layout | title |
---|---|
page |
Publications |
I can also be found on Google Scholar, DBLP and ResearchGate.
Charalambous, P., Pettre, J., Vassiliades, V., Chrysanthou, Y., and Pelechano, N. (2023). GREIL-Crowds: Crowd Simulation with Deep Reinforcement Learning and Examples. ACM Transactions on Graphics, 42(4): 1-15. [[Link]](https://dl.acm.org/doi/abs/10.1145/3592459) Minelli, G., and Vassiliades, V. (2023). Towards Continual Reinforcement Learning for Quadruped Robots. In Proceedings of the International Conference on Interactive Media, Smart Systems and Emerging Technologies (IMET), 61-64. [[Link]](https://diglib.eg.org/handle/10.2312/imet20231258) Christou, K., Christodoulou, C., and Vassiliades, V. (2023). Quality Diversity optimization using the IsoLineDD operator: forward and backward directions are equally important. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, 639-642. [[Link]](https://dl.acm.org/doi/abs/10.1145/3583133.3590737) Dionysiou, A., Vassiliades, V. and Athanasopoulos, E. (2023). Exploring Model Inversion Attacks in the Black-box Setting. In Proceedings on Privacy Enhancing Technologies Symposium, 1, 190–206. [[Link]](https://petsymposium.org/popets/2023/popets-2023-0012.php)
Demosthenous, G., Kyriakou, M., and Vassiliades, V. (2022). Deep Reinforcement Learning for Improving Competitive Cycling Performance. Expert Systems with Applications, 117311. [[Link]](https://www.sciencedirect.com/science/article/pii/S095741742200673X)
Ishikura, N., Kondo, D., Vassiliades, V., Iordanov, I., and Tode, H. (2021). DNS Tunneling Detection by Cache-Property-Aware Features. IEEE Transactions on Network and Service Management, 18(2): 1203-1217. [[Link]](https://ieeexplore.ieee.org/abstract/document/9426926/) Dionysiou, A., Vassiliades, V. and Athanasopoulos, E. (2021). HoneyGen: Generating Honeywords Using Representation Learning. In ASIA CCS ’21: Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security, 265-279. [[Link]](https://doi.org/10.1145/3433210.3453092) Chatzilygeroudis, K., Cully, A., Vassiliades, V., and Mouret, J.-B. (2021). Quality-Diversity Optimization: a novel branch of stochastic optimization. In Black Box Optimization, Machine Learning and No-Free Lunch Theorems, Edited by: Panos Pardalos, Michael Vrahatis, Varvara Rasskazova. 109-135. [[Link]](http://link.springer.com/chapter/10.1007/978-3-030-66515-9_4) Demosthenous, G. and Vassiliades, V. (2021). Continual Learning on the Edge with TensorFlow Lite. Findings of the CVPR 2021 Workshop on Continual Learning in Computer Vision. [[Link]](https://arxiv.org/abs/2105.01946)
Kondo, D., Vassiliades, V., Silverston, T., Tode, H., and Asami, T. (2020). The named data networking flow filter: Towards improved security over information leakage attacks. Computer Networks, 173: 107187. [[Link]](https://www.sciencedirect.com/science/article/abs/pii/S1389128619316524) Ishikura, N., Kondo, D., Iordanov, I., Vassiliades, V. and Tode, H. (2020). Cache-Property-Aware Features for DNS Tunneling Detection. In 23rd Conference on Innovation in Clouds, Internet and Networks (ICIN 2020). [[Link]](https://ieeexplore.ieee.org/document/9059472)
Chatzilygeroudis, K., Vassiliades, V., Stulp, F., Calinon, S., and Mouret, J.-B. (2019). A survey on policy search algorithms for learning robot controllers in a handful of trials. IEEE Transactions on Robotics, 36(2): 328-347. [[Link (open access)]](https://ieeexplore.ieee.org/document/8944013) [[Preprint]](https://arxiv.org/abs/1807.02303).
Kondo, D., Silverston, T., Vassiliades, V., Tode, H., and Asami, T. (2018). Name Filter: A Countermeasure against Information Leakage Attacks in Named Data Networking. IEEE Access. [[Link (open access)]](https://ieeexplore.ieee.org/document/8506363). Chatzilygeroudis, K., Vassiliades, V. and Mouret, J.-B. (2018). Reset-free Trial-and-Error Learning for Robot Damage Recovery. Robotics and Autonomous Systems, 100: 236-250. [[Link (open access)]](https://www.sciencedirect.com/science/article/pii/S0921889017302440).
