86,87,89,99,102,110,111,112,113,118,124,125,128,130,150,156,158,159,160,165],gpu_bas:[99,102,110,111,112,118,124,125,128,130],gpu_transform:113,grace_period:165,grad:[85,86,87,89,113,150,156],grad_input:[85,86,87,89,113,150,156],grad_output:[85,86,87,89,113,150,156],gradient:[13,19,78,85,86,87,89,108,113,132,149,150,156],gradient_clip_algorithm:113,gradient_clip_v:[19,113],grai:11,grain:159,granger:154,granger_causality_test:154,grangercausalitytest:154,grant:[4,9,85,87,126],granular:17,graph:[113,161],grasp:73,great:[2,15,16,18,113,159,165],greater:[13,20,53,73,116,134,142],greedi:152,green:[13,15,21],grei:17,grid:[18,21,54,55,73,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],gridsearch:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,160],grosch:[0,15,158],ground:[19,20,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,149,156],group:[15,17,69,73,113,134,142,166],group_col:[15,16,134],groupbi:[6,8,9,10,15],grow:130,growth:114,gru:[0,5,99,118,158,161],gt:[2,3,5,6,8,9,10,11,12,14,15,17,19,20,21],gtz:55,guarante:[19,72,85,86,87,89,113,134,150,156,166],guesswork:[99,102,110,111,112,118,124,125,128,130],guid:[0,21,53,134,153,158,159,163,164],guidelin:[0,158,162],guillaum:[0,15,158],gumbel:149,gumbel_distribut:149,gumbellikelihood:149,gusset:[0,158],gzipfil:53,h:[6,16,21,98,99,101,114,118,134,138],h_0:154,h_n:[99,118],ha:[0,2,4,5,6,7,9,11,13,14,15,16,18,19,21,31,32,39,47,48,49,50,53,57,58,62,70,73,77,78,85,86,87,89,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,140,141,142,150,153,154,156,158,159,161,163,164,166,167],had:[11,16,18,21,53,96,131,159],half:[2,73,85,86,87,89,113,149,150,156],halfnormallikelihood:149,halv:16,hand:[15,17,163,166],handi:15,handl:[2,3,14,16,21,37,58,67,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,133,150,156,160,164,166],hankel:93,happen:[2,15,21,61,62,63,64,65,66,67,68,69,70,71,72,96,97,99,100,101,102,107,108,109,110,111,112,113,114,115,117,118,119,121,124,125,128,130,131,132,139,149,159,164],happi:[159,162],hard:[7,159],harder:[3,18,149],hardwar:[53,113,164],has_dataloader_chang:136,has_datetime_index:134,has_hierarchi:134,has_range_index:134,has_same_time_a:134,has_static_covari:[16,134],hash:74,hat:[82,98,150],have:[0,1,2,3,4,6,8,9,10,12,13,14,15,16,17,18,20,21,25,27,32,35,36,37,39,47,49,50,53,55,57,58,61,62,63,64,65,67,69,70,71,72,77,78,80,82,85,86,87,89,91,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,140,141,142,143,149,150,152,153,154,155,156,157,158,159,161,162,163,164,165,166,167],haven:[15,18],head:[7,14,62,63,79,125,130,134,167],header_tim:74,healthcar:73,heapsort:53,hear:159,heart:[73,166],heartratedataset:73,heat:[14,79],heater:[14,73],heatmap:[14,54,79],heavili:[2,20],heavisid:11,height:55,help:[3,14,15,16,18,19,21,85,86,87,89,113,134,142,150,152,156,159,161,162,167],helper:[13,15,16,54,61,62,63,64,65,66,68,69,70,71,72,80,133,142],henc:[61,62,63,64,65,66,68,69,70,71,72,149,159],here:[0,1,2,3,4,12,13,14,15,16,17,18,19,21,69,79,93,96,97,98,99,101,102,103,107,110,111,112,113,114,116,118,119,121,123,124,125,128,130,131,134,136,142,155,158,159,160,161,163,164,165,167],herebi:[85,87,126],herzen:[0,15,158],heteroscedast:149,hex:53,hi:19,hidden:[5,85,93,99,118,125,161],hidden_continuous_s:[14,125],hidden_dim:[2,5,9,99,118,164],hidden_fc_s:[2,99],hidden_s:[14,99,125,128],hierarch:[0,60,73,111,113,134,158,160],hierarchi:[0,61,64,65,69,134,158,166],high:[7,13,14,18,67,73,123,131,159,164,167],high_q:14,high_quantil:[0,9,10,14,35,134,158,159],high_threshold:[35,36],higher:[9,14,15,37,53,67,118,142],highest:[4,134],highest_q:14,highli:[4,5,14,130],highlight:[14,134,154,159],hint:89,hist:[15,73],hist_fct:20,histogram:[154,159],histor:[0,2,5,6,8,9,10,14,17,32,35,37,69,77,79,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,139,158,161,167],histori:[2,6,14,15,18,21,33,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,159,163],historic_futur:144,historic_future_covari:[113,139,140,141,143],historical_fcast_:159,historical_fcast_theta:159,historical_forecast:[2,5,6,7,8,9,10,14,20,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,159],hit:[0,95,158],hobijn:154,hol:[17,73],hold:[20,53,113,161,166,167],holder:[85,87],hole:[134,159],holidai:[2,17,18,114,131,134,155,159,163],holidays_timeseri:[97,131,155],holt:104,holtwint:[17,104],hood:[20,21,58,96,97,99,100,101,102,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132,163,167],hook:[85,86,87,89,113,136,150,156,167],hope:[15,16,18],hopefulli:[7,159],horizon:[2,5,7,8,14,15,18,21,32,57,58,77,78,79,80,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,137,139,152,159,161,163,167],horizon_based_dataset:138,horizonbaseddataset:[2,138],horizonbasedexplainabilityresult:77,host:[85,86,87,89,150,156],hot:[6,9,10,16,134,155],hour:[2,16,18,21,58,73,79,96,97,99,100,101,102,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132,155,159,167],hourli:[8,21,58,73,114],household:[21,73],how:[1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,21,29,31,32,34,35,36,37,39,47,49,50,53,54,58,61,62,63,64,65,66,67,68,69,70,71,72,79,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,150,153,156,159,160,162,163,165,166],howev:[2,4,13,18,20,35,36,53,67,85,86,87,89,99,102,110,111,112,113,114,118,124,125,128,130,142,149,150,156,161,162,167],hpa:73,hparam:113,hparams_fil:113,hparams_initi:113,hparams_nam:113,hparams_typ:113,hpu:[15,159],hr:73,htm:73,html:[0,27,46,58,62,63,67,69,73,93,99,102,110,111,112,114,118,123,124,125,128,130,134,142,154,155,158,164],http:[0,8,9,10,15,19,27,39,46,47,49,58,62,63,67,69,73,85,93,96,99,102,108,110,111,112,113,114,115,118,120,121,122,123,124,125,126,127,128,130,131,132,134,138,142,149,150,154,155,156,158,164],hufl:[73,131],huge:[3,113],huge_number_of_seri:3,huguenin:[0,158],hull:73,humid:73,hydro:[6,8,9,10],hyndman:[3,17],hyndsight:150,hyper:[1,15,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,163,167],hyper_paramet:113,hyperband:165,hyperparamet:[2,7,18,92,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,160,167],hyperparametersmixin:113,hypothesi:154,i0:54,i1:[53,54],i2:[53,54],i8:53,i9:167,i:[0,4,5,6,7,13,14,15,16,17,18,20,50,53,54,55,61,62,63,64,65,66,67,68,69,70,71,72,74,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,140,141,142,149,150,152,154,156,158,159,162,163,164],i_:82,ic:[73,167],icbest:154,ice_cream_sal:167,ice_cream_sales_train:167,ice_cream_sales_v:167,icecreamheaterdataset:[14,73],id:[16,99,102,110,111,112,113,114,118,124,125,128,130,161,166],idea:[2,3,9,15,18,20,29,159,162,167],ideal:[11,167],idempot:113,ident:[9,13,16,49,57,65,82,134,142,167],identif:[0,15,107,154,158,159],identifi:[16,20,26,28,36,58,136,161],idx:[15,21,58,77,78,80,85,86,87,89,96,97,99,100,101,102,107,108,109,110,111,112,113,114,115,117,118,119,121,124,125,128,130,131,132,150,156,159],ie:[66,164],ignor:[2,3,4,5,6,7,8,9,10,14,15,16,19,20,21,53,54,55,57,62,69,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,150,153,156],ignore_static_covari:134,ignore_time_axi:134,ignore_w:[85,86,87,89,150,156],iid:49,ili:73,ilinetdataset:73,ilitot:73,ill:73,illia:130,illustr:[2,58,159],imag:[53,113],imagin:[53,161,167],imaginari:53,immedi:[85,86,87,89,113,140,150,156],immut:[113,166],impact:[18,21,150,167],implemenet:[61,62,63,64,65,66,67,68,69,70,71,72],implement:[0,2,3,12,21,39,49,53,57,61,62,63,64,65,66,67,68,69,70,71,72,85,86,87,89,93,96,97,98,99,100,101,102,107,108,110,111,112,113,115,116,118,119,121,123,124,125,126,127,128,130,131,132,136,143,150,156,158,159,160,162,167],impli:[61,62,63,64,65,66,68,69,70,71,72,85,87,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],implicit:[99,102,110,111,112,118,124,125,128,130],importantli:[2,142,159],impos:12,impract:18,impress:20,improv:[2,11,16,18,19,20,21,99,102,105,107,110,111,112,113,118,123,124,125,127,128,130,134,156,159,161,164,167],imshow:54,in_featur:[85,86,87,89,113,150,156],in_len:[15,18,102,112,165],inbetween:16,incl:[0,140,158],includ:[2,4,5,14,16,18,19,21,53,58,61,62,63,64,65,66,68,69,70,71,72,73,77,79,85,86,87,89,96,99,100,102,105,110,111,112,113,114,117,118,123,124,125,126,128,130,131,134,138,139,140,141,143,149,150,154,156,157,161,164,167],include_curr:[72,134],include_dayofweek:18,include_year:165,inclus:[100,117,134],incompat:53,incompatible_kei:[85,86,87,89,113,150,156],incomplet:3,incomplete_seri:3,inconsist:73,incorpor:[4,14],incorrect:89,incorrectli:[154,162],increas:[2,7,11,12,13,17,21,53,54,59,61,62,63,64,65,66,67,68,69,70,71,99,102,105,107,110,111,112,118,124,125,128,130,134,155,167],increment:153,incur:[18,99,102,110,111,112,118,124,125,128,130,167],inde:11,independ:[21,31,32,37,38,39,40,41,42,43,44,45,46,47,48,49,53,62,63,64,69,70,78,142,149,155,159,161],index:[2,5,6,8,9,10,13,14,15,16,17,19,32,53,54,55,57,58,67,73,77,78,79,80,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,140,141,142,152,155,157,158,159,166],index_gener:[57,58],indexerror:15,india:114,indic:[13,14,18,25,26,27,28,29,31,32,33,34,35,36,37,39,47,49,50,53,54,71,73,79,82,96,97,101,105,107,110,114,119,121,123,124,131,134,142,153,154,155,157,159,163],indirect:[53,78],individu:[14,15,16,20,53,58,62,63,64,67,69,70,71,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,140,141,149,150,156,159,164],indiviu:164,indonesia:114,induc:149,industri:[18,162],ineffici:[152,154],inf:[18,53,58,136,150,159,165],infer:[0,11,15,18,53,57,58,61,62,63,64,65,66,67,68,69,70,71,72,82,85,92,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,137,154,158,167],inference_dataset:139,inferencedataset:[99,102,110,111,112,113,118,124,125,128,130,139],infin:53,infinit:136,influenc:[78,153],influenzalik:73,info:[0,15,99,102,110,111,112,118,124,125,128,130,134,158,163],inform:[2,3,9,11,12,16,17,18,19,21,53,58,61,62,63,64,65,66,67,68,69,70,71,72,77,79,85,86,87,89,93,99,100,102,108,109,110,111,112,113,114,115,117,118,120,124,125,128,130,132,134,150,153,154,155,156,159,160,161,163,165,167],ing:[61,62,63,64,65,66,67,68,69,70,71,72],inherit:[2,21,53,61,62,63,64,65,66,68,69,70,71,72,98,103,113,143,167],init:[85,86,87,89,113,150,156,163],init_modul:113,init_predict_tqdm:136,init_s:55,init_sanity_tqdm:136,init_test_tqdm:136,init_train_tqdm:136,init_validation_tqdm:136,init_weight:[85,86,87,89,113,150,156],initi:[6,13,15,18,20,53,55,61,64,65,69,78,85,86,87,89,93,99,102,110,111,112,113,118,123,124,125,128,130,150,156],initialize_distribut:113,initialize_encod:[99,118],initj:21,inlin:[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,159],inner:[20,31,32,38,39,40,41,42,43,44,45,46,47,48,49,50,58,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,159],inplac:[53,85,86,87,89,113,150,156],inpt:150,input:[0,2,3,5,6,7,8,9,10,11,14,15,16,19,20,24,25,26,27,28,29,31,32,33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,76,77,78,79,80,82,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,140,141,142,143,150,152,153,156,157,158,159,160,161,163,165,166],input_chunk:139,input_chunk_length:[2,5,6,7,8,9,10,14,15,16,18,19,20,57,58,77,79,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,139,140,141,159,161,163,164,165,167],input_chunk_length_ic:14,input_covari:141,input_dim:87,input_length:[99,118],input_s:[87,99,118,152],input_sampl:113,input_seri:149,input_series_dataset:[99,102,110,111,112,118,124,125,128,130],input_timeseri:113,input_typ:80,inquiri:[0,158],insampl:82,insert:[3,53,61,62,63,64,65,66,67,68,69,70,71,72,113],insid:[53,99,102,110,111,112,118,124,125,128,130,142,153],insight:[18,21],insignific:159,inspect:[4,18,113],inspir:[2,9,20,121,124,132,138],instal:[15,18,21,108,113,162,164,167],instanc:[0,2,6,15,16,17,18,19,20,32,33,49,53,54,57,58,61,62,63,64,65,66,68,69,70,71,72,77,78,82,85,86,87,89,92,93,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,141,143,149,150,153,154,155,156,158,159,161,162,163,166,167],instanci:20,instantan:73,instanti:[2,14,58,61,62,63,64,65,66,67,68,69,70,71,72,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,167],instantli:113,instead:[0,2,3,4,5,12,13,14,15,17,18,20,21,53,61,62,63,64,65,66,68,69,70,71,72,78,79,85,86,87,89,92,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,149,150,152,153,156,157,158,159,165,166,167],instruct:[0,108,158,164],int16:53,int32:53,int64:[59,64,66,68,69,134],int64index:17,int8:53,int_:53,int_typ:53,integ:[2,14,15,16,20,25,26,27,28,32,34,35,36,37,50,53,57,58,71,72,73,78,80,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,154,155,157,159,166],integerindexencod:58,integr:[18,21,85,86,87,89,96,131,150,156,159,163,164,165],intel:167,intellig:161,intend:[53,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,166],intens:[3,9,21],inter:130,inter_reduct:[17,82,159],interact:[2,4,53,164],interchang:53,interest:[2,9,12,13,14,15,19,21,82,113,159,163],interestingli:20,interfac:[53,159],intermedi:[110,111,130],intermitt:101,intern:[2,6,8,21,39,61,69,78,86,87,99,100,101,102,108,109,110,111,112,113,115,117,124,125,128,130,132,156,167],internet:18,interpol:[3,68,73,111,149,151,154],interpolate_kwarg:151,interpret:[21,37,53,110,113,125,142,155,156,157,163],interrupt:[99,102,110,111,112,118,124,125,128,130,136,167],intersect:[14,82,134,142],interv:[0,12,14,18,20,21,73,82,113,134,138,149,154,157,158,159,166],intra:130,intract:18,introduc:[20,61,62,63,64,65,66,67,68,69,70,71,72,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,161,162],introduct:160,introductori:[0,18,158],introselect:53,invalid:[73,74,85,86,87,89,113,150,156],invari:[2,134],inventori:101,invers:[3,15,53,59,62,63,65,66,67,70,71,87,105],inverse_fn:[3,66],inverse_transform:[2,3,5,7,14,20,59,61,62,63,64,65,66,67,69,70,71,159],inversed_quaterli:67,invert:[3,59,60,61,64,69],invertible_data_transform:[62,63,65,66,67,70,71],invertibledatatransform:[3,59,61,62,63,64,65,66,67,69,70,71],invertiblemapp:60,investig:[99,102,110,111,112,118,124,125,128,130],invok:[53,85,86,87,89,113,150,156],involv:[64,69,162,167],io:[47,73,93,99,102,110,111,112,113,114,118,124,125,128,130,134],io_processor:113,ipu:[15,18,85,86,87,89,113,150,156,159,164],ipynb:1,irrad:21,irradi:[21,73],irregular:16,irregular_seri:16,irregular_series_st_bin:16,irregular_series_st_cat:16,irrelev:164,irrespect:[18,54,99,102,110,111,112,118,124,125,128,130],is_avail:[18,165],is_caus:89,is_determinist:134,is_dis:136,is_en:136,is_gat:85,is_probabilist:[38,39,40,41,42,43,44,45,46,47,48,49,134],is_season:159,is_stochast:134,is_train:142,is_univari:134,is_within_rang:134,isinst:[14,17,113],isn:2,iso:[134,155],isol:[15,46,156,163],issu:[0,15,18,58,99,102,110,111,112,118,124,125,128,130,134,149,158,159,162,167],issubclass:163,itakura:[54,55],itakura_align:13,item:[19,20,21,53,72,85,86,87,89,113,134,136,150,156],items:53,itemset:53,iter:[5,14,19,53,55,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,136,150,154,156],iterrow:15,itertool:[15,17],its:[0,2,3,4,5,6,7,9,11,14,15,17,19,20,21,31,32,37,38,39,40,41,42,43,44,45,46,47,48,49,53,66,78,85,86,87,89,92,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,135,142,149,150,158,159,161,163,165,166,167],itself:[0,4,9,13,14,17,18,31,32,37,39,47,48,49,50,53,61,62,63,64,65,66,68,69,70,71,72,85,86,87,89,99,113,118,134,140,141,149,150,156,158,166,167],j0:54,j1:54,j2:54,j:[13,53,54,55,73,85,86,87,89,150,156],jakob:130,jame:73,jan:[0,5,7,15,67,73,116,126,134,158],januari:[73,159],japan:73,javascript:21,jayasiri:85,jdb78:126,jena:73,jit:[113,119,121],jmlr:[0,158],job:[11,59,61,62,63,64,65,66,67,68,69,70,71,72,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],john:101,join:[0,158],joint:[138,140,141,159,163,166],jointli:[2,15,37,46,62,149,166],jone:130,journal:[0,73,101,158],json:134,json_str:134,julien:[0,15,17,158],jump:[18,53],june:73,jupyt:[21,164],jupyterlab:21,just:[2,3,4,5,12,13,14,15,18,19,21,53,159,161,162,167],k:[0,2,15,20,37,53,98,113,116,149,158,159,162,163],kaggl:[73,164],kaiser:130,kalman:[0,11,12,15,90,95,158],kalman_filt:[93,107],kalman_forecast:107,kalmanfilt:[0,11,93,107,158,159],kalmanforecast:[0,15,20,95,107,158,161,163],keep:[0,2,4,9,10,15,17,18,19,20,21,53,59,73,99,102,110,111,112,118,124,125,128,130,153,154,158,159,162,167],keep_non_transform:[72,134],keep_var:[85,86,87,89,113,150,156],keepdim:53,kei:[15,17,20,21,24,29,31,32,53,58,61,62,63,64,65,66,68,69,70,71,72,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,150,154,156,159,165],kept:[4,49,53,61,62,63,64,65,66,67,68,69,70,71,72,134,142],kernel:[18,78,92,102,111,124,153,159],kernel_s:[6,10,18,20,85,86,87,89,102,113,124,150,156,165],keyword:[39,53,54,58,61,62,63,64,65,66,67,68,69,70,71,72,78,85,86,87,89,92,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,150,151,154,156,163],kf:[11,93,107,159],kf_smape:15,kf_smapes_m3:15,kf_time:15,kf_time_m3:15,kim:[87,99,102,110,111,112,113,124,125,128,130],kind:[2,11,15,53,85,87,105,159,161,163,164,167],kindli:73,kl:149,kmean:39,kmeans_scor:39,kmeansscor:[0,23,37,39,47,158],know:[3,5,9,12,13,14,100,108,109,113,115,117,132,134,140,141,159,161,163,164,167],knowledg:8,known:[0,2,5,9,13,14,20,21,29,32,33,37,53,78,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,139,140,141,142,156,158,159,161,163],kolassa:121,kosinski:[0,158],kpss:154,kpss_stat:154,kth:53,kullback:[159,163],kurtosi:134,kw:[2,73],kwarg:[14,15,25,34,39,53,57,58,61,62,63,64,65,66,67,68,69,70,71,72,78,82,85,86,87,89,92,96,97,98,99,100,101,102,104,106,107,108,109,110,111,112,113,114,115,117,118,119,120,121,122,124,125,128,130,131,132,134,136,150,154,156,159],kwh:[21,73],kwiatkowski:154,l1:113,l1loss:150,l:[0,15,39,47,49,85