forked from AlibabaPAI/DAPPLE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
torch_graph_py.rs
800 lines (719 loc) · 34.9 KB
/
torch_graph_py.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
pub const TORCH_GRAPH_PY: &'static str = r#"
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
import graphviz
import os
class Graph(object):
def __init__(self, node=None):
self.nodes = {}
if node is not None:
self.nodes[node.node_id] = node
self.edges = {}
self.in_edges = {}
self._predecessors = {}
self._successors = {}
self._augmented_antichains = {}
self._deaugmented_augmented_antichains = {}
self._next_antichains = {}
self._antichain_dag = None
self._colors = ['lightblue', 'green', 'grey', 'firebrick1',
'gold', 'chocolate1', 'beige']
if node is not None:
self.in_edges[node.node_id] = list()
def copy(self):
gr = Graph()
for node_id in self.in_edges:
for node2 in self.in_edges[node_id]:
gr.add_edge(node2, self.nodes[node_id])
return gr
def sources(self):
sources = []
for node_id in self.nodes:
if node_id not in self.in_edges or len(self.in_edges[node_id]) == 0:
sources.append(self.nodes[node_id])
return sources
def add_node(self, node):
self.nodes[node.node_id] = node
def remove_node(self, node):
del self.nodes[node.node_id]
if node.node_id in self.edges:
out_nodes = self.edges[node.node_id]
del self.edges[node.node_id]
for out_node in out_nodes:
self.in_edges[out_node.node_id].remove(node)
if node.node_id in self.in_edges:
in_nodes = self.in_edges[node.node_id]
del self.in_edges[node.node_id]
for in_node in in_nodes:
self.edges[in_node.node_id].remove(node)
def sinks(self):
sinks = []
for node_id in self.nodes:
if node_id not in self.edges or len(self.edges[node_id]) == 0:
sinks.append(self.nodes[node_id])
return sinks
def reset(self):
self._predecessors = {}
self._successors = {}
def add_edge(self, node1, node2):
if node1.node_id not in self.nodes:
self.nodes[node1.node_id] = node1
if node2.node_id not in self.nodes:
self.nodes[node2.node_id] = node2
if node2.node_id not in self.in_edges:
self.in_edges[node2.node_id] = list()
self.in_edges[node2.node_id].append(node1)
if node1.node_id not in self.edges:
self.edges[node1.node_id] = list()
self.edges[node1.node_id].append(node2)
def remove_edge(self, node1, node2):
self.edges[node1.node_id].remove(node2)
self.in_edges[node2.node_id].remove(node1)
def populate_depths(self):
# Helper method that annotates each node in the graph with its depth from the sink.
sources = self.sources()
sources[0].depth = 1
queue = [sources[0]]
while len(queue) > 0:
node = queue.pop(-1)
if node.node_id not in self.edges: continue
for out_node in self.edges[node.node_id]:
if out_node.depth is None or out_node.depth < (node.depth + 1):
out_node.depth = node.depth + 1
queue.append(out_node)
def populate_heights(self):
# Helper method that annotates each node in the graph with its height from the further
# away sink.
sinks = self.sinks()
for sink in sinks: sink.height = 1
queue = sinks
visited = set()
while len(queue) > 0:
node = queue.pop(-1)
visited.add(node.node_id)
if node.node_id not in self.in_edges: continue
for in_node in self.in_edges[node.node_id]:
if in_node.height is None or in_node.height < (node.height + 1):
in_node.height = node.height + 1
if in_node.node_id not in visited:
queue.append(in_node)
def partition_graph(self):
stage_ids = set()
for node_id in self.nodes:
stage_ids.add(self.nodes[node_id].stage_id)
if len(stage_ids) == 1:
return [self.copy()]
subgraphs = []
for stage_id in stage_ids:
subgraphs.append(self.partition_graph_helper(stage_id))
return subgraphs
def partition_graph_helper(self, stage_id):
subgraph = Graph()
for node1_id in self.nodes:
if self.nodes[node1_id].stage_id == stage_id:
subgraph.add_node(self.nodes[node1_id])
if node1_id not in self.edges: continue
for node2 in self.edges[node1_id]:
if node2.stage_id == stage_id:
subgraph.add_edge(self.nodes[node1_id], node2)
return subgraph
def flattened_graph(self):
nodes = self.sources() # Start exploration with the input graph's source node.
