-
Notifications
You must be signed in to change notification settings - Fork 609
/
Copy pathcoco_seq.py
168 lines (127 loc) · 6.15 KB
/
coco_seq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os
from .base_video_dataset import BaseVideoDataset
from ltr.data.image_loader import jpeg4py_loader
import torch
import random
from pycocotools.coco import COCO
from collections import OrderedDict
from ltr.admin.environment import env_settings
class MSCOCOSeq(BaseVideoDataset):
""" The COCO dataset. COCO is an image dataset. Thus, we treat each image as a sequence of length 1.
Publication:
Microsoft COCO: Common Objects in Context.
Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollar and C. Lawrence Zitnick
ECCV, 2014
https://arxiv.org/pdf/1405.0312.pdf
Download the images along with annotations from http://cocodataset.org/#download. The root folder should be
organized as follows.
- coco_root
- annotations
- instances_train2014.json
- instances_train2017.json
- images
- train2014
- train2017
Note: You also have to install the coco pythonAPI from https://github.com/cocodataset/cocoapi.
"""
def __init__(self, root=None, image_loader=jpeg4py_loader, data_fraction=None, split="train", version="2014"):
"""
args:
root - path to the coco dataset.
image_loader (default_image_loader) - The function to read the images. If installed,
jpeg4py (https://github.com/ajkxyz/jpeg4py) is used by default. Else,
opencv's imread is used.
data_fraction (None) - Fraction of images to be used. The images are selected randomly. If None, all the
images will be used
split - 'train' or 'val'.
version - version of coco dataset (2014 or 2017)
"""
root = env_settings().coco_dir if root is None else root
super().__init__('COCO', root, image_loader)
self.img_pth = os.path.join(root, 'images/{}{}/'.format(split, version))
self.anno_path = os.path.join(root, 'annotations/instances_{}{}.json'.format(split, version))
# Load the COCO set.
self.coco_set = COCO(self.anno_path)
self.cats = self.coco_set.cats
self.class_list = self.get_class_list()
self.sequence_list = self._get_sequence_list()
if data_fraction is not None:
self.sequence_list = random.sample(self.sequence_list, int(len(self.sequence_list)*data_fraction))
self.seq_per_class = self._build_seq_per_class()
def _get_sequence_list(self):
ann_list = list(self.coco_set.anns.keys())
seq_list = [a for a in ann_list if self.coco_set.anns[a]['iscrowd'] == 0]
return seq_list
def is_video_sequence(self):
return False
def get_num_classes(self):
return len(self.class_list)
def get_name(self):
return 'coco'
def has_class_info(self):
return True
def get_class_list(self):
class_list = []
for cat_id in self.cats.keys():
class_list.append(self.cats[cat_id]['name'])
return class_list
def has_segmentation_info(self):
return True
def get_num_sequences(self):
return len(self.sequence_list)
def _build_seq_per_class(self):
seq_per_class = {}
for i, seq in enumerate(self.sequence_list):
class_name = self.cats[self.coco_set.anns[seq]['category_id']]['name']
if class_name not in seq_per_class:
seq_per_class[class_name] = [i]
else:
seq_per_class[class_name].append(i)
return seq_per_class
def get_sequences_in_class(self, class_name):
return self.seq_per_class[class_name]
def get_sequence_info(self, seq_id):
anno = self._get_anno(seq_id)
bbox = torch.Tensor(anno['bbox']).view(1, 4)
mask = torch.Tensor(self.coco_set.annToMask(anno)).unsqueeze(dim=0)
valid = (bbox[:, 2] > 0) & (bbox[:, 3] > 0)
visible = valid.clone().byte()
return {'bbox': bbox, 'mask': mask, 'valid': valid, 'visible': visible}
def _get_anno(self, seq_id):
anno = self.coco_set.anns[self.sequence_list[seq_id]]
return anno
def _get_frames(self, seq_id):
path = self.coco_set.loadImgs([self.coco_set.anns[self.sequence_list[seq_id]]['image_id']])[0]['file_name']
img = self.image_loader(os.path.join(self.img_pth, path))
return img
def get_meta_info(self, seq_id):
try:
cat_dict_current = self.cats[self.coco_set.anns[self.sequence_list[seq_id]]['category_id']]
object_meta = OrderedDict({'object_class_name': cat_dict_current['name'],
'motion_class': None,
'major_class': cat_dict_current['supercategory'],
'root_class': None,
'motion_adverb': None})
except:
object_meta = OrderedDict({'object_class_name': None,
'motion_class': None,
'major_class': None,
'root_class': None,
'motion_adverb': None})
return object_meta
def get_class_name(self, seq_id):
cat_dict_current = self.cats[self.coco_set.anns[self.sequence_list[seq_id]]['category_id']]
return cat_dict_current['name']
def get_frames(self, seq_id=None, frame_ids=None, anno=None):
# COCO is an image dataset. Thus we replicate the image denoted by seq_id len(frame_ids) times, and return a
# list containing these replicated images.
frame = self._get_frames(seq_id)
frame_list = [frame.copy() for _ in frame_ids]
if anno is None:
anno = self.get_sequence_info(seq_id)
anno_frames = {}
for key, value in anno.items():
anno_frames[key] = [value[0, ...] for _ in frame_ids]
object_meta = self.get_meta_info(seq_id)
return frame_list, anno_frames, object_meta