,86,87,89,102,112,113,136,150,156,158],l_:82,l_bar:136,label:[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,158,159,163],label_q_inn:14,label_q_out:14,labels:13,labels_cols_nam:142,labels_hat:113,labml:85,lag:[0,2,15,17,18,20,57,58,63,77,78,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,142,154,155,158,159,161,163],lag_:142,lagged_:142,lagged_feature_nam:[21,100,108,109,115,117,132],lagged_future_covari:142,lagged_past_covari:142,lagged_target:142,lags_:142,lags_covari:[57,58],lags_future_covari:[20,21,57,58,77,78,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,142,159],lags_past:21,lags_past_covari:[21,57,58,77,78,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,142],laiguokun:73,lambda:[3,17,58,62,66,82,134,149,159],languag:130,laplac:[37,149,159,163],laplace_distribut:149,laplacelikelihood:[149,159,163],laplacenllscor:44,larg:[0,1,2,13,15,16,18,54,96,97,99,100,101,102,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132,134,138,140,141,142,149,152,158,159,164,167],larger:[2,3,11,12,15,53,78,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,149,163,166,167],largest:[15,18,134,157],last:[0,2,5,14,15,16,17,18,20,21,53,72,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,142,149,152,154,155,158,159,163],last_m:13,last_points_onli:[2,5,6,8,9,10,14,20,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],last_shap:142,last_static_covariates_shap:142,last_valu:[134,159],later:[2,6,18,19,21,62,63,64,69,70,99,118,134,161,163,164,167],latest:[2,9,20,47,93,99,102,110,111,112,113,118,124,125,128,130,142,167],latter:[35,36,37,65,67,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,150,153,156],lausann:15,layer:[2,85,87,89,99,110,111,116,118,124,125,128,130,159,167],layer_norm_vari:87,layer_width:[2,8,15,110,111],layernorm:[14,87,125,130],layernormnobia:[87,125,130],layout:[16,53,78],lazi:[2,58,152],lazili:[152,167],lb:142,ld:154,ldadjust:154,ldb:154,ldbias:154,le:85,lead:[4,13,16,19,104,113,162],leafhandl:73,leak:19,leakag:2,leakyrelu:[110,111],learn:[0,3,7,12,14,16,17,18,19,21,24,37,39,70,71,87,92,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,136,158,161,162,163,164,165,166,167],learnabl:85,learning_r:113,least:[2,4,6,18,21,35,36,53,67,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,138,140,141,161,167],leav:[59,72,79,99,102,110,111,112,115,118,124,125,128,130,134,163],left:[2,15,17,18,32,53,54,72,82,96,97,98,99,101,102,103,104,105,107,110,111,112,114,116,118,119,120,121,122,123,124,125,127,128,130,131,134,139,150,161],legaci:154,legend:[0,2,3,5,6,7,8,9,10,11,12,13,14,15,17,158,159],leibler:[159,163],len:[0,2,4,7,13,14,15,16,17,20,54,58,63,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,139,155,158,159],length:[2,3,5,9,10,11,12,13,15,16,18,31,32,35,36,37,39,47,49,50,53,54,55,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,82,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,140,141,142,150,154,155,161,163,165,167],leq:149,less:[4,15,18,115,142,154],let:[2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,20,21,85,86,87,89,113,150,156,159,161,167],letter:53,levarag:20,level:[8,12,17,21,53,73,103,124,134,154,159,160,161],leverag:[3,20,116,163,167],levinson:154,lexsort:53,lgbm:[15,21,108],lgbm_m4_elapsed_time_m3:15,lgbm_m4_smapes_m3:15,lgbm_model:21,lgbm_model_m4:15,lgbm_smape:15,lgbm_smapes_m3:15,lgbm_smapes_transf:15,lgbm_time:15,lgbm_time_m3:15,lgbm_time_transf:15,lgbregressor:108,lh:138,li:[12,155,167],liabil:[85,87],liabl:[85,87],lib:[17,53,142],librari:[0,1,3,15,18,20,21,53,78,123,158,159,162,167],licens:[85,87,126],lie:[12,32,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,149],life:15,lightbm:159,lightgbm:[15,21,95],lightgbmmodel:[0,15,21,95,108,158,159,161,163],lightgbmregressor:[21,108],lightn:[0,18,19,95,99,102,110,111,112,113,118,124,125,128,130,136,158,163,164,165,167],lightning_fabr:113,lightningdatamodul:113,lightningmodul:[99,102,110,111,112,113,118,124,125,128,130,136,167],lightningoptim:113,ligthn:[18,99,102,110,111,112,118,124,125,128,130],like:[2,4,11,12,14,15,16,18,20,21,53,85,86,87,89,113,117,136,142,149,150,153,154,156,159,161,162,164,167],likelihood:[9,10,14,18,19,20,21,40,41,42,43,44,45,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,135,159,163,165],likelihood_components_nam:149,likelihood_model:[9,10,14,18,102,110,111,112,124,125,128,130,149,159,163,165],likelihoodmixin_:149,likelihoodscor:48,limit:[15,18,19,20,21,53,78,85,87,113,126,130,164,165,167],lin_seri:3,linalg:46,line:[12,14,15,17,21,53,54,85,86,87,89,98,113,127,134,150,156,167],linear:[11,13,15,20,54,61,64,65,69,78,85,86,87,89,93,95,96,99,110,111,113,117,118,124,125,127,128,130,131,134,149,150,154,155,156,157,159,164],linear_1:134,linear_increas:14,linear_match:13,linear_model:[15,18,20,21,109,117,159],linear_regression_model:109,linear_timeseri:[2,3,9,10,61,64,65,69,134,155],linear_v:16,linearli:[69,99,102,110,111,112,118,124,125,128,130,155,167],linearregress:[18,20,109,117,159],linearregressionmodel:[0,2,15,17,18,20,21,78,95,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,158,159,161,163],linewidth:11,link:[99,101,102,104,110,111,112,118,124,125,128,130,164],linreg_model:20,linspac:[11,13,16,159],linux_x86_64:164,list:[2,10,14,15,17,18,20,21,25,27,31,32,39,46,47,49,50,53,57,58,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,79,80,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,149,150,151,152,153,154,155,156,157,159,163,165,166,167],litdatamodul:113,liter:[62,79,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134],litmodel:113,litr:73,littl:[8,11,53],live:[85,86,87,89,113,150,156],ll:[2,6,11,12,15,16,18,21,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,161,164,165],llion:130,lmbda:62,load:[0,1,2,3,4,5,6,7,8,9,10,13,14,20,21,53,58,62,63,67,70,73,74,78,79,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,152,158,159,160,164,165],load_air:15,load_data:113,load_encod:[99,102,110,111,112,118,124,125,128,130],load_ext:[3,4,5,7,9,13,14,16,19,20,21],load_from_checkpoint:[2,5,6,7,8,9,10,18,19,99,102,110,111,112,113,118,124,125,128,130,163,165,167],load_m3:15,load_m4:15,load_model:163,load_state_dict:[85,86,87,89,113,136,150,156],load_weight:[99,102,110,111,112,118,124,125,128,130,167],load_weights_from_checkpoint:[99,102,110,111,112,118,124,125,128,130,167],loaded_model:167,loader:[99,102,110,111,112,118,124,125,128,130],loc:[2,15,17],local:[2,3,4,5,6,7,8,9,13,14,16,17,19,20,21,53,74,85,86,87,89,91,99,102,103,110,111,112,113,116,118,124,125,128,130,150,156,160],local_rank:[18,113,164],localforecastingmodel:[0,57,95,98,104,105,120,122,127,158],locat:[53,99,102,110,111,112,113,118,124,125,128,130,149,161,163,166],locationid:73,lock:53,loess:154,log10:66,log:[0,2,3,4,5,6,7,8,9,10,14,16,18,19,20,40,41,42,43,44,45,82,99,102,110,111,112,113,114,118,124,125,128,130,134,136,149,158,159,163,164,165,167],log_dict:113,log_dir:167,log_tensorboad:167,log_tensorboard:[5,99,102,110,111,112,118,124,125,128,130,164],logarithm:82,logger:[99,102,110,111,112,113,118,124,125,128,130],logic:[21,23,26,28,57,58,99,113,118,149],logical_and:13,logist:114,lognormallikelihood:149,lone:142,longdoubl:53,longer:[2,11,13,15,18,96,97,99,101,102,107,110,111,112,114,118,119,121,124,125,128,130,131,159,165],longest:15,longest_contiguous_slic:[15,134],look:[2,3,4,7,11,12,13,15,16,17,18,20,21,37,53,69,85,86,87,89,113,150,156,159,160,161,162,163,165],lookahead:19,lookback:[2,15,18,19,138,159],lookforward:[15,18],loop:[15,53,113,127,136],loos:162,lose:53,loss:[5,7,13,14,15,16,18,19,82,99,100,102,110,111,112,113,118,124,125,128,130,132,135,136,149,163,164,165],loss_fn:[14,15,99,102,110,111,112,113,118,124,125,128,130],loss_logg:167,losslogg:167,lost:[53,63],lot:[5,14,15,16,18],love:3,low:[7,53,67,73],low_freq:67,low_q:14,low_quantil:[0,9,10,14,35,134,158,159],low_threshold:[35,36],lower:[7,13,15,16,17,18,35,36,50,67,111,128,134,142,159],lowercas:53,lowest:163,lowest_q:14,lp:37,lp_c_uint:53,lr:[5,7,9,10,14,15,18,19,99,102,110,111,112,113,118,124,125,128,130,164,165,167],lr_find:[99,102,110,111,112,118,124,125,128,130],lr_finder:[99,102,110,111,112,118,124,125,128,130],lr_m4_elapsed_time_m3:15,lr_m4_smapes_m3:15,lr_model:18,lr_model_m4:15,lr_pred:18,lr_preds_test:18,lr_scale:113,lr_schedul:[19,113,167],lr_scheduler_cl:[19,99,102,110,111,112,113,118,124,125,128,130,167],lr_scheduler_kwarg:[19,99,102,110,111,112,113,118,124,125,128,130,167],lr_scheduler_step:113,lr_smape:15,lr_smapes_m3:15,lr_smapes_transf:15,lr_time:15,lr_time_m3:15,lr_time_transf:15,lrschedul:113,lstm:[0,2,5,9,14,99,118,125,158,161],lstm_layer:[14,125],lstm_test:9,lt:[2,3,5,6,8,9,10,11,12,14,15,19,20,21],lucki:15,lufl:73,lukasz:130,lull:[0,73,158],lw:[0,7,17,18,158,163],lysenko:132,m1:15,m2:[15,21,73],m3:[8,159],m3_dataset:15,m3_seri:15,m3_test:15,m3_test_scal:15,m3_train:15,m3_train_scal:15,m3c:15,m3comp:15,m3month:15,m4:[8,127,138],m4_metadata:15,m4_monthli:15,m4_test:15,m4_test_scal:15,m4_train:15,m4_train_scal:15,m4id:15,m:[2,13,15,53,54,55,63,69,73,82,85,86,87,89,101,102,112,113,127,134,138,150,154,156,159,162],ma:[96,131],machin:[0,3,15,21,53,158,161,164,166,167],machineri:2,mackinnon:154,made:[4,46,53,65,78,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,150,156,159,163,167],mae:[2,4,13,17,19,82,115,127,150],maeloss:150,magnitud:[2,150,159],mai:[2,3,8,18,31,32,53,61,62,63,64,65,66,68,69,70,71,72,78,85,86,87,89,113,134,136,140,141,149,150,152,153,156,162,166],main:[14,20,33,37,58,106,125,134,159,164,165,166,167],mainli:[18,159],maintain:[18,53,136],major:[19,53,164],make:[0,2,3,6,9,11,12,13,14,15,17,18,20,21,29,53,59,63,85,86,87,89,103,110,111,113,116,117,125,130,134,150,152,156,158,161,162,163,167],make_grid:113,maker:73,makridaki:20,malaysia:114,man:73,manag:113,mandatori:[2,14,15,72,78,79,114,125,134],mani:[0,2,15,16,18,53,58,99,102,110,111,112,118,123,124,125,128,130,142,152,156,158,159,167],manipul:166,manner:21,manual:[4,15,58,61,62,63,64,65,66,67,68,69,70,71,72,99,102,104,110,111,112,113,118,124,125,128,130,159,164],manual_backward:113,manual_se:[2,15,18,165],manuallyargsmodel:113,map:[3,11,14,16,17,53,58,61,62,63,64,65,66,68,69,70,72,78,79,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,153,159,166],map_loc:[99,102,110,111,112,113,118,124,125,128,130,167],mape:[2,3,5,6,7,8,9,13,14,15,20,21,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,150,159,164,165],mapeloss:150,mapper:60,mar:73,march:[15,134],marek:[0,158],margin:[134,159,163,166],mark:[2,20,55,92,134],markers:15,market:161,marr:82,mase:82,mask:[57,61,62,63,64,65,66,67,68,69,70,71,72,89],mask_cat:71,mask_compon:[61,62,63,64,65,66,67,68,69,70,71,72],mask_num:71,master:[15,108,114,126],match:[2,4,15,16,35,36,50,53,54,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,140,141,150,155,156,163,166],match_begin:13,match_end:13,match_len:13,match_min_length:13,matched_rang:13,matej:[0,158],math:53,mathbb:149,mathcal:85,mathemat:[46,62,156],matplotlib:[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,134,158,159,163,164],matric:[93,142],matrix:[13,53,54,69,142,153,154,155,159],matter:[0,2,158],max:[53,64,69,70,72,85,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,159],max_depth:115,max_epoch:[15,19,159],max_gap_s:134,max_lag:[5,7,14,154],max_lh:138,max_lr:[99,102,110,111,112,118,124,125,128,130],max_n_epoch:18,max_nr_compon:[14,134],max_nr_seri:79,max_number_seri:15,max_p:97,max_samples_per_t:[15,18,99,100,102,108,109,110,111,112,115,117,118,124,125,128,130,132,140,141,142,167],max_siz:126,max_slop:[13,55],max_t:[82,165],maxabsscal:[15,18,165],maxim:[0,123,134,154,158],maxima:13,maximum:[14,53,55,79,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,142,149,154,155],maxlag:154,maxpool1d:111,maxpool:111,mayb:[15,159],mb:[15,18,159,164],mbar:[99,100,102,108,109,110,111,112,115,117,118,124,125,128,130,132],mc_dropout:[18,99,102,110,111,112,118,124,125,128,130,163],mc_dropout_en:156,mcompetit:15,md5:[73,74],md:108,mean:[0,6,7,8,9,10,13,14,15,17,18,20,21,37,50,53,54,55,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,78,79,82,87,91,92,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,143,149,153,155,158,159,162,163,164,165,166,167],mean_absolute_error:150,mean_absolute_percentage_error:150,mean_attent:14,mean_dist:54,meanabsoluteerror:165,meanabsolutepercentageerror:[165,167],meaning:[14,125],means_clust:39,meant:[58,113,141,143],measur:[2,11,18,21,73,93,159,161,163,166,167],measure_ma:17,mechan:[7,14,85,86,87,89,113,130,150,153,156],median:[0,3,15,20,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,158,159],medium:73,medium_s:13,meet:[58,167],megalit:19,megalitr:73,megawatt:73,melbourn:73,member:[85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,150,154,156],memo:[85,86,87,89,113,150,156],memori:[2,14,15,18,21,49,53,58,73,74,85,86,87,89,99,102,110,111,112,113,118,124,125,128,130,136,142,150,152,156,164],memory_format:[85,86,87,89,150,156],memory_is_caus:89,memory_key_padding_mask:89,memory_mask:89,mention:[163,167],merchant:[85,87],mere:142,merg:[57,58,62,70,85,87,113,126,134],merge_covari:[57,58],mergesort:53,met:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],meta:[15,106,153,159],metadata:[15,74,153],metadata_rout:153,metadatarout:153,method:[0,2,3,11,16,17,18,20,21,23,24,25,26,27,28,29,31,32,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,53,54,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,77,78,79,80,85,86,87,88,89,91,92,93,94,95,96,97,98,99,100,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,128,130,131,132,133,134,136,139,142,143,149,150,151,153,154,156,158,161,163,164,165,166],method_to_elapsed_tim:15,method_to_smap:15,methodolog:161,metric:[0,2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,22,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,136,149,158,164,165,167],metric_attribut:113,metric_column:165,metric_n:113,metriccollect:[15,99,102,110,111,112,113,118,124,125,128,130,159,165],michal:[0,158],microsecond:58,mid:163,mida:60,might:[2,4,14,15,16,18,20,21,72,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,140,141,154,161,164,166,167],migth:67,mileag:149,milk:[3,15,73,159],milk_cov:159,milk_covari:2,milk_month:2,milk_train_covari:2,milk_val_covari:2,milk_year:2,million:73,mimic:[100,108,109,118,132],min:[15,19,21,53,57,58,64,69,70,72,73,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,165,167],min_delta:[18,19,99,102,110,111,112,118,124,125,128,130,165,167],min_gap_s:151,min_lh:138,min_lr:[99,102,110,111,112,118,124,125,128,130],min_period:[72,134],min_samples_split:115,min_t:82,min_train_sampl:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],min_train_series_length:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],mind:[12,19],mini:2,miniconda3:17,minim:[13,16,18,54,69,91,123,154,159,165,167],minimis:[20,159,163],minimum:[6,13,21,53,57,58,72,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,151,159,167],minmaxscal:[3,5,7,9,16,19,70,71],mint:69,mint_cov:69,mintreconcili:[17,69],minut:[0,2,15,18,21,58,73,155,158],misalign:13,misconfigurationexcept:113,miss:[0,3,8,21,53,60,72,73,85,86,87,89,92,93,105,107,108,109,113,115,117,132,134,135,150,154,156,158,162],missing_kei:[85,86,87,89,113,150,156],missing_valu:[4,6,9,10,13,105,151,159],missing_values_fil:68,missing_values_ratio:151,missingvaluesfil:[8,59,68],mit:[73,85,87,126],mitig:[19,149],mix:[60,113,116],mixedcovari:143,mixedcovariatesinferencedataset:139,mixedcovariatesmodel:167,mixedcovariatessequentialdataset:140,mixedcovariatesshifteddataset:141,mixedcovariatestorchmodel:[99,102,110,111,112,118,124,125,128,129,130,143],mixedcovariatestrainingdataset:[140,141,143],mixin:113,mixtur:16,ml:[0,15,73,158,159],mle:62,mle_retv:17,mlp:128,mm:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,163],mode:[18,19,21,53,72,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,150,151,156,161,165,167],model:[3,6,9,11,12,13,16,22,23,24,27,30,37,39,47,49,50,57,58,72,76,77,78,79,80,85,86,87,88,89,91,92,93,94,96,97,99,101,102,103,104,105,106,107,110,111,112,113,114,115,118,119,120,121,122,123,124,125,126,127,128,129,131,133,134,135,136,138,139,142,143,150,153,154,156,160,162,165,166],model_:159,model_air:[2,6],model_air_milk:2,model_arg:165,model_auto_regress:21,model_cl:[15,20],model_class:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],model_cr:[99,102,110,111,112,118,124,125,128,130],model_en:[6,9],model_finetun:167,model_fit_kwarg:32,model_futcov:2,model_futurecov:2,model_gru:2,model_kwarg:[20,167],model_load:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,163],model_mod:127,model_nam:[2,5,6,7,8,9,10,18,19,20,99,102,110,111,112,118,124,125,128,130,164,165,167],model_nbeat:8,model_nhit:19,model_output:[50,149],model_param:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],model_pastcov:2,model_select:152,model_single_shot:21,model_sun:6,model_tid:19,model_tide_rin:19,model_trac:113,model_val_set:[18,165],model_varima:2,modelcheckpoint:113,modelclass:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,163],modelmeta:106,modelmod:[15,104,127,154,157,159],modern:[0,158],modest:167,modif:[53,85,86,87,89,113,150,156,164],modifi:[21,53,72,85,86,87,89,113,126,134,150,153,154,156],modul:[0,2,9,13,23,27,37,53,85,86,87,89,99,102,110,111,112,113,118,124,125,126,128,130,150,156,158,164],module_nam:133,modulelist:[15,159],moment:[2,15,37,134],mon1:167,mon2:167,mondai:[73,167],monitor:[18,19,99,102,110,111,112,113,118