From 8bbb9d2279c27da891013d5b903572f08c8b8225 Mon Sep 17 00:00:00 2001 From: Nimish Mishra Date: Mon, 17 Jun 2024 10:44:05 -0700 Subject: [PATCH] Remove example output and make README more concise --- examples/README.md | 563 +-------------------------------------------- 1 file changed, 3 insertions(+), 560 deletions(-) diff --git a/examples/README.md b/examples/README.md index 27f204b5b..806eb5c9e 100644 --- a/examples/README.md +++ b/examples/README.md @@ -17,582 +17,25 @@ The example executable naming convention follows `example_<$domain>_<$routine>_< or `example_<$domain>_<$routine>` for run-time dispatching examples. E.g. `example_blas_gemm_usm_mklcpu_cublas ` `example_blas_gemm_usm` -## Example outputs (blas, rng, lapack, dft, sparse_blas) +## Running examples (blas) ## blas +Below are showcases of how to run examples with different backends using the BLAS domain as an illustration. + Run-time dispatching examples with mklcpu backend ``` $ export ONEAPI_DEVICE_SELECTOR="opencl:cpu" $ ./bin/example_blas_gemm_usm - -######################################################################## -# General Matrix-Matrix Multiplication using Unified Shared Memory Example: -# -# C = alpha * A * B + beta * C -# -# where A, B and C are general dense matrices and alpha, beta are -# floating point type precision scalars. -# -# Using apis: -# gemm -# -# Using single precision (float) data type -# -# Device will be selected during runtime. -# The environment variable ONEAPI_DEVICE_SELECTOR can be used to specify -# available devices -# -######################################################################## - -Running BLAS GEMM USM example on CPU device. -Device name is: Intel(R) Core(TM) i7-6770HQ Processor @ 2.60GHz -Running with single precision real data type: - - GEMM parameters: - transA = trans, transB = nontrans - m = 45, n = 98, k = 67 - lda = 103, ldB = 105, ldC = 106 - alpha = 2, beta = 3 - - Outputting 2x2 block of A,B,C matrices: - - A = [ 0.340188, 0.260249, ... - [ -0.105617, 0.0125354, ... - [ ... - - - B = [ -0.326421, -0.192968, ... - [ 0.363891, 0.251295, ... - [ ... - - - C = [ 0.00698781, 0.525862, ... - [ 0.585167, 1.59017, ... - [ ... - -BLAS GEMM USM example ran OK. - ``` Run-time dispatching examples with mklgpu backend ``` $ export ONEAPI_DEVICE_SELECTOR="level_zero:gpu" $ ./bin/example_blas_gemm_usm - -######################################################################## -# General Matrix-Matrix Multiplication using Unified Shared Memory Example: -# -# C = alpha * A * B + beta * C -# -# where A, B and C are general dense matrices and alpha, beta are -# floating point type precision scalars. -# -# Using apis: -# gemm -# -# Using single precision (float) data type -# -# Device will be selected during runtime. -# The environment variable ONEAPI_DEVICE_SELECTOR can be used to specify -# available devices -# -######################################################################## - -Running BLAS GEMM USM example on GPU device. -Device name is: Intel(R) Iris(R) Pro Graphics 580 [0x193b] -Running with single precision real data type: - - GEMM parameters: - transA = trans, transB = nontrans - m = 45, n = 98, k = 67 - lda = 103, ldB = 105, ldC = 106 - alpha = 2, beta = 3 - - Outputting 2x2 block of A,B,C matrices: - - A = [ 0.340188, 0.260249, ... - [ -0.105617, 0.0125354, ... - [ ... - - - B = [ -0.326421, -0.192968, ... - [ 0.363891, 0.251295, ... - [ ... - - - C = [ 0.00698781, 0.525862, ... - [ 0.585167, 1.59017, ... - [ ... - -BLAS GEMM USM example ran OK. ``` Compile-time dispatching example with both mklcpu and cublas backend (Note that the mklcpu and cublas result matrices have a small difference. This is expected due to precision limitation of `float`) ``` ./bin/example_blas_gemm_usm_mklcpu_cublas - -######################################################################## -# General Matrix-Matrix Multiplication using Unified Shared Memory Example: -# -# C = alpha * A * B + beta * C -# -# where A, B and C are general dense matrices and alpha, beta are -# floating point type precision scalars. -# -# Using apis: -# gemm -# -# Using single precision (float) data type -# -# Running on both Intel CPU and Nvidia GPU devices -# -######################################################################## - -Running BLAS GEMM USM example -Running with single precision real data type on: - CPU device: Intel(R) Core(TM) i9-7920X CPU @ 2.90GHz - GPU device: TITAN RTX - - GEMM parameters: - transA = trans, transB = nontrans - m = 45, n = 98, k = 67 - lda = 103, ldB = 105, ldC = 106 - alpha = 2, beta = 3 - - Outputting 2x2 block of A,B,C matrices: - - A = [ 0.340188, 0.260249, ... - [ -0.105617, 0.0125354, ... - [ ... - - - B = [ -0.326421, -0.192968, ... - [ 0.363891, 0.251295, ... - [ ... - - - (CPU) C = [ 0.00698781, 0.525862, ... - [ 0.585167, 1.59017, ... - [ ... - - - (GPU) C = [ 0.00698793, 0.525862, ... - [ 0.585168, 1.59017, ... - [ ... - -BLAS GEMM USM example ran OK on MKLCPU and CUBLAS - -``` - -## lapack -Run-time dispatching example with mklgpu backend: -``` -$ export ONEAPI_DEVICE_SELECTOR="level_zero:gpu" -$ ./bin/example_lapack_getrs_usm - -######################################################################## -# LU Factorization and Solve Example: -# -# Computes LU Factorization A = P * L * U -# and uses it to solve for X in a system of linear equations: -# AX = B -# where A is a general dense matrix and B is a matrix whose columns -# are the right-hand sides for the systems of equations. -# -# Using apis: -# getrf and getrs -# -# Using single precision (float) data type -# -# Device will be selected during runtime. -# The environment variable ONEAPI_DEVICE_SELECTOR can be used to specify -# available devices -# -######################################################################## - -Running LAPACK getrs example on GPU device. -Device name is: Intel(R) Iris(R) Pro Graphics 580 [0x193b] -Running with single precision real data type: - - GETRF and GETRS parameters: - trans = nontrans - m = 23, n = 23, nrhs = 23 - lda = 32, ldb = 32 - - Outputting 2x2 block of A and X matrices: - - A = [ 0.340188, 0.304177, ... - [ -0.105617, -0.343321, ... - [ ... - - - X = [ -1.1748, 1.84793, ... - [ 1.47856, 0.189481, ... - [ ... - -LAPACK GETRS USM example ran OK -``` - -Compile-time dispatching example with both mklcpu and cusolver backend -``` -$ ./bin/example_lapack_getrs_usm_mklcpu_cusolver - -######################################################################## -# LU Factorization and Solve Example: -# -# Computes LU Factorization A = P * L * U -# and uses it to solve for X in a system of linear equations: -# AX = B -# where A is a general dense matrix and B is a matrix whose columns -# are the right-hand sides for the systems of equations. -# -# Using apis: -# getrf and getrs -# -# Using single precision (float) data type -# -# Running on both Intel CPU and NVIDIA GPU devices -# -######################################################################## - -Running LAPACK GETRS USM example -Running with single precision real data type on: - CPU device :Intel(R) Core(TM) i9-7920X CPU @ 2.90GHz - GPU device :TITAN RTX - - GETRF and GETRS parameters: - trans = nontrans - m = 23, n = 23, nrhs = 23 - lda = 32, ldb = 32 - - Outputting 2x2 block of A,B,X matrices: - - A = [ 0.340188, 0.304177, ... - [ -0.105617, -0.343321, ... - [ ... - - - (CPU) X = [ -1.1748, 1.84793, ... - [ 1.47856, 0.189481, ... - [ ... - - - (GPU) X = [ -1.1748, 1.84793, ... - [ 1.47856, 0.189481, ... - [ ... - -LAPACK GETRS USM example ran OK on MKLCPU and CUSOLVER - -``` - -## rng -Run-time dispatching example with mklgpu backend: -``` -$ export ONEAPI_DEVICE_SELECTOR="level_zero:gpu" -$ ./bin/example_rng_uniform_usm - -######################################################################## -# Generate uniformly distributed random numbers with philox4x32x10 -# generator example: -# -# Using APIs: -# default_engine uniform -# -# Using single precision (float) data type -# -# Device will be selected during runtime. -# The environment variable ONEAPI_DEVICE_SELECTOR can be used to specify -# available devices -# -######################################################################## - -Running RNG uniform usm example on GPU device -Device name is: Intel(R) Iris(R) Pro Graphics 580 [0x193b] -Running with single precision real data type: - generation parameters: - seed = 777, a = 0, b = 10 - Output of generator: - first 10 numbers of 1000: -8.52971 