-
Notifications
You must be signed in to change notification settings - Fork 0
/
NQueens.java
92 lines (82 loc) · 2.6 KB
/
NQueens.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
public class NQueens {
public static void print(char board[][]) {
System.out.println("-------");
for (int i = 0; i < board.length; i++) {
for (int j = 0; j < board.length; j++) {
System.out.print(board[i][j] + " ");
}
System.out.println();
}
}
public static boolean isSafe(char board[][], int row, int col) {
// vertical up
for (int i = row - 1; i >= 0; i--) {
if (board[i][col] == 'Q') {
return false;
}
}
// diagonal left up
for (int i = row - 1, j = col - 1; i >= 0 && j >= 0; i--, j--) {
if (board[i][j] == 'Q') {
return false;
}
}
// diagonal right up
for (int i = row - 1, j = col + 1; i >= 0 && j < board.length; i--, j++) {
if (board[i][j] == 'Q') {
return false;
}
}
return true;
}
public static void nQueens(char board[][], int row) {
// base case
if (row == board.length) {
print(board);
count++;
return;
}
for (int j = 0; j < board.length; j++) {
if (isSafe(board, row, j)) {
board[row][j] = 'Q';
nQueens(board, row + 1);// function call
board[row][j] = 'x';// backtrack step
}
}
}
// count no. of ways
static int count = 0;
// check if porblem can be solved and give only 1 possible solution
// public static boolean nQueens(char board[][], int row) {
// // base case
// if (row == board.length) {
// print(board);
// count++;
// return true;
// }
// for (int j = 0; j < board.length; j++) {
// if (isSafe(board, row, j)) {
// board[row][j] = 'Q';
// if (nQueens(board, row + 1)) {
// return true;
// } // function call
// System.out.println("solution possible. ");
// board[row][j] = 'x';// backtrack step
// }
// }
// return false;
// }
public static void main(String args[]) {
int n = 4;
char board[][] = new char[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
board[i][j] = 'x';
}
}
nQueens(board, 0);
System.out.println("Total ways= " + count);
}
}
// TIME COMPLEXITY =O(n!)
// recurrence relation = n*T(n-1) +isSafe()