,124,125,128,130,165,167],monoton:[54,134],mont:[21,85,99,102,110,111,112,118,124,125,128,130,156,159,166],montecarlodropout:[156,159],month:[0,2,3,4,5,6,7,14,15,17,20,21,57,58,62,63,67,73,96,97,98,99,100,101,102,105,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132,134,155,158,159,161,165,167],month_co:[57,58],month_seri:[5,6,20],month_sin:[57,58],monthli:[2,3,4,15,17,67,73,105,123,159],monthly_seri:67,monthlymilkdataset:[2,3,15,73,159],monthlymilkincompletedataset:[3,73],more:[0,1,4,5,6,7,8,9,12,15,16,17,18,19,20,21,37,50,53,58,61,62,63,64,65,66,67,68,69,70,71,72,82,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,140,141,142,150,152,155,156,158,159,160,161,162,163,164,165,167],moreov:[138,140,141],most:[4,14,15,16,37,53,61,62,63,64,65,66,68,69,70,71,72,78,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,140,141,142,149,159,161,162,163,166,167],mostli:[11,13,15],motor:73,mounir:[0,158],move:[0,4,11,13,15,20,39,47,49,53,72,85,86,87,89,90,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,150,154,156,158,166,167],move_data_to_devic:113,moving_average_filt:94,movingaveragefilt:[0,13,94,158],mp:15,mpg:73,mro:106,ms:[15,21,67],mse:[19,82,122,149,163],mseloss:[14,99,102,110,111,112,113,118,124,128,130,159,164],mstl:154,mt_002:2,mt_008:2,mt_009:2,mu:[88,149],much:[2,4,6,12,13,14,15,16,159],mufl:[0,73,158],mull:73,multi:[2,7,14,15,16,54,85,86,87,89,103,109,111,113,115,117,125,130,134,150,153,156],multi_grid_radiu:[13,54],multi_model:[21,100,108,109,115,117,132,142],multi_serie_elec:2,multi_ts_support:82,multicollinear:16,multidimension:[163,166],multigrid_align:13,multilabel:153,multilay:128,multioutput:[100,108,109,115,117,132,153],multioutputregressor:[100,108,109,115,117,132,153],multipl:[0,14,15,17,18,19,20,21,23,24,29,31,32,33,37,39,47,49,50,53,58,59,61,62,63,64,65,66,67,68,69,70,71,72,77,78,79,80,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,142,153,154,157,158,159,160,161,164,167],multiple_t:3,multipli:[15,114],multiprocess:[123,164],multiprocessing_start_method:123,multivari:[0,11,14,16,18,21,23,24,25,26,27,28,37,38,39,40,41,42,43,44,45,46,47,48,49,50,67,70,73,74,77,78,79,82,96,97,100,101,102,107,108,109,110,111,112,114,115,117,119,121,131,132,134,142,149,151,154,155,158,159,160,161,162,167],multivariate_seri:163,multivariate_support:82,multivati:2,must:[2,15,16,20,21,25,26,27,28,31,32,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,53,55,57,58,61,62,63,64,65,66,67,68,69,70,71,72,78,80,85,86,87,89,92,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,140,141,142,149,150,154,155,156,161,163,167],mutabl:113,mutablemap:113,my:[114,162],my_cool_pickable_object:113,my_model:[5,7,9,14,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,163,164,167],my_model_ic:14,my_model_sp:7,my_model_sun:5,my_multivariate_seri:166,my_seri:[134,167],my_series32:167,my_stopp:[99,102,110,111,112,118,124,125,128,130,165,167],mycallback:136,mylightningmodul:[113,136],mylikelihood:14,mymodel:113,mymodelclass:[99,102,110,111,112,118,124,125,128,130],mytransform:[64,69],n4sid:[0,15,93,107,158,159],n9bw:15,n:[0,2,5,7,13,14,16,17,18,19,21,31,32,39,47,49,53,54,55,57,58,63,64,69,73,82,85,86,87,88,89,95,96,97,98,99,100,101,102,103,104,105,107,108,109,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,138,139,140,141,149,150,154,156,158,161,162,163,164,165,167],n_cat_col:71,n_categori:16,n_compon:[61,62,63,64,65,66,67,68,69,70,71,72,134,142,149],n_epoch:[2,5,6,7,8,9,10,14,16,18,20,99,102,110,111,112,118,124,125,128,130,164,165,167],n_estim:115,n_featur:153,n_fmt:136,n_freq_downsampl:111,n_job:[3,18,59,61,62,63,64,65,66,67,68,69,70,71,72,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,153,159,165],n_jobs_multioutput_wrapp:[109,115,117],n_lagged_featur:142,n_lagged_label:142,n_observ:142,n_output:153,n_quantil:[14,149],n_random_sampl:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],n_restarts_optim:12,n_rnn_layer:[2,5,9,99,118],n_sampl:[61,62,63,64,65,66,67,68,69,70,71,72,103,134,142,149,153],n_samples_fit:153,n_target_vari:149,n_timestep:[61,62,63,64,65,66,67,68,69,70,71,72,134,149],n_trial:[18,165],naiv:[15,18,58,82,98,123,127,154,161],naive12_smap:15,naive12_smapes_m3:15,naive12_tim:15,naive12_time_m3:15,naive1_smap:15,naive1_smapes_m3:15,naive1_tim:15,naive1_time_m3:15,naive_ensembl:20,naive_forecast:[159,163],naive_model:[159,163],naivedrift:[0,20,95,98,158,159,161],naiveensembl:20,naiveensemblemodel:[0,20,95,98,158,159,161],naivemean:[0,95,98,158,161],naivemovingaverag:[0,95,98,158,161],naiveseason:[0,15,20,95,98,116,158,159,161,163],name:[2,3,7,13,15,16,17,18,19,21,31,32,38,39,40,41,42,43,44,45,46,47,48,49,50,53,57,58,61,62,63,64,65,66,67,68,69,70,71,72,74,77,78,80,85,86,87,89,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,149,150,153,155,156,159,161,164,165,166,167],named_buff:[85,86,87,89,113,150,156],named_children:[85,86,87,89,113,150,156],named_modul:[85,86,87,89,113,150,156],named_paramet:[85,86,87,89,113,150,156],namedtupl:[85,86,87,89,113,150,156],names_of_scor:[31,32,50],namespac:[106,113],nan:[12,18,59,63,67,68,72,73,92,105,134,150,151,154,159,162,165],nanosecond:58,nativ:[21,53,100,108,109,113,115,117,132],natur:[2,4,31,32,82,149,161,166],nav:120,nb_pred:15,nbeat:[8,15,110],nbeats_elapsed_tim:15,nbeats_interpretable_run:8,nbeats_m4_elapsed_tim:15,nbeats_m4_elapsed_time_m3:15,nbeats_m4_smap:15,nbeats_m4_smapes_m3:15,nbeats_model_air:15,nbeats_model_m4:15,nbeats_run:8,nbeats_smap:15,nbeatsmodel:[0,2,8,15,95,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,136,158,159,161,163,165,167],nbyte:53,nd:[53,142],ndarrai:[21,53,54,55,58,61,62,63,64,65,66,67,68,69,70,71,72,82,88,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,139,142,143,154,155],ndarray_subclass:53,ndim:[53,142],nearest:53,necessari:[2,13,15,18,53,62,63,64,69,70,93,96,97,101,107,113,114,119,121,131,157,159,163,164,167],necessarili:[2,159],need:[2,5,8,12,14,15,16,18,19,20,25,31,32,34,39,47,48,49,53,61,62,63,64,65,66,67,68,69,70,71,72,77,78,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,139,142,149,150,156,159,161,162,163,164,165,166,167],neg:[40,41,42,43,44,45,117,134,142,149,153,163],negative_binomial_distribut:149,negativebinomiallikelihood:149,neglig:[61,62,63,64,65,66,68,69,70,71,72],neither:[72,134],nest:[53,78,85,86,87,89,113,150,153,156,164],net:[5,85,86,87,89,99,102,110,111,112,113,124,125,128,130,150,156],net_b:[85,86,87,89,113,150,156],net_c:[85,86,87,89,113,150,156],network:[0,2,3,14,18,85,86,87,89,95,102,110,111,112,113,116,125,128,130,149,150,156,158,162,164],neuer:[0,158],neural:[0,2,3,87,95,102,110,111,112,116,124,125,128,130,149,158,162,164],neuron:[89,99,110,111,118,125,130,156],never:[2,15,53,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,159],nevertheless:166,new_arr:53,new_ord:53,new_path:113,new_plot:[54,134],new_shap:53,new_valu:3,newbyteord:53,newbytord:53,newei:154,newli:[53,134],next:[2,9,10,12,14,15,19,21,53,58,59,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,155,159,161,164,167],nfoursid:[93,107,159],nhead:[7,130],nhit:[19,111],nhitsmodel:[0,19,95,111,158,161],nice:[4,14,16,18],nicholasjhana:73,nicola:[0,158],niki:130,nikolai:132,nikolopoulo:159,nixtla:[0,158],nlag:154,nlinear:[0,112,158],nlinearmodel:[0,95,112,158,161],nll:[37,149],nll_cauchy_scor:40,nll_exponential_scor:41,nll_gamma_scor:42,nll_gaussian_scor:43,nll_laplace_scor:44,nll_poisson_scor:45,nllscorer:[40,41,42,43,44,45,48],nmulti:16,nn:[5,7,9,14,15,85,86,87,89,99,102,110,111,112,113,118,124,125,126,128,130,150,156],no_grad:[85,86,87,89,113,150,156],noam:[125,130],nob:154,nobodi:3,node:[113,115],nois:[4,11,13,93,155,159],noise_dist:[11,12],noise_modul:[9,10],noiseless:11,noisi:[4,11,12,93],non:[2,15,16,17,18,53,57,61,62,63,64,65,66,68,69,70,71,72,82,85,86,87,89,113,123,131,134,142,150,154,156,159,163,164],non_block:[85,86,87,89,150,156],non_smooth:16,nonciti:[17,73],none:[2,4,6,8,9,10,14,15,16,18,19,20,21,31,32,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,74,77,78,79,80,82,85,86,87,89,92,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,139,140,141,142,143,144,149,150,152,153,154,155,156,157,159,165,167],nonfittableaggreg:[25,26,28],nonfittableanomalyscor:[38,46,48],noninfring:[85,87],nonzero:53,nor:[113,142],norm:[37,113],norm_:46,norm_coef:21,norm_scor:46,norm_typ:[14,125,130],normal:[2,5,7,8,11,14,18,19,33,37,53,87,88,99,102,110,111,112,113,123,124,125,127,128,130,136,149,159,163,164,165,167],normal_distribut:149,normalis:[2,20],normalize_i:159,normalized_shap:87,normscor:[23,37,46],notabl:[2,20,134,161,164,167],note:[2,3,5,7,11,14,15,16,18,20,21,37,46,53,55,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,82,85,86,87,89,92,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,149,150,152,153,154,156,159,160,161,162,163,164,165,167],notebook:[1,2,3,5,6,7,8,9,11,12,14,15,17,18,19,20,21,79,99,105,107,110,118,124,125,128,130,159,161,164,165],noteworthi:164,noth:[18,61,62,63,64,65,66,67,68,69,70,71,72,161,165],notic:[2,13,20,85,87,114,126,134,167],notimportedmodul:133,novemb:126,now:[2,3,4,5,7,9,10,13,14,15,16,17,18,20,21,53,61,62,63,64,65,66,67,68,69,70,71,72,113,159,163,164,167],nowindow:[54,55],np:[2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,21,53,54,55,58,59,61,62,63,64,65,66,67,68,69,70,71,72,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,143,155,159,164,165,167],nr:114,nr_dai:18,nr_epochs_val_period:[5,6,7,8,18,99,102,110,111,112,118,124,125,128,130,165,167],nr_freqs_to_keep:[4,105],nr_param:[99,118],ns:[3,61,62,63,64,65,67,69,134],nstatic:16,nsw:[17,73],nt:[17,73],nthere:15,nuanc:161,nullifi:[61,62,63,64,65,66,68,69,70,71,72],num:[16,71,73,167],num_attention_head:[14,125],num_bin:154,num_block:[2,8,15,110,111,165],num_block_row:[11,93],num_class:113,num_decoder_lay:[7,128,130],num_encoder_lay:[7,128,130],num_epoch:15,num_featur:[85,86,87,89,113,150,156],num_filt:[6,10,18,20,124,165],num_lay:[2,6,8,10,15,20,99,110,111,113,118,124],num_layers_out_fc:99,num_loader_work:[15,18,99,102,110,111,112,118,124,125,128,130,165],num_paramet:[100,108,109,132,149],num_sampl:[0,9,10,11,12,14,16,18,20,21,32,78,88,92,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,149,158,159,163,165],num_stack:[2,8,15,110,111,165],num_train:[99,102,110,111,112,118,124,125,128,130],num_window:142,num_work:[18,99,102,110,111,112,118,124,125,128,130,164,165,167],numba:[119,121],number:[0,2,3,4,5,6,7,14,15,16,17,18,20,21,25,26,27,28,31,32,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,53,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,78,79,82,85,86,87,89,92,93,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,136,138,139,140,141,142,149,150,151,152,153,154,155,156,158,159,161,163,164,165,167],numer:[53,71,77,79,87,125,134,161,162],numpi:[2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,21,46,53,59,66,68,71,72,109,134,139,142,143,155,159,164,165,166],nvidia:167,nxm:54,o:[0,15,53,54,85,86,87,89,113,150,156,158],obj:53,object:[0,2,3,6,8,9,10,14,15,16,17,18,19,29,53,54,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,77,79,85,86,87,89,99,100,102,107,108,109,110,111,112,113,115,116,117,118,124,125,128,130,132,133,134,142,149,150,152,153,154,155,156,158,159,161,163,165,166],observ:[0,2,11,13,20,21,23,29,32,33,61,62,63,64,65,66,67,68,69,70,71,72,78,92,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,134,138,139,140,141,142,154,158,159,163,166],observatori:73,obsolesc:101,obtain:[0,2,5,7,11,15,17,18,20,31,32,33,53,73,77,82,85,87,92,93,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,139,155,158,159,161,163,166,167],obviou:[13,159],obvious:159,occup:73,occur:[21,37,53,62,63,64,67,69,70,71,73,159,163],off:[8,18,134,157,159],offer:[0,8,13,15,18,21,23,158,165,166,167],offici:[99,102,110,111,112,118,124,125,128,130],offset:[53,54,67,72,134,142,155,159],often:[2,3,15,18,19,131,134,140,141,156,159,162,163,166,167],oil:[73,131],ok:[15,159],ol:[69,154],older:167,omegaconf:113,omiss:53,omit:[21,53],on_after_backward:[113,136],on_after_batch_transf:113,on_before_backward:[113,136],on_before_batch_transf:113,on_before_optimizer_step:[113,136],on_before_zero_grad:[113,136],on_epoch:113,on_except:136,on_fit_end:[113,136],on_fit_start:[113,136],on_gpu:113,on_load_checkpoint:[113,136],on_predict_batch_end:[113,136],on_predict_batch_start:[113,136],on_predict_end:[113,136],on_predict_epoch_end:[113,136],on_predict_epoch_start:[113,136],on_predict_model_ev:113,on_predict_start:[113,136],on_sanity_check_end:136,on_sanity_check_start:136,on_save_checkpoint:[113,136],on_step:113,on_test_batch_end:[113,136],on_test_batch_start:[113,136],on_test_end:[113,136],on_test_epoch_end:[113,136],on_test_epoch_start:[113,136],on_test_model_ev:113,on_test_model_train:113,on_test_start:[113,136],on_train_batch_end:[113,136],on_train_batch_start:[113,136],on_train_end:[113,136],on_train_epoch_end:[113,136,167],on_train_epoch_start:[113,136],on_train_start:[113,136],on_validation_batch_end:[113,136],on_validation_batch_start:[113,136],on_validation_end:[113,136],on_validation_epoch_end:[113,136,167],on_validation_epoch_start:[113,136],on_validation_model_ev:113,on_validation_model_train:113,on_validation_model_zero_grad:113,on_validation_start:[113,136],onc:[0,2,13,15,18,19,20,21,32,53,58,61,62,63,64,65,66,68,69,70,71,72,77,78,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,150,156,158,159,161,163,167],one:[3,6,7,8,9,10,13,14,15,16,17,18,20,21,23,24,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,55,58,62,63,64,67,69,70,71,72,73,77,78,79,80,82,85,86,87,91,92,93,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,140,141,142,149,150,152,154,155,156,159,161,162,163,166,167],one_hot:[5,6,9,10,14,20,134,155],ones:[16,20,37,63,72,85,86,87,89,113,116,117,134,150,156],ongo:[0,158],onli:[2,4,5,7,12,13,14,15,16,18,19,20,31,32,37,39,47,50,53,54,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,78,79,80,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,134,136,139,140,141,142,143,150,151,152,153,154,155,156,157,159,161,162,163,164,165,166,167],onlinelibrari:120,onnx:113,onto:[53,99,102,110,111,112,118,124,125,128,130],op:82,open:[18,53,149],openreview:[99,102,110,111,112,113,124,125,128,130],oper:[53,59,61,62,63,64,65,66,67,68,69,70,71,72,73,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,150,156,166,167],opportun:166,oppos:142,opposit:[53,154],opt:113,optim:[5,7,9,13,17,19,20,53,54,62,69,85,86,87,89,92,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,136,150,156,160,167],optim_method:62,optimis:167,optimizer_cl:[99,102,110,111,112,113,118,124,125,128,130,167],optimizer_closur:113,optimizer_kwarg:[5,7,9,10,14,15,18,19,99,102,110,111,112,113,118,124,125,128,130,164,165,167],optimizer_step:113,optimizer_zero_grad:113,option:[0,4,10,14,15,16,20,21,31,32,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,74,77,78,79,80,82,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,133,134,138,139,140,141,142,143,149,150,151,152,153,154,155,156,158,159,161,163,165,166,167],optional_past_covari:58,optuna:[1,160],or_aggreg:28,oraggreg:28,orang:[0,15,17,21,158],ord:46,order:[2,5,14,15,17,18,20,21,31,32,46,53,54,59,61,62,63,64,65,66,67,68,69,70,71,72,78,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,139,140,141,142,149,150,154,156,159,166],ordereddict:[85,86,87,89,113,150,156],ordinalencod:[16,71],oreshkin:15,org:[0,8,9,10,15,19,27,39,46,49,58,67,73,85,96,111,115,123,124,125,128,130,131,134,138,142,149,150,154,155,156,158,164],orgin:12,orient:19,origin:[2,3,11,12,13,14,16,17,19,39,47,49,59,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,152,153,162,167],original_comp_nam:134,original_ma:13,os:15,oscil:9,oscillatori:9,ot:[73,131],otext:[62,63,69,142],oth:[17,73],other:[0,3,4,5,13,14,16,17,18,20,21,37,53,54,63,64,69,72,78,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,140,141,142,149,150,153,154,156,158,159,161,162,163,164,165,166],other_past_covari:161,otherwis:[2,21,53,59,61,62,63,64,65,66,67,68,69,70,71,72,79,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,141,142,149,150,152,153,155,156,157],otm:122,our:[0,2,3,4,5,6,7,12,13,14,15,16,17,18,20,21,53,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,158,159,161,162,164,167],ourselv:159,out:[2,3,9,10,14,15,16,18,20,21,53,54,58,85,86,87,89,96,97,99,100,101,102,107,108,109,110,111,112,113,114,115,117,118,119,121,124,125,128,130,131,132,140,141,150,156,161,163,167],out_featur:[85,86,87,89,113,150,156],out_len:[15,18,165],outcom:[62,63,64,67,69,70,71],outer:[2,31,32,38,39,40,41,42,43,44,45,46,47,48,49,50,58,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],outlin:[14,110,125,154],outpati:73,outperform:[2,4,8,20],output:[2,5,6,8,11,14,15,20,29,31,32,50,53,57,58,61,62,63,64,65,66,67,68,69,70,71,72,77,78,79,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,139,140,141,142,143,149,150,153,155,156,159,161,163,164,165,167],output_chunk_length:[2,5,6,7,8,10,14,15,16,18,19,20,21,57,58,77,78,79,80,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,138,139,140,141,142,159,161,163,165,167],outsid:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,154],over:[0,2,5,7,14,15,16,17,18,21,31,32,33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,61,62,63,64,65,66,67,68,69,70,71,72,73,77,79,82,85,86,87,89,93,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,140,141,142,150,152,156,158,159,161,163,164,165,166,167],overal:[17,18,82],overcom:53,overfit:[2,18,19,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,159,165,167],overflow:53,overhead:[15,59,61,62,63,64,65,66,67,68,69,70,71,99,102,110,111,112,113,118,124,125,128,130,167],overlap:[16,82,142,152],overlap_end:[14,20,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],overrid:[98,99,102,103,110,111,112,113,118,124,125,128,130,136],overridden:[85,86,87,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,150,156],overview:[73,160,167],overwrit:[59,89,100,108,132,149],own:[2,20,21,53,85,86,87,89,113,130,149,150,156,159,162,167],owndata:53,owner:53,p1:113,p2:113,p3:113,p:[2,15,53,73,85,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,149,154,156],p_valu:154,p_value_threshold_adful:154,p_value_threshold_kpss:154,pacf:154,packag:[2,15,17,18,21,73,93,101,119,120,121,122,164],pad:[102,117,134],page:[0,21,82,130,158,159],pai:18,pair:[2,13,17,21,38,40,41,42,43,44,45,46,48,54,73,82,113,140,141,159],pairwis:[39,47,48,49,82],pakistan:114,panda:[0,2,3,4,5,6,7,8,9,10,13,14,15,16,17,19,21,32,57,58,67,71,72,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,151,155,158,159,164,165,166,167],panel:166,paper:[0,2,14,15,19,85,110,111,112,123,127,156,158,162],par:18,parallel:[3,59,61,62,63,64,65,66,67,68,69,70,71,72,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,159,164,167],parallel_param:[61,64,65,69],parallelis:[59,61,62,63,64,65,66,67,68,69,70,71,72,82],paralleliz:130,parallelogram:55,param:[15,18,61,62,63,64,65,66,67,68,69,70,71,72,85,86,87,89,113,126,150,153,156,159,164,165],param_group:113,param_requires_grad_st:113,paramet:[0,1,2,3,4,6,11,13,14,15,16,20,21,23,25,26,27,28,29,31,32,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,79,80,82,85,86,87,89,91,92,93,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,139,140,141,142,149,150,151,152,153,154,155,156,157,158,161,163,164,166,167],parameter:149,parameter_column:165,parametr:[0,21,155,158,159,163,166],paramref:113,parent:[17,48,53,69,134,149,166],parmar:130,pars:113,part:[14,17,18,53,72,77,79,85,86,87,89,99,102,110,111,112,113,118,124,125,128,130,134,150,152,156,162,167],partial:[3,8,20,53,59,152,154],partial_fit:153,partial_fit_param:153,particular:[2,18,53,77,85,86,87,89,113,140,141,150,156,163],particularli:[2,11,113,159],particuliar:20,partit:[39,47,49,53,78,151],pasieka:[0,158],pass:[2,4,13,14,16,20,21,31,32,35,36,39,47,48,49,53,54,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,78,79,82,85,86,87,89,92,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,142,150,153,154,155,156,159,167],passeng:[0,2,62,63,73,158,159,164],past:[0,13,14,15,16,18,19,21,25,26,27,28,32,34,35,36,50,57,58,72,77,78,79,80,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,134,138,139,140,141,142,144,158,159,160,162,163,165,167],past_compon:58,past_cov:[77,78,99,100,102,108,109,110,111,112,115,117,124,125,128,130,132],past_covari:[2,6,10,14,20,21,32,58,80,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,138,139,140,141,142,143,159,161,163,167],past_covariates1:161,past_covariates2:[161,167],past_covariates_2:161,past_covariates_inf:58,past_covariates_pr:161,past_covariates_train:[58,161],past_covariates_train_inf:58,past_covariates_v:167,past_encod:58,past_target:[113,138,139,140,141,143],past_transform:58,pastcallableindexencod:58,pastcov:[100,108,109,115,117,132,142],pastcovari:143,pastcovariatesindexgener:[57,58],pastcovariatesinferencedataset:139,pastcovariatesmodel:141,pastcovariatessequentialdataset:[2,140],pastcovariatesshifteddataset:141,pastcovariatestorchmodel:[99,102,110,111,112,118,124,125,128,129,130,143,167],pastcovariatestrainingdataset:[99,102,110,111,112,118,124,125,128,130,138,140,141,143],pastcyclicencod:58,pastdatetimeattributeencod:58,pastintegerindexencod:58,path:[2,3,4,5,6,7,8,9,13,14,16,19,20,21,53,54,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,150,156,163,167],pathlib:53,pathlik:[96,97,98,100,101,103,104,105,107,108,109,114,115,116,117,119,120,121,122,123,127,131,132],patienc:[18,19,99,102,110,111,112,118,124,125,128,130,165,167],patient:[73,166],pattern:[14,15,21,58,113,161,163,164,167],pc:[57,58],pd:[0,2,3,4,5,6,7,8,9,10,13,14,15,16,17,19,21,54,58,67,68,71,77,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,155,157,158,159,162,164,165,167],pd_datafram:[6,8,9,10,134,166],pd_seri:134,pdf:[8,73,123,125,127,156],peak:[20,53],pearsonr:62,pem:73,penalti:134,per:[2,3,14,15,17,21,31,32,38,39,40,41,42,43,44,45,46,47,48,49,50,53,57,58,62,67,70,73,77,79,89,99,100,102,108,109,110,111,112,113,115,116,117,118,124,125,128,130,132,134,138,139,140,141,142,149,159,161,163,164,166,167],percentag:[82,159],percentil:[0,14,134,158,159],perceptron:128,perfectli:[12,37],perform:[0,2,3,4,5,6,7,8,9,10,13,14,15,16,17,18,19,20,21,23,31,32,54,57,61,62,63,64,65,66,67,68,69,70,71,72,78,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,143,149,150,156,158,159,160,161,163,164],perhap:[53,159],period:[2,5,13,14,15,16,18,21,37,55,63,67,72,82,96,99,100,102,104,105,108,109,110,111,112,114,118,123,124,125,127,128,130,132,134,154,155,159],periodindex:67,permiss:[85,87,126],permit:[85,87,126],permut:[53,78],perserv:18,persist:[85,86,87,89,113,150,156,162],person:[31,32,38,39,40,41,42,43,44,45,46,47,48,49,50,85,87,126],perturb:159,pet:73,petrik:[0,158],pg:113,ph:114,phase:[37,39,47,49,54,82,105,113,155],phenomenon:15,phi:85,phil:87,philippin:114,phillip:154,piazzetta:[0,158],pick:[15,78,99,102,110,111,112,118,124,125,128,130],pickabl:159,pickl:[15,53,85,86,87,89,96,97,98,100,101,103,104,105,107,108,109,113,114,115,116,117,119,120,121,122,123,127,131,132,134,150,156,163],picklabl:[85,86,87,89,113,150,156],pickup:73,pid:[99,102,110,111,112,118,124,125,128,130],pii:122,pin:[85,86,87,89,150,156],pinbal:[82,132,163],pip:[0,15,18,158,159,162,164],pipelin:[1,51,153],pitfal:149,pk:114,pkl:[96,97,98,100,101,103,104,105,107,108,109,114,115,116,117,119,120,121,122,123,127,131,132,163],pkl_kwarg:[96,97,98,100,101,103,104,105,107,108,109,114,115,116,117,119,120,121,122,123,127,131,132],pl:[99,102,110,111,112,118,124,125,128,130,167],pl_forecasting_modul:[99,113,118],pl_modul:[136,167],pl_trainer_arg:164,pl_trainer_kwarg:[2,6,8,9,10,15,16,18,19,99,102,110,111,112,118,124,125,128,130,136,164,165,167],place:[20,53,85,86,87,89,113,150,155,156,159,162],plai:[2,15],plan:2,plant:8,platform:53,pldualcovariatesmodul:[113,118],pleas:[61,62,63,64,65,66,67,68,69,70,71,72,82,85,86,87,89,99,102,104,110,111,112,113,118,124,125,128,130,142,150,153,154,156,163,167],plforecastingmodul:[99,113,118],plforecastinmodul:113,plfuturecovariatesmodul:113,plmixedcovariatesmodul:113,plot:[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,31,32,38,39,40,41,42,43,44,45,46,47,48,49,50,54,78,79,99,102,110,111,112,118,124,125,128,130,134,154,158,159,163],plot_acf:[3,5,7,9,14,154,159],plot_align:[13,54],plot_attent:[14,79],plot_compon:114,plot_contour:18,plot_forecast_sum:17,plot_hist:[154,159],plot_model:15,plot_optimization_histori:18,plot_pacf:154,plot_param_import:18,plot_residuals_analysi:[3,154,159],plot_typ:[14,78,79],plot_variable_select:[14,79],plotli:4,plpastcovariatesmodul:[99,113],plsplitcovariatesmodul:113,plt:[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,158,159,163,164],pltorchforecastingmodel:113,plu:[2,96,107,131,161],plug:[0,158],pmdarima:97,po:[57,58],point:[2,3,7,9,10,11,14,15,18,19,20,21,25,26,27,28,32,34,35,36,37,50,53,58,78,79,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,142,150,154,155,156,159,161,163,167],pointer:53,pointwis:[61,62,63,64,65,66,68,69,70,71,72],poisit:[61,62,63,64,65,66,68,69,70,71,72],poisson:[21,37,100,108,109,132,149,163],poisson_distribut:149,poissonlikelihood:[149,159],poissonnllscor:45,poissonregressor:109,poli:[4,105],polosukhin:130,polynomi:[4,105,110],pool:111,pooling_kernel_s:111,poor:[102,163],poorli:149,pop:[61,65,69,136],popul:[73,161],popular:[0,73,158],portion:[85,87,126],portugues:18,posit:[14,21,53,57,58,61,62,63,64,65,66,67,68,69,70,71,72,85,86,87,89,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,139,141,142,149,150,154,155,156,159],possess:53,possibl:[0,2,3,8,13,14,15,18,20,21,29,31,32,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,64,65,69,72,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,150,152,153,156,158,159,161,162,163,164,166],post:[0,85,86,87,89,113,121,150,156,158],postfix:136,posthoc:[17,69,166],potenti:[0,8,15,18,20,29,78,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,158,159,163,166,167],pottelbergh:[0,158],pound:[2,3,73,159],poundag:[6,8,9,10],power:[2,8,15,18,20,73,161,167],pp:116,pprint:17,pr:[29,37],practic:[3,12,15,20,49,159,163,164,165],pre:[15,17,18,73,78,85,86,87,89,96,97,99,100,101,102,107,108,109,110,111,112,113,114,115,116,117,118,119,121,124,125,128,130,131,132,136,149,150,156,166],pre_process_csv_fn:74,pre_process_zipped_csv_fn:74,preced:[110,111,138,163],precipit:73,precis:[25,26,27,28,33,34,35,36,50,53,113,159],precomput:153,pred:[2,9,10,15,16,17,18,21,82,96,97,98,99,100,101,102,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,159,161,163,165],pred_air:159,pred_anomali:50,pred_auto_regress:21,pred_batch_s:113,pred_best_theta:159,pred_catboost:21,pred_cov:2,pred_en:20,pred_ens_resc:20,pred_input:19,pred_lgbm:21,pred_linreg:20,pred_linreg_resc:20,pred_list:2,pred_milk:159,pred_multi_model:21,pred_n:113,pred_n_job:113,pred_naiv:20,pred_naive_resc:20,pred_num_sampl:113,pred_param:21,pred_roll_s:113,pred_sampl:21,pred_seri:[5,7,8,14,15,17,19,38,39,40,41,42,43,44,45,46,47,48,49,82],pred_series_et:[5,7],pred_single_model:21,pred_single_shot:21,pred_step:19,pred_tcn:20,pred_tcn_resc:20,pred_theta:159,pred_tim:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],pred_val:4,pred_xgboost:21,predefin:167,prediciton:[16,34,35,36],predict:[0,1,3,4,6,7,9,10,15,16,17,18,19,21,23,24,25,26,27,28,29,31,32,33,37,38,39,40,41,42,43,44,45,46,47,48,49,50,57,58,77,78,79,80,82,88,92,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,139,142,143,149,150,153,158,160,161,162,163,164,165],predict_dataload:113,predict_descript:136,predict_from_dataset:[99,102,110,111,112,118,124,125,128,130],predict_kwarg:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],predict_likelihood_paramet:[21,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,149],predict_progress_bar:136,predict_raw:114,predict_seri:16,predict_step:113,predictor:[16,153],preds_st_bin:16,preds_st_cat:16,prefer:[5,53],prefix:[85,86,87,89,113,134,150,156],preliminari:123,prelu:[110,111],prepar:[1,11,12,113],prepare_data:113,prepare_data_per_nod:113,prepend:[85,86,87,89,113,134,150,156],prepend_valu:134,preprint:[102,112],preprocess:[3,5,7,9,15,18,70,71,165],presenc:[29,33,151],present:[2,8,17,69,73,74,99,102,105,107,110,111,112,113,117,118,124,125,128,130,134,142,159,161,167],preserv:[53,67,85,86,87,89,113,150,156],preset:[99,102,110,111,112,118,124,125,128,130],pressur:[73,99,100,102,108,109,110,111,112,115,117,118,124,125,128,130,132,166],pretend:[99,100,102,108,109,110,111,112,115,117,118,124,125,128,130,132],pretrain:[98,103,116],pretrain_ensembl:20,pretrained_ckpt_path:113,pretrained_model:113,pretti:4,prevent:[53,73,99,100,102,108,109,110,111,112,113,115,117,118,124,125,128,130,132,161],previou:[2,4,5,13,21,39,47,49,53,118,125,134,142,159],previous:[53,61,62,63,64,65,66,67,68,69,70,71,72,99,102,110,111,112,118,124,125,128,130,159],price:73,primari:113,prime_t:63,principl:3,print:[2,3,4,5,7,14,15,16,17,18,20,21,53,59,61,62,63,64,65,66,67,68,69,70,71,72,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,150,156,159,165],print_callback:[18,165],print_mae_on_subset:17,prior:[8,61,62,63,64,65,66,68,69,70,71,72,98,99,102,110,111,112,114,118,124,125,128,130,149,159,163],prior_alpha:149,prior_b:[149,159,163],prior_beta:149,prior_gamma:149,prior_lambda:149,prior_mu:[9,10,149],prior_p:149,prior_scal:114,prior_sigma:[9,10,149],prior_strength:[9,10,149],prior_xzero:149,prioriti:113,privat:[53,163],pro:18,probabalist:11,probabilist:[0,1,10,12,18,19,32,37,38,39,40,41,42,43,44,45,46,47,48,49,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,134,149,156,158,160,161,162],probabilistic_forecast:159,probabl:[2,11,14,18,49,85,101,110,111,128,140,141,149,154,159,163,165,166],probablist:21,problem:[2,4,5,15,16,20,21,53,159,162],problemat:2,procedur:[5,7,14,100,108,132],process:[0,15,18,21,22,61,62,63,64,65,66,67,68,69,70,71,72,80,85,86,87,89,90,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,150,156,158,161,164,167],process_horizons_and_target:80,process_input:80,process_posit:136,processor:[59,61,62,63,64,65,66,67,68,69,70,71,72,82,99,102,110,111,112,118,124,125,128,130,159],prod:53,prodigi:114,produc:[0,3,5,8,11,13,14,15,18,20,23,29,37,53,64,69,78,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,140,141,142,158,159,163,166,167],product:[3,15,17,53,73,134,159,161,166],profil:113,prog_bar:[113,136],program:113,programat:163,programmat:17,progress:[2,3,6,8,9,10,15,16,59,61,62,63,64,65,66,67,68,69,70,71,72,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,136,155],progress_report:165,progressbar:[99,102,110,111,112,118,124,125,128,130],prohibit:[99,100,102,108,109,110,111,112,113,115,117,124,125,128,130,132],project:[0,128,158,162],promis:[16,18],propag:134,proper:[14,15,57,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,140,141,159,166],properi:113,properli:[2,53,113,139,162,163],properti:[17,19,21,38,39,40,41,42,43,44,45,46,47,48,49,53,57,58,61,62,63,64,65,66,67,68,69,70,71,72,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,149,150,156],prophet:[0,4,95,158,161],prophet_kwarg:114,prophet_model:114,proport:[17,32,69,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,152],propos:[0,101,112,158,165],protocol:[134,163],prov:[134,155],prove:[15,61,62,63,64,65,66,68,69,70,71,72],provid:[2,3,5,11,14,15,17,18,20,21,29,31,32,33,35,36,38,39,40,41,42,43,44,45,46,47,48,49,53,58,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,79,80,82,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,139,140,141,142,143,149,150,151,152,153,154,156,157,159,161,162,163,166,167],provinc:[134,155],prune:[18,165,167],pruner:165,ps:16,ps_no_st:16,ps_st_bin:16,ps_st_cat:16,pt:[99,102,110,111,112,113,118,124,125,128,130,163,167],ptl:163,ptp:53,publicli:74,publish:[85,87,126],pull:[0,158],pure:[8,19,21,115,149,167],purpl:[4,15],purpos:[21,53,85,87,155,159],push:163,put:[14,53,113],pvalu:154,py:[17,50,57,114,164],pyarray_resolvewritebackifcopi:53,pydata:[58,67,134,155],pyod:[0,47,49,158],pyod_scor:47,pyodscor:[0,37,158],pypi:53,pyplot:[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,158,159,163,164],python3:17,python:[2,3,4,5,6,7,8,9,13,14,15,16,19,20,21,53,113,114,123,163,166,167],pytorch:[0,14,15,18,19,85,89,95,99,102,110,111,112,113,118,124,125,126,128,130,135,136,158,159,161,163,164,165,167],pytorch_lightn:[6,16,18,19,99,102,110,111,112,113,118,124,125,128,130,136,165,167],pytorchlightningpruningcallback:[18,165],pyyaml:[162,164],q0:[9,10],q1:73,q3:73,q:[2,15,96,102,112,121,131,149],qld:[17,73],qs:67,quadrat:[3,13,54,154],qualifi:[85,86,87,89,113,150,156],qualiti:[2,11,18,20,99,105,107,110,118,124,125,128,130,159],quantifi:[82,159],quantil:[0,10,14,16,20,21,33,50,82,100,103,108,109,116,132,134,149,158,163,166],quantile_detector:35,quantile_df:134,quantile_loss:82,quantile_timeseri:134,quantiledetector:[0,33,35,158],quantileregress:[10,14,125,149,159,163],quantileregressor:109,quantiles_df:134,quarter:[21,58,67,73],quarterli:[19,67,73,104],quarterly_season:114,quarterly_seri:67,queri:[85,86,87,89,113,125,150,156],question:[0,15,158,160],quick:[5,7,8,14,53,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,160],quickli:[13,15,18,113],quicksort:53,quickstart:[0,20,158,166],quit:[3,4,15,17,18,20,159],r1:134,r1ecqn4ywb:110,r2:[0,8,134,158],r2_score:[6,8,82,153],r55d9314a45a:130,r:[11,13,17,69,82,97,136,149,153,159],radian:[11,155],radiu:54,rai:160,raill:[0,15,158],rain:[21,99,100,102,108,109,110,111,112,115,117,124,125,128,130,132],raindur:[21,73],rainfal:[99,100,102,108,109,110,111,112,115,117,124,125,128,130,132],rais:[3,53,58,59,67,73,74,80,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,140,141,142,149,150,152,153,156,157,161,165],ram:[18,167],ramp:16,rand:11,randint:53,randn:[113,159],random:[2,4,11,12,15,16,18,21,53,71,95,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,154,155,156,159],random_component_valu:134,random_forest:115,random_method:156,random_st:[2,5,6,7,8,9,10,14,16,19,20,96,99,100,102,104,108,109,110,111,112,118,123,124,125,128,130,132,159,164],random_walk:155,random_walk_timeseri:155,randomforest:[0,15,20,21,95,115,117,158,159,161],randomforestregressor:[115,159],randomli:[78,167],rang:[2,13,14,15,21,55,58,73,77,79,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,155,159],rangeindex:[13,54,57,58,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,155,157,159,166],rank:113,rank_zero_onli:113,rapid:[0,158],rare:[12,53],rate:[2,18,19,67,73,99,102,110,111,112,113,118,124,125,128,130,136,149,162,163,166,167],rate_noinv_fmt:136,rather:[14,17,61,62,63,64,65,66,67,68,69,70,71,72,99,102,110,111,112,118,124,125,128,130],ratio:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,151],ravasi:15,ravel:53,raw:[15,17,23,33,47,53,72,73,78,128,134,149,159],raw_error:159,rbf:[12,159],rc:13,rdocument:73,rdrr:73,re:[3,15,18,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,142,149,150,156,159,162,164],reach:[15,159,167],read