new_gr = Graph() # Create new graph, that will be returned.
topo = self.topological_sort()
new_gr.add_node(topo[0])
for i in range(1, len(topo)):
new_gr.add_node(topo[i])
new_gr.add_edge(topo[i-1], topo[i])
return new_gr
def compress_branch_helper(self, node, new_node_id):
if len(self.in_edges[node.node_id]) > 1:
return None, node
new_node = Node("compressed_node%d" % new_node_id,
node_desc=("Branch %d" % new_node_id))
chain_length = 0
# Assumption here is that node has edges coming into it, since this is how
# compress_branch_helper was called on it.
while (len(self.in_edges[node.node_id]) == 1 and node.node_id in self.edges
and len(self.edges[node.node_id]) == 1):
chain_length += 1
next_node = self.edges[node.node_id][0] # Since node has a single out-neighbor.
# Compute time and parameter size are added; latest node's activation_size is used.
new_node.forward_compute_time += node.forward_compute_time
new_node.backward_compute_time += node.backward_compute_time
new_node.activation_size = node.activation_size
new_node.parameter_size += node.parameter_size
# If next_node has more than one predecessor, then can't continue merging
# next_node into new_node.
if len(self.in_edges[next_node.node_id]) > 1:
break
node = next_node
if node.node_id not in self.edges:
return new_node, node
if chain_length == 0:
return node, node
if chain_length == 1:
new_node.node_desc = node.node_desc
# If node can't be compressed into `new_node` because it has multiple
# out-neighbors, make sure to compress `node` into `new_node` as well.
if node.node_id in self.edges and len(self.edges[node.node_id]) > 1:
new_node.forward_compute_time += node.forward_compute_time
new_node.backward_compute_time += node.backward_compute_time
new_node.activation_size = node.activation_size
new_node.parameter_size += node.parameter_size
# Return the new_node along with the last merged-in node which is now
# effectively replaced in the input graph.
return new_node, node
def compress_branches(self):
nodes = self.sources() # Start exploration with the input graph's source node.
new_gr = Graph() # Create new graph, that will be returned.
i = 0
seen_node_ids = set()
new_node_mapping = dict() # Map old nodes to the new compressed nodes.
while len(nodes) > 0:
node = nodes.pop(0)
if node.node_id in seen_node_ids:
continue
if node.node_id in self.edges and len(self.edges[node.node_id]) > 1:
for out_node in self.edges[node.node_id]:
# Each out_node is now a branch that needs to be compressed.
compressed_node, old_node = self.compress_branch_helper(
out_node, i)
i += 1
if compressed_node is None:
# Now, add an edge between `node` (or the node that replaces `node`)
# and `out_node`, since node compression didn't take place.
if node.node_id in new_node_mapping:
new_gr.add_edge(new_node_mapping[node.node_id], out_node)
else:
new_gr.add_edge(node, out_node)
else:
new_node_mapping[old_node.node_id] = compressed_node
# Add an edge between `node` (or the node that replaces `node`)
# and `compressed_node`.
if node.node_id in new_node_mapping:
new_gr.add_edge(new_node_mapping[node.node_id], compressed_node)
else:
new_gr.add_edge(node, compressed_node)
if old_node.node_id not in seen_node_ids:
nodes.append(old_node)
else:
