-
Notifications
You must be signed in to change notification settings - Fork 0
/
tfda_test.py
202 lines (184 loc) · 6.18 KB
/
tfda_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#!/usr/bin/env python
# -*- coding: utf-8 -*-
r"""
Python ♡ Nasy.
| * *
| . .
| . 登
| * ,
| . 至
|
| * 恖
| |\___/|
| ) -( . 聖 ·
| =\ - /=
| )===( *
| / - \
| |- |
| / - \ 0.|.0
| NASY___\__( (__/_____(\=/)__+1s____________
| ______|____) )______|______|______|______|_
| ___|______( (____|______|______|______|____
| ______|____\_|______|______|______|______|_
| ___|______|______|______|______|______|____
| ______|______|______|______|______|______|_
| ___|______|______|______|______|______|____
author : Nasy https://nasy.moe
date : Dec 16, 2021
email : Nasy <[email protected]>
filename : tfda_test.py
project : tfda
license : GPL-3.0+
TFDA test
"""
# Tensorflow
import tensorflow as tf
# Others
from tqdm import tqdm
# tf.config.run_functions_eagerly(True)
# tf.debugging.set_log_device_placement(True)
tf.config.set_visible_devices([], "GPU")
# Local
from tfda.augmentations.utils import to_one_hot
from tfda.base import Compose
from tfda.defs import TFDAData, TFDADefault3DParams, nan, pi
from tfda.transforms.color_transforms import (
BrightnessMultiplicativeTransform,
ContrastAugmentationTransform,
GammaTransform,
)
from tfda.transforms.custom_transforms import MaskTransform, OneHotTransform, OneHotTransform2D
from tfda.transforms.noise_transforms import (
GaussianBlurTransform, GaussianBlurTransform2D,
GaussianNoiseTransform,
)
from tfda.transforms.resample_transforms import SimulateLowResolutionTransform, SimulateLowResolutionTransform2D
from tfda.transforms.spatial_transforms import (
MirrorTransform, MirrorTransform2D,
SpatialTransform,
)
from tfda.transforms.utility_transforms import RemoveLabelTransform
params = TFDADefault3DParams(
rotation_x=(
-30.0 / 360 * 2.0 * pi,
30.0 / 360 * 2.0 * pi,
),
rotation_y=(
-30.0 / 360 * 2.0 * pi,
30.0 / 360 * 2.0 * pi,
),
rotation_z=(
-30.0 / 360 * 2.0 * pi,
30.0 / 360 * 2.0 * pi,
),
scale_range=(0.7, 1.4),
do_elastic=False,
selected_seg_channels=[0],
patch_size_for_spatial_transform=[40, 56, 40],
num_cached_per_thread=2,
mask_was_used_for_normalization=nan,
)
def all_da():
da = Compose(
[
tf.keras.layers.Input(
type_spec=TFDAData.Spec(
None, tf.TensorSpec(None), tf.TensorSpec(None), tf.TensorSpec(None), tf.TensorSpec(None)
)
),
# SpatialTransform(
# patch_size=params.patch_size_for_spatial_transform,
# patch_center_dist_from_border=nan,
# do_elastic_deform=params.do_elastic,
# alpha=params.elastic_deform_alpha,
# sigma=params.elastic_deform_sigma,
# do_rotation=params.do_rotation,
# angle_x=params.rotation_x,
# angle_y=params.rotation_y,
# angle_z=params.rotation_z,
# p_rot_per_axis=params.rotation_p_per_axis,
# do_scale=params.do_scaling,
# scale=params.scale_range,
# border_mode_data=params.border_mode_data,
# border_cval_data=0.0,
# order_data=3.0,
# border_mode_seg="constant",
# border_cval_seg=-1.0,
# order_seg=1.0,
# random_crop=params.random_crop,
# p_el_per_sample=params.p_eldef,
# p_scale_per_sample=params.p_scale,
# p_rot_per_sample=params.p_rot,
# independent_scale_for_each_axis=params.independent_scale_factor_for_each_axis,
# ),
GaussianNoiseTransform(p_per_channel=0.01),
GaussianBlurTransform2D(
(0.5, 1.0),
different_sigma_per_channel=True,
p_per_sample=0.2,
p_per_channel=0.5,
),
BrightnessMultiplicativeTransform(
multiplier_range=(0.75, 1.25), p_per_sample=0.15
),
ContrastAugmentationTransform(p_per_sample=0.15),
SimulateLowResolutionTransform2D(
zoom_range=(0.5, 1),
per_channel=True,
p_per_channel=0.5,
order_downsample=0,
order_upsample=3,
p_per_sample=0.25,
),
GammaTransform(
(0.7, 1.5), True, True, retain_stats=True, p_per_sample=0.1
),
GammaTransform(
(0.7, 1.5), False, True, retain_stats=True, p_per_sample=0.3
),
MirrorTransform2D((0, 1, 2)),
MaskTransform(
tf.constant([[0, 0]]), mask_idx_in_seg=0, set_outside_to=0.0
),
RemoveLabelTransform(-1, 0),
OneHotTransform2D([0, 1]),
]
)
da.compile()
da.summary()
dataseti = iter(
tf.data.Dataset.from_tensor_slices(
tf.random.uniform((2 * 8 * 1 * 73 * 80 * 8 * 8,), 0, 100)
)
.batch(64)
.batch(80)
.batch(1)
.batch(8)
.map(lambda x: da(TFDAData(x, x)))
.prefetch(tf.data.AUTOTUNE)
)
res = []
for dataset in tqdm(dataseti, desc="steps:"):
res.append(dataset)
# assert len(res) == 100
for d in res:
r = d.data
tf.print(r.shape)
# assert r.shape[0] == 2
# assert r.shape[1] == 40
# assert r.shape[2] == 56
# assert r.shape[3] == 40
assert r.shape[0] == 8
assert r.shape[1] == 73
assert r.shape[2] == 80
assert r.shape[3] == 64
assert r.shape[4] == 1
return res
def test():
# strategy = tf.distribute.MirroredStrategy()
# with strategy.scope():
with tf.device("/CPU:0"):
res = all_da()
# import pdb;pdb.set_trace()
if __name__ == "__main__":
test()