-
Notifications
You must be signed in to change notification settings - Fork 2
/
word2VecTF.py
255 lines (191 loc) · 7.86 KB
/
word2VecTF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# Word2Vec
# May 30, 2015, 1455 hrs
# Vijay Prakash Dwivedi ([email protected])
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import math
import os
import random
import numpy as np
from six.moves import xrange
import tensorflow as tf
os.system('clear')
print("#----------------- wor2vec implementation in TensorFlow ----------------#")
# -------------------------------------------- #
# STEP 1: Read the data into a list of strings
def read_data():
# Read the data file as a list of words
with open ("/home/vijay321/Desktop/IASNLP/text8", "r") as myfile:
read_data = myfile.readlines()
return read_data[0].split()
words = read_data()
print('Data size', len(words))
# ------------------------------------------------------------------ #
# STEP 2: Build the dictionary and replace rare words with UNK token
vocabulary_size = 50000
def build_dataset(words, vocabulary_size):
count = [['UNK', -1]]
count.extend(collections.Counter(words).most_common(vocabulary_size - 1))
dictionary = dict()
for word, _ in count:
dictionary[word] = len(dictionary) # here ranking (index) is done... Eg. dictionary['the'] = 1
data = list()
unk_count = 0
for word in words:
if word in dictionary:
index = dictionary[word]
else:
index = 0 # dictionary['UNK']
unk_count += 1
data.append(index)
count[0][1] = unk_count
reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
return data, count, dictionary, reverse_dictionary
data, count, dictionary, reverse_dictionary = build_dataset(words, vocabulary_size)
del words # To reduce memory
print('Most common words(+UNK)', count[:5])
print('Sample data', data[:10], [reverse_dictionary[i] for i in data[:10]])
data_index = 0
# -------------------------------------------------------------------- #
# STEP 3: Function to generate a training batch for the skip-gram model
def generate_batch(batch_size, num_skips, skip_window):
global data_index
assert batch_size % num_skips == 0
assert num_skips <= 2 * skip_window
batch = np.ndarray(shape=(batch_size), dtype=np.int32)
labels = np.ndarray(shape=(batch_size,1), dtype=np.int32)
span = 2 * skip_window + 1 # [ skip_window target skip_window ]
buffer = collections.deque(maxlen=span)
for _ in range(span):
buffer.append(data[data_index])
data_index = (data_index + 1) % len(data)
for i in range(batch_size // num_skips):
target = skip_window # target label at the center of the buffer
targets_to_avoid = [skip_window]
for j in range(num_skips):
while target in targets_to_avoid:
target = random.randint(0, span-1)
targets_to_avoid.append(target)
batch[i * num_skips + j] = buffer[skip_window]
labels[i * num_skips + j, 0] = buffer[target]
buffer.append(data[data_index])
data_index = (data_index + 1) % len(data)
# Backtrack a little bit to avoid skipping words in the end of a batch
data_index = (data_index + len(data) - span) % len(data)
return batch, labels
batch, labels = generate_batch(batch_size=8, num_skips=2, skip_window=1)
for i in range(8):
print(batch[i], reverse_dictionary[batch[i]],
'->', labels[i, 0], reverse_dictionary[labels[i, 0]])
# ------------------------------------------ #
# STEP 4: Build and train a skip-gram model
batch_size = 128
embedding_size = 128 # Dimension of the embedding vector
skip_window = 1 # How many words to consider left and right
num_skips = 2 # How many times to reuse an input to generate a label
# We pick a random validation set to sample nearest neighbors. Here we limit the
# validation samples to the words that have a low numeric ID, which by
# construction are also the most frequent.
valid_size = 16 # Random set of words to evaluate similarity on
valid_window = 100 # Only pick dev samples in the head of the distribution
valid_examples = np.random.choice(valid_window, valid_size, replace=False)
# print(valid_examples)
num_sampled = 64
graph = tf.Graph()
with graph.as_default():
# Input data
train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)
# CPU Implementation
with tf.device('/cpu:0'):
# Look up embedding for inputs
embeddings = tf.Variable(tf.random_normal([vocabulary_size, embedding_size], -1.0, 1.0))
embed = tf.nn.embedding_lookup(embeddings, train_inputs)
nce_weights = tf.Variable(tf.truncated_normal(
[vocabulary_size, embedding_size], stddev=1.0 / math.sqrt(embedding_size)))
nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
# Compute the average NCE loss for the batch
# tf.nce_loss automatically draws a new sample of the negative labels each time we evaluate the loss
loss = tf.reduce_mean(
tf.nn.nce_loss(
weights=nce_weights,
biases=nce_biases,
labels=train_labels,
inputs=embed,
num_sampled=num_sampled,
num_classes=vocabulary_size))
# Construct the SGD optimizer using a learning rate of 1.0
optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss)
# Compute the cosine similarity between minibatch examples and all embeddings
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
normalized_embeddings = embeddings / norm
valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings, valid_dataset)
similarity = tf.matmul(valid_embeddings, normalized_embeddings, transpose_b=True)
# Add variable initializer
# init = tf.global_variables_initializer()
init = tf.initialize_all_variables()
# ------------------------------------------ #
# STEP 5: Begin training
num_steps = 10001
with tf.Session(graph=graph) as session:
# We must initialize all Variables before we use them
init.run()
print("Initialized")
average_loss = 0
for step in xrange(num_steps):
batch_inputs, batch_labels = generate_batch(batch_size, num_skips, skip_window)
feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels}
# We perform one update step by evaluating the optimizer op (including it
# in the list of returned values for session.run()
_, loss_val = session.run([optimizer, loss], feed_dict=feed_dict)
average_loss += loss_val
if step % 2000 == 0:
if step > 0:
average_loss /= 2000
# The average loss is an estimate of the loss over the last 2000 batches
print("Average loss at step", step, ": ", average_loss)
average_loss = 0
# Note that this is expensive (~20% slowdown if computed every 500 steps)
if step % 10000 == 0:
sim = similarity.eval()
for i in xrange(valid_size):
valid_word = reverse_dictionary[valid_examples[i]]
print(valid_word)
top_k = 8 # number of nearest neighbours
nearest = (-sim[i, :]).argsort()[1:top_k + 1]
log_str = "Nearest to %s:" % valid_word
for k in xrange(top_k):
close_word = reverse_dictionary[nearest[k]]
log_str = "%s %s," % (log_str, close_word)
print(log_str)
final_embeddings = normalized_embeddings.eval()
print(len(embeddings.eval()))
print(valid_embeddings)
# ------------------------------------------ #
# STEP 6: Visualize the embeddings
def plot_with_labels(low_dim_embs, labels, filename='tsne.png'):
assert low_dim_embs.shape[0] >= len(labels), "More labels than embeddings"
plt.figure(figsize=(18, 18)) # In Inches
for i, label in enumerate(labels):
x, y = low_dim_embs[i, :]
plt.scatter(x, y)
plt.annotate(label,
xy=(x,y),
xytext=(5,2),
textcoords='offset points',
ha='right',
va='bottom')
plt.savefig(filename)
try:
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
plot_only = 500
low_dim_embs= tsne.fit_transform(final_embeddings[:plot_only, :])
labels = [reverse_dictionary[i] for i in xrange(plot_only)]
plot_with_labels(low_dim_embs, labels)
except ImportError:
print("Please install sklearn, matplotlib, and scipy to visualize embeddings.")