# No branching -- copy graph to output graph.
if node.node_id in self.edges:
for out_node in self.edges[node.node_id]:
in_node = node
if node.node_id in new_node_mapping:
in_node = new_node_mapping[node.node_id]
if out_node.node_id in new_node_mapping:
new_gr.add_edge(in_node, new_node_mapping[out_node.node_id])
else:
new_gr.add_edge(in_node, out_node)
if out_node.node_id not in seen_node_ids:
nodes.append(out_node)
seen_node_ids.add(node.node_id)
return new_gr
def is_series_parallel(self, arch):
gr_copy = self.copy()
chain_nodes = gr_copy.chain_nodes()
while len(chain_nodes) > 0:
node = chain_nodes[0]
predecessor = next(iter(gr_copy.in_edges[node.node_id]))
successor = next(iter(gr_copy.edges[node.node_id]))
if successor not in gr_copy.edges[predecessor.node_id]:
gr_copy.add_edge(predecessor, successor)
del gr_copy.nodes[node.node_id]
gr_copy.remove_edge(node, successor)
gr_copy.remove_edge(predecessor, node)
chain_nodes = gr_copy.chain_nodes()
gr_copy.to_dot("%s/%s" % (arch, arch))
return len(gr_copy.nodes) == 2
def chain_nodes(self):
chain_nodes = list()
for node in self.nodes.values():
if node.node_id in self.edges and len(self.edges[node.node_id]) == 1 \
and node.node_id in self.in_edges and len(self.in_edges[node.node_id]) == 1:
chain_nodes.append(node)
return chain_nodes
def aggregate(self, sum_activations=False):
forward_compute_time = 0.0
backward_compute_time = 0.0
parameter_size = 0.0
activation_size = 0.0
for node in self.nodes.values():
forward_compute_time += node.forward_compute_time
backward_compute_time += node.backward_compute_time
parameter_size += node.parameter_size
if sum_activations:
activation_size += node.activation_size
else:
if node.node_id not in self.in_edges or len(self.in_edges[node.node_id]) == 0:
activation_size += node.activation_size
return [forward_compute_time, backward_compute_time, parameter_size, activation_size]
def check_fidelity(self, other):
self_aggregate = self.aggregate()
other_aggregate = other.aggregate()
for i in range(len(self_aggregate)):
assert(0.9999 <= (self_aggregate[i] / other_aggregate[i]) <= 1.0001)
def check_isomorphism(self, other):
# Hack to check for isomorphism (break ties when exploring out-neighbors with "height"
# [longest path from one of the sinks]).
self.populate_heights()
other.populate_heights()
self_topological_sort = self.topological_sort()
other_topological_sort = other.topological_sort()
assert(len(self_topological_sort) == len(other_topological_sort))
for (self_node, other_node) in zip(self_topological_sort, other_topological_sort):
assert(self_node.node_desc == other_node.node_desc)
if self_node.node_id in self.edges:
assert(len(self.edges[self_node.node_id]) == len(other.edges[other_node.node_id]))
if self_node.node_id in self.in_edges:
assert(len(self.in_edges[self_node.node_id]) == len(other.in_edges[other_node.node_id]))
def topological_sort(self):
# Algorithm from https://en.wikipedia.org/wiki/Topological_sorting
self.sorted_nodes = []
self.marked_nodes = set()
self.temporarily_marked_nodes = set()
nodes = list(self.nodes.values())
nodes.sort(key=lambda x: x.node_desc)
for node in nodes:
if node.node_id in self.marked_nodes:
continue
self.topological_sort_helper(node.node_id)
return [self.nodes[node_id] for node_id in self.sorted_nodes]
def topological_sort_helper(self, node_id):
if node_id in self.marked_nodes:
return
if node_id in self.temporarily_marked_nodes:
raise Exception("Graph has a cycle")
self.temporarily_marked_nodes.add(node_id)
if node_id in self.edges:
out_nodes = list(self.edges[node_id])
out_nodes.sort(key=lambda x: (x.node_desc, x.height))
for out_node in out_nodes:
self.topological_sort_helper(out_node.node_id)
self.marked_nodes.add(node_id)
self.temporarily_marked_nodes.remove(node_id)
self.sorted_nodes.insert(0, node_id)
def predecessors(self, node):
if node in self._predecessors:
return self._predecessors[node]
predecessors = set()
if node not in self.in_edges: # Source node
return predecessors
for in_node in self.in_edges[node]:
predecessors.add(in_node)
predecessors.update(self.predecessors(in_node.node_id))
self._predecessors[node] = predecessors