1.76033 6.04753 3.68079 9.04039 2.61014 3.75788 3.94859 7.93444 8.60436 -Random number generator with uniform distribution ran OK - -``` - -Compile-time dispatching example with both mklcpu and curand backend -``` -$ ./bin/example_rng_uniform_usm_mklcpu_curand - -######################################################################## -# Generate uniformly distributed random numbers with philox4x32x10 -# generator example: -# -# Using APIs: -# default_engine uniform -# -# Using single precision (float) data type -# -# Running on both Intel CPU and Nvidia GPU devices -# -######################################################################## - -Running RNG uniform usm example -Running with single precision real data type: - CPU device: Intel(R) Core(TM) i9-7920X CPU @ 2.90GHz - GPU device: TITAN RTX - generation parameters: - seed = 777, a = 0, b = 10 - Output of generator on CPU device: - first 10 numbers of 1000: -8.52971 1.76033 6.04753 3.68079 9.04039 2.61014 3.75788 3.94859 7.93444 8.60436 - Output of generator on GPU device: - first 10 numbers of 1000: -3.52971 6.76033 1.04753 8.68079 4.48229 0.501966 6.78265 8.99091 6.39516 9.67955 -Random number generator example with uniform distribution ran OK on MKLCPU and CURAND - -``` - -## dft - -Compile-time dispatching example with MKLGPU backend - -```none -$ ONEAPI_DEVICE_SELECTOR="level_zero:gpu" ./bin/example_dft_complex_fwd_buffer_mklgpu - -######################################################################## -# Complex out-of-place forward transform for Buffer API's example: -# -# Using APIs: -# Compile-time dispatch API -# Buffer forward complex out-of-place -# -# Using single precision (float) data type -# -# For Intel GPU with Intel MKLGPU backend. -# -# The environment variable ONEAPI_DEVICE_SELECTOR can be used to specify -# available devices -######################################################################## - -Running DFT Complex forward out-of-place buffer example -Using compile-time dispatch API with MKLGPU. -Running with single precision real data type on: - GPU device :Intel(R) UHD Graphics 750 [0x4c8a] -DFT Complex USM example ran OK on MKLGPU -``` - -Runtime dispatching example with MKLGPU, cuFFT, rocFFT and portFFT backends: - -```none -$ ONEAPI_DEVICE_SELECTOR="level_zero:gpu" ./bin/example_dft_real_fwd_usm - -######################################################################## -# DFT complex in-place forward transform with USM API example: -# -# Using APIs: -# USM forward complex in-place -# Run-time dispatch -# -# Using single precision (float) data type -# -# Device will be selected during runtime. -# The environment variable ONEAPI_DEVICE_SELECTOR can be used to specify -# available devices -# -######################################################################## - -Running DFT complex forward example on GPU device -Device name is: Intel(R) UHD Graphics 750 [0x4c8a] -Running with single precision real data type: -DFT example run_time dispatch -DFT example ran OK -``` - -```none -$ ONEAPI_DEVICE_SELECTOR="level_zero:gpu" ./bin/example_dft_real_fwd_usm - -######################################################################## -# DFT complex in-place forward transform with USM API example: -# -# Using APIs: -# USM forward complex in-place -# Run-time dispatch -# -# Using single precision (float) data type -# -# Device will be selected during runtime. -# The environment variable ONEAPI_DEVICE_SELECTOR can be used to specify -# available devices -# -######################################################################## - -Running DFT complex forward example on GPU device -Device name is: NVIDIA A100-PCIE-40GB -Running with single precision real data type: -DFT example run_time dispatch -DFT example ran OK -``` - -```none -$ ./bin/example_dft_real_fwd_usm - -######################################################################## -# DFT complex in-place forward transform with USM API example: -# -# Using APIs: -# USM forward complex in-place -# Run-time dispatch -# -# Using single precision (float) data type -# -# Device will be selected during runtime. -# The environment variable ONEAPI_DEVICE_SELECTOR can be used to specify -# available devices -# -######################################################################## - -Running DFT complex forward example on GPU device -Device name is: AMD Radeon PRO W6800 -Running with single precision real data type: -DFT example run_time dispatch -DFT example ran OK -``` - -```none -$ LD_LIBRARY_PATH=lib/:$LD_LIBRARY_PATH ./bin/example_dft_real_fwd_usm -######################################################################## -# DFT complex in-place forward transform with USM API example: -# -# Using APIs: -# USM forward complex in-place -# Run-time dispatch -# -# Using single precision (float) data type -# -# Device will be selected during runtime. -# The environment variable ONEAPI_DEVICE_SELECTOR can be used to specify -# available devices -# -######################################################################## - -Running DFT complex forward example on GPU device -Device name is: Intel(R) UHD Graphics 750 -Running with single precision real data type: -DFT example run_time dispatch -Unsupported Configuration: - oneMKL: dft/backends/portfft/commit: function is not implemented portFFT only supports complex to complex transforms -``` - -## sparse_blas - -Run-time dispatching examples with mklcpu backend -``` -$ export ONEAPI_DEVICE_SELECTOR="opencl:cpu" -$ ./bin/example_sparse_blas_gemv_usm - -######################################################################## -# Sparse Matrix-Vector Multiply Example: -# -# y = alpha * op(A) * x + beta * y -# -# where A is a sparse matrix in CSR format, x and y are dense vectors -# and alpha, beta are floating point type precision scalars. -# -# Using apis: -# sparse::gemv -# -# Using single precision (float) data type -# -# Device will be selected during runtime. -# The environment variable ONEAPI_DEVICE_SELECTOR can be used to specify -# available devices -# -######################################################################## - -Running Sparse BLAS GEMV USM example on CPU device. -Device name is: Intel(R) Core(TM) i7-6700K Processor @ 4.00GHz -Running with single precision real data type: - - sparse::gemv parameters: - transA = nontrans - nrows = 64 - alpha = 1, beta = 0 - - sparse::gemv example passed - Finished -Sparse BLAS GEMV USM example ran OK. -``` - -Run-time dispatching examples with mklgpu backend -``` -$ export ONEAPI_DEVICE_SELECTOR="level_zero:gpu" -$ ./bin/example_sparse_blas_gemv_usm - -######################################################################## -# Sparse Matrix-Vector Multiply Example: -# -# y = alpha * op(A) * x + beta * y -# -# where A is a sparse matrix in CSR format, x and y are dense vectors -# and alpha, beta are floating point type precision scalars. -# -# Using apis: -# sparse::gemv -# -# Using single precision (float) data type -# -# Device will be selected during runtime. -# The environment variable ONEAPI_DEVICE_SELECTOR can be used to specify -# available devices -# -######################################################################## - -Running Sparse BLAS GEMV USM example on GPU device. -Device name is: Intel(R) HD Graphics 530 [0x1912] -Running with single precision real data type: - - sparse::gemv parameters: - transA = nontrans - nrows = 64 - alpha = 1, beta = 0 - - sparse::gemv example passed - Finished -Sparse BLAS GEMV USM example ran OK. -``` - -Compile-time dispatching example with mklcpu backend -``` -$ export ONEAPI_DEVICE_SELECTOR="opencl:cpu" -$ ./bin/example_sparse_blas_gemv_usm_mklcpu - -######################################################################## -# Sparse Matrix-Vector Multiply Example: -# -# y = alpha * op(A) * x + beta * y -# -# where A is a sparse matrix in CSR format, x and y are dense vectors -# and alpha, beta are floating point type precision scalars. -# -# Using apis: -# sparse::gemv -# -# Using single precision (float) data type -# -# Running on Intel CPU device -# -######################################################################## - -Running Sparse BLAS GEMV USM example on CPU device. -Device name is: Intel(R) Core(TM) i7-6700K Processor @ 4.00GHz -Running with single precision real data type: - - sparse::gemv parameters: - transA = nontrans - nrows = 64 - alpha = 1, beta = 0 - - sparse::gemv example passed - Finished -Sparse BLAS GEMV USM example ran OK. ```