-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path01_prep_data.R
154 lines (134 loc) · 4.48 KB
/
01_prep_data.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# Code accompanying the manuscript "Bayesian Analysis of Formula One Race Results"
# Last edited 2022-12-11 by @vankesteren
# Contents: data preparation, data joining from database f1db_csv.
library(tidyverse)
library(lubridate)
library(jsonlite)
library(glue)
library(rvest)
# Date range for the analysis
hybrid_era <- interval(ymd("2014-01-01"), ymd("2021-12-31"))
# Race information
tab_races <- read_csv("dat/f1db_csv/races.csv")
tab_circuits <- read_csv("dat/f1db_csv/circuits.csv")
# Results information
tab_results <- read_csv("dat/f1db_csv/results.csv")
tab_drivers <- read_csv("dat/f1db_csv/drivers.csv")
tab_constructors <- read_csv("dat/f1db_csv/constructors.csv")
tab_status <- read_csv("dat/f1db_csv/status.csv")
# Race information ----
## function to info from wikipedia ----
wiki_info <- function(url) {
cat(glue("Downloading info from {url}..."),"\n")
infobox <- tryCatch({
read_html(url) %>%
html_element(".infobox") %>%
html_table(trim = TRUE) %>%
.[,1:2] %>%
set_names(c("Property", "Value"))
}, error = function(e) NA)
if (length(infobox) == 1 && is.na(infobox)) return(NA)
weather_txt <- tryCatch({
res <-
infobox %>%
filter(Property == "Weather") %>%
pull(Value)
stopifnot(length(res) > 0)
res
}, error = function(e) NA)
circuit_txt <- tryCatch({
res <-
infobox %>%
filter(Property == "Course") %>%
pull(Value)
stopifnot(length(res) > 0)
res
}, error = function(e) NA)
return(list(circuit_txt = circuit_txt, weather_txt = weather_txt))
}
## Create enriched race info dataset ----
race_info <-
tab_races %>%
filter(date %within% hybrid_era) %>%
left_join(tab_circuits, by = "circuitId", suffix = c("", "_circuit")) %>%
mutate(enrichment = lapply(url, wiki_info)) %>%
unnest_wider(enrichment) %>%
mutate(
weather_type = ifelse(str_detect(tolower(weather_txt), "(wet|rain)"), "wet", "dry"),
circuit_type = ifelse(str_detect(tolower(circuit_txt), "street"), "street", "permanent"),
)
## Manually add missing weather info ----
weather_missing_idx <- which(is.na(race_info$weather_type))
race_info[weather_missing_idx, "weather_type"] <- c(
"dry", # bahrain 2017
"dry", # sochi 2017
"dry", # spain 2017
"dry", # monaco 2017
"dry", # brazil 2017
"dry", # bahrain 2018
"dry", # shanghai 2018
"dry", # monaco 2018
"dry", # hungary 2018
"dry", # belgium 2018
"dry", # italy 2018
"dry", # singapore 2018
"dry", # russia 2018
"dry", # japan 2018
"dry", # usa 2018
"dry", # mexico 2018
"dry", # brazil 2018
"dry", # abu dhabi 2018
"dry", # australia 2019
"dry", # china 2019
"dry", # azerbaijan 2019
"dry", # spain 2019
"dry" # brazil 2021
)
## Manually add missing circuit info ----
circuit_missing_idx <- which(is.na(race_info$circuit_type))
race_info[weather_missing_idx, "circuit_type"] <- c(
"permanent" # Brazil 2021
)
## Select columns ----
race_dat <- race_info %>%
select(raceId, year, round, circuitRef, country, weather_type, circuit_type)
# Result information ----
results_dat <-
tab_results %>%
left_join(tab_drivers, by = "driverId") %>%
left_join(tab_constructors, by = "constructorId") %>%
left_join(tab_status, by = "statusId") %>%
select(raceId, positionText, positionOrder, fastestLapTime, driverRef, constructorRef, status)
# Joining, cleaning & saving ----
f1_dat <-
race_dat %>%
left_join(results_dat, by = "raceId") %>%
select(-raceId) %>%
rename(circuit = circuitRef, driver = driverRef, constructor = constructorRef,
position = positionOrder, fastest_lab = fastestLapTime) %>%
select(driver, constructor, year, round, circuit, position, weather_type, circuit_type, status) %>%
mutate(year = as.integer(year), round = as.integer(round), position = as.integer(position))
# convert to factors
f1_dat <-
f1_dat %>%
mutate(
status = as_factor(status),
constructor = as_factor(constructor),
driver = as_factor(driver),
weather_type = as_factor(weather_type),
circuit_type = as_factor(circuit_type)
)
# Adding a finished indicator
compute_classified <- function(status) {
out <- rep(FALSE, length(status))
# anyone above the last person still running (finished or +n laps is classified)
last_classified <- max(which(status == "Finished" | str_starts(status, "\\+")))
out[1:last_classified] <- TRUE
out
}
f1_dat <-
f1_dat %>%
group_by(year, round) %>%
mutate(finished = compute_classified(status)) %>%
ungroup()
write_rds(f1_dat, "dat/f1_dat.rds")