forked from vazzup/pytorch-ppo-modified
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
231 lines (190 loc) · 9.16 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import argparse
import sys
import math
from collections import namedtuple
from itertools import count
import gym
import numpy as np
import scipy.optimize
from gym import wrappers
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision.transforms as T
from torch.autograd import Variable
from models import Policy, Value, ActorCritic
from replay_memory import Memory
from running_state import ZFilter
import plotly
import plotly.graph_objs as go
from plotly.graph_objs import Layout,Scatter
PI = torch.DoubleTensor([3.1415926])
def normal_log_density(x, mean, log_std, std):
var = std.pow(2)
log_density = -(x - mean).pow(2) / (2 * var) - 0.5 * torch.log(2 * Variable(PI)) - log_std
return log_density.sum(1)
def select_action(state, policy_net):
torch.set_default_tensor_type('torch.DoubleTensor')
PI = torch.DoubleTensor([3.1415926])
state = torch.from_numpy(state).unsqueeze(0)
action_mean, _, action_std = policy_net(Variable(state))
action = torch.normal(action_mean, action_std)
return action
def normal_log_density(x, mean, log_std, std):
torch.set_default_tensor_type('torch.DoubleTensor')
PI = torch.DoubleTensor([3.1415926])
var = std.pow(2)
log_density = -(x - mean).pow(2) / (2 * var) - 0.5 * torch.log(2 * Variable(PI)) - log_std
return log_density.sum(1)
def select_action_actor_critic(state):
torch.set_default_tensor_type('torch.DoubleTensor')
PI = torch.DoubleTensor([3.1415926])
state = torch.from_numpy(state).unsqueeze(0)
action_mean, _, action_std, v = ac_net(Variable(state))
action = torch.normal(action_mean, action_std)
return action
def update_params(batch, policy_net, value_net, gamma, opt_policy, opt_value):
torch.set_default_tensor_type('torch.DoubleTensor')
PI = torch.DoubleTensor([3.1415926])
rewards = torch.Tensor(batch.reward)
masks = torch.Tensor(batch.mask)
actions = torch.Tensor(np.concatenate(batch.action, 0))
states = torch.Tensor(batch.state)
values = value_net(Variable(states))
returns = torch.Tensor(actions.size(0),1)
deltas = torch.Tensor(actions.size(0),1)
advantages = torch.Tensor(actions.size(0),1)
prev_return = 0
prev_value = 0
prev_advantage = 0
for i in reversed(range(rewards.size(0))):
returns[i] = rewards[i] + args.gamma * prev_return * masks[i]
deltas[i] = rewards[i] + args.gamma * prev_value * masks[i] - values.data[i]
advantages[i] = deltas[i] + args.gamma * args.tau * prev_advantage * masks[i]
prev_return = returns[i, 0]
prev_value = values.data[i, 0]
prev_advantage = advantages[i, 0]
targets = Variable(returns)
opt_value.zero_grad()
value_loss = (values - targets).pow(2.).mean()
value_loss.backward()
opt_value.step()
# kloldnew = policy_net.kl_old_new() # oldpi.pd.kl(pi.pd)
# ent = policy_net.entropy() #pi.pd.entropy()
# meankl = torch.reduce_mean(kloldnew)
# meanent = torch.reduce_mean(ent)
# pol_entpen = (-args.entropy_coeff) * meanent
action_var = Variable(actions)
action_means, action_log_stds, action_stds = policy_net(Variable(states))
log_prob_cur = normal_log_density(action_var, action_means, action_log_stds, action_stds)
action_means_old, action_log_stds_old, action_stds_old = policy_net(Variable(states), old=True)
log_prob_old = normal_log_density(action_var, action_means_old, action_log_stds_old, action_stds_old)
# backup params after computing probs but before updating new params
policy_net.backup()
advantages = (advantages - advantages.mean()) / advantages.std()
advantages_var = Variable(advantages)
opt_policy.zero_grad()
ratio = torch.exp(log_prob_cur - log_prob_old) # pnew / pold
surr1 = ratio * advantages_var[:,0]
surr2 = torch.clamp(ratio, 1.0 - args.clip_epsilon, 1.0 + args.clip_epsilon) * advantages_var[:,0]
policy_surr = -torch.min(surr1, surr2).mean()
policy_surr.backward()
torch.nn.utils.clip_grad_norm(policy_net.parameters(), 40)
opt_policy.step()
def main(gamma=0.995, env_name='Walker2d-v2', tau=0.97, seed=543, number_of_batches=500,\