:[0,5,6,7,14,15,53,58,73,74,96,97,99,100,101,102,107,108,109,110,111,112,113,114,115,117,118,119,121,124,125,128,130,131,132,134,140,141,142,158,161,164,165,167],read_csv:[0,15,134,158],read_excel:15,readi:[159,164],readili:[18,23,163],readm:[20,159,163],readthedoc:[47,93,99,102,110,111,112,113,118,124,125,128,130],real:[12,15,53,159,163],realist:11,realiz:82,realli:[2,14,15,16,18,154],realloc:53,reappli:[62,70],rearrang:53,reason:[15,17,18,31,32,73,85,86,87,89,113,139,150,154,156,159,161,167],recal:[3,15,25,26,27,28,33,34,35,36,50],recap:167,recarrai:53,receiv:[15,21,72,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,150,156,159,162],recent:[14,53,99,100,102,108,109,110,111,112,115,117,118,124,125,128,130,132,140,141,142,162,167],recip:[85,86,87,150,156],reclaim:152,recogn:[4,16],recommend:[0,5,7,8,14,18,31,32,99,102,108,110,111,112,113,116,118,124,125,128,130,134,142,158,159,160,164],recomput:123,reconcil:[1,69,134],reconcili:[0,60,134,158,166],reconcilied_pr:17,record:[21,73,85,86,87,89,113,134,150,156],recov:53,recreat:53,rectifi:85,recurr:[2,95,164],recurs:[13,53,85,86,87,89,113,150,154,156,159],red:[11,12,13,15,159],redefin:[62,63,64,69,70,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],reduc:[13,15,19,20,21,47,49,72,78,99,102,103,110,111,112,113,116,118,124,125,128,130,134,142,162,167],reduce_fx:113,reducelronplateau:113,reduct:[13,39,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,159],reduction_factor:165,refactor:113,refcheck:53,refer:[0,15,17,18,21,39,46,49,53,58,61,62,63,64,65,66,67,68,69,70,71,72,73,85,86,87,89,96,99,101,102,104,110,111,112,113,115,116,119,120,121,122,123,124,125,127,128,130,131,134,142,149,150,154,155,156,158,159,161,162,163,166,167],referenc:[53,72,85,86,87,89,113,134,150,156],refin:13,reflect:[53,159],refresh_r:[16,136],reg:15,regard:[18,35,59,61,62,63,64,65,66,67,68,69,70,71,72,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],regardless:[39,46,47,49,62,63,64,69,70,85,86,87,89,113,150,156],region:[17,18,73,134,149,161],regions_reasons_city_comp:17,regions_reasons_comp:17,regist:[85,86,87,89,106,113,150,156],register_backward_hook:[85,86,87,89,113,150,156],register_buff:[85,86,87,89,113,150,156],register_forward_hook:[85,86,87,89,113,150,156],register_forward_pre_hook:[85,86,87,89,113,150,156],register_full_backward_hook:[85,86,87,89,113,150,156],register_full_backward_pre_hook:[85,86,87,89,113,150,156],register_load_state_dict_post_hook:[85,86,87,89,113,150,156],register_modul:[85,86,87,89,113,150,156],register_module_forward_hook:[85,86,87,89,113,150,156],register_module_forward_pre_hook:[85,86,87,89,113,150,156],register_module_full_backward_hook:[85,86,87,89,113,150,156],register_module_full_backward_pre_hook:[85,86,87,89,113,150,156],register_paramet:[85,86,87,89,113,150,156],register_state_dict_pre_hook:[85,86,87,89,113,150,156],reglu:[86,125,130],regress:[0,2,14,15,57,77,78,95,98,99,100,102,103,108,110,111,112,113,115,118,121,124,125,127,128,130,132,142,149,154,158,161,167],regression_ensemble_model:116,regression_model:[20,78,100,108,109,115,116,117,132,159],regression_train_n_point:[20,116,159],regression_train_num_sampl:[20,116],regression_train_samples_reduct:[20,116],regressionensembl:20,regressionensemblemodel:[0,20,95,116,158,159,161],regressionmodel:[0,20,57,58,75,95,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,142,158,159,161,163],regressionmodel_2020:[96,97,98,100,101,103,104,105,107,108,109,114,115,116,117,119,120,121,122,123,127,131,132,163],regressionmodelwithcategoricalcovari:[108,117],regressor:[21,116,117,153],regular:[2,20,53,156,159,163],regularis:149,reindex:134,reinterpret:53,reject:154,rel:[12,13,14,21,57,58,73,79,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,141,155,159,161],relat:[0,21,37,67,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,158,159,166],relationship:[21,37,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],releas:[85,86,87,89,113,150,156],relev:[2,4,14,15,21,53,105,134,153,154,167],reli:[2,12,20,21,67,99,101,102,110,111,112,118,119,121,124,125,128,130,138,139,140,141,159,163,166],reliabl:53,reload:[18,99,102,110,111,112,113,118,124,125,128,130,136,165],reload_dataloaders_every_n_epoch:113,reload_ext:[11,12],relu:[2,7,8,15,85,86,110,111,113,125,130],remain:[14,20,21,53,61,62,63,64,65,66,67,68,69,70,71,72,134,136,152],remark:15,rememb:2,remind:2,remov:[8,13,15,17,53,61,62,63,64,65,66,67,68,69,70,71,72,85,86,87,89,99,102,106,110,111,112,113,118,124,125,128,130,134,150,154,156,166],removablehandl:[85,86,87,89,113,150,156],remove_dupl:[85,86,87,89,113,150,156],remove_from_seri:154,remove_season:154,remove_trend:154,renam:134,render:21,reparameter:149,repeat:[4,14,15,16,17,53,98,114,159,167],repeatedli:[2,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134],replac:[5,20,53,67,68,72,106,113,134,150,151],replic:159,repo:[0,73,158],report:[18,61,62,63,64,65,66,67,68,69,70,71,72,73,123,165],repositori:20,repres:[0,2,3,4,15,16,17,24,25,26,27,28,32,34,35,36,39,47,49,50,58,63,69,72,77,78,80,99,100,102,106,108,109,110,111,112,113,115,117,118,124,125,128,130,132,134,139,143,149,154,158,159,161,163,166,167],represent:[7,53,55,85,86,87,89,113,134,150,156,166],reproduc:[0,2,15,18,21,158,159,165],reproject:13,request:[0,113,142,152,153,158],requir:[2,3,5,6,9,10,15,16,17,18,21,39,47,49,53,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,77,78,79,80,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,140,141,142,143,149,150,156,159,160,163,164,166],required_match:[4,105],requires_covariates_encod:80,requires_fit:[57,58],requires_grad:[85,86,87,89,113,150,156],requires_grad_:[85,86,87,89,113,150,156],requires_input:80,res_block:159,resampl:[2,13,21,67,73,134],resampled_nokwargs_t:134,resampled_t:134,rescal:[13,64,69],rescale_with_valu:134,research:[0,73,101,158],reset:[17,19,85,86,87,89,99,102,110,111,112,113,118,124,125,128,130,150,156],reset_dataloader_idx_track:136,reset_index:[6,8,9,10,15],reset_model:[99,102,110,111,112,118,124,125,128,130],reset_paramet:87,reshap:[13,53,61,62,63,64,65,66,67,68,69,70,71,72,110,111],residu:[37,39,47,49,69,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,153,154,159],resiz:[11,53],resize_nois:11,resolut:[13,106],resolv:[85,86,87,89,113,150,156],resourc:142,resources_per_tri:165,resp:163,respect:[0,2,5,15,31,32,35,36,39,47,49,53,57,58,61,62,63,64,65,66,68,69,70,71,72,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,140,141,142,150,156,158,159,162,163],respons:[73,113,159],rest:[13,53,113,159,164],restor:[19,99,102,110,111,112,113,118,124,125,128,130],restrict:[5,53,85,87,126,127,154],result:[1,2,3,4,11,13,14,15,16,20,21,25,26,27,28,31,32,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,72,73,75,78,79,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,150,152,154,155,156,159,162,163,167],result_accumul:19,results_df:19,resum:[18,99,102,110,111,112,118,124,125,128,130,167],retain:[2,53,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,153],retain_period_common_to_al:157,retained_compon:2,retrain:[2,5,6,7,8,9,10,14,73,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],retrain_forecasting_model:[20,103],retriev:[11,19,67,78,99,102,110,111,112,118,124,125,128,130,134,136,142,163],return_model_predict:[31,32],return_t:[61,62,63,64,65,66,67,68,69,70,71,72],reus:[15,72,78,134,162],reusabl:85,revers:[19,53,59,87,99,102,110,111,112,113,124,125,128,130],reverse_transform:67,revert:[0,158],revisit:2,rf_smape:15,rf_time:15,rg:124,rho:[82,159],rho_risk:[82,159],rich:[0,18,158,159,163],rick:[0,158],rico:87,ridg:[15,20,21,117,159],right:[3,15,17,72,82,85,87,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,139,142,143,150,159,163,166],rin:19,rinorm:[19,87,99,102,110,111,112,113,124,125,128,130],risk:[18,82,159],river:[6,8,9,10],rmse:[16,82],rmsewithuncertainti:100,rmsle:82,rmsnorm:[87,125,130],rng:156,rnn:[1,2,5,99,118,159,163,164],rnn_model:[5,118,164],rnn_test:2,rnnmodel:[0,2,5,6,9,95,99,102,110,111,112,118,124,125,128,130,158,159,161,164,167],rnnmodel_2020:[99,102,110,111,112,118,124,125,128,130],road:73,rob:17,robjhyndman:[73,123,127,150],robust:20,roc:[29,37],roll:[39,47,49,67,72,134],roll_siz:[99,102,110,111,112,113,118,124,125,128,130],rolling_sum_3_comp_0:134,rolling_udf_5_comp:[72,134],room:[0,158],root:[82,87,154,164],root_path:74,roughli:[2,18,159],round:[15,20,21,53,125],rout:153,routin:136,row:[15,16,17,21,53,55,67,72,93,134,166],rr:159,rrelu:[110,111],rst:53,rtx:167,ru:114,rule:[67,103,151,161],run:[2,3,4,6,8,9,10,13,15,18,21,54,59,61,62,63,64,65,66,67,68,69,70,71,72,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,136,150,156,159,164,165,167],running_mean:[85,86,87,89,113,150,156],running_var:[85,86,87,89,113,150,156],runtim:[13,85,86,87,89,113,150,156],runtimeerror:[53,85,86,87,89,113,150,156],russia:114,ruud:101,s0169207016300243:122,s1:[53,69],s3:53,s:[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,29,31,32,33,39,53,59,61,62,63,64,65,66,67,68,69,70,71,72,73,80,85,86,87,89,96,97,99,100,102,104,106,108,109,110,111,112,113,114,115,117,118,121,124,125,128,130,132,134,136,141,142,143,149,150,153,154,155,156,158,159,161,163,164,165,166,167],sa:[17,73],safe:[53,72,113,134],safer:53,sai:[2,77,78,85,86,87,89,113,150,156,159,161,166],said:19,sake:[2,5,17,78,159,165],sako:13,sakoechiba:[54,55],sakoechiba_align:13,sale:[19,73,167],salt:159,same:[0,2,3,4,5,11,12,13,14,16,18,20,21,25,27,29,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,58,61,62,63,64,65,66,67,68,69,70,71,72,79,80,82,85,86,87,89,93,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,140,141,142,149,150,154,155,156,157,158,159,161,163,166,167],same_kind:53,sampl:[0,2,3,15,18,19,20,21,25,26,27,28,29,32,34,35,36,39,47,49,50,59,60,61,62,63,64,65,66,68,69,70,71,72,73,78,82,88,92,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,140,141,142,149,152,153,154,155,156,158,159,161,163,166,167],sample_freq:73,sample_img:113,sample_s:[11,12],sample_weight:153,sampler:113,samuel:[0,158],san:73,saniti:[17,20,99,102,110,111,112,113,118,124,125,128,130,136,152,167],sanity_check_descript:136,satisfactori:[31,32,99,102,110,111,112,118,124,125,128,130],satisfi:[53,140,141,152,167],saturating_forecast:114,save:[19,20,80,85,86,87,89,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,150,156,160],save_checkpoint:[2,5,6,7,8,9,10,18,19,99,102,110,111,112,118,124,125,128,130,163,165,167],save_hyperparamet:113,save_model:163,saw:167,sba:101,scalabl:164,scalar:[0,2,53,58,73,82,149,158,166],scale:[0,2,3,6,8,9,10,14,15,18,19,20,37,62,64,69,70,71,82,111,113,114,134,149,158,159,162,163,164,165],scaled_valu:13,scaler:[2,5,6,7,8,9,10,14,15,16,18,19,20,58,59,60,61,62,63,64,65,66,67,68,69,71,72,96,97,99,100,101,102,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132,159,163,164,165,167],scaler_air:[2,15],scaler_cov:14,scaler_covari:2,scaler_dataset:2,scaler_en:[6,9,10],scaler_m3:15,scaler_m4:15,scaler_milk:2,scaler_month:20,scaler_sunspot:7,scenario:[20,21,57],scene:[117,149,159,161,163,166],schedul:[19,99,102,110,111,112,113,118,124,125,128,130,165,167],scheme:[134,154],schmidt:154,schwert:154,scienc:[21,122,162],sciencedirect:122,scientif:[0,158,159],scientist:159,scikit:[0,3,12,15,24,39,70,71,92,116,117,158,159],scipi:[13,49,62,72,134],score:[0,15,20,23,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,153,158,159],score_from_predict:[23,37,38,39,40,41,42,43,44,45,46,47,48,49],score_kwarg:31,scorer:[0,23,29,31,32,47,48,49,50,158],scorer_nam:[38,39,40,41,42,43,44,45,46,47,48,49],scov_1_comp_1:142,scov_1_comp_2:142,scov_2_comp_1:142,scov_2_comp_2:142,scratch:[3,98],screen:20,script:[113,164],scriptmodul:[86,87,113,156],se:[127,149],seamlessli:[2,18],search:[13,18,54,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,158,165],searchsort:53,season1:[9,10],season:[2,4,5,8,14,15,21,63,73,82,96,98,104,105,110,114,123,127,154,161],season_length:[119,120,121,122],season_mod:127,seasonal_decompos:154,seasonal_forecast:159,seasonal_model:159,seasonal_ord:96,seasonal_period:[5,104,114,123,159],seasonality_period:127,seasonalitymod:[15,104,127,154,157,159],second:[11,15,53,58,61,62,63,64,65,66,68,69,70,71,72,73,85,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,152,154,155,167],second_order_diff:63,second_seri:16,section:[15,16,20,58,113,159,161,163,164,167],secur:21,see:[0,2,3,4,5,6,8,9,11,12,14,15,16,17,18,19,20,21,53,54,57,58,61,62,63,64,65,66,67,68,69,70,71,72,82,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,149,150,151,153,154,155,156,158,159,161,163,164,166,167],seed:[2,11,12,15,16,21,53,109,123],seem:[2,16,17,18,154,159],seemlessli:14,seen:[1,2,11,15,18,37,73,113,161,163,167],segment:53,seitzer:149,select:[2,4,14,53,54,78,79,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,135,138,155,164,165,167],select_best_model:127,self:[1,15,21,31,32,34,35,39,47,48,49,53,57,58,61,62,63,64,65,67,69,70,71,74,77,85,86,87,89,93,96,97,98,99,101,102,104,105,107,110,111,112,113,114,118,119,120,121,122,123,124,125,127,128,130,131,134,136,150,153,156,167],sell:[85,87,126],selu:[110,111],semilogx:15,send:[0,113,158],sennrich:87,sens:[5,14,15,103,116,118,152,162],sensit:18,sensor:[11,73,166],sep:[53,73,136],separ:[3,8,21,31,32,37,50,53,100,108,109,113,115,117,132,134,142,153,159,164],seq2seri:157,sequenc:[2,3,25,26,27,28,31,32,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,58,59,61,62,63,64,65,66,67,68,69,70,71,72,78,79,80,82,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,140,141,142,151,152,154,155,157,159,163,166,167],sequencedataset:141,sequenti:[2,3,14,59,61,62,63,64,65,66,67,68,69,70,71,82,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,137,150,156,159,166,167],sequential_dataset:140,sequentialencod:[56,57,96,97,99,100,101,102,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132],sequentialencodertransform:[57,58],seri:[4,5,6,7,8,11,12,14,17,18,19,21,23,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,79,80,82,87,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,130,131,132,134,135,138,139,140,141,142,149,150,151,152,157,160,161,162,164,165],serial:[85,86,87,89,113,150,156],series1:[16,53,54,55,73,159,163,166],series1_y_offset:54,series2:[16,53,54,55,159,163,166],series2_y_offset:[13,54],series2seq:157,series3:163,series4:163,series_:[142,159],series_air:[2,159],series_air_sc:2,series_en:[6,9,10],series_en_transform:[6,9,10],series_fil:68,series_hol:159,series_ic:14,series_ice_heat:14,series_ice_transform:14,series_milk:[2,159],series_milk_sc:2,series_multi:[16,134],series_new1:134,series_new2:134,series_nois:159,series_or_tim:142,series_restaur:66,series_sc:[7,8],series_singl:16,series_sp_sc:7,series_sp_transform:[5,6],series_sunspot:[5,6,7],series_transform:[5,14,16,59,62,66,70,71,164],seriou:18,serv:[2,18,82,99,102,110,111,112,118,124,125,128,130,134,155],servic:73,set:[0,2,6,7,8,10,12,15,17,18,19,20,21,31,32,35,36,37,39,46,47,49,53,54,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,74,78,82,85,86,87,89,92,93,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,140,141,142,150,151,152,153,154,155,156,158,159,162,163,164,165,167],set_config:153,set_extra_st:[85,86,87,89,113,150,156],set_facecolor:17,set_fit_request:153,set_mc_dropout:[99,113,118],set_n_job:[61,62,63,64,65,66,67,68,69,70,71,72],set_param:153,set_partial_fit_request:153,set_predict_paramet:113,set_score_request:153,set_titl:[2,13,15,20],set_to_non:[85,86,87,89,113,150,156],set_verbos:[61,62,63,64,65,66,67,68,69,70,71,72],set_ylim:[2,20],setfield:53,setflag:53,setpoint:11,setup:[0,1,18,21,113,136,158,164,167],sever:[0,2,9,17,18,20,31,32,77,78,82,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,150,156,158,161,163,166,167],sf_auto_arima:119,sf_auto_c:120,sf_auto_et:121,sf_auto_theta:122,sgd:[18,167],shall:[85,87,123,126],shallow:[85,86,87,89,113,150,156],shap:[0,21,75,77,158],shap_explain:[21,78],shap_explanation_object:77,shap_method:78,shap_object:[77,78],shap_valu:21,shape:[11,12,13,14,15,21,50,53,54,55,58,61,62,63,64,65,66,67,68,69,70,71,72,82,89,99,113,118,125,134,139,142,149,153],shape_a:53,shapexplain:[21,77,78],shapexplainabilityresult:[77,78],shaps_:78,shard:113,share:[2,19,53,86,87,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,142,156,166],share_memori:[85,86,87,89,113,150,156],share_memory_:[85,86,87,89,113,150,156],shared_tim:142,shared_weight:[102,112],sharp:13,shazeer:[125,130],shift:[0,13,21,55,67,87,99,102,110,111,112,113,124,125,128,130,134,137,155,158,159],shift_covari:141,shifted_dataset:141,shifteddataset:[118,141],shin:154,ship:21,shop:167,shorten:2,shorter:[4,13,18,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,140,141],shortest:15,shot:[14,15,21,99,100,102,108,109,110,111,112,113,115,117,124,125,128,130,132],should:[2,15,16,31,32,37,39,47,49,53,58,61,62,63,64,65,66,67,68,69,70,71,72,80,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,142,150,153,154,155,156,159,162,164,167],show:[2,4,5,6,7,8,9,11,12,14,15,16,17,20,21,31,32,38,39,40,41,42,43,44,45,46,47,48,49,50,53,79,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,136,142,150,156,159,161,165,167],show_anomali:[29,31,32,39,47,48,49],show_anomalies_from_predict:[38,39,40,41,42,43,44,45,46,47,48,49],show_anomalies_from_scor:50,show_cost:54,show_index_a:[14,79],show_plot:79,show_seri:[13,54],show_warn:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],showcas:[1,161],shown:[2,15,21,79,96,97,98,99,100,101,102,104