Vassiliades, V., Chatzilygeroudis, K. and Mouret, J.-B. (2018). Using Centroidal Voronoi Tessellations to Scale Up the Multidimensional Archive of Phenotypic Elites Algorithm. IEEE Transactions on Evolutionary Computation, 22: 623-630. [Link (open access)].
Vassiliades, V. and Mouret, J.-B. (2018). Discovering the Elite Hypervolume by Leveraging Interspecies Correlation. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 149–156. ACM. [[Link]](https://dl.acm.org/citation.cfm?id=3205602), [[Preprint]](https://arxiv.org/abs/1804.03906).Chatzilygeroudis, K., Rama, R., Kaushik, R., Goepp, D., Vassiliades, V. and Mouret, J.-B. (2017). Black-Box Data-efficient Policy Search for Robotics. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 51–58. IEEE. [[Preprint]](https://arxiv.org/abs/1703.07261). Vassiliades, V., Chatzilygeroudis, K. and Mouret, J.-B. (2017). Comparing multimodal optimization and illumination. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 97–98. ACM. [[Preprint]](https://hal.inria.fr/hal-01518802). Vassiliades, V., Chatzilygeroudis, K. and Mouret, J.-B. (2017). A comparison of illumination algorithms in unbounded spaces. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1578-1581. ACM. [[Preprint]](https://hal.inria.fr/hal-01518814).
Vassiliades, V. and Christodoulou, C. (2016). Behavioral Plasticity Through the Modulation of Switch Neurons. Neural Networks, 74: 35-51. [[Preprint]](/publications/2016_vassiliades_nn.pdf). Papaspyros, V., Chatzilygeroudis, K., Vassiliades, V. and Mouret, J.-B. (2016). Safety-Aware Robot Damage Recovery Using Constrained Bayesian Optimization and Simulated Priors. In NIPS 2016 Workshop on Bayesian Optimization. [[Link]](https://arxiv.org/abs/1611.09419). Agathocleous, M., Christodoulou, C., Promponas, V.J., Kountouris, P. and Vassiliades, V. (2016). Training Bidirectional Recurrent Neural Network Architectures with the Scaled Conjugate Gradient Algorithm. Artificial Neural Networks - ICANN 2016, Lecture Notes in Computer Science, ed. by A.E.P. Villa, P. Masulli and A.J.P. Rivero, Springer, 9886: 123-131. [[Preprint]](/publications/2016_agathocleous.pdf).
Vassiliades, V. (2015). Studies in Reinforcement Learning and Adaptive Neural Networks. PhD Thesis. Department of Computer Science, University of Cyprus. [Pdf].
Vassiliades, V. and Christodoulou, C. (2013). Toward Nonlinear Local Reinforcement Learning Rules Through Neuroevolution. Neural Computation, 25(11): 3020-3043. [[Preprint]](/publications/2013_vassiliades_nc.pdf).
Kountouris, P., Agathocleous, M., Promponas, V., Christodoulou, G., Hadjicostas, S., Vassiliades, V. and Christodoulou, C. (2012). A comparative study on filtering protein secondary structure prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9(3): 731-739. [[Preprint]](/publications/2012_kountouris.pdf). Lambrou, I., Vassiliades, V. and Christodoulou, C. (2012). An Extension of a Hierarchical Reinforcement Learning Algorithm for Multiagent Settings. Recent Advances in Reinforcement Learning, EWRL 2011, Lecture Notes in Artificial Intelligence, ed. by S. Sanner and M. Hutter, Springer, 7188: 261-272. [[Preprint]](/publications/2012_lambrou_ewrl.pdf).
Vassiliades, V., Christodoulou, C., Cleanthous, A. and Lambrou, I. (2012). Explorations in Reinforcement Learning. Research Work of Postgraduate Students, Faculty of Pure and Applied Sciences, University of Cyprus, Nicosia, Cyprus, November 2012, Abstract for Poster P-28.