batch_size=5000, maximum_steps=10000, render=False, log_interval=1, entropy_coeff=0.0,\
clip_epsilon=0.2, use_joint_pol_val=False):
torch.set_default_tensor_type('torch.DoubleTensor')
PI = torch.DoubleTensor([3.1415926])
env = gym.make(env_name)
num_inputs = env.observation_space.shape[0]
num_actions = env.action_space.shape[0]
env.seed(seed)
torch.manual_seed(seed)
policy_net = Policy(num_inputs, num_actions)
value_net = Value(num_inputs)
opt_policy = optim.Adam(policy_net.parameters(), lr=0.001)
opt_value = optim.Adam(value_net.parameters(), lr=0.001)
running_state = ZFilter((num_inputs,), clip=5)
running_reward = ZFilter((1,), demean=False, clip=10)
episode_lengths = []
plot_rew = []
for i_episode in range(number_of_batches):
memory = Memory()
num_steps = 0
reward_batch = 0
num_episodes = 0
while num_steps < batch_size:
state = env.reset()
state = running_state(state)
reward_sum = 0
for t in range(maximum_steps): # Don't infinite loop while learning
action = select_action(state, policy_net)
action = action.data[0].numpy()
next_state, reward, done, _ = env.step(action)
reward_sum += reward
next_state = running_state(next_state)
mask = 1
if done:
mask = 0
memory.push(state, np.array([action]), mask, next_state, reward)
if render:
env.render()
if done:
break
state = next_state
num_steps += (t-1)
num_episodes += 1
reward_batch += reward_sum
reward_batch /= num_episodes
batch = memory.sample()
plot_rew.append(reward_batch)
update_params(batch, policy_net, value_net, gamma, opt_policy, opt_value)
if i_episode % args.log_interval == 0:
print('Episode {}\tLast reward: {}\tAverage reward {:.2f}'.format(
i_episode, reward_sum, reward_batch))
plot_epi = []
for i in range (number_of_batches):
plot_epi.append(i)
trace = go.Scatter( x = plot_epi, y = plot_rew)
layout = go.Layout(title='PPO',xaxis=dict(title='Episodes', titlefont=dict(family='Courier New, monospace',size=18,color='#7f7f7f')),
yaxis=dict(title='Average Reward', titlefont=dict(family='Courier New, monospace',size=18,color='#7f7f7f')))
plotly.offline.plot({"data": [trace], "layout": layout},filename='PPO.html',image='jpeg')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PyTorch actor-critic example')
parser.add_argument('--gamma', type=float, default=0.995, metavar='G',
help='discount factor (default: 0.995)')
parser.add_argument('--env-name', default="Walker2d-v2", metavar='G',
help='name of the environment to run')
parser.add_argument('--tau', type=float, default=0.97, metavar='G',
help='gae (default: 0.97)')
# parser.add_argument('--l2_reg', type=float, default=1e-3, metavar='G',
# help='l2 regularization regression (default: 1e-3)')
# parser.add_argument('--max_kl', type=float, default=1e-2, metavar='G',
# help='max kl value (default: 1e-2)')
# parser.add_argument('--damping', type=float, default=1e-1, metavar='G',
# help='damping (default: 1e-1)')
parser.add_argument('--seed', type=int, default=543, metavar='N',
help='random seed (default: 1)')
parser.add_argument('--number-of-batches', type=int, default=50, metavar='N',
help='number of batches (default: 500)')
parser.add_argument('--batch-size', type=int, default=20, metavar='N',
help='batch size (default: 5000)')
parser.add_argument('--maximum_steps', type=int, default=10, metavar='N',
help='maximum number of steps (default: 10000)')
parser.add_argument('--render', action='store_true',
help='render the environment')
parser.add_argument('--log-interval', type=int, default=1, metavar='N',
help='interval between training status logs (default: 10)')
parser.add_argument('--entropy-coeff', type=float, default=0.0, metavar='N',
help='coefficient for entropy cost')
parser.add_argument('--clip-epsilon', type=float, default=0.2, metavar='N',
help='Clipping for PPO grad')
parser.add_argument('--use-joint-pol-val', action='store_true',
help='whether to use combined policy and value nets')
args = parser.parse_args()
main(args.gamma, args.env_name, args.tau, args.seed, args.number_of_batches,\
args.batch_size, args.maximum_steps, args.render, args.log_interval,\
args.entropy_coeff, args.clip_epsilon)