return self._predecessors[node]
def all_predecessors(self, antichain):
all_predecessors = set()
for antichain_node in antichain:
all_predecessors.update(self.predecessors(antichain_node))
all_predecessors.add(self.nodes[antichain_node])
return all_predecessors
def successors(self, node):
if node in self._successors:
return self._successors[node]
successors = set()
if not node in self.edges: # Sink node
return successors
for out_node in self.edges[node]:
successors.add(out_node)
successors.update(self.successors(out_node.node_id))
self._successors[node] = successors
return self._successors[node]
def augment_antichain(self, antichain):
antichain_key = tuple(sorted(antichain))
if antichain_key in self._augmented_antichains:
return self._augmented_antichains[antichain_key]
extra_nodes = set()
all_predecessors = set()
for antichain_node in antichain:
predecessors = self.predecessors(antichain_node)
all_predecessors = all_predecessors.union(predecessors)
for antichain_node in antichain:
predecessors = self.predecessors(antichain_node)
for predecessor in predecessors:
for out_node in self.edges[predecessor.node_id]:
if out_node not in predecessors and out_node.node_id != antichain_node:
extra_nodes.add(predecessor.node_id)
self._augmented_antichains[antichain_key] = list(extra_nodes) + antichain
return self._augmented_antichains[antichain_key]
def deaugment_augmented_antichain(self, augmented_antichain):
augmented_antichain_key = tuple(sorted(augmented_antichain))
if augmented_antichain_key in self._deaugmented_augmented_antichains:
return self._deaugmented_augmented_antichains[augmented_antichain_key]
nodes_to_remove = set()
all_successors = set()
for augmented_antichain_node in augmented_antichain:
successors = self.successors(augmented_antichain_node)
for augmented_antichain_node_prime in augmented_antichain:
if self.nodes[augmented_antichain_node_prime] in successors:
nodes_to_remove.add(augmented_antichain_node)
antichain = list()
for augmented_antichain_node in augmented_antichain:
if (augmented_antichain_node not in nodes_to_remove and \
augmented_antichain_node not in antichain):
antichain.append(augmented_antichain_node)
self._deaugmented_augmented_antichains[augmented_antichain_key] = antichain
return self._deaugmented_augmented_antichains[augmented_antichain_key]
def is_next_antichain(self, augmented_antichain, new_node):
successors = self.successors(new_node)
augmented_antichain_set = set(augmented_antichain)
for successor in successors:
if successor.node_id in augmented_antichain_set:
return False
return True
def construct_antichain(self, augmented_antichain, old_node, new_node):
new_antichain = [x if x != old_node else new_node for x in augmented_antichain]
return self.deaugment_augmented_antichain(new_antichain)
def next_antichains(self, antichain):
antichain_key = tuple(sorted(antichain))
if antichain_key in self._next_antichains:
return self._next_antichains[antichain_key]
next_antichains = []
antichain_set = set(antichain)
augmented_antichain = self.augment_antichain(antichain)
for augmented_antichain_node in augmented_antichain:
next_nodes = self.edges[augmented_antichain_node] if augmented_antichain_node in self.edges else []
for next_node in next_nodes:
if next_node.node_id in antichain_set:
continue
if self.is_next_antichain(augmented_antichain, next_node.node_id):
next_antichain = self.construct_antichain(augmented_antichain,
augmented_antichain_node,
next_node.node_id)
next_antichains.append(next_antichain)
self._next_antichains[antichain_key] = next_antichains
return self._next_antichains[antichain_key]
def antichain_dag(self):
if self._antichain_dag is not None:
return self._antichain_dag
antichain_dag = Graph()
antichain_id = 0
antichain = [self.sources()[0].node_id]
source_node = AntichainNode("antichain_%d" % antichain_id, self.augment_antichain(antichain),
self.nodes[antichain[0]].node_desc)
antichain_dag.source = source_node
antichain_queue = [antichain]
antichain_mapping = {tuple(sorted(antichain)): source_node}
while len(antichain_queue) > 0:
antichain = antichain_queue.pop(0)
antichain_key = tuple(sorted(antichain))
