forked from alexandrebarachant/muse-lsl
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathgenerate_Visual_P300.py
69 lines (53 loc) · 1.77 KB
/
generate_Visual_P300.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import numpy as np
from pandas import DataFrame
from psychopy import visual, core, event
from time import time, strftime, gmtime
from optparse import OptionParser
from pylsl import StreamInfo, StreamOutlet, local_clock
from glob import glob
from random import choice
parser = OptionParser()
parser.add_option("-d", "--duration",
dest="duration", type='int', default=400,
help="duration of the recording in seconds.")
(options, args) = parser.parse_args()
# create
info = StreamInfo('Markers', 'Markers', 1, 0, 'int32', 'myuidw43536')
# next make an outlet
outlet = StreamOutlet(info)
markernames = [1, 2]
start = time()
n_trials = 2010
iti = .3
soa = 0.2
jitter = 0.2
record_duration = np.float32(options.duration)
# Setup log
position = np.random.binomial(1, 0.15, n_trials)
trials = DataFrame(dict(position=position,
timestamp=np.zeros(n_trials)))
# graphics
def loadImage(filename):
return visual.ImageStim(win=mywin, image=filename)
mywin = visual.Window([1920, 1080], monitor="testMonitor", units="deg",
fullscr=True)
targets = map(loadImage, glob('stimulus_presentation/stim/cats_dogs/target-*.jpg'))
nontargets = map(loadImage, glob('stimulus_presentation/stim/cats_dogs/nontarget-*.jpg'))
for ii, trial in trials.iterrows():
# inter trial interval
core.wait(iti + np.random.rand() * jitter)
# onset
pos = trials['position'].iloc[ii]
image = choice(targets if pos == 1 else nontargets)
image.draw()
timestamp = local_clock()
outlet.push_sample([markernames[pos]], timestamp)
mywin.flip()
# offset
core.wait(soa)
mywin.flip()
if len(event.getKeys()) > 0 or (time() - start) > record_duration:
break
event.clearEvents()
# Cleanup
mywin.close()