forked from VivekDubey9/Competitive-Programming-Algos
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Longest Increasing Subsequence
67 lines (58 loc) · 1.63 KB
/
Longest Increasing Subsequence
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
/* A Naive C++ recursive implementation
of LIS problem */
#include <iostream>
using namespace std;
/* To make use of recursive calls, this
function must return two things:
1) Length of LIS ending with element arr[n-1].
We use max_ending_here for this purpose
2) Overall maximum as the LIS may end with
an element before arr[n-1] max_ref is
used this purpose.
The value of LIS of full array of size n
is stored in *max_ref which is our final result
*/
int _lis(int arr[], int n, int* max_ref)
{
/* Base case */
if (n == 1)
return 1;
// 'max_ending_here' is length of LIS
// ending with arr[n-1]
int res, max_ending_here = 1;
/* Recursively get all LIS ending with arr[0],
arr[1] ... arr[n-2]. If arr[i-1] is smaller
than arr[n-1], and max ending with arr[n-1]
needs to be updated, then update it */
for (int i = 1; i < n; i++) {
res = _lis(arr, i, max_ref);
if (arr[i - 1] < arr[n - 1]
&& res + 1 > max_ending_here)
max_ending_here = res + 1;
}
// Compare max_ending_here with the overall
// max. And update the overall max if needed
if (*max_ref < max_ending_here)
*max_ref = max_ending_here;
// Return length of LIS ending with arr[n-1]
return max_ending_here;
}
// The wrapper function for _lis()
int lis(int arr[], int n)
{
// The max variable holds the result
int max = 1;
// The function _lis() stores its result in max
_lis(arr, n, &max);
// returns max
return max;
}
/* Driver program to test above function */
int main()
{
int arr[] = { 10, 22, 9, 33, 21, 50, 41, 60 };
int n = sizeof(arr) / sizeof(arr[0]);
cout <<"Length of lis is "<< lis(arr, n);
return 0;
}
// This code is contributed by ujjwal-shukla