Skip to content

Latest commit

 

History

History
255 lines (190 loc) · 11 KB

File metadata and controls

255 lines (190 loc) · 11 KB

OpenShift Console Dynamic Plugins

Based on the concept of webpack module federation, dynamic plugins are loaded and interpreted from remote sources at runtime. The standard way to deliver and expose dynamic plugins to Console is through OLM operators.

Dynamic plugins are decoupled from the Console application, which means both plugins and Console can be released, installed and upgraded independently from each other. To ensure compatibility with Console and other plugins, each plugin must declare its dependencies using semantic version ranges.

Related Documentation

Extension Documentation - Detailed documentation of every available console extension point.

API Documentation - Detailed documentation of hooks, components, and other APIs provided by this package.

OpenShift Console Dynamic Plugins feature page - A high level overview of dynamic plugins in relation to OLM operators and cluster administration.

Example project structure:

dynamic-demo-plugin/
├── src/
├── console-extensions.json
├── package.json
├── tsconfig.json
└── webpack.config.ts

SDK packages

Package Name Description
@openshift-console/dynamic-plugin-sdk Provides core APIs, types and utilities used by dynamic plugins at runtime.
@openshift-console/dynamic-plugin-sdk-webpack Provides webpack plugin ConsoleRemotePlugin used to build all dynamic plugin assets.
@openshift-console/dynamic-plugin-sdk-internal Internal package exposing additional code.
@openshift-console/plugin-shared Provides reusable components and utility functions to build OCP dynamic plugins. Compatible with multiple versions of OpenShift Console.

OpenShift Console Versions vs SDK Versions

Not all NPM packages are fully compatible with all versions of the Console. This table will help align compatible versions of the SDK Packages to versions of the OpenShift Console.

Console Version SDK Package Last Package Version
4.12.x @openshift-console/dynamic-plugin-sdk Latest
@openshift-console/dynamic-plugin-sdk-webpack Latest
4.11.x @openshift-console/dynamic-plugin-sdk 0.0.12
@openshift-console/dynamic-plugin-sdk-webpack 0.0.7
4.10.x [Tech] @openshift-console/dynamic-plugin-sdk 0.0.3
@openshift-console/dynamic-plugin-sdk-webpack 0.0.6
4.9.x [Dev] @openshift-console/dynamic-plugin-sdk 0.0.0-alpha18

Notes

  • [Tech] - Release 4.10 was Tech Preview for the SDK packages
  • [Dev] - Release 4.9 was Dev Preview for the SDK packages

package.json

Plugin metadata is declared via the consolePlugin object.

{
  "name": "dynamic-demo-plugin",
  "version": "0.0.0",
  "private": true,
  // scripts, dependencies, devDependencies, ...
  "consolePlugin": {
    "name": "console-demo-plugin",
    "version": "0.0.0",
    "displayName": "Console Demo Plugin",
    "description": "Plasma reactors online. Initiating hyper drive.",
    "exposedModules": {
      "barUtils": "./utils/bar"
    },
    "dependencies": {
      "@console/pluginAPI": "~4.11.0"
    }
  }
}

consolePlugin.name is the plugin's unique identifier. It should be the same as metadata.name of the corresponding ConsolePlugin resource used to represent the plugin on the cluster. Therefore, it must be a valid DNS subdomain name.

consolePlugin.version must be semver compliant.

Dynamic plugins can expose modules representing additional code to be referenced, loaded and executed at runtime. A separate webpack chunk is generated for each entry in consolePlugin.exposedModules object. Exposed modules are resolved relative to plugin's webpack context option.

The @console/pluginAPI dependency is optional and refers to Console versions this dynamic plugin is compatible with. The consolePlugin.dependencies object may also refer to other dynamic plugins that are required for this dynamic plugin to work correctly. For dependencies whose versions may include a semver pre-release identifier, adapt your semver range constraint to include the relevant pre-release prefix, e.g. use ~4.11.0-0.ci when targeting pre-release versions like 4.11.0-0.ci-1234.

See ConsolePluginMetadata type for details on the consolePlugin object and its schema.

console-extensions.json

Declares all extensions contributed by the plugin.