,105,107,108,109,110,111,112,113,114,115,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,162,163,164,167],shrink:53,shutil:[5,7,9,19],side:[13,53,55,102,161,167],sigma:149,sigmoid:[110,111],signal:[4,11,12,13,72,93,107,134,163],signatur:[82,85,86,87,89,106,113,142,150,156],signific:[11,18,19,105,113,151,154,159],significantli:[4,13,18,142,167],silent:[85,86,87,150,156],silicon:15,sim:85,similar:[0,2,3,13,15,20,35,53,66,82,85,86,87,89,97,111,113,114,128,134,142,150,156,158,159,166,167],similarli:[2,15,17,19,53,66,72,85,86,87,89,109,111,113,128,134,142,149,150,156,159,161,167],simpl:[2,3,4,9,11,12,13,17,20,21,31,32,53,85,86,87,89,94,98,99,102,103,105,107,110,112,113,116,118,124,125,127,128,130,139,150,152,153,156,159,161,165,166,167],simplemodel:113,simpler:[159,161],simplerangescal:[64,69],simpletransform:[61,65,69],simplex:149,simpli:[2,4,13,17,20,37,38,53,57,61,62,63,64,65,66,67,68,69,70,71,72,98,103,116,130,134,142,159,163,167],simplic:[17,18,21,159],simplifi:[8,13,21,53,73,149],simplified_nam:149,simul:[0,5,6,158],simultan:[15,53],sin:[11,58,134,155,159],sinc:[2,3,4,5,6,7,13,14,15,20,21,53,63,85,86,87,89,103,113,116,142,149,150,152,156,159,164],sine:[2,9,16,58,96,97,107,114,119,121,155],sine_seri:16,sine_series_st_bin:16,sine_series_st_cat:16,sine_timeseri:[2,9,10,12,16,155,163],sine_v:16,singapor:73,singl:[0,2,9,10,12,14,16,17,18,20,23,24,35,36,49,53,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,78,79,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,134,142,149,150,152,154,156,157,158,159,161,163,165,166,167],single_model:21,singleargmodel:113,singleencod:[56,57],sinusoid:155,site:17,situat:[162,166],sixth:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],size:[2,7,13,14,15,16,18,21,34,35,36,37,39,47,49,50,53,54,55,58,69,72,79,82,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,136,140,141,142,150,152,154,155,156,159,164,166],skew:134,skip:[3,8,14,18,53,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,150,156],skip_check:[99,102,110,111,112,118,124,125,128,130],sklearn:[0,3,5,7,9,12,15,18,19,20,21,27,70,71,92,100,108,109,115,117,132,142,153,158,159,165],skrodzki:[0,158],slice:[2,5,13,14,15,37,39,53,99,102,110,111,112,118,124,125,128,130,134,138,140,141,143,153,157,159,161,163,167],slice_index:157,slice_intersect:[9,10,134],slice_n_points_aft:134,slice_n_points_befor:134,slide:[49,98],sliding_window_view:142,slightli:[13,15,17,18,159,161,165],slope:[55,159],slow:[15,164],slower:[15,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],small:[15,18,20,59,61,62,63,64,65,66,67,68,69,70,71,142,152,159],small_siz:13,smaller:[13,53,55,124,134,142,159],smallest:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,142],smape:[2,15,18,82,150,165],smape_v:[18,165],smapeloss:[15,150],smapes_2:15,smapes_3:15,smapes_4:15,smapes_m3:15,smart:159,sme:73,smooth:[0,4,5,11,12,15,16,73,95,101,120,127,158,159,163],snapshot:163,snip:167,snippet:163,so:[2,3,8,9,12,13,16,17,18,21,53,61,62,63,64,65,66,68,69,70,71,72,73,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,141,143,149,150,152,153,156,157,159,163,164,166,167],societi:73,softplu:[110,111],softwar:[85,87,126],solar:[21,73],solut:[54,58,127],solv:[4,134,159,162],solver:[13,54],some:[0,1,2,3,4,9,13,15,16,17,18,20,21,23,29,33,35,37,53,54,57,58,61,62,63,64,65,66,68,69,70,71,72,73,78,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,134,138,139,140,141,149,150,152,153,156,158,160,161,162,163,164,165,166,167],some_column:125,some_compon:77,some_dtyp:53,some_other_st:113,some_sklearn_model:15,some_st:113,somecomponentbasedexplain:77,someforecastingmodel:[58,161],somehorizonbasedexplain:77,someon:3,someth:[53,85,86,87,89,113,136,150,156],something_cool_i_want_to_sav:113,sometim:[2,3,21,53,85,99,102,104,110,111,112,118,124,125,128,130,159,163,166],sometorchforecastingmodel:[58,167],somewhat:[13,15],somewher:[15,16],soon:2,sore:73,sort:[2,53,142,159,166],sorter:53,sourc:[0,18,25,26,27,28,31,32,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,77,78,79,80,82,85,86,87,88,89,91,92,93,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,133,134,136,138,139,140,141,142,143,144,149,150,151,152,153,154,155,156,157,158],south:17,sp:15,space:[11,18,39,53,58,73,93,156,165],span:[2,57,82,99,102,110,111,112,118,124,125,128,130,134,138,140,141,157,159,160,163,166],spars:153,sparsecostmatrix:53,spawn:[54,99,102,110,111,112,118,123,124,125,128,130,134],speak:[118,161,167],special:[2,19,161,165],specif:[4,8,15,16,53,57,58,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,82,99,102,110,111,112,113,118,124,125,128,130,134,142,149,159,161,163,164,166],specifi:[0,2,3,6,15,16,17,18,20,21,53,57,58,61,62,63,64,65,66,67,68,69,70,71,72,77,78,85,86,87,89,92,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,139,142,149,150,154,155,156,158,159,161,163,166,167],specifici:15,specifii:114,speed:[2,3,5,13,15,18,53,54,73,167],speedup:[159,167],spelt:53,spend:15,spent:15,spike:159,split:[0,4,6,8,9,10,14,15,17,18,19,21,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,140,141,152,158,159,165,166,167],split_aft:[3,4,5,6,7,8,9,10,14,19,20,21,134,159,164,165,167],split_befor:[0,3,14,134,158,159],split_point:[134,157],splitcovari:143,splitcovariatesinferencedataset:139,splitcovariatesmodel:167,splitcovariatessequentialdataset:140,splitcovariatesshifteddataset:141,splitcovariatestorchmodel:[129,143],splitcovariatestrainingdataset:[140,141,143],splitter:152,spot:[0,158],sqrt:[53,82],squar:[3,82,87,153],squarer:3,squeez:53,src:[89,130],src_key_padding_mask:89,src_mask:89,ss:163,ssig:[0,158],st:16,stabil:87,stabl:[27,46,53,58,67,99,102,110,111,112,118,124,125,128,130,131,134,142,155],stack:[2,5,8,11,14,15,16,20,21,61,62,63,64,65,66,67,68,69,70,71,72,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,142,159,161,163],stack_sampl:[61,62,63,64,65,66,67,68,69,70,71,72],stackexchang:121,stadt:73,stage:[2,5,6,8,9,10,113,136,154,163,167],stai:161,stall:113,stamp:[2,18,32,73,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,163,166],stand:[16,58,71,123,167],standard:[4,7,53,122,134,136,149,155],standardis:2,start:[2,5,6,7,8,9,10,11,13,14,15,16,18,20,32,53,55,58,59,63,67,68,72,77,78,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,139,141,152,154,155,157,159,162,164,167],start_column0:55,start_dat:[8,15,21],start_format:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],start_month:15,start_p:97,start_q:97,start_t:134,start_tim:[2,5,6,8,9,10,13,14,15,21,134,142],start_valu:[3,64,69,155],start_year:15,starting_valu:155,startingd:15,stat:[49,62,121,134,154],state:[0,2,5,8,9,10,11,19,21,73,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,150,155,156,158,162,163],state_dict:[85,86,87,89,99,102,110,111,112,113,118,124,125,128,130,136,150,156],state_kei:136,static_col:[16,134],static_cov:[71,134],static_cov_1:134,static_cov_2:134,static_covari:[16,61,62,64,65,69,70,71,134,138,139,140,141,142,143,161,166],static_covariates_import:77,static_covariates_transform:[71,125],static_covariates_valu:134,static_covs_multi:[16,134],static_covs_singl:16,staticcovariatestransform:[16,71,125],staticmethod:[61,64,65,69],station:73,stationar:[63,131,154],stationari:[63,80,134,154],stationarity_test:154,stationarity_test_adf:154,stationarity_test_kpss:154,statist:[0,3,5,7,8,9,14,21,95,96,97,98,99,100,101,102,104,105,107,108,109,110,111,112,114,115,117,118,119,120,121,122,123,124,125,127,128,130,131,132,135,158,159,161],statsforecast:[0,88,101,119,120,121,122,158,162],statsforecast_util:88,statsforecastautoarima:[0,95,97,158,161],statsforecastautoc:[0,95,158,161],statsforecastautoet:[0,95,158,161],statsforecastautotheta:[0,95,158,161],statsmodel:[17,96,104,131,154],stattool:154,statu:[61,62,63,64,65,66,67,68,69,70,71,72],std:[9,10,11,12,18,53,72,88,134,155],stdin:53,steadi:11,steeper:[13,55],step:[2,3,7,13,14,15,16,18,20,21,26,28,33,53,57,58,59,62,63,64,67,68,69,70,72,78,80,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,139,141,149,153,155,159,161,165,166,167],stephan:121,still:[2,4,15,18,21,53,99,102,107,110,111,112,118,124,125,128,130,142,159,160,161],stl:154,stm:122,stochast:[0,3,18,40,41,42,43,44,45,50,62,70,82,92,93,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,154,158,166],stop:[13,15,18,19,59,68,99,102,110,111,112,118,124,125,128,130,150,159,165],storag:[53,85,86,87,89,113,134,150,156,164],store:[2,3,9,19,21,53,55,58,61,62,63,64,65,66,67,68,69,70,71,72,77,79,85,86,87,89,99,102,106,110,111,112,113,118,124,125,128,130,134,136,150,156,161,163,166],str:[4,6,8,9,10,25,26,27,28,31,32,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,57,58,61,62,63,64,65,66,67,68,69,70,71,72,73,74,77,78,79,80,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,142,149,150,151,152,153,154,155,156],strategi:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,164],strength:[149,163],strglo:[21,73],strict:[85,86,87,89,99,102,110,111,112,113,118,124,125,128,130,150,156],strictli:[18,54,85,86,87,89,99,102,110,111,112,113,117,118,124,125,128,130,149,150,156],stride:[2,5,6,7,8,9,10,14,20,39,47,49,53,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,139,142,150,156],stride_trick:[53,142],strided_moving_window:142,strides_a:53,string:[53,57,58,67,72,78,80,85,86,87,89,99,102,108,110,111,112,113,117,118,124,125,128,130,134,142,150,153,155,156],strip:[21,67,134],strong:[4,21],stronger:9,strongli:164,structur:[53,113,142],studi:[18,165],style:[15,53,54],sub:[2,15,21,53,57,58,125,151,153,157,161],subclass:[53,57,58,85,86,87,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,150,156],subject:[2,73,78,85,87,126,164],sublicens:[85,87,126],submodul:[0,85,86,87,89,113,150,156,158,167],subobject:153,subok:53,subplot:[2,15,19,20,79],subprocess:164,subroutin:[82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],subsect:[161,167],subsequ:[37,39,47,49,53,64,69,85,86,87,89,105,113,150,156],subseri:[151,167],subset:[17,37,78,167],subslic:15,substanti:[85,87,126,167],subtil:20,subtract:[4,96,112,131,159],succe:15,success:[2,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,149,156,159],successfulli:164,suffer:18,suffici:[2,15,31,32,99,102,110,111,112,118,124,125,128,130,159],suffix:134,suggest:[0,11,18,53,98,99,102,104,110,111,112,118,124,125,128,130,134,158,159,162,167],suggest_categor:[18,165],suggest_float:[18,165],suggest_int:[18,165],suit:[4,5,23],suitabl:[0,7,53,130,158,167],sum:[9,10,15,17,21,53,54,63,72,113,134,153],sum_:[82,150],sum_city_nonc:17,sum_i:149,summari:[78,85,99,102,110,111,112,118,124,125,128,130,156,160],summaris:69,summary_plot:[21,78],summarywrit:[7,9],summer:54,sun1:167,sun_gru:5,sun_spots_transform:7,sundai:73,sunspot:[7,13,73],sunspotsdataset:[5,6,7,13,73],supervis:[15,20,21,99,102,110,111,112,117,118,124,125,128,130,159],suppli:[14,16,57,58,61,62,63,64,65,66,68,69,70,71,72,73,92,139,161,167],support:[0,2,3,14,16,17,18,20,21,32,53,55,57,58,78,82,85,91,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,149,151,152,153,154,158,159,160,162,166],supports_future_covari:[96,97,98,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],supports_likelihood_parameter_predict:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],supports_multi_t:163,supports_multivari:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],supports_optimized_historical_forecast:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],supports_past_covari:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,119,120,121,122,123,124,125,127,128,130,131,132],supports_static_covari:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],supports_transferrable_series_predict:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],suppos:[3,142],suppress:114,suppress_stdout_stderror:114,suppress_warn:134,sure:[2,6,20,21,53,99,102,110,111,112,113,118,124,125,128,130,162,163],surprisingli:4,suscept:2,suspicion:58,swap:53,swapax:53,sweep:[99,102,110,111,112,118,124,125,128,130],swiglu:[86,125,130],swiss:73,switzerland:[15,21,73],sy:53,symmetr:[82,134],sync:113,sync_dist:113,sync_dist_group:113,sync_grad:113,synchron:113,syntax:53,synteto:101,synthet:11,system:[0,15,18,73,87,93,107,113,130,158,159],systemerror:53,t0:21,t:[2,3,4,6,9,14,15,16,17,18,21,53,61,62,63,64,65,66,67,68,69,70,71,72,73,78,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,142,150,153,154,155,156,159,161,162,163,164,167],t_0:[77,78],t_0_target_lag:[77,78],t_1:[77,78],t_1_target_lag:[77,78],t_destin:[85,86,87,89,113,150,156],t_i:21,ta:[17,73],tab:15,tabl:[0,2,20,142,154,161,167],tabular:[15,21,117,142,159],tabularizion:21,tafti:[0,158],tag:[58,113],tail:[134,149],tailor:58,take:[0,2,3,9,11,12,15,18,20,21,23,24,29,33,37,53,54,57,58,61,62,63,64,65,66,67,68,69,70,71,72,76,77,78,82,85,86,87,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,139,150,154,155,156,158,159,163,166,167],taken:[3,20,61,69,73,114,126,134],takes_future_covari:58,takes_past_covari:58,tanh:[110,111],target1:161,target2:[161,167],target:[0,2,5,9,10,14,15,16,20,31,32,57,58,67,72,73,77,78,79,80,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,140,141,142,149,150,153,156,158,159,160,161,162,163,166],target_2:161,target_compon:[77,78,79,80],target_dim:[100,108,109,115,117,132],target_nam:[77,78],target_s:[99,118],target_seri:[9,10,138,139,140,141,142],target_train:[9,10],target_v:[9,10,167],task:[3,15,37,80],tau:82,taylor:73,taylordataset:73,tb:74,tbat:[0,95,158,159,161],tbats_model:123,tcn:[0,1,2,6,10,20,124,158,163,165],tcn_air:6,tcn_energi:6,tcn_model:[18,20,124,165],tcn_sun:6,tcn_test:10,tcnmodel:[0,2,6,10,18,20,95,124,158,159,161,163,165],teardown:[113,136],technic:[85,86,87,89,113,149,150,156,162],techniqu:[17,18,20,57,99,105,107,110,116,118,124,125,128,130,156,159],tell:[0,4,5,14,15,16,53,58,113,158,159],temp:19,temperatur:[4,21,73,99,100,102,108,109,112,115,117,118,125,128,131,132,161,167],temperature_forecast:167,temperaturedataset:[4,73],templat:21,tempor:[0,2,19,21,57,58,61,62,63,64,65,66,67,68,69,70,71,72,75,95,126,128,158,159,161],temporal_decoder_hidden:128,temporal_kw:58,temporal_width_futur:128,temporal_width_past:128,temporalfusiontransform:125,temporarili:136,tend:[2,20,21,161,167],tensor:[85,86,87,89,99,110,111,113,118,139,149,150,156,164],tensorboad:167,tensorboard:[99,102,110,111,112,113,118,124,125,128,130,167],tensorboardx:[7,9],tent:[82,127],term:[2,4,14,15,20,73,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,149,159,163,164,167],terribl:159,test:[2,4,6,7,8,9,15,18,19,49,53,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,136,152,153,154,159,164,165,167],test_acc:113,test_cas:16,test_dataload:113,test_descript:136,test_loss:113,test_progress_bar:136,test_seri:15,test_siz:152,test_stationar:80,test_step:113,testing_model:7,teunter:101,text:[2,8,13,53,82,113,149],tf:113,tfm:160,tfmprogressbar:[2,6,8,9,10,136],tft:[0,75,77,95,158,167],tft_explain:79,tft_model:[79,125],tft_submodel:126,tftexplain:[14,77,79],tftexplainabilityresult:[77,79],tftmodel:[0,2,14,75,95,99,102,110,111,112,118,124,125,128,130,158,159,161,167],tg:[9,10,11,12,13,16,163],tgt:[89,130,150],tgt_is_caus:89,tgt_key_padding_mask:89,tgt_mask:89,th:[14,53,61,62,63,64,65,66,67,68,69,70,71,72,114,134,138,140,141,142,149],thailand:114,than:[2,3,4,12,13,14,15,16,18,19,20,49,50,53,54,55,61,62,63,64,65,66,67,68,69,70,71,72,78,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,140,141,142,154,159,161,162,163,164,166],thank:18,thei:[2,3,14,15,16,17,18,20,23,25,27,33,35,36,37,38,40,41,42,43,44,45,46,48,53,58,85,86,87,89,91,96,97,98,99,100,101,102,103,107,108,109,110,111,112,113,114,115,116,117,118,119,121,123,124,125,128,130,131,132,134,140,141,149,150,154,156,157,159,161,163,166,167],them:[2,3,7,12,13,14,15,16,17,18,20,21,24,53,54,58,59,61,62,63,64,65,66,68,69,70,71,72,85,86,87,89,98,99,102,103,110,111,112,113,116,118,124,125,128,130,134,136,150,154,156,159,161,167],themselv:[2,15,53,59,161,163,167],theori:[21,142],therebi:[61,62,63,64,65,66,67,68,69,70,71,72],therefor:[11,63,140,141,159],thereof:113,theta:[0,4,11,15,17,95,122,158,161],theta_smap:15,theta_smapes_m3:15,theta_tim:15,theta_time_m3:15,thi:[0,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,20,21,31,32,35,36,37,38,39,46,47,48,49,53,54,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,79,80,82,85,86,87,89,92,93,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,134,136,138,139,140,141,142,143,149,150,152,153,154,155,156,158,159,160,161,162,163,164,165,166],thin:97,thing:[0,2,5,8,9,18,19,21,113,158,159,162,165],think:[2,161],third:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],thoma:[0,158],those:[3,17,58,61,62,63,64,65,66,67,68,69,70,71,72,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,139,142,159,163,166],though:[2,6,12,13,15,127,142,149,159,161,167],thousand:159,thread:[15,123],three:[0,2,4,7,14,15,16,20,67,73,79,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,158,159,161,164],threshold:[13,29,31,32,33,35,37,38,39,40,41,42,43,44,45,46,47,48,49,99,102,110,111,112,118,124,125,128,130,154],threshold_detector:36,thresholddetector:36,throat:73,through:[13,15,16,18,19,53,58,61,62,63,64,65,66,68,69,70,71,72,89,113,136,164,167],throughout:[18,99,102,110,111,112,118,124,125,128,130,165],thrown:[85,86,87,89,113,142,150,156],thu:[2,3,5,18,39,47,49,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,152,164],thumb:161,ti:53,tic:15,tick:13,tide0:19,tide1:19,tide:[0,19,95,158],tide_model:128,tidemodel:[0,2,19,95,128,158,161