if antichain_key in self._next_antichains:
continue
next_antichains = self.next_antichains(antichain)
for next_antichain in next_antichains:
next_antichain_key = tuple(sorted(next_antichain))
if next_antichain_key not in antichain_mapping:
antichain_id += 1
next_antichain_node = AntichainNode("antichain_%d" % antichain_id, self.augment_antichain(next_antichain),
self.nodes[next_antichain[0]].node_desc)
antichain_mapping[next_antichain_key] = next_antichain_node
antichain_dag.add_edge(antichain_mapping[antichain_key],
antichain_mapping[next_antichain_key])
antichain_queue.append(next_antichain)
self._antichain_dag = antichain_dag
return antichain_dag
def __str__(self):
strs = []
for node in self.nodes.values():
strs.append(str(node))
for node in self.nodes.values():
if node.node_id not in self.in_edges:
continue
for in_node in self.in_edges[node.node_id]:
strs.append("\t%s -- %s" % (in_node.node_id, node.node_id))
return "\n".join(strs)
@staticmethod
def from_str(graph_str):
gr = Graph()
graph_str_lines = graph_str.strip().split('\n')
for graph_str_line in graph_str_lines:
if not graph_str_line.strip(): # ignore empty line
continue
if not graph_str_line.startswith((' ', '\t')):
node = Node.from_str(graph_str_line.strip())
gr.nodes[node.node_id] = node
else:
[in_node_id, node_id] = graph_str_line.strip().split(" -- ")
if node_id not in gr.in_edges:
gr.in_edges[node_id] = [gr.nodes[in_node_id]]
else:
gr.in_edges[node_id].append(gr.nodes[in_node_id])
if in_node_id not in gr.edges:
gr.edges[in_node_id] = [gr.nodes[node_id]]
else:
gr.edges[in_node_id].append(gr.nodes[node_id])
return gr
def to_dot(self, arch):
dot = graphviz.Digraph()
for node in self.nodes.values():
node_desc = "%s\n[forward_compute_time=%.3f,backward_compute_time=%.3f,activation_size=%s,parameter_size=%.1f]" % (
node.node_desc, node.forward_compute_time, node.backward_compute_time,
node.activation_size, node.parameter_size)
if node.stage_id is not None:
color = self._colors[node.stage_id % len(self._colors)]
dot.node(node.node_id, node_desc,
color=color, style='filled')
else:
dot.node(node.node_id, node_desc)
for node in self.nodes.values():
if node.node_id not in self.edges:
continue
for out_node in self.edges[node.node_id]:
dot.edge(node.node_id, out_node.node_id)
dot.render(arch)
def plot_cdfs(self, cdfs, output_directory):
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
import seaborn as sns
matplotlib.rc('text', usetex=True)
sns.set_style('ticks')
sns.set_style({'font.family':'sans-serif'})
flatui = ['#002A5E', '#FD151B', '#8EBA42', '#348ABD', '#988ED5', '#777777', '#8EBA42', '#FFB5B8']
sns.set_palette(flatui)
paper_rc = {'lines.linewidth': 2, 'lines.markersize': 10}
sns.set_context("paper", font_scale=3, rc=paper_rc)
current_palette = sns.color_palette()
plt.figure(figsize=(10, 4))
ax = plt.subplot2grid((1, 1), (0, 0), colspan=1)
labels = ["Compute", "Activations", "Parameters"]
for i in range(3):
cdf = [cdfs[j][i] for j in range(len(cdfs))]
ax.plot(range(len(cdfs)), cdf, label=labels[i],
linewidth=2)
ax.set_xlim([0, None])
ax.set_ylim([0, 100])
ax.set_xlabel("Layer ID")
ax.set_ylabel("CDF (\%)")
plt.legend()
with PdfPages(os.path.join(output_directory, "cdf.pdf")) as pdf:
pdf.savefig(bbox_inches='tight')
def plot_bar_graph(self, all_values, ylabel, legend, output_template, output_directory):
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
import seaborn as sns
matplotlib.rc('text', usetex=True)
sns.set_style('ticks')
sns.set_style({'font.family':'sans-serif'})
flatui = ['#002A5E', '#FD151B', '#8EBA42', '#348ABD', '#988ED5', '#777777', '#8EBA42', '#FFB5B8']
sns.set_palette(flatui)
paper_rc = {'lines.linewidth': 2, 'lines.markersize': 10}
sns.set_context("paper", font_scale=3, rc=paper_rc)
current_palette = sns.color_palette()
labels = ["Compute_times", "Activations", "Parameters"]
ylabels = ["Compute time\n(milliseconds)", "Activation size\n(bytes)", "Parameter size\n(bytes)"]
for i in range(3):
plt.figure(figsize=(10, 4))
ax = plt.subplot2grid((1, 1), (0, 0), colspan=1)
values_sum = sum([all_values[j][i] for j in range(len(all_values))])