Vassiliades, V., Cleanthous, A. and Christodoulou, C. (2011). Multiagent Reinforcement Learning: Spiking and Nonspiking Agents in the Iterated Prisoner's Dilemma. IEEE Transactions on Neural Networks, 22(4): 639-653. [[Preprint]](/publications/2011_vassiliades_tnn.pdf).
Agathocleous, M., Hadjicostas, S., Kountouris, P., Promponas, V., Vassiliades, V. and Christodoulou, C. (2011). Improving protein secondary structure prediction using evolutionary strategies and RBF networks. Proceedings of the 6th Conference of the Hellenic Society for Computational Biology & Bioinformatics HSCBB11, Patra, Greece, October 2011, p.34.
Agathocleous, M., Kountouris, P., Promponas, V., Christodoulou, G., Vassiliades, V. and Christodoulou, C. (2011). Training bidirectional recurrent neural networks with Conjugate gradient-type algorithms for protein secondary structure prediction. 19th International Conference on Intelligent Systems for Molecular Biology and 10th European Conference on Computational Biology (ISMB/ECCB), Vienna, Austria, July 2011, Abstract for Poster W67.
Kountouris, P., Agathocleous, M., Promponas, V., Christodoulou, G., Hadjicostas, S., Vassiliades, V. and Christodoulou, C. (2011). A comparative study on filtering protein secondary structure prediction. 19th Annual International Conference on Intelligent Systems for Molecular Biology and 10th European Conference on Computational Biology (ISMB/ECCB), Vienna, Austria, July 2011, Abstract for Poster W39.
Kountouris, P., Agathocleous, M., Promponas, V., Christodoulou, G., Hadjicostas, S., Vassiliades, V. and Christodoulou, C. (2011). A comparative study on filtering protein secondary structure prediction. Proceedings of the 4th Cyprus Workshop on Signal Processing and Informatics, Nicosia, Cyprus, July 2011, p.13.
Vassiliades, V. and Christodoulou, C. (2010). Multiagent Reinforcement Learning in the Iterated Prisoner's Dilemma: Fast Cooperation through Evolved Payoffs. Proceedings of the International Joint Conference on Neural Networks (IJCNN'10), Barcelona, Spain, 2828-2835. [[Preprint]](/publications/2010_vassiliades_wcci.pdf).
Vassiliades, V. and Christodoulou, C. (2010). Evolving internal rewards for effective multiagent learning in game theoretical situations. Proceedings of the 3rd Cyprus Workshop on Signal Processing and Informatics, Nicosia, Cyprus, July 2010, p. 22.
Agathocleous, M., Christodoulou, G., Promponas, V., Christodoulou, C., Vassiliades, V. and Antoniou, A. (2010). Per residue weight updating procedure for Protein Secondary Structure Prediction with Bidirectional Recurrent Neural Networks. Proceedings of the 3rd Cyprus Workshop on Signal Processing and Informatics, Nicosia, Cyprus, July 2010, p. 23.
Agathocleous, M., Christodoulou, G., Promponas, V., Christodoulou, C., Vassiliades, V. and Antoniou, A. (2010). Protein Secondary Structure Prediction with Bidirectional Recurrent Neural Nets: can weight updating for each residue enhance performance? AIAI 2010, ed. by H. Papadopoulos, A. S. Andreou and M. Bramer, IFIP International Federation for Information Processing AICT, 339: 128-137. [[Link]](https://link.springer.com/content/pdf/10.1007/978-3-642-16239-8_19.pdf).Vassiliades, V., Cleanthous, A. and Christodoulou, C. (2009). Multiagent Reinforcement Learning with Spiking and Non Spiking Agents in the Iterated Prisoner's Dilemma. Artificial Neural Networks - ICANN 2009, Lecture Notes in Computer Science, ed. by C. Alippi, M. Polycarpou, C. Panayiotou, G. Ellinas, Springer, 5768: 737-746. [[Preprint]](/publications/2009_vassiliades_icann.pdf).
Vassiliades, V., Cleanthous, A. and Christodoulou, C. (2009). Multiagent Reinforcement Learning: Spiking and Non spiking Neural Network Agents. Proceedings of the 2nd Cyprus Workshop on Signal Processing and Informatics, Nicosia, Cyprus, July 2009, p. 16.