-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_crf_layer.py
96 lines (79 loc) · 3.21 KB
/
test_crf_layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# Use CRF as a neural network layer built by GLuon to conduct training and prediction tests.
# @author:kenjewu
# @date:2018/10/05
import time
import numpy as np
import mxnet as mx
from mxnet import nd, gluon, autograd
from crf import CRF
ctx = mx.gpu()
START_TAG = "<bos>"
STOP_TAG = "<eos>"
# generate pseudo data
tag2idx = {"B": 0, "I": 1, "O": 2, START_TAG: 3, STOP_TAG: 4}
x = nd.random.normal(shape=(10, 5), ctx=ctx)
y = nd.array([[0, 1, 0, 2, 1, 0, 1],
[0, 2, 0, 0, 2, 0, 1],
[1, 1, 1, 0, 1, 0, 2],
[0, 0, 2, 2, 0, 1, 0],
[1, 1, 1, 1, 2, 2, 1],
[0, 1, 2, 2, 0, 0, 1],
[2, 2, 0, 2, 0, 1, 1],
[1, 1, 2, 0, 1, 0, 0],
[0, 2, 1, 2, 1, 2, 0],
[0, 1, 2, 0, 1, 1, 2]], ctx=ctx)
dataset_train = gluon.data.ArrayDataset(x, y)
iter_train = gluon.data.DataLoader(dataset_train, batch_size=5, shuffle=True)
class CRF_MODEL(gluon.nn.Block):
'''Here we construct a neural network.
Although there is only one CRF layer in the model,
we can test whether CRF can be reused as a custom layer.
Args:
gluon ([type]): [description]
Returns:
[type]: [description]
'''
def __init__(self, tag2idx, ctx=mx.gpu(), ** kwargs):
super(CRF_MODEL, self).__init__(** kwargs)
with self.name_scope():
self.crf = CRF(tag2idx, ctx=ctx)
def forward(self, x):
return self.crf(x)
# build a model
model = CRF_MODEL(tag2idx, ctx=ctx)
model.initialize(ctx=ctx)
# print params of the model
print(model.collect_params())
print(model.collect_params()['crf_model0_crf0_transitions'].data())
optimizer = gluon.Trainer(model.collect_params(), 'sgd', {'learning_rate': 0.01, 'wd': 1e-4})
# train
start_time = time.time()
for epoch in range(100):
for batch_x, batch_y in iter_train:
batch_x = nd.broadcast_axis(nd.expand_dims(batch_x, axis=0), axis=0, size=7)
with autograd.record():
# loss
neg_log_likelihood = model.crf.neg_log_likelihood(batch_x, batch_y)
# backward and update params
neg_log_likelihood.backward()
optimizer.step(5)
print(model.collect_params()['crf_model0_crf0_transitions'].data())
# predict
print(model(nd.broadcast_axis(nd.expand_dims(x, axis=0), axis=0, size=7)))
print('use {0} secs!'.format(time.time()-start_time))