# Truncate the number of values plotted, since bars become very thin otherwise.
values = [all_values[j][i] for j in range(len(all_values))][:400]
if legend:
ax.bar(range(len(values)), values, label="Sum: %.1f" % values_sum)
else:
ax.bar(range(len(values)), values)
ax.set_xlim([0, None])
ax.set_ylim([0, None])
ax.set_xlabel("Layer ID")
if ylabel is not None:
ax.set_ylabel(ylabel)
else:
ax.set_ylabel(ylabels[i])
if legend:
plt.legend()
with PdfPages(os.path.join(output_directory,
(output_template % labels[i].lower()))) as pdf:
pdf.savefig(bbox_inches='tight')
def render_bar_graphs_and_cdfs(self, output_directory):
topological_ordering = self.topological_sort()[1:] # Skip input node.
cdfs = []
raw_values = []
pdfs = []
for node in topological_ordering:
activation_size = node.activation_size
if isinstance(activation_size, list):
activation_size = sum(activation_size)
if len(cdfs) == 0:
cdfs.append([node.forward_compute_time + node.backward_compute_time,
activation_size, node.parameter_size])
else:
cdfs.append([cdfs[-1][0] + node.forward_compute_time + node.backward_compute_time,
cdfs[-1][1] + activation_size,
cdfs[-1][2] + node.parameter_size])
for node in topological_ordering:
activation_size = node.activation_size
if isinstance(activation_size, list):
activation_size = sum(activation_size)
raw_values.append((node.forward_compute_time + node.backward_compute_time,
activation_size, node.parameter_size))
self.plot_bar_graph(raw_values, None, True, "%s.pdf", output_directory)
for node in topological_ordering:
activation_size = node.activation_size
if isinstance(activation_size, list):
activation_size = sum(activation_size)
pdfs.append(((node.forward_compute_time + node.backward_compute_time) / (cdfs[-1][0] / 100.0),
activation_size / (cdfs[-1][1] / 100.0),
node.parameter_size / (cdfs[-1][2] / 100.0)))
self.plot_bar_graph(pdfs, "PDF (\%)", False, "%s_pdf.pdf", output_directory)
for i in range(len(cdfs)):
cdfs[i][0] /= (cdfs[-1][0] / 100.0)
cdfs[i][1] /= (cdfs[-1][1] / 100.0)
cdfs[i][2] /= (cdfs[-1][2] / 100.0)
self.plot_cdfs(cdfs, output_directory)
class Node(object):
def __init__(self, node_id, node_desc="", forward_compute_time=0.0,
backward_compute_time=0.0, activation_size=0.0, parameter_size=0.0,
stage_id=None):
self.node_id = node_id
self.node_desc = node_desc
self.forward_compute_time = forward_compute_time
self.backward_compute_time = backward_compute_time
self.activation_size = activation_size
self.parameter_size = parameter_size
self.stage_id = stage_id
self.depth = None
self.height = None
def set_stage_id(self, stage_id):
self.stage_id = stage_id
def __str__(self):
stage_id_str = " -- stage_id=%d" % self.stage_id if self.stage_id is not None else ""
node_desc = self.node_desc.replace('\n', "")
activation_size = ("%s" % self.activation_size).replace(", ", "; ")
return "%s -- %s -- forward_compute_time=%.3f, backward_compute_time=%.3f, activation_size=%s, parameter_size=%.3f%s" % (
self.node_id, node_desc, self.forward_compute_time, self.backward_compute_time,
activation_size, self.parameter_size, stage_id_str)
@staticmethod
def from_str(node_str):
node_str_tokens = node_str.strip().split(" -- ")
node_id = node_str_tokens[0]
node_desc = node_str_tokens[1]
node_metadata = node_str_tokens[2]
stage_id = None
if len(node_str_tokens) > 3:
stage_id = int(node_str_tokens[3].split("=")[1])
[forward_compute_time, backward_compute_time, activation_size, parameter_size] = node_metadata.split(", ")
forward_compute_time = float(forward_compute_time.split("=")[1])
backward_compute_time = float(backward_compute_time.split("=")[1])
if "[" in activation_size:
activation_size = activation_size.split("=")[1]
activation_size = sum([float(x) for x in activation_size.lstrip("[").rstrip("]").split("; ")])
else:
activation_size = float(activation_size.split("=")[1])
parameter_size = float(parameter_size.split("=")[1])
return Node(node_id, node_desc, forward_compute_time=forward_compute_time,
backward_compute_time=backward_compute_time, activation_size=activation_size,
parameter_size=parameter_size, stage_id=stage_id)
class AntichainNode(Node):
def __init__(self, node_id, antichain, node_desc=""):
self.antichain = antichain
self.output_activation_size = 0.0
super(AntichainNode, self).__init__(node_id, node_desc)
def __str__(self):
return "%s -- %s" % (self.node_id, self.antichain)
##############################################################################
from collections import OrderedDict
import sys
def prepare(profile_filename, verbose=True):
if verbose:
print("[python]\t Got prepare argument: ", profile_filename, verbose)
gr = Graph.from_str(open(profile_filename, 'r').read())