[
  {
    "type": "console.flag",
    "properties": {
      "handler": { "$codeRef": "barUtils.testHandler" }
    }
  },
  {
    "type": "console.flag/model",
    "properties": {
      "flag": "EXAMPLE",
      "model": {
        "group": "kubevirt.io",
        "version": "v1alpha3",
        "kind": "ExampleModel"
      }
    }
  }
]

Depending on extension type, the properties object may contain code references, encoded as object literals { $codeRef: string }. When loading dynamic plugins, encoded code references are transformed into functions () => Promise<T> used to load the referenced objects.

The $codeRef value should be formatted as either moduleName.exportName (referring to a named export) or moduleName (referring to the default export). Only the plugin's exposed modules (i.e. the keys of consolePlugin.exposedModules object) may be used in code references.

Webpack config

Dynamic plugins must be built with webpack in order for their modules to seamlessly integrate with Console application at runtime. Use webpack version 5+ which includes native support for module federation.

All dynamic plugin assets are managed via webpack plugin ConsoleRemotePlugin.

const { ConsoleRemotePlugin } = require('@openshift-console/dynamic-plugin-sdk-webpack');

const config = {
  // 'entry' is optional, but unrelated to plugin assets
  plugins: [new ConsoleRemotePlugin()],
  // ... rest of webpack configuration
};

export default config;

ConsoleRemotePlugin has no configuration options; it automatically detects your plugin's metadata and extension declarations and generates the corresponding assets.

Generated assets

Building the above example plugin produces the following assets:

dynamic-demo-plugin/dist/
├── plugin-entry.js
├── plugin-manifest.json
└── utils_bar_ts-chunk.js

plugin-manifest.json: dynamic plugin manifest. Contains both metadata and extension declarations to be parsed and interpreted by Console at runtime. This is the first plugin asset loaded by Console.

plugin-entry.js: webpack container entry chunk. Provides asynchronous access to specific modules exposed by the plugin. Loaded right after the plugin manifest.

utils_bar_ts-chunk.js: webpack chunk for the exposed barUtils module. Loaded via the plugin entry chunk when needed.

Plugin development

Run Bridge locally and instruct it to proxy e.g. /api/plugins/console-demo-plugin requests directly to your local plugin asset server (web server hosting the plugin's generated assets):

./bin/bridge -plugins console-demo-plugin=http://localhost:9001/

Your plugin should start loading automatically upon Console application startup. Inspect the value of window.SERVER_FLAGS.consolePlugins to see the list of plugins which Console loads upon its startup.

Plugin detection and management

Console operator detects available plugins through ConsolePlugin resources on the cluster. It also maintains a cluster-wide list of currently enabled plugins via spec.plugins field in its config (Console resource instance named cluster).

When the spec.plugins value in Console operator config changes, Console operator computes the actual list of plugins to load in Console as an intersection between all available plugins vs. plugins marked as enabled. Updating Console operator config triggers a new rollout of the Console (Bridge) deployment. Bridge reads the computed list of plugins upon its startup and injects this list into Console web page via SERVER_FLAGS object.

Disabling plugins in the browser

Console users can disable specific or all dynamic plugins that would normally get loaded upon Console startup via disable-plugins query parameter. The value of this parameter is either a comma separated list of plugin names (disable specific plugins) or an empty string (disable all plugins).

Runtime constraints and specifics

  • Loading multiple plugins with the same name (but with a different version) is not allowed.
  • Console will override certain modules to ensure a single version of React etc. is loaded and used by the application.
  • Enabling a plugin makes all of its extensions available for consumption. Individual extensions cannot be enabled or disabled separately.
  • Failure to resolve a code reference (unable to load module, missing module export etc.) will disable the plugin.

Publishing SDK packages

To see the latest published version of the given package:

yarn info <package-name> dist-tags --json | jq .data.latest

Before publishing, it's recommended to log into your npm user account:

npm login

Build all distributable SDK packages into dist directory:

yarn build

Finally, publish relevant packages to npm registry:

yarn publish dist/<pkg> --no-git-tag-version --new-version <version>

If the given package doesn't exist in npm registry, add --access public to yarn publish command.

Future Deprecations in Shared Plugin Dependencies

Certain packages are currently in the shared plugin dependencies that will be removed in the future. Plugin authors will need to manually add these items to their configurations or chose other options:

- react-helmet