This example implements the paper The Forward-Forward Algorithm: Some Preliminary Investigations by Geoffrey Hinton.
the aim of this paper is to introduce a new learning procedure for neural networks. the forward and backward passes of backpropagation by two forward passes.
pip install -r requirements.txt
python main.py
The main.py script accepts the following arguments:
optional arguments:
-h, --help show this help message and exit
--epochs EPOCHS number of epochs to train (default: 1000)
--lr LR learning rate (default: 0.03)
--no_cuda disables CUDA training
--no_mps disables MPS training
--seed SEED random seed (default: 1)
--save_model For saving the current Model
--train_size TRAIN_SIZE
size of training set
--threshold THRESHOLD
threshold for training
--test_size TEST_SIZE
size of test set
--save-model For Saving the current Model
--log-interval LOG_INTERVAL
logging training status interval