This repository has been archived by the owner on Jul 18, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrover.m
160 lines (123 loc) · 4.88 KB
/
rover.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
function [opt_R, opt_T] = rover(landmarks, true_rover_pos,fov, initialize, noiseFactor, theta)
%rover.m: A model of a stereo camera equipped rover.
%% Set up Parameters
b = 0.25; % Baseline [m]
f = 200;
%NOTE: Pixel dimension is not necessary if f is in units of pixels.
%pixel_dim = 2*f*tan(fov/2)/512; %Dimension of Each Pixel assuming 512px wide camera.
c_u = 0;
c_v = 0;
persistent previous_landmarks;
%Helper functions
%----------------------------
%Rotation Cosine Matrix
%Negative because the y-axis points "toward the ground", thus to preserve
%expected rotations, the angle is negated
Rx = @(x) [1 0 0; 0 cos(x) -sin(x); 0 sin(x) cos(x)];
Ry = @(y) [cos(y) 0 sin(y); 0 1 0; -sin(y) 0 cos(y)];
Rz = @(z) [cos(z) -sin(z) 0; sin(z) cos(z) 0; 0 0 1];
%Triangulation Functions
%Assumed structure: u = [u_l v_l u_r v_r]';
tri_X = @(u) (b/2)*(u(1) + u(3))/(u(1) - u(3));
tri_Y = @(u) (b/2)*(u(2) + u(4))/(u(1) - u(3));
tri_Z = @(u) (b*f)*1/(u(1) - u(3));
%-----------
%Determine the right and left vectors that define the field of view
%In the camera frame
fov_vec_0 = Ry(fov/2)*[0 0 1]';
fov_vec_1 = Ry(-fov)*fov_vec_0;
%The orientation of the camera with respect to the rover frame and then the
%inertial frame
C_cr = Ry(theta);
orient = true_rover_pos(4:6);
C_ri = Ry(orient(2));
C_ci = C_cr*C_ri;
%Position of the rover in the inertial frame
r_ci = true_rover_pos(1:3);
no_landmarks = length(landmarks(:,1));
%% Track Landmarks
%Projection Matrix (3D -> 2D in 2 Cameras)
%Assumes camera origin is taken to be in the middle of the two cameras
M = [f 0 c_u f*(b/2);
0 f c_v 0;
f 0 c_u -f*(b/2);
0 f c_v 0;
];
current_landmarks = [];
for i=1:no_landmarks
%Calculate the position vector of the landmark in the camera frame
r_li = landmarks(i,:)';
r_lc = C_ci*(r_li- r_ci);
%Account for both FOVs
r_lc_right = C_ci*(r_li- (r_ci + C_ci*[b/2 0 0]'));
r_lc_left = C_ci*(r_li- (r_ci + C_ci*[-b/2 0 0]'));
%Is this landmark within both of our cameras' field of view?
%Recall that the y-axis points downward (hence the negative sign)
if ([0 -1 0]*cross(fov_vec_0,r_lc_right) > 0 && [0 -1 0]*cross(r_lc_right, fov_vec_1) > 0) && ([0 -1 0]*cross(fov_vec_0,r_lc_left) > 0 && [0 -1 0]*cross(r_lc_left, fov_vec_1) > 0)
%Project the landmark onto the left and right camera
u = 1/r_lc(3)*M*[r_lc; 1];
% Add some noise
noiseVec = noiseFactor.*randn(4,1);
u_new = u + [noiseVec(1) 0 noiseVec(3) 0]';
if (u_new(1) - u_new(3) < 4)
%disp('error');
%disp(u);
%disp(u_new);
continue;
end
%Add projection and the landmark index to the list of tracked landmarks
current_landmarks = [current_landmarks; i u_new';];
end
end
%% Triangulate and Determine Estimated Motion
if initialize
%Retain information about the landmarks
%Do not estimate motion
previous_landmarks = current_landmarks;
opt_R = 0;
opt_T = 0;
else
%FEATURE TRACKING
%Determine all landmarks that are found in both the current and
%previous tracked sets.
C_index = current_landmarks(:,1);
P_index = previous_landmarks(:,1);
ci_intersect = intersect(C_index, P_index);
%Get 1D Positions
p_l = previous_landmarks(ismember(previous_landmarks(:,1),ci_intersect),:);
c_l = current_landmarks(ismember(current_landmarks(:,1),ci_intersect),:);
%Initialize 3D position arrays
p_3d_l = zeros(3,length(p_l));
c_3d_l = zeros(3,length(p_l));
%Initialize covariance arrays
sigma_c = zeros(3,3,length(p_l));
sigma_p = zeros(3,3,length(p_l));
%Triangulates all recorded landmarks into their 3D locations in the
%previous and current frames. Then calculate the covariance matrix
%of each.
tracked_landmark_amount = length(c_l(:,1));
%disp(tracked_landmark_amount);
for j=1:tracked_landmark_amount
p_3d_l(1:3,j) = [tri_X(p_l(j,2:5)) tri_Y(p_l(j,2:5)) tri_Z(p_l(j,2:5)) ]';
c_3d_l(1:3,j) = [tri_X(c_l(j,2:5)) tri_Y(c_l(j,2:5)) tri_Z(c_l(j,2:5)) ]';
Jc = jacob3D(c_l(j,2:5), b, f);
sigma_c(1:3,1:3,j) = Jc*Jc';
Jp = jacob3D(p_l(j,2:5), b, f);
sigma_p(1:3,1:3,j) = Jp*Jp';
end
%Get a motion estimate in the old reference frame
%If less than 3 landmarks exist, return the trivial transformation
% if tracked_landmark_amount > 3
[opt_R,opt_T] = motion_est_matrix(p_3d_l, c_3d_l,sigma_p,sigma_c);
opt_T = C_cr'*opt_T;
%opt_R = C_cr'*opt_R;
% else
% opt_R = eye(3);
% opt_T = zeros(3,1);
% end
end
%Save these landmarks for the next iteration
%Note these are all the current landmarks, even those that were not
%present in the prior set.
previous_landmarks = current_landmarks;
end