],tight:142,tight_layout:[15,20,21],tile:13,time:[4,5,6,7,8,9,10,11,12,14,17,18,19,20,21,23,26,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,51,53,55,57,59,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,79,80,82,85,86,87,89,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,130,131,132,134,135,138,139,140,141,142,149,150,151,152,156,157,159,160,162,163,164,165],time_axi:15,time_col:[15,16,134],time_dim:134,time_idx:17,time_index:[14,16,20,58,61,62,63,64,65,66,67,68,69,70,71,72,131,134,142,155,159],time_intersect:14,time_rang:13,time_seri:[73,74],timedelta:[72,134],timeout:18,times_m3:15,timeseri:[0,5,6,7,8,9,10,11,12,13,14,15,17,18,21,22,24,25,26,27,28,31,32,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,54,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,77,78,79,80,82,91,92,93,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,135,138,139,140,141,142,143,151,152,154,155,157,158,160,161,162,163],timeseries_gener:[2,3,5,6,9,10,11,12,13,14,16,20,61,64,65,69,96,97,107,114,119,121,131,134,155,159,163],timestamp:[3,4,5,6,7,8,9,10,14,15,17,20,21,32,39,46,47,49,50,57,66,77,78,80,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,151,155,157,159,163,164,165,166,167],timestemp:21,timestep:[21,37,61,62,63,64,65,66,67,68,69,70,71,72,114,131,134,142,152,167],timezon:58,timsort:53,titl:[0,2,3,5,7,8,13,14,15,31,32,38,39,40,41,42,43,44,45,46,47,48,49,50,85,154,158,159],titles:13,tl:160,tlc:73,to_cpu:[99,102,110,111,112,118,124,125,128,130,167],to_csv:134,to_dens:53,to_dtyp:113,to_empti:[85,86,87,89,113,150,156],to_json:134,to_onnx:113,to_pickl:134,to_torchscript:113,tobyt:53,todailyaverag:3,tofil:53,togath:142,togeth:[2,13,20,58,59,61,62,63,64,65,66,67,68,69,70,71,72,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,138,139,161,166],toggl:[53,113],toggle_optim:113,toi:[2,3,9,11],token:[85,113],tokyo:73,tolist:53,toma:[0,158],tonn:73,too:[0,2,3,15,18,104,142,152,158,159,161,163,164,167],took:82,tool:[0,18,23,158],top:[9,17,20,69,134,160,161],top_level_compon:134,top_level_seri:134,topdownreconcili:[17,69],topic:[2,20,73,164,167],torch:[2,5,6,7,8,9,10,14,15,18,19,85,86,87,89,99,102,110,111,112,113,118,124,125,128,129,130,136,139,143,150,156,160,161,163,165],torch_doctest_cuda1:[85,86,87,89,150,156],torch_forecasting_model:[99,102,110,111,112,118,124,125,128,130],torch_metr:[99,102,110,111,112,113,118,124,125,128,130,165,167],torch_stabl:164,torch_xla:164,torchforecastingmodel:[16,19,57,58,99,102,110,111,112,113,118,124,125,128,129,130,136,143,165,167],torchmetr:[99,102,110,111,112,113,118,124,125,128,130,165,167],torchparametricprobabilisticforecastingmodel:129,torchscript:113,torchtext:164,torchvis:[113,164],tort:[85,87],tostr:53,total:[2,3,4,13,15,17,21,53,54,59,61,62,63,64,65,66,67,68,69,70,71,73,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,140,141,142,153,159,164,166],total_fmt:136,total_predict_batches_current_dataload:136,total_test_batches_current_dataload:136,total_train_batch:136,total_val_batch:136,total_val_batches_current_dataload:136,touch:159,tourism:[1,73],tourism_seri:17,toward:[2,14],tpu:[0,15,18,113,158,159,160,167],tpu_cor:164,tqdm:[5,7,9,14,15,18,21,136],tqdm_asyncio:136,tqdm_notebook:[5,7,9,14],tqdm_progress:136,tqdmprogressbar:[6,16,136],trace:[53,69,113],traceback:53,track:[2,11,99,102,110,111,112,118,124,125,128,130,167],trade:54,tradeoff:15,tradit:21,traffic:159,trafficdataset:73,train:[0,3,5,6,7,8,9,10,16,17,18,19,21,25,29,31,32,33,34,35,37,39,47,48,49,57,58,69,77,78,79,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,136,137,139,142,149,150,152,156,158,160,161,162,163,164,165,166],train_air:[2,159],train_air_sc:159,train_batch:113,train_dataload:113,train_dataset:[99,102,110,111,112,118,124,125,128,130],train_descript:136,train_en:[6,9,10],train_en_transform:[6,9,10],train_fn_with_paramet:165,train_forecasting_model:[20,98,103,116],train_ic:14,train_ice_transform:14,train_length:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],train_loss:[113,167],train_metr:[15,159],train_milk:[2,159],train_milk_sc:159,train_model:165,train_num_sampl:103,train_progress_bar:136,train_sample_shap:113,train_samples_reduct:103,train_scal:[6,7,8],train_seri:[15,16,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],train_set:18,train_sp:[5,7],train_sp_scal:7,train_sp_transform:[5,6],train_test_split:152,train_transform:[5,14,164],train_using_historical_forecast:[20,116],train_val_set:18,trainabl:[15,23,29,33,37,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,159,164],trainer:[0,15,19,99,102,110,111,112,113,118,124,125,128,130,136,158,159,163,164,167],training_cutoff:[14,167],training_cutoff_ic:14,training_dataset:[138,140,141,143],training_epoch_mean:[113,136],training_iter:165,training_length:[2,5,9,118,164,167],training_sc:2,training_set:2,training_step:[113,136],training_step_output:[113,136],trainingdataset:[2,99,102,110,111,112,118,124,125,128,130,141,143,167],trait:2,transfer:[0,67,113,134,158,167],transfer_batch_to_devic:113,transferablefuturecovariateslocalforecastingmodel:[96,107,131],transform:[0,2,5,6,8,9,10,13,15,17,18,19,20,23,25,26,27,28,33,37,39,47,48,49,50,51,57,58,59,66,68,69,70,73,75,82,85,87,89,95,96,97,99,100,101,102,107,108,109,110,111,112,113,114,115,117,118,119,121,123,124,126,128,131,132,134,155,158,159,161,163,164,165,166,167],transform_mask:57,transformer_cat:71,transformer_heat:14,transformer_ic:14,transformer_model:130,transformer_num:71,transformer_sunspot:5,transformerdecoderlay:89,transformerencoderlay:89,transformermodel:[0,2,7,95,128,130,158,161],transit:[85,86,87,89,113,150,156,159],translat:[21,139],transpar:[2,6],transport:[15,53,73],transpos:53,travel:17,travers:[53,59],treat:[31,32,37,39,47,49,72,107,108,113,117,134,152,156],treat_na:[72,134],tree:[17,20,78,108,115],trend:[2,4,5,8,9,10,14,20,21,96,104,105,110,123,127,131,154,159,161],trend_mod:127,trend_poly_degre:105,trend_polynomial_degre:[2,8,15,110],trendmod:[15,127,157],tri:[15,85,86,87,89,105,113,150,152,156],trial:[18,165],trick:167,trigger:[20,167],trigonometr:123,trim:[0,96,97,101,107,114,119,121,131,142,157,158],trivial:[0,2,18,158],troubl:53,trough:[12,13],truli:53,truncat:[72,134,154],trust:[21,159],truth:[19,20,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,149],ts:[3,4,6,11,13,16,127,134,154,157,159],ts_2:4,ts_3:4,ts_air:20,ts_caus:154,ts_effect:154,ts_energi:21,ts_energy_train:21,ts_energy_v:21,ts_fit:[61,62,63,64,65,66,67,68,69,70,71,72],ts_inverse_transform:[62,63,64,65,66,67,69,70,71],ts_length:152,ts_scale:[6,16],ts_shape:13,ts_shape_seri:13,ts_smooth:13,ts_transform:[8,61,62,63,64,65,66,67,68,69,70,71,72],ts_weather:21,tsa:[17,104,154],tsb:101,tslib:134,tu:114,tune:[15,18,19,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,136,159,160],tune_callback:165,tune_dart:165,tuneabl:18,tuner:[99,102,110,111,112,118,124,125,128,130],tunereportcallback:165,tupl:[15,17,21,53,54,55,57,58,73,80,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,138,139,140,141,142,143,150,152,154,156],turkei:114,turn:[100,108,109,115,117,132,140,141,152,153,156,163],tutori:[2,16,161],tweak:[7,20],two:[2,3,5,7,8,13,14,15,16,20,21,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,58,61,62,63,64,65,66,67,68,69,70,71,72,73,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,139,149,150,152,155,156,161,162,163,166,167],type:[2,9,15,16,17,25,26,27,28,31,32,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,77,78,79,80,82,85,86,87,88,89,91,92,93,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,136,139,141,142,143,149,150,151,152,153,154,155,156,157,161,163,164,166,167],type_of_cov:[77,78],typecod:53,typeerror:[53,113,142],typevar:[85,86,87,89,113,150,156],typic:[3,15,17,18,24,33,53,63,70,71,85,86,87,89,113,119,121,149,150,156,161,167],tz:[21,58,96,97,99,100,101,102,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132,134,155],u1:[3,64,66,69],u2:53,u8dart:159,u:[11,18,73,93,153],ub:142,uber:73,ubertlcdataset:73,uci:73,udf:[72,134],ugz_meteodaten_stundenmittelwert:73,uic:53,uint32:53,uint8:53,ultim:53,un:[108,109,115,117,132],unabl:[61,62,63,64,65,66,67,68,69,70,71,72],unappli:[61,62,63,64,65,66,68,69,70,71,72],unapply_component_mask:[61,62,63,64,65,66,67,68,69,70,71,72],uncertainti:[9,12,100,110,111,124,125,128,149,156],unchang:[53,85,86,87,89,150,153,156],uncom:12,uncov:[15,37],undefin:[53,85,86,87,89,113,150,156],under:[15,20,21,40,41,42,43,44,45,46,53,58,61,62,63,64,65,66,68,69,70,71,72,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,149,150,154,156,160,163,167],underli:[0,11,12,16,21,31,32,39,47,53,57,58,61,62,63,64,65,66,67,68,69,70,71,72,77,93,108,116,123,134,143,153,155,158,161,166],understand:[14,17,159,162],understim:20,undifferenc:63,undo:[61,62,63,64,65,66,67,68,69,70,71,72],undocu:53,unequ:[140,141],unexpect:[85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,150,156],unexpected_kei:[85,86,87,89,113,150,156],unfortun:[3,73,167],unfreez:113,uni:[16,54,134,154],unifi:[3,21,159],uniform:[138,140,141,165],uniform_averag:153,uniformli:[134,138,149],union:[2,25,26,27,28,31,32,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,54,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,77,78,79,80,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,139,140,141,142,151,152,153,154,155,157],uniqu:[2,58,113,125,134,136,154],unit8:[0,17,142,158,162],unit8co:108,unit:[73,85,134,154,155,164],unit_scal:[64,69],univari:[0,2,7,8,14,18,24,25,26,27,28,38,39,40,41,42,43,44,45,46,47,48,49,50,54,73,77,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,149,154,155,158,159,166],univariate_compon:[8,134],univariate_scor:48,univariate_valu:[13,134],unknown:[99,100,102,108,109,110,111,112,115,117,124,125,128,130,132],unless:[18,53,85,86,87,89,92,113,134,150,156],unlik:[53,142,162],unmask:[61,62,63,64,65,66,67,68,69,70,71,72,127],unnecessarili:[99,102,110,111,112,118,124,125,128,130],unpack:[53,88],unpack_sf_dict:88,unpickl:53,unpromis:18,unrestrict:154,unsaf:53,unsampl:67,unscal:113,unseen:[2,8],unspecifi:53,unstabl:15,unstack:[61,62,63,64,65,66,67,68,69,70,71,72],unstack_sampl:[61,62,63,64,65,66,67,68,69,70,71,72],unsurprisingli:18,untest:164,until:[2,9,10,14,15,21,73,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,154,155,159,163,165,167],untoggl:113,untoggle_optim:113,untrain:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],untrained_model:[99,118],untransform:[61,62,63,64,65,66,67,68,69,70,71,72],untypedstorag:113,unus:14,unweight:73,up:[0,2,5,13,15,17,53,58,59,61,62,63,64,65,66,67,68,69,70,71,72,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,142,154,155,158,159,161,163,164,165,166,167],upcom:167,updat:[53,55,73,85,86,87,89,99,102,106,110,111,112,113,118,124,125,128,130,150,153,156],upfront:[159,163,167],upload:15,upon:[4,31,32,63,93,127,159],upper:[2,19,35,36,50,53,99,100,102,108,109,110,111,112,115,117,118,124,125,128,130,132,134,140,141,142,167],upsampl:67,upward:[2,4,20],uri:74,url:[0,113,158],us:[0,1,4,5,6,7,8,9,10,13,14,19,23,24,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,79,80,82,85,86,87,89,92,93,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132,134,136,138,139,140,141,142,143,149,150,151,152,153,154,155,156,157,158,160,162],usa:15,usabl:[133,156,166],usag:[3,21,98,99,102,103,105,106,107,110,111,112,116,118,124,125,128,130,135,142,164,167],use_arma_error:123,use_box_cox:123,use_damped_trend:123,use_fitted_valu:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],use_layer_norm:128,use_moving_window:142,use_pl_optim:113,use_reversible_instance_norm:[19,99,102,110,111,112,113,124,125,128,130],use_static_covari:[14,100,102,108,109,112,115,117,125,128,132,138,139,140,141,142],use_trend:123,usedlag:154,useless:[4,73],user:[0,2,17,21,36,53,57,58,61,62,63,64,65,66,67,68,69,70,71,72,85,86,87,89,96,97,99,100,101,102,107,108,109,110,111,112,113,114,115,117,118,119,121,124,125,127,128,130,131,132,134,150,153,156,158,159,161,163,166],user_guid:67,uses_future_covari:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],uses_past_covari:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],uses_static_covari:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,142],usgasolinedataset:73,usual:[2,13,15,53,78,85,130,150,161,162],uszkoreit:130,utc:73,util:[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,25,26,27,28,57,61,64,65,69,78,80,85,86,87,89,96,97,99,102,104,105,107,110,111,112,113,114,118,119,121,123,124,125,127,128,130,131,133,134,136,138,139,140,141,142,143,144,149,150,153,154,158,159,163,164,165,167],utilis:142,v0:126,v1:69,v23:[0,158],v2:20,v:[53,113,153,164],v_num:[136,164],val:[0,4,5,6,7,8,14,15,17,18,19,20,21,53,61,62,63,64,65,66,67,68,69,70,71,72,99,102,110,111,112,113,118,124,125,128,130,136,158,159,163,164,165,167],val_acc:113,val_air:[2,159],val_batch:113,val_dataload:113,val_dataset:[99,102,110,111,112,118,124,125,128,130],val_en:[6,9,10],val_en_transform:[6,9,10],val_future_covari:[2,5,9,99,100,102,108,110,111,112,118,124,125,128,130,132,167],val_ic:14,val_ice_transform:14,val_len:[18,165],val_loss:[18,19,99,102,110,111,112,113,118,124,125,128,130,165,167],val_meanabsolutepercentageerror:[165,167],val_metr:[15,159],val_milk:[2,159],val_past_covari:[2,6,10,99,100,102,108,110,111,112,118,124,125,128,130,132,167],val_progress_bar:136,val_scal:[6,7,8],val_seri:[2,5,6,7,8,9,10,14,18,19,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,164,165,167],val_set:18,val_sp:[5,7],val_sp_scal:7,val_sp_transform:[5,6],val_transform:[5,14,164],valid:[0,3,6,7,8,9,10,16,17,18,19,20,21,57,58,72,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,142,143,152,153,158,160,163,164,165],validation_cutoff:21,validation_descript:136,validation_end:165,validation_sc:2,validation_set:2,validation_step:113,validli:142,valu:[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,20,21,25,26,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,57,58,59,60,61,62,63,64,65,66,67,69,70,71,72,73,77,78,79,80,82,85,86,87,89,91,92,93,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,134,135,136,142,143,144,149,150,152,153,154,155,156,157,158,161,163,165,166,167],valuabl:[2,163],value_amplitud:[9,10,155],value_at_first_step:134,value_col:[15,16,134],value_frequ:[9,10,12,16,155,163],value_ne5:[21,73],value_ne5_q0:21,value_ne5_target_lag:21,value_ne7:73,value_phas:155,value_y_offset:155,valueerror:[3,53,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,157],values_seri:15,van:[0,158],vanilla:[5,19,99,118],var1:16,vari:[0,16,53,67,134,149,158,166],variabl:[2,14,15,16,18,21,53,79,96,125,134,142,153,159,161],varianc:[12,53,69,100,134],variant:[17,85,89,99,118,125,130],variat:[54,82,96,97,98,99,101,102,103,104,105,107,110,111,112,114,116,118,119,120,121,122,123,124,125,127,128,130,131],varieti:[0,158],varima:[0,2,95,158,161],variou:[8,15,107],varuna:85,vaswani:130,ve:[13,15],vector:[2,16,39,46,47,49,69,73,93,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,163],vector_autoregress:131,vectoris:[61,62,63,64,65,66,67,68,69,70,71,72,142],venv:[0,158],verbos:[2,3,5,6,7,8,9,10,14,18,19,20,21,59,61,62,63,64,65,66,67,68,69,70,71,72,82,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,159,165],veri:[4,10,12,15,18,53,113,114,130,134,159,161,164,165,167],version:[0,2,17,18,53,73,85,86,87,89,91,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,136,149,150,153,156,158,161,162,164,167],vertic:[16,54],vertical_split_typ:152,vfr:[17,73],via:[21,53,74,111,128,167],vic:[17,73],video:[0,158],vietnam:114,view:[15,21,53,54,85,86,87,89,113,134,142,143,150,156,159],violin:78,virtual:[65,106,159],virtualenv:[0,158],virtualenvwrapp:[0,158],visit:[73,99,102,108,110,111,112,118,124,125,128,130],visual:[18,29,31,32,38,39,40,41,42,43,44,45,46,47,48,49,50,54,167],visualis:[2,15,18],vizual:21,vmax:21,vmin:21,vn:114,vol:116,voltag:73,volum:[0,158],vs:[15,54,113,160],w1:69,w:[20,21,34,35,36,37,39,46,47,49,50,53,69,73,136,153,159],w_1:85,w_2:85,wa:[4,5,9,13,14,15,16,17,20,21,53,58,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,79,80,93,99,102,110,111,112,113,118,121,124,125,128,130,139,142,159,164,167],wai:[0,2,3,7,15,17,18,21,23,53,65,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,136,138,141,149,158,159,161,163,164,166,167],wait:[3,99,102,110,111,112,118,124,125,128,130],wale:[17,73],walk:[19,155],walker:154,wall:162,wang:87,want:[0,2,3,6,13,14,16,18,20,21,53,61,62,63,64,65,66,68,69,70,71,72,99,102,110,111,112,113,118,124,125,128,130,136,158,159,161,167],warm:113,warn:[2,3,4,5,6,7,8,9,10,14,15,16,17,19,20,54,58,80,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,133,152,154,164,167],warp:[51,82],warped_mae0:13,warped_mae1:13,warped_series1:82,warped_series2:82,warped_t:13,warped_ts_shap:13,warped_ts_shape_valu:13,warped_ts_valu:13,warranti:[85,87],wasn:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],wasserstein:49,wasserstein_metr:49,wasserstein_scor:49,wassersteinscor:37,wast:3,wasteful:13,wave:[2,9,16,58],waveform:110,wd:73,we:[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,19,20,21,53,71,73,77,78,79,85,86,87,89,98,104,113,118,119,120,121,122,130,134,142,143,149,150,154,156,158,159,161,162,163,164,165,166,167],weak:20,weaker:9,weather:[2,21,73,159,161,163],weatherdataset:[73,99,100,102,108,109,110,111,112,115,117,118,124,125,128,130,132],websit:20,wed:126,week:[2,18,58,73,155,159,161,167],week_of_year:[58,155],weekdai:[4,58,134,155,167],weekli:[73,104