# Zero out all metadata associated with inputs in graph, since the optimizer
# shouldn't really get a choice with where to place the input (should always
# be in the first stage).
if verbose:
print("[python]\t Zeroing out Input's metadata")
sources = gr.sources()
nodes_to_remove = OrderedDict()
for source in sources:
if source.node_desc.startswith("Input"):
source.forward_compute_time = 0.0
source.backward_compute_time = 0.0
source.activation_size = 0.0
source.parameter_size = 0.0
nodes_to_remove[source] = []
for out_node in gr.edges[source.node_id]:
nodes_to_remove[source].append(out_node)
gr.remove_node(source)
# Remove all unneeded sinks that are not used, makes code generation and
# optimization easier.
if verbose:
print("[python]\t remove unneeded sinks")
sinks = gr.sinks()
for sink in sinks:
if sink.node_desc.startswith("__getitem__"):
gr.remove_node(sink)
antichain_gr = gr.antichain_dag()
states = antichain_gr.topological_sort()
if verbose:
print("Total number of states: %d" % len(states))
states_indices = {}
for i in range(len(states)):
states_indices[states[i]] = i
for i in range(len(states)):
for antichain_node in states[i].antichain:
states[i].output_activation_size += gr.nodes[antichain_node].activation_size
if verbose:
print("[python]\t Computing states metadata...")
for i in range(len(states)):
antichain = states[i].antichain
all_predecessors = gr.all_predecessors(antichain)
states[i].compute_time = 0.0
states[i].activation_size = 0.0
states[i].parameter_size = 0.0
for predecessor in all_predecessors:
states[i].compute_time += ((predecessor.forward_compute_time +
predecessor.backward_compute_time) / 1000.0)
states[i].activation_size += predecessor.activation_size
states[i].parameter_size += predecessor.parameter_size
gr.reset()
if verbose:
print("[python]\t Computing output_activations and predecessor_ids ...")
output_activation_sizes = [state.output_activation_size for state in states]
all_predecessor_ids = [[states_indices[predecessor] for predecessor in
antichain_gr.predecessors(states[i].node_id)]
for i in range(len(states))]
if verbose:
print("[python]\t Computing return values ...")
compute_times = []
activation_sizes = []
parameter_sizes = []
for i in range(len(states) + 1):
compute_times_row = []
activation_sizes_row = []
parameter_sizes_row = []
for j in range(len(states)):
if i == 0:
compute_times_row.append(states[j].compute_time)
activation_sizes_row.append(states[j].activation_size)
parameter_sizes_row.append(states[j].parameter_size)
else:
if j > (i - 1):
compute_times_row.append(states[j].compute_time -
states[i - 1].compute_time)
activation_sizes_row.append(states[j].activation_size -
states[i - 1].activation_size)
parameter_sizes_row.append(states[j].parameter_size -
states[i - 1].parameter_size)
else:
compute_times_row.append(-1.0)
activation_sizes_row.append(-1.0)
parameter_sizes_row.append(-1.0)
compute_times.append(compute_times_row)
activation_sizes.append(activation_sizes_row)
parameter_sizes.append(parameter_sizes_row)
# for i in range(len(states)):
# print(i, compute_times[i][i])
# this would give you the layer-wise compute time
return gr, states, compute_times, activation_sizes, parameter_sizes, output_activation_sizes, all_predecessor_ids
def update_stage_id(gr, states, end, stage_id):
predecessors = gr.all_predecessors(states[end-1].antichain)
for predecessor in predecessors:
if predecessor.stage_id is None:
predecessor.set_stage_id(stage_id)
"#;