,114],weekofyear:[58,155],weibul:149,weibull_distribut:149,weibulllikelihood:149,weigh:159,weight:[14,18,19,20,21,73,79,85,86,87,89,99,102,110,111,112,113,118,124,125,128,130,134,150,153,156,167],weight_norm:[6,10,18,20,124,165],weigth:[72,134],weird:2,welcom:[0,158,162],well:[2,8,11,12,14,15,16,18,20,21,29,39,53,65,71,78,85,86,87,89,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,134,149,150,152,153,156,159,161,164],were:[2,4,13,15,16,53,61,62,63,64,65,66,67,68,69,70,71,72,73,77,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,139,142,161,165,167],west:154,wetter:73,wgfupus2:73,wh:69,what:[0,2,5,6,13,14,15,16,17,18,20,21,32,53,99,102,105,110,111,112,113,118,124,125,128,130,134,149,158,159,160,162,163,167],whatev:[61,62,63,64,65,66,68,69,70,71,72,113],wheel:164,when:[2,3,4,6,9,12,13,14,15,16,18,19,20,21,35,36,37,39,47,49,53,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,77,78,82,85,86,87,89,93,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,139,140,141,142,143,149,150,151,152,153,154,156,159,160,161,162,163,164,165,166],whenev:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132],where:[2,5,15,16,17,18,20,24,33,35,39,47,49,53,54,55,57,58,61,62,63,64,65,66,67,68,69,70,71,72,73,77,78,82,85,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,141,142,152,153,154,155,157,159,161,164,166],wherea:[2,5,14,17,20,82,118,119,122,142,166],wherebi:[72,134],whether:[2,9,16,17,18,38,39,40,41,42,43,44,45,46,47,48,49,53,54,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,78,79,80,82,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,138,139,140,141,142,150,154,155,156,163,167],which:[0,2,3,4,5,9,11,12,13,14,15,16,17,18,20,21,24,29,32,34,35,36,37,39,47,49,53,54,57,58,61,62,63,64,65,66,67,68,69,70,71,72,77,78,82,85,86,87,89,91,93,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,139,140,141,142,149,150,151,154,155,156,157,158,159,161,162,163,164,165,166,167],whichev:142,whilst:[67,142],white:[11,17,155],whl:164,whole:[5,6,14,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,150,156,159],whom:[85,87,126],whose:[2,20,53,61,62,63,64,65,66,68,69,70,71,72,85,86,87,89,96,98,99,100,102,103,107,108,109,110,111,112,115,116,117,118,124,125,128,130,131,132,134,142,150,154,155,156,159,163,166],why:[2,3,16,161,167],wide:[15,21],width:[6,46,53,55,93,110,111,128,134,167],wiki:[39,46,49,67,96,115,131,149,150],wikipedia:[39,46,49,67,82,96,115,131,149,150],wilei:120,williamson:[0,158],win_typ:[72,134],wind:73,window:[0,2,8,15,18,19,20,25,26,27,28,31,32,34,35,36,37,39,40,41,42,43,44,45,47,48,49,50,52,53,54,60,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,142,155,158,159,164],window_len:142,window_mod:134,window_s:[13,55,134],window_transform:[72,134],window_weight:21,windowtransform:72,wine:73,winedataset:73,wineind:73,winner:20,winter:104,wise:[13,15,53,54,85,89,98,152],wish:[61,62,63,64,65,66,68,69,70,71,72,113,142,161,163,167],with_column:155,with_columns_renam:134,with_hierarchi:[17,69,134],with_kwarg:[85,86,87,89,113,150,156],with_paramet:165,with_static_covari:[15,16,62,70,134,166],with_traceback:74,with_valu:134,within:[13,37,53,55,61,69,85,86,87,89,99,113,118,130,134,142,149,150,155,156],within_threshold:13,without:[0,2,3,11,13,15,18,19,20,31,32,53,54,57,58,59,61,62,64,65,66,68,69,82,85,86,87,89,93,96,113,125,126,128,131,134,136,142,150,151,154,156,158,159,164,166],wls_struct:69,wls_val:[17,69],wls_var:69,wolpert:116,won:[15,16,61,64,65,67,69,85,86,87,89,113,150,156,164],woollen:73,woolydataset:73,woolyrnq:73,word:[13,64,69,142],work:[0,2,3,4,5,6,7,8,9,11,13,14,15,16,17,18,19,20,21,29,31,32,37,53,67,69,78,85,86,87,89,94,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,150,153,154,155,156,158,159,161,162,163,164,165,166,167],work_dir:[99,102,110,111,112,118,124,125,128,130,167],workaround:165,worker:[99,102,110,111,112,118,124,125,128,130,167],workshop:15,world:113,world_siz:113,worri:[2,163],wors:[16,153],worth:[15,18],would:[0,2,3,8,11,13,14,15,18,20,32,53,61,62,63,64,65,66,68,69,70,71,72,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,140,141,150,153,156,158,159,161,165,166,167],wrap:[0,2,3,15,18,21,27,31,32,47,49,85,86,87,89,96,99,100,102,108,109,110,111,112,113,115,117,118,124,125,128,130,131,132,150,156,158,159,166],wrapper:[0,3,15,70,71,97,99,102,104,109,110,111,112,113,114,115,117,118,123,124,125,128,130,134,142,158,162],write:[15,18,53,134,162,163,167],writeabl:53,writebackifcopi:53,written:[15,21,53,161,164,167],wrong:[99,102,110,111,112,118,124,125,128,130],wv:73,wvv:73,www:[73,122,154],x00:53,x01:53,x02:53,x03:53,x:[3,11,12,13,14,21,53,55,58,66,79,82,85,86,87,93,111,113,127,134,141,142,153,159,167],x_0:149,x_1:149,x_2:11,x_2_nois:11,x_:82,x_i:149,x_in:[99,118],x_k:149,x_miss:12,x_missing_arr:12,x_nois:12,x_t:82,x_trimmed_shap:142,xa:134,xarrai:[134,159,166],xdoctest:[85,86,87,89,113,150,156],xferd:15,xgb:132,xgb_quantile_loss:132,xgbmodel:[0,21,95,132,158,161,163],xgboost:[21,95],xgboost_model:21,xgboostmodel:21,xgbregressor:[21,132],xgub:15,xl:15,xlabel:[6,9,10,14,15,20,21],xlrd:15,xpu:[85,86,87,89,113,150,156],xtick:13,xu:[102,112],xv:53,xxx:55,xxxx:55,xxxxxx:55,xxxxxxxxx:55,xxxxxxxxxxx:55,xxxxxxxxxxxx:55,xxxxxxxxxxxxxx:55,xxxxxxxxxxxxxxxx:55,xxxxxxxxxxxxxxxxx:55,xxxxxxxxxxxxxxxxxxxx:55,xxxxxxxxxxxxxxxxxxxxx:55,y:[11,13,21,53,63,66,79,82,98,113,118,134,142,150,153,155],y_1:[98,106],y_2:11,y_2_nois:11,y_:[63,106],y_filter:11,y_hat:113,y_nois:11,y_offset:155,y_pred:153,y_t0:21,y_t:[63,82,98,106,150],y_true:153,yaml:113,yang:150,yarin:163,yarn:73,ye:[162,167],year:[0,2,5,7,14,15,58,73,96,97,99,100,101,102,107,108,109,110,111,112,114,115,117,118,119,121,124,125,128,130,131,132,158,159,161,165,167],year_seri:5,yearli:[2,14,105,114,159],yet:[21,113,155,159,160,164,167],yield:[20,21,62,63,64,69,70,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,150,156,159],ylabel:[14,15],ylim:20,you:[0,1,2,3,5,7,8,12,13,14,15,16,18,21,53,61,62,63,64,65,66,68,69,70,71,72,85,86,87,89,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,134,136,149,150,152,153,156,158,159,160,161,162,163,164,165,166,167],your:[0,2,3,15,16,18,20,21,58,85,86,87,89,99,102,110,111,112,113,114,118,124,125,128,130,149,150,156,158,159,161,162,164,166],yourself:[113,167],ytick:13,yule:154,yw:154,ywadjust:154,ywm:154,ywmle:154,yyyi:[96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,127,128,130,131,132,163],z:[53,82,93,120],zch_rosengartenstrass:73,zch_schimmelstrass:73,zch_stampfenbachstrass:73,zealand:73,zeng:[102,112],zero:[15,53,82,85,86,87,89,113,134,142,150,156],zero_grad:[85,86,87,89,113,136,150,156],zhang:[87,102,112],zhouhaoyi:73,zi:101,zip:[2,16,20,21],zone:[58,73,134,155,159],zoubin:163,zuerich:73,zurich:[21,73]},titles:["Time Series Made Easy in Python","Examples","Multiple Time Series, Pre-trained Models and Covariates","Data (pre) processing using DataTransformer and Pipeline","Fast Fourier Transform Forecasting Model (FFT)","Recurrent Neural Networks Models","Temporal Convolutional Network","Transformer Model","N-BEATS","Probabilistic RNN","DeepTCN model","Filtering and predicting using the darts filters","Filtering and predicting using the Gaussian Process filter","Dynamic Time Warping (DTW)","Temporal Fusion Transformer","Transfer Learning for Time Series Forecasting with Darts","Static Covariates","Hierarchical Reconciliation - Example on the Australian Tourism Dataset","Hyper-parameters Optimization for Electricity Load Forecasting","TimeSeries Deep Encoder","Ensembling Models","Regression Models","darts","Anomaly Detection","Anomaly Aggregators","<no title>","AND Aggregator","Ensemble scikit-learn aggregator","OR Aggregator","Anomaly Models","<no title>","Filtering Anomaly Model","Forecasting Anomaly Model","Anomaly Detectors","<no title>","Quantile Detector","Threshold Detector","Anomaly Scorers","Difference Scorer","k-means Scorer","NLL Cauchy Scorer","NLL Exponential Scorer","NLL Gamma Scorer","NLL Gaussian Scorer","NLL Laplace Scorer","NLL Poisson Scorer","Norm Scorer","PyODScorer","<no title>","WassersteinScorer","Utils for Anomaly Detection","Data Processing","Dynamic Time Warping (DTW)","<no title>","Dynamic Time Warping (DTW)","DTW Windows","Time Axis Encoders","Encoder Base Classes","Time Axes Encoders","Pipeline","Data Transformers","Data Transformer Base Class","Box-Cox Transformer","Differencing Transformer","Fittable Data Transformer Base Class","Invertible Data Transformer Base Class","Mapper and InvertibleMapper","Mixed-data sampling (MIDAS) Transformer","Missing Values Filler","Hierarchical Reconciliation","Scaler","Static Covariates Transformer","Window Transformer","Datasets","<no title>","Explainability","<no title>","Explainability Result","Shap Explainer for RegressionModels","TFT Explainer for Temporal Fusion Transformer (TFTModel)","<no title>","Metrics","Metrics","Models","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","Filtering Models","<no title>","Gaussian Processes","Kalman Filter","Moving Average","Forecasting Models","ARIMA","AutoARIMA","Baseline Models","Block Recurrent Neural Networks","CatBoost model","Croston method","D-Linear","<no title>","Exponential Smoothing","Fast Fourier Transform","<no title>","Kalman Filter Forecaster","LightGBM Model","Linear Regression model","N-BEATS","N-HiTS","N-Linear","<no title>","Facebook Prophet","Random Forest","Regression ensemble model","Regression Model","Recurrent Neural Networks","StatsForecastAutoARIMA","StatsForecastAutoCES","StatsForecastAutoETS","StatsForecastAutoTheta","BATS and TBATS","Temporal Convolutional Network","Temporal Fusion Transformer (TFT)","<no title>","Theta Method","Time-series Dense Encoder (TiDE)","<no title>","Transformer Model","VARIMA","XGBoost Model","<no title>","Timeseries","Utils","<no title>","TimeSeries Datasets","Horizon-Based Training Dataset","Inference Dataset","Sequential Training Dataset","Shifted Training Dataset","<no title>","Training Datasets Base Classes","<no title>","<no title>","<no title>","<no title>","<no title>","Likelihood Models","PyTorch Loss Functions","Utils for filling missing values","Model selection utilities","<no title>","Time Series Statistics","Utils for time series generation","Utils for Pytorch and its usage","Additional util functions","Time Series Made Easy in Python","Quickstart","User Guide","Covariates","Frequently Asked Questions","Overview of Forecasting Models","Using Torch Models with GPUs and TPUs","Hyperparameter Optimization in Darts","TimeSeries","Torch Forecasting Models"],titleterms:{"0":[15,16],"1":[4,15,16],"2":[4,15,16],"3":[4,15,16],"32":167,"4":[15,16],"5":16,"6":16,"abstract":3,"class":[57,61,64,65,143],"do":167,"export":166,"function":[15,150,157],"new":4,"static":[1,16,71,166],"try":[15,159],A:[2,3,15,159],AND:26,In:167,No:13,OR:28,One:18,The:3,With:[13,159],ad:[12,16],add:16,addit:157,advanc:167,after:2,aggreg:[24,26,27,28],air:[2,5,6,7,14,15],airlin:15,align:13,all:167,altern:17,amplitud:4,an:[15,16],anomali:[23,24,29,31,32,33,37,50],anoth:3,appendix:21,appli:15,ar:161,architectur:8,arima:96,articl:[0,158],ask:162,australian:17,autoarima:97,automat:[14,167],averag:94,ax:58,axi:56,backtest:[2,5,14,159],base:[21,57,61,64,65,138,143],baselin:98,basic:[4,20],bat:123,batch:167,beat:[1,8,15,110,159],behind:2,benchmark:167,best:18,binari:16,bit:167,block:99,boost:21,bootstrap:20,both:2,bottleneck:167,box:62,build:[2,15,18,159,167],callback:167,captur:163,carlo:163,catboost:100,categor:16,cauchi:40,caution:159,chain:3,checkpoint:167,chunk:[21,167],citat:[0,158],comment:2,commun:[0,158],compar:[13,15],comparison:13,complex:3,compon:[17,21],comput:159,conclus:[15,18,20,21],condit:2,configur:19,construct:[4,16],consumpt:18,contact:[0,158],content:167,contribut:[0,158],convolut:[1,6,124],covari:[1,2,14,16,20,21,71,159,161,163,166,167],cox:62,cpu:[164,167],cream:14,creat:[3,14,159,166],crop:4,croston:101,custom:[21,167],d:102,daili:[6,8,9,10],dart:[11,15,21,22,159,161,165],data:[1,2,3,4,12,14,15,16,17,18,19,21,51,60,61,64,65,67,159,166,167],datafram:16,dataset:[6,15,17,21,73,137,138,139,140,141,143,167],datatransform:3,deep:[15,19,159],deepar:1,deeptcn:[1,10],defin:16,dens:[1,128],depth:167,detect:[23,50],detector:[33,35,36],determin:13,determinist:[14,166],detrend:4,diagon:13,differ:[13,38],differenc:63,distribut:159,document:[0,158,166],doe:2,dr:161,draw:11,dropout:163,dtw:[1,13,52,54,55],dynam:[1,13,52,54],earli:167,easi:[0,158],electr:18,electricti:18,encod:[1,16,17,19,56,57,58,128,159],end:2,energi:[4,6,8,9,10],ensembl:[1,20,27,116,159],enter:13,error:159,evalu:[15,159],exampl:[0,1,2,3,5,7,8,14,16,17,21,158,159,161,167],exist:16,experi:16,explain:[14,21,75,77,78,79],exponenti:[41,104],extern:159,extract:[16,21],facebook:114,far:15,fast:[1,4,105],featur:[0,158],few:2,fft:4,fill:151,filler:68,filter:[1,4,11,12,31,90,93,107,159],find:13,fine:167,first:[11,167],fit:[13,159],fittabl:64,forecast:[0,2,4,14,15,16,17,18,20,21,32,95,107,158,159,161,163,167],forest:115,format:[4,13],fourier:[1,4,105],free:159,frequent:162,from:[12,16,166],from_group_datafram:16,functionn:167,fusion:[1,14,79,125],futur:[2,14,161],gamma:42,gaussian:[1,12,43,92,159],gener:[4,8,13,14,155,163],gfm:161,global:[2,15,159,161],go:18,gpu:[164,167],grid:13,gridsearch:[18,165],group:16,guid:[160,161,167],handl:163,help:2,hierarch:[1,17,69,166],hierarchi:17,high:[0,158],histor:[20,159],hit:111,horizon:138,hourli:4,how:[161,167],hyper:[18,159],hyperparamet:[1,165],i:[166,167],ic:14,implement:166,improv:4,independ:17,indic:158,infer:[2,12,139,159],inform:[14,166],input:[21,167],inspect:[15,17,159],instal:[0,158,159],instanc:4,interpret:8,introduc:3,introduct:[0,158,161,167],invert:65,invertiblemapp:[3,66],itakura:13,its:156,k:39,kalman:[1,93,107,159],kernel:12,kind:3,lag:21,laplac:44,learn:[1,15,20,27,159],length:21,less:159,level:[0,158,167],lfm:161,lightgbm:108,likelihood:149,linear:[18,102,109,112],list:16,load:[15,17,18,19,163,167],local:[15,161],look:[5,14,167],loss:[150,159,167],low:4,m3:15,m4:15,machin:159,made:[0,158],make:159,manipul:159,manual:167,mapper:[3,66],match:13,mean:[2,12,39],memori:167,method:[15,101,127,159],metric:[81,82,159],mida:67,milk:2,miss:[12,68,151,159],missingvaluesfil:3,mix:67,model:[0,1,2,4,5,7,8,10,14,15,17,18,19,20,21,29,31,32,83,90,95,98,100,108,109,116,117,130,132,149,152,158,159,161,163,164,167],monitor:3,mont:163,monthli:[5,6,7,14],more:[2,3,14,166],move:94,multi:[13,21,164],multioutputregressor:21,multipl:[1,2,3,16,163,166],multivari:[2,17,20,163,166],my:166,n:[1,8,15,110,111,112,159],naiv:[20,159],network:[1,5,6,99,118,124,159,163],neural:[1,5,99,118,159,163],nll:[40,41,42,43,44,45],nois:[9,10,12],norm:46,nuclear:4,num_loader_work:167,number:13,numer:16,o:167,one:2,onli:21,oper:159,optim:[1,18,165],option:18,optuna:[18,165],order:11,other:[2,15],out:[4,159],output:21,overview:[15,163],parallelis:3,parallelogram:13,paramet:[18,19,159],part:15,passeng:[5,6,7,14,15],past:[2,161],pattern:13,peak:13,perform:167,period:12,pick:18,pipelin:[3,59],plai:159,point:12,poisson:45,possibl:167,pre:[1,2,3,20,167],predict:[2,5,11,12,14,20,159,167],prepar:[2,18,19],preprocess:2,probabilist:[9,14,20,21,159,163,166],problem:166,process:[1,2,3,12,14,51,92,159],produc:2,product:[2,6,9,10],prophet:114,pyodscor:47,python:[0,158],pytorch:[150,156],quantil:[35,159],quantit:13,question:162,quick:[0,158,161],quickli:159,quickstart:159,rai:165,random:115,re:167,read:[2,3,4,13,159],recap:15,recommend:167,reconcil:17,reconcili:[1,17,69],recurr:[1,5,99,118],refer:20,regress:[1,18,20,21,109,116,117,159,163],regressionmodel:[15,21,78],requir:[161,167],rescal:3,respons:11,result:[19,77],rnn:9,routin:2,s:21,sakoechiba:13,sale:14,same:15,sampl:[12,67],save:[163,167],scale:16,scaler:[3,70],scene:2,scikit:27,scorer:[37,38,39,40,41,42,43,44,45,46],search:159,season:159,select:[0,152,158],sequenti:140,sequentialencod:58,seri:[0,1,2,3,9,10,13,15,16,20,128,154,155,158,159,163,166,167],set:[3,4,5,14],setup:[15,16,19],sever:159,shall:18,shap:78,shift:141,should:166,side:18,simpl:18,simul:159,sine:12,singl:21,singleencod:58,size:167,small:167,smooth:104,so:15,some:[14,159],span:[161,167],special:3,specif:21,spiral:11,split:2,spot:7,state:167,statist:154,statsforecastautoarima:119,statsforecastautoc:120,statsforecastautoet:121,statsforecastautotheta:122,step:11,stop:167,store:167,sub:167,subsequ:13,summari:161,sun:7,sunspot:[5,6],support:[161,163,164,167],system:11,tabl:158,target:[21,167],tbat:123,tcn:18,tempor:[1,6,14,79,124,125],tfm:167,tft:[1,14,79,125],tftmodel:[16,79],theta:[127,159],thi:[2,167],threshold:36,tide:[1,128],time:[0,1,2,3,13,15,16,52,54,56,58,128,154,155,158,161,166,167],timeseri:[1,2,3,4,16,19,134,137,159,166,167],tl:161,toi:159,top:167,topic:[0,158],torch:[164,167],tourism:17,tpu:164,traffic:2,train:[1,2,4,14,15,20,138,140,141,143,159,167],transfer:[1,15],transform:[1,3,4,7,14,16,60,61,62,63,64,65,67,71,72,79,105,125,130],tree:21,tune:[165,167],tutori:1,two:159,type:159,uncertainti:163,up:[3,18],us:[2,3,11,12,15,16,17,18,20,21,159,161,163,164,165,166,167],usag:[0,156,158],user:160,util:[50,135,151,152,155,156,157],valid:[2,4,5,14,159,167],valu:[68,151,159],variabl:[9,10],varima:131,visual:[13,21],vs:166,wait:2,warp:[1,13,52,54],wassersteinscor:49,wave:[4,12],we:18,what:161,when:167,white:12,window:[13,55,72],without:16,word:[2,159],wrapper:21,xgboost:132,your:167}